1
|
Azmoun S, Lewis F, Shoieb D, Jin Y, Colicino E, Winters I, Gu H, Krishnamurthy H, Richardson J, Placidi D, Lambertini L, Lucchini RG. Impact of Manganese on Neuronal Function: An Exploratory MultiOmic Study on Ferroalloy Workers in Brescia, Italy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.02.25326824. [PMID: 40385409 PMCID: PMC12083615 DOI: 10.1101/2025.05.02.25326824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Interest is growing in the potential role of manganese (Mn) in Alzheimer's Disease (ADRD). This nested pilot study of a ferroalloy workers cohort was aimed to investigate the effects of long-term occupational Mn exposure on cognitive function through β-amyloid (Aβ) modification and brain deposition, as well as metabolomic, lipidomic and proteomic profiling. We examined 6 male exposed workers (median age 63, exposure duration 31 yrs), and 5 historical controls (median age 60) who had undergone brain PET scan imaging showing higher Aβ deposition among the exposed compared to the controls (p < 0.05). The average annual cumulative respirable Mn of the ferroalloy workers was 329.23 ± 516.39 μg/m3 (geometric mean 118.59). Average Mn level in plasma of the exposed subjects (0.704 ± 0.2 ng/mL) was significantly higher than the controls (0.397 ± 0.18). Pathway analyses using LC-MS/MS results revealed impacted metabolomic pathways such as olfactory signaling, mitochondrial fatty acid beta-oxidation, biogenic amine synthesis, SLC-mediated transmembrane transport, and glycerophospholipid and choline metabolism in the Mn exposed group. Single molecule arrays (Simoa) analysis revealed notable modifications of AD-related plasma biomarkers; protein microarray (chip) showed significant changes (p < 0.05) in the levels of some plasma antibodies targeting autoimmune and neuronal associated proteins such as Aβ (25-35), GFAP, Serotonin, Human NOVA1, and Human Siglec-1/CD169 among the Mn exposed individuals. This data provides evidence on Mn-induced alterations of pathways and biomarkers associated with cognitive neurodegenerative diseases.
Collapse
Affiliation(s)
- Somaiyeh Azmoun
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social work, Florida International University, Miami, FL, USA
| | - Freeman Lewis
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social work, Florida International University, Miami, FL, USA
| | - Daniel Shoieb
- Department of Medical and Surgical Specialties, University of Brescia, Brescia, Italy
| | - Yan Jin
- St. Jude Children Research Hospital, Memphis, TN, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Isha Winters
- Isakson Center for Neurological Disease Research and Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, GA, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | | | - Jason Richardson
- Isakson Center for Neurological Disease Research and Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, GA, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, University of Brescia, Brescia, Italy
| | - Luca Lambertini
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Roberto G Lucchini
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social work, Florida International University, Miami, FL, USA
- Occupational Medicine, University of Modena and Reggio Emilia, Italy
| |
Collapse
|
2
|
Dadi P, Pauling CW, Shrivastava A, Shah DD. Synthesis of versatile neuromodulatory molecules by a gut microbial glutamate decarboxylase. iScience 2025; 28:112289. [PMID: 40264799 PMCID: PMC12013497 DOI: 10.1016/j.isci.2025.112289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/14/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Dysbiosis of the microbiome correlates with many neurological disorders, yet very little is known about the chemistry that controls the production of neuromodulatory molecules by gut microbes. Here, we found that an enzyme glutamate decarboxylase (BfGAD) of a gut microbe Bacteroides fragilis forms multiple neuromodulatory molecules such as γ-aminobutyric acid (GABA), hypotaurine, taurine, homotaurine, and β-alanine. We evolved BfGAD and doubled its taurine productivity. Additionally, we increased its specificity toward the substrate L-glutamate. Here, we provide a chemical strategy via which the BfGAD activity could be fine-tuned. In future, this strategy could be used to modulate the production of neuromodulatory molecules by gut microbes.
Collapse
Affiliation(s)
- Pavani Dadi
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Clint W. Pauling
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Abhishek Shrivastava
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Dhara D. Shah
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| |
Collapse
|
3
|
Jacob C, Tollenaere M, Kachar H, Potier MC, De Deyn PP, Van Dam D. Exploring peripheral fluid biomarkers for early detection of Alzheimer's disease in Down syndrome: A literature review. Heliyon 2025; 11:e41445. [PMID: 39850411 PMCID: PMC11755057 DOI: 10.1016/j.heliyon.2024.e41445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/24/2024] [Accepted: 12/22/2024] [Indexed: 01/25/2025] Open
Abstract
People with Down Syndrome (DS) are at high risk of developing Alzheimer's disease dementia (AD) and cerebral amyloid angiopathy, which is a critical factor contributing to dementia in sporadic AD. Predicting and monitoring the decline and onset of dementia is a diagnostic challenge and of essence in daily care and support for people with DS. In this literature scoping review, we first summarize the different blood-based biomarkers for AD in DS. Next, we describe urine-based biomarkers for AD in DS and finally, we explore various blood-based biomarkers in the general AD population. Apart from the classic amyloid beta and Tau biomarkers, we also discuss more out-of-the-box biomarkers such as neurofilament light chain, Dual-specificity tyrosine-regulated kinase 1A, and monoaminergic biomarkers. These potential biomarkers could be a valuable addition to the established panel of fluid biomarkers.
Collapse
Affiliation(s)
- Charlotte Jacob
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
| | - Marleen Tollenaere
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Hanane Kachar
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
| | - Marie-Claude Potier
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Cummings JL, Brubaker M, Selzler KJ, Gonzalez ST, Patel M, Stahl SM. An overview of the pathophysiology of agitation in Alzheimer's dementia with a focus on neurotransmitters and circuits. CNS Spectr 2024:1-10. [PMID: 39438777 DOI: 10.1017/s1092852924000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Alzheimer's dementia (AD) is a progressive, neurodegenerative disease often accompanied by neuropsychiatric symptoms that profoundly impact both patients and caregivers. Agitation is among the most prevalent and distressing of these symptoms and often requires treatment. Appropriate therapeutic interventions depend on understanding the biological basis of agitation and how it may be affected by treatment. This narrative review discusses a proposed pathophysiology of agitation in Alzheimer's dementia based on convergent evidence across research approaches. Available data indicate that agitation in Alzheimer's dementia is associated with an imbalance of activity between key prefrontal and subcortical brain regions. The monoamine neurotransmitter systems serve as key modulators of activity within these brain regions and circuits and are rendered abnormal in AD. Patients with AD who exhibited agitation symptoms during life have alterations in neurotransmitter nuclei and related systems when the brain is examined at autopsy. The authors present a model of agitation in Alzheimer's dementia in which noradrenergic hyperactivity along with serotonergic deficits and dysregulated striatal dopamine release contribute to agitated and aggressive behaviors.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Malaak Brubaker
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, New Jersey, USA
| | | | | | - Mehul Patel
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, New Jersey, USA
| | - Stephen M Stahl
- Department of Psychiatry, University of California, San Diego School of Medicine, La Jolla, California; Department of Psychiatry and Neurology, University of California, Riverside School of Medicine, Riverside, California, USA
| |
Collapse
|
5
|
Carmel JF, Clerc D, Couture V, Reid I, Filali A, Villalpando JM. The Difference in Cognitive Profiles Between Patients With Alzheimer Dementia With and Without Psychosis: A Rapid Review. Alzheimer Dis Assoc Disord 2024; 38:369-376. [PMID: 39318171 DOI: 10.1097/wad.0000000000000644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/13/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Psychosis in Alzheimer disease (AD) is a major burden for patients and their family. Identifying the characteristics of delusions and hallucinations in the AD population is key to understanding the interconnection between the psychiatric and cognitive symptoms in neurocognitive disorders. The aim of this study is to compare the cognitive profiles of AD patients with and without psychosis. METHODS We conducted a rapid review to explore the relationship between psychotic symptoms and cognitive performances in patients with AD. We used MEDLINE, Embase, and PsychINFO literature databases between January 2015 and January 2023. This rapid review was guided by the Cochrane Rapid Reviews Methods Group. RESULTS We identified 2909 records from the initial searches. After reviewing the titles, abstracts, and full texts, we selected 8 cross-sectional and 5 cohort studies for the qualitative analysis. Among them, 6 studies were included in the final quantitative analysis. Most studies suggested a correlation between general cognitive decline and the risk of presenting psychotic symptoms. Three studies found an association between hallucinations and deficits in the visuocognitive domains (visuospatial, visuoperceptual, and visuoconstructive skills). Two studies found a relationship between psychotic symptoms and executive dysfunction. Two studies also found a correlation between psychotic symptoms and language. Our results are in line with previous data in the literature, especially regarding the outcome of psychosis on executive function and visuocognitive abilities. CONCLUSIONS There appears to be an association between cognitive deficits and psychotic symptoms in AD, but the direction of causality is still unclear, and further studies using longitudinal designs would give more insight into the pathophysiological process of psychosis in AD.
Collapse
Affiliation(s)
| | - Doris Clerc
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | | | - Isabelle Reid
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Ali Filali
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Juan Manuel Villalpando
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| |
Collapse
|
6
|
Dadi P, Pauling CW, Shrivastava A, Shah DD. Synthesis of versatile neuromodulatory molecules by a gut microbial glutamate decarboxylase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583032. [PMID: 38915512 PMCID: PMC11195143 DOI: 10.1101/2024.03.02.583032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Dysbiosis of the microbiome correlates with many neurological disorders, yet very little is known about the chemistry that controls the production of neuromodulatory molecules by gut microbes. Here, we found that an enzyme glutamate decarboxylase (BfGAD) of a gut microbe Bacteroides fragilis forms multiple neuromodulatory molecules such as γ-aminobutyric acid (GABA), hypotaurine, taurine, homotaurine, and β-alanine. We evolved BfGAD and doubled its taurine productivity. Additionally, we increased its specificity towards the substrate L-glutamate. Here, we provide a chemical strategy via which the BfGAD activity could be fine-tuned. In future, this strategy could be used to modulate the production of neuromodulatory molecules by gut microbes.
Collapse
Affiliation(s)
- Pavani Dadi
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Clint W. Pauling
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306
| | - Abhishek Shrivastava
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Dhara D. Shah
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306
| |
Collapse
|
7
|
Tamman AJF, Abdallah CG. Ultrahigh-Field Magnetic Resonance Spectroscopy Findings Do Not Support Previous Brain Metabolite Findings in Major Depressive Disorder. Biol Psychiatry 2024; 95:385-386. [PMID: 38325915 DOI: 10.1016/j.biopsych.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024]
Affiliation(s)
- Amanda J F Tamman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Chadi G Abdallah
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas; Yale School of Medicine, New Haven, Connecticut; Michael E. DeBakey VA Medical Center, Houston, Texas; U.S. Department of Veterans Affairs, National Center for PTSD - Clinical Neurosciences Division, West Haven, Connecticut; Core for Advanced Magnetic Resonance Imaging, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
8
|
Corasaniti MT, Bagetta G, Nicotera P, Maione S, Tonin P, Guida F, Scuteri D. Exploitation of Autophagy Inducers in the Management of Dementia: A Systematic Review. Int J Mol Sci 2024; 25:1264. [PMID: 38279266 PMCID: PMC10816917 DOI: 10.3390/ijms25021264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The social burden of dementia is remarkable since it affects some 57.4 million people all over the world. Impairment of autophagy in age-related diseases, such as dementia, deserves deep investigation for the detection of novel disease-modifying approaches. Several drugs belonging to different classes were suggested to be effective in managing Alzheimer's disease (AD) by means of autophagy induction. Useful autophagy inducers in AD should be endowed with a direct, measurable effect on autophagy, have a safe tolerability profile, and have the capability to cross the blood-brain barrier, at least with poor penetration. According to the PRISMA 2020 recommendations, we propose here a systematic review to appraise the measurable effectiveness of autophagy inducers in the improvement of cognitive decline and neuropsychiatric symptoms in clinical trials and retrospective studies. The systematic search retrieved 3067 records, 10 of which met the eligibility criteria. The outcomes most influenced by the treatment were cognition and executive functioning, pointing at a role for metformin, resveratrol, masitinib and TPI-287, with an overall tolerable safety profile. Differences in sample power, intervention, patients enrolled, assessment, and measure of outcomes prevents generalization of results. Moreover, the domain of behavioral symptoms was found to be less investigated, thus prompting new prospective studies with homogeneous design. PROSPERO registration: CRD42023393456.
Collapse
Affiliation(s)
| | - Giacinto Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Pierluigi Nicotera
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany;
| | - Sabatino Maione
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (S.M.); (F.G.)
- Laboratory of Biomolecules, Venoms and Theranostic Application, Institute Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy;
| | - Francesca Guida
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (S.M.); (F.G.)
| | - Damiana Scuteri
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| |
Collapse
|
9
|
Richter AL, Diepeveen-de Bruin M, Balvers MG, de Groot LC, De Deyn PP, Engelborghs S, Witkamp RF, Vermeiren Y. Association between Low Vitamin D Status, Serotonin, and Clinico-Biobehavioral Parameters in Alzheimer's Disease. Dement Geriatr Cogn Disord 2023; 52:318-326. [PMID: 37806302 PMCID: PMC10911141 DOI: 10.1159/000534492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023] Open
Abstract
INTRODUCTION Studies suggest a role of vitamin D in the progression and symptomatology of Alzheimer's disease (AD), with few in vitro studies pointing to effects on serotonergic and amyloidogenic turnover. However, limited data exist in AD patients on the potential association with cognition and behavioral and psychological signs and symptoms of dementia (BPSD). In this retrospective cross-sectional study, we, therefore, explored potential correlations of serum 25-hydroxyvitamin D3 (25(OH)D3) concentrations, indicative of vitamin D status, with serum serotonin (5-hydroxytryptamine, 5-HT) levels, cognitive/BPSD scorings, and cerebrospinal fluid (CSF) biomarker levels. METHODS Frozen serum samples of 25 well-characterized AD subjects as part of a previous BPSD cohort were analyzed, of which 15 had a neuropathologically confirmed diagnosis. Serum 25(OH)D3 levels were analyzed by means of LC-MS/MS, whereas 5-HT concentrations were quantified by competitive ELISA. RESULTS Among AD patients, vitamin D deficiency was highly prevalent, defined as levels below 50 nmol/L. Regression analyses, adjusted for age, gender, and psychotropic medications, revealed that serum 25(OH)D3 and 5-HT levels were positively associated (p = 0.012). Furthermore, serum 25(OH)D3 concentrations correlated inversely with CSF amyloid-beta (Aβ1-42) levels (p = 0.006), and serum 5-HT levels correlated positively with aggressiveness (p = 0.001), frontal behavior (p = 0.001), depression (p = 0.004), and partly with cognitive performance (p < 0.005). Lastly, AD patients on cholinesterase inhibitors had higher serum 25(OH)D3 (p = 0.030) and lower serum 5-HT (p = 0.012) levels. CONCLUSIONS The molecular associations between low vitamin D status, serum 5-HT, and CSF Aβ1-42 levels are highly remarkable, warranting further mechanistic and intervention studies to disclose potential involvement in the clinico-biobehavioral pathophysiology of AD.
Collapse
Affiliation(s)
- Anna-Lena Richter
- Division of Human Nutrition and Health, Chair Group Nutritional Biology, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Marlies Diepeveen-de Bruin
- Division of Human Nutrition and Health, Chair Group Nutritional Biology, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Michiel G.J. Balvers
- Division of Human Nutrition and Health, Chair Group Nutritional Biology, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Lisette C.P.G.M. de Groot
- Division of Human Nutrition and Health, Chair Group Nutritional Biology, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Peter Paul De Deyn
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Middelheim General Hospital, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology and Bru-BRAIN, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Renger F. Witkamp
- Division of Human Nutrition and Health, Chair Group Nutritional Biology, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Yannick Vermeiren
- Division of Human Nutrition and Health, Chair Group Nutritional Biology, Wageningen University and Research (WUR), Wageningen, The Netherlands
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Faculty of Medicine and Health Sciences, Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Aquilani R, Cotta Ramusino M, Maestri R, Iadarola P, Boselli M, Perini G, Boschi F, Dossena M, Bellini A, Buonocore D, Doria E, Costa A, Verri M. Several dementia subtypes and mild cognitive impairment share brain reduction of neurotransmitter precursor amino acids, impaired energy metabolism, and lipid hyperoxidation. Front Aging Neurosci 2023; 15:1237469. [PMID: 37655338 PMCID: PMC10466813 DOI: 10.3389/fnagi.2023.1237469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Objective Dementias and mild cognitive impairment (MCI) are associated with variously combined changes in the neurotransmitter system and signaling, from neurotransmitter synthesis to synaptic binding. The study tested the hypothesis that different dementia subtypes and MCI may share similar reductions of brain availability in amino acid precursors (AAPs) of neurotransmitter synthesis and concomitant similar impairment in energy production and increase of oxidative stress, i.e., two important metabolic alterations that impact neurotransmission. Materials and methods Sixty-five demented patients (Alzheimer's disease, AD, n = 44; frontotemporal disease, FTD, n = 13; vascular disease, VaD, n = 8), 10 subjects with MCI and 15 control subjects (CTRL) were recruited for this study. Cerebrospinal fluid (CSF) and plasma levels of AAPs, energy substrates (lactate, pyruvate), and an oxidative stress marker (malondialdehyde, MDA) were measured in all participants. Results Demented patients and subjects with MCI were similar for age, anthropometric parameters, biohumoral variables, insulin resistance (HOMA index model), and CSF neuropathology markers. Compared to age-matched CTRL, both demented patients and MCI subjects showed low CSF AAP tyrosine (precursor of dopamine and catecholamines), tryptophan (precursor of serotonin), methionine (precursor of acetylcholine) limited to AD and FTD, and phenylalanine (an essential amino acid largely used for protein synthesis) (p = 0.03 to <0.0001). No significant differences were found among dementia subtypes or between each dementia subtype and MCI subjects. In addition, demented patients and MCI subjects, compared to CTRL, had similar increases in CSF and plasma levels of pyruvate (CSF: p = 0.023 to <0.0001; plasma: p < 0.002 to <0.0001) and MDA (CSF: p < 0.035 to 0.002; plasma: p < 0.0001). Only in AD patients was the CSF level of lactate higher than in CTRL (p = 0.003). Lactate/pyruvate ratios were lower in all experimental groups than in CTRL. Conclusion AD, FTD, and VaD dementia patients and MCI subjects may share similar deficits in AAPs, partly in energy substrates, and similar increases in oxidative stress. These metabolic alterations may be due to AAP overconsumption following high brain protein turnover (leading to phenylalanine reductions), altered mitochondrial structure and function, and an excess of free radical production. All these metabolic alterations may have a negative impact on synaptic plasticity and activity.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Matteo Cotta Ramusino
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Mirella Boselli
- Neurorehabilitation Unit of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Giulia Perini
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Anna Bellini
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Daniela Buonocore
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Enrico Doria
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Alfredo Costa
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Manuela Verri
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Tsafack PB, Tsopmo A. Effects of bioactive molecules on the concentration of biogenic amines in foods and biological systems. Heliyon 2022; 8:e10456. [PMID: 36105466 PMCID: PMC9465362 DOI: 10.1016/j.heliyon.2022.e10456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/14/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Biogenic amines (BAs) are a group of molecules naturally present in foods that contain amino acids, peptides, and proteins as well as in biological systems. In foods, their concentrations typically increase during processing and storage because of exposure to microorganisms that catalyze their formation by releasing amino acid decarboxylases. The concentrations of BAs above certain values are indicative of unsafe foods due to associate neuronal toxicity, allergenic reactions, and increase risks of cardiovascular diseases. There are therefore various strategies that focus on the control of BAs in foods mostly through elimination, inactivation, or inhibition of the growth of microorganisms. Increasingly, there are works on bioactive compounds that can decrease the concentration of BAs through their antimicrobial activity as well as the inhibition of decarboxylating enzymes that control their formation in foods or amine oxidases and N-acetyltransferase that control the degradation in vivo. This review focusses on the role of food-derived bioactive compounds and the mechanism by which they regulate the concentration of BAs. The findings are that most active molecules belong to polyphenols, one of the largest groups of plant secondary metabolites, additionally other useful +compounds are present in extracts of different herbs and spices. Different mechanisms have been proposed for the effects of polyphenols depending on the model system. Studies on the effects in vivo are limited and there is a lack of bioavailability and transport data which are important to assess the importance of the bioactive molecules.
Collapse
Affiliation(s)
- Patrick Blondin Tsafack
- Nutrition and Functional Food, School of Biosciences and Veterinary Medicine, University of Camerino, Via A. D'Accorso, 16, Camerino, Italy
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| |
Collapse
|
12
|
Rafiee Z, García-Serrano AM, Duarte JMN. Taurine Supplementation as a Neuroprotective Strategy upon Brain Dysfunction in Metabolic Syndrome and Diabetes. Nutrients 2022; 14:1292. [PMID: 35334949 PMCID: PMC8952284 DOI: 10.3390/nu14061292] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity, type 2 diabetes, and their associated comorbidities impact brain metabolism and function and constitute risk factors for cognitive impairment. Alterations to taurine homeostasis can impact a number of biological processes, such as osmolarity control, calcium homeostasis, and inhibitory neurotransmission, and have been reported in both metabolic and neurodegenerative disorders. Models of neurodegenerative disorders show reduced brain taurine concentrations. On the other hand, models of insulin-dependent diabetes, insulin resistance, and diet-induced obesity display taurine accumulation in the hippocampus. Given the possible cytoprotective actions of taurine, such cerebral accumulation of taurine might constitute a compensatory mechanism that attempts to prevent neurodegeneration. The present article provides an overview of brain taurine homeostasis and reviews the mechanisms by which taurine can afford neuroprotection in individuals with obesity and diabetes. We conclude that further research is needed for understanding taurine homeostasis in metabolic disorders with an impact on brain function.
Collapse
Affiliation(s)
- Zeinab Rafiee
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden; (Z.R.); (A.M.G.-S.)
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| | - Alba M. García-Serrano
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden; (Z.R.); (A.M.G.-S.)
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden; (Z.R.); (A.M.G.-S.)
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| |
Collapse
|
13
|
Vermeiren Y, Van Dam D, de Vries M, De Deyn PP. Psychiatric Disorders in Dementia. PET AND SPECT IN PSYCHIATRY 2021:317-385. [DOI: 10.1007/978-3-030-57231-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Banning LCP, Ramakers IHGB, Rosenberg PB, Lyketsos CG, Leoutsakos JMS, Alzheimer’s Disease Neuroimaging Initiative. Alzheimer's disease biomarkers as predictors of trajectories of depression and apathy in cognitively normal individuals, mild cognitive impairment, and Alzheimer's disease dementia. Int J Geriatr Psychiatry 2021; 36:224-234. [PMID: 32869375 PMCID: PMC8140398 DOI: 10.1002/gps.5418] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 07/08/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To examine trajectories of depression and apathy over a 5-year follow-up period in (prodromal) Alzheimer's disease (AD), and to relate these trajectories to AD biomarkers. METHODS The trajectories of depression and apathy (measured with the Neuropsychiatric Inventory or its questionnaire) were separately modeled using growth mixture models for two cohorts (National Alzheimer's Coordinating Center, NACC, n = 22 760 and Alzheimer's Disease Neuroimaging Initiative, ADNI, n = 1 733). The trajectories in ADNI were associated with baseline CSF AD biomarkers (Aβ42, t-tau, and p-tau) using bias-corrected multinomial logistic regression. RESULTS Multiple classes were identified, with the largest classes having no symptoms over time. Lower Aβ42 and higher tau (ie, more AD pathology) was associated with increased probability of depression and apathy over time, compared to classes without symptoms. Lower Aβ42 (but not tau) was associated with a steep increase of apathy, whereas higher tau (but not Aβ42 ) was associated with a steep decrease of apathy. DISCUSSION The trajectories of depression and apathy in individuals on the AD spectrum are associated with AD biomarkers.
Collapse
Affiliation(s)
- Leonie C. P. Banning
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Inez H. G. B. Ramakers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Paul B. Rosenberg
- Department of Psychiatry and Behavioral Sciences, Division of Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins University School of Medicine and Johns Hopkins Bayview, Baltimore, Maryland
| | - Constantine G. Lyketsos
- Department of Psychiatry and Behavioral Sciences, Division of Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins University School of Medicine and Johns Hopkins Bayview, Baltimore, Maryland
| | - Jeannie-Marie S. Leoutsakos
- Department of Psychiatry and Behavioral Sciences, Division of Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins University School of Medicine and Johns Hopkins Bayview, Baltimore, Maryland
| | | |
Collapse
|
15
|
Murley AG, Rouse MA, Jones PS, Ye R, Hezemans FH, O’Callaghan C, Frangou P, Kourtzi Z, Rua C, Carpenter TA, Rodgers CT, Rowe JB. GABA and glutamate deficits from frontotemporal lobar degeneration are associated with disinhibition. Brain 2020; 143:3449-3462. [PMID: 33141154 PMCID: PMC7719029 DOI: 10.1093/brain/awaa305] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/11/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Behavioural disinhibition is a common feature of the syndromes associated with frontotemporal lobar degeneration (FTLD). It is associated with high morbidity and lacks proven symptomatic treatments. A potential therapeutic strategy is to correct the neurotransmitter deficits associated with FTLD, thereby improving behaviour. Reductions in the neurotransmitters glutamate and GABA correlate with impulsive behaviour in several neuropsychiatric diseases and there is post-mortem evidence of their deficit in FTLD. Here, we tested the hypothesis that prefrontal glutamate and GABA levels are reduced by FTLD in vivo, and that their deficit is associated with impaired response inhibition. Thirty-three participants with a syndrome associated with FTLD (15 patients with behavioural variant frontotemporal dementia and 18 with progressive supranuclear palsy, including both Richardson's syndrome and progressive supranuclear palsy-frontal subtypes) and 20 healthy control subjects were included. Participants undertook ultra-high field (7 T) magnetic resonance spectroscopy and a stop-signal task of response inhibition. We measured glutamate and GABA levels using semi-LASER magnetic resonance spectroscopy in the right inferior frontal gyrus, because of its strong association with response inhibition, and in the primary visual cortex, as a control region. The stop-signal reaction time was calculated using an ex-Gaussian Bayesian model. Participants with frontotemporal dementia and progressive supranuclear palsy had impaired response inhibition, with longer stop-signal reaction times compared with controls. GABA concentration was reduced in patients versus controls in the right inferior frontal gyrus, but not the occipital lobe. There was no group-wise difference in partial volume corrected glutamate concentration between patients and controls. Both GABA and glutamate concentrations in the inferior frontal gyrus correlated inversely with stop-signal reaction time, indicating greater impulsivity in proportion to the loss of each neurotransmitter. We conclude that the glutamatergic and GABAergic deficits in the frontal lobe are potential targets for symptomatic drug treatment of frontotemporal dementia and progressive supranuclear palsy.
Collapse
Affiliation(s)
- Alexander G Murley
- Department of Clinical Neurosciences, University of Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, UK
| | - Matthew A Rouse
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - Rong Ye
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - Frank H Hezemans
- Department of Clinical Neurosciences, University of Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | | | | | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, UK
| | - Catarina Rua
- Wolfson Brain Imaging Centre, University of Cambridge, UK
| | | | | | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| |
Collapse
|
16
|
O'Brien J, Taylor JP, Ballard C, Barker RA, Bradley C, Burns A, Collerton D, Dave S, Dudley R, Francis P, Gibbons A, Harris K, Lawrence V, Leroi I, McKeith I, Michaelides M, Naik C, O'Callaghan C, Olsen K, Onofrj M, Pinto R, Russell G, Swann P, Thomas A, Urwyler P, Weil RS, Ffytche D. Visual hallucinations in neurological and ophthalmological disease: pathophysiology and management. J Neurol Neurosurg Psychiatry 2020; 91:512-519. [PMID: 32213570 PMCID: PMC7231441 DOI: 10.1136/jnnp-2019-322702] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Visual hallucinations are common in older people and are especially associated with ophthalmological and neurological disorders, including dementia and Parkinson's disease. Uncertainties remain whether there is a single underlying mechanism for visual hallucinations or they have different disease-dependent causes. However, irrespective of mechanism, visual hallucinations are difficult to treat. The National Institute for Health Research (NIHR) funded a research programme to investigate visual hallucinations in the key and high burden areas of eye disease, dementia and Parkinson's disease, culminating in a workshop to develop a unified framework for their clinical management. Here we summarise the evidence base, current practice and consensus guidelines that emerged from the workshop.Irrespective of clinical condition, case ascertainment strategies are required to overcome reporting stigma. Once hallucinations are identified, physical, cognitive and ophthalmological health should be reviewed, with education and self-help techniques provided. Not all hallucinations require intervention but for those that are clinically significant, current evidence supports pharmacological modification of cholinergic, GABAergic, serotonergic or dopaminergic systems, or reduction of cortical excitability. A broad treatment perspective is needed, including carer support. Despite their frequency and clinical significance, there is a paucity of randomised, placebo-controlled clinical trial evidence where the primary outcome is an improvement in visual hallucinations. Key areas for future research include the development of valid and reliable assessment tools for use in mechanistic studies and clinical trials, transdiagnostic studies of shared and distinct mechanisms and when and how to treat visual hallucinations.
Collapse
Affiliation(s)
- John O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - John Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Clive Ballard
- University of Exeter Medical School, Medical School Building, St Luke's Campus, Exeter, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, WT-MRC Cambridge Stem Cell Institute, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Clare Bradley
- Health Psychology Research Ltd, Egham, Surrey, UK.,Health Psychology Research Unit, Royal Holloway University of London, Egham, Surrey, UK
| | - Alistair Burns
- Faculty of Medical and Human Sciences, The University of Manchester, Manchester, United Kingdom
| | - Daniel Collerton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sonali Dave
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, London, UK
| | - Rob Dudley
- Gateshead Early Intervention in Psychosis Service, Cumbria, Northumberland, Tyne & Wear NHS Foundation Trust, Gateshead, UK
| | - Paul Francis
- University of Exeter Medical School, Medical School Building, St Luke's Campus, Exeter, UK.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, London, UK
| | - Andrea Gibbons
- Health Psychology Research Unit, Royal Holloway University of London, Egham, Surrey, UK
| | - Kate Harris
- Department of Clinical Neurosciences, WT-MRC Cambridge Stem Cell Institute, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Vanessa Lawrence
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, London, UK
| | - Iracema Leroi
- Global Brain Health Institute, Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ian McKeith
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Institute of Ophthalmology, University College London, London, UK
| | - Chaitali Naik
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Claire O'Callaghan
- Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Kirsty Olsen
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Marco Onofrj
- Clinical Neurologica, Dipartimento di Neuroscienze, Imaging e Scienze Cliniche, Università G.D'Annunzio, Chieti-Pescara, Italy
| | - Rebecca Pinto
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, London, UK
| | - Gregor Russell
- Bradford District Care NHS Foundation Trust, Lynfield Mount Hospital, Bradford, UK
| | - Peter Swann
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Alan Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Prabitha Urwyler
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.,University Neurorehabilitation Unit, Department of Neurology, University Hospital Inselspital, Bern, Switzerland
| | | | - Dominic Ffytche
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, London, UK
| |
Collapse
|
17
|
van der Zee S, Vermeiren Y, Fransen E, Van Dam D, Aerts T, Gerritsen MJ, Spikman JM, van Laar T, De Deyn PP. Monoaminergic Markers Across the Cognitive Spectrum of Lewy Body Disease. JOURNAL OF PARKINSONS DISEASE 2019; 8:71-84. [PMID: 29480224 DOI: 10.3233/jpd-171228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Lewy body disorders, including Parkinson's disease (PD), Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), are characterized by profound central and peripheral monoaminergic dysfunction. OBJECTIVE To investigate whether these alterations depend on dementia status, we measured cerebrospinal fluid (CSF) and serum monoamine and metabolite levels across subgroups of the cognitive spectrum, and evaluated their marker potential afterwards. METHODS In total, 153 subjects were included, of which 43 healthy controls (HC), 28 PD patients with normal cognition (PD-NC), 26 patients with PD and mild cognitive impairment (PD-MCI), 18 PDD patients, and 38 DLB patients. The levels of monoamines and metabolites in paired CSF and serum samples were analyzed applying reversed-phase high-performance liquid chromatography with electrochemical detection. RESULTS Firstly, when comparing subgroups, CSF 3-methoxy-4-hydroxyphenylglycol (MHPG) levels were found lowest in HC and PD-NC groups and significantly higher in PDD/DLB patients. In addition, CSF 5-hydroxyindoleacetic acid (5-HIAA) levels differed significantly between HC and PD-MCI/PDD, and DLB patients (P≤0.001), but not between HC and PD-NC patients. Secondly, when performing logistic regression, it was shown that particularly CSF/serum MHPG levels and the serum MHPG to noradrenaline (NA) ratio effectively differentiated between HC and (non-)pooled PD subgroups (AUC = 0.914-0.956), and PDD and DLB patients (AUC = 0.822), respectively. Furthermore, CSF 5-HIAA was the most discriminative parameter to differentiate between PD-NC and PD-MCI (AUC = 0.808), and, PD-NC and PDD subgroups (AUC = 0.916). CONCLUSIONS Our data revealed that especially alterations of the noradrenergic neurotransmitter system could distinguish between Lewy body disorder subtypes, pinpointing CSF/serum MHPG and NA as potential stage markers across the cognitive spectrum.
Collapse
Affiliation(s)
- Sygrid van der Zee
- Department of Neurology, Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Yannick Vermeiren
- Department of Neurology, Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands.,Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk (Antwerp), Belgium
| | - Erik Fransen
- StatUa Center for Statistics, University of Antwerp, Wilrijk (Antwerp), Belgium
| | - Debby Van Dam
- Department of Neurology, Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands.,Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk (Antwerp), Belgium
| | - Tony Aerts
- Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk (Antwerp), Belgium
| | - Marleen J Gerritsen
- Department of Neurology, Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Jacoba M Spikman
- Department of Neurology, Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands.,Department of Clinical and Developmental Neuropsychology, Faculty of Behavioral and Social Sciences, University of Groningen, Groningen, Netherlands
| | - Teus van Laar
- Department of Neurology, Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Peter P De Deyn
- Department of Neurology, Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands.,Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk (Antwerp), Belgium.,Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
18
|
Janssens J, Atmosoerodjo SD, Vermeiren Y, Absalom AR, den Daas I, De Deyn PP. Sampling issues of cerebrospinal fluid and plasma monoamines: Investigation of the circadian rhythm and rostrocaudal concentration gradient. Neurochem Int 2019; 128:154-162. [DOI: 10.1016/j.neuint.2019.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
|
19
|
Sorgdrager FJH, Vermeiren Y, Van Faassen M, van der Ley C, Nollen EAA, Kema IP, De Deyn PP. Age- and disease-specific changes of the kynurenine pathway in Parkinson's and Alzheimer's disease. J Neurochem 2019; 151:656-668. [PMID: 31376341 PMCID: PMC6899862 DOI: 10.1111/jnc.14843] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022]
Abstract
The kynurenine (Kyn) pathway, which regulates neuroinflammation and N‐methyl‐d‐aspartate receptor activation, is implicated in Parkinson’s disease (PD) and Alzheimer’s disease (AD). Age‐related changes in Kyn metabolism and altered cerebral Kyn uptake along large neutral amino acid transporters, could contribute to these diseases. To gain further insight into the role and prognostic potential of the Kyn pathway in PD and AD, we investigated systemic and cerebral Kyn metabolite production and estimations of their transporter‐mediated uptake in the brain. Kyn metabolites and large neutral amino acids were retrospectively measured in serum and cerebrospinal fluid (CSF) of clinically well‐characterized PD patients (n = 33), AD patients (n = 33), and age‐matched controls (n = 39) using solid‐phase extraction‐liquid chromatographic‐tandem mass spectrometry. Aging was disease independently associated with increased Kyn, kynurenic acid and quinolinic acid in serum and CSF. Concentrations of kynurenic acid were reduced in CSF of PD and AD patients (p = 0.001; p = 0.002) but estimations of Kyn brain uptake did not differ between diseased and controls. Furthermore, serum Kyn and quinolinic acid levels strongly correlated with their respective content in CSF and Kyn in serum negatively correlated with AD disease severity (p = 0.002). Kyn metabolites accumulated with aging in serum and CSF similarly in PD patients, AD patients, and control subjects. In contrast, kynurenic acid was strongly reduced in CSF of PD and AD patients. Differential transporter‐mediated Kyn uptake is unlikely to majorly contribute to these cerebral Kyn pathway disturbances. We hypothesize that the combination of age‐ and disease‐specific changes in cerebral Kyn pathway activity could contribute to reduced neurogenesis and increased excitotoxicity in neurodegenerative disease. ![]()
Collapse
Affiliation(s)
- Freek J H Sorgdrager
- Department of Neurology and Alzheimer Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yannick Vermeiren
- Department of Neurology and Alzheimer Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Martijn Van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Claude van der Ley
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ellen A A Nollen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
20
|
Roles of taurine in cognitive function of physiology, pathologies and toxication. Life Sci 2019; 231:116584. [DOI: 10.1016/j.lfs.2019.116584] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 11/23/2022]
|
21
|
Scuteri D, Rombolà L, Morrone LA, Bagetta G, Sakurada S, Sakurada T, Tonin P, Corasaniti MT. Neuropharmacology of the Neuropsychiatric Symptoms of Dementia and Role of Pain: Essential Oil of Bergamot as a Novel Therapeutic Approach. Int J Mol Sci 2019; 20:E3327. [PMID: 31284573 PMCID: PMC6651821 DOI: 10.3390/ijms20133327] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 01/03/2023] Open
Abstract
Aging of the population makes of dementia a challenge for health systems worldwide. The cognitive disturbance is a serious but not the only issue in dementia; behavioral and psychological syndromes known as neuropsychiatric symptoms of dementia remarkably reduce the quality of life. The cluster of symptoms includes anxiety, depression, wandering, delusions, hallucinations, misidentifications, agitation and aggression. The pathophysiology of these symptoms implicates all the neurotransmitter systems, with a pivotal role for the glutamatergic neurotransmission. Imbalanced glutamatergic and GABAergic neurotransmissions, over-activation of the extrasynaptic N-methyl-D-aspartate (NMDA) receptors and alterations of the latter have been linked to the development of neuropsychiatric symptoms experienced by almost the entire demented population. Drugs with efficacy and safety for prevention or long term treatment of these disorders are not available yet. Aromatherapy provides the best evidence for positive outcomes in the control of agitation, the most resistant symptom. Demented patients often cannot verbalize pain, resulting in unrelieved symptoms and contributing to agitation. Bergamot essential oil provides extensive preclinical evidence of analgesic properties. Incidentally, the essential oil of bergamot induces anxyolitic-like effects devoid of sedation, typical of benzodiazepines, with a noteworthy advantage for demented patients. These data, together with the reported safety profile, form the rational basis for bergamot as a neurotherapeutic to be trialed for the control of behavioral and psychological symptoms of dementia.
Collapse
Affiliation(s)
- Damiana Scuteri
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy
| | - Laura Rombolà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy
| | - Luigi Antonio Morrone
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy.
| | - Shinobu Sakurada
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Tsukasa Sakurada
- Daiichi College of Pharmaceutical Sciences-First Department of Pharmacology Fukuoka, Fukuoka 815-8511, Japan
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy
| | | |
Collapse
|
22
|
Dekker AD, Sacco S, Carfi A, Benejam B, Vermeiren Y, Beugelsdijk G, Schippers M, Hassefras L, Eleveld J, Grefelman S, Fopma R, Bomer-Veenboer M, Boti M, Oosterling GDE, Scholten E, Tollenaere M, Checkley L, Strydom A, Van Goethem G, Onder G, Blesa R, Zu Eulenburg C, Coppus AMW, Rebillat AS, Fortea J, De Deyn PP. The Behavioral and Psychological Symptoms of Dementia in Down Syndrome (BPSD-DS) Scale: Comprehensive Assessment of Psychopathology in Down Syndrome. J Alzheimers Dis 2019; 63:797-819. [PMID: 29689719 PMCID: PMC5929348 DOI: 10.3233/jad-170920] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
People with Down syndrome (DS) are prone to develop Alzheimer’s disease (AD). Behavioral and psychological symptoms of dementia (BPSD) are core features, but have not been comprehensively evaluated in DS. In a European multidisciplinary study, the novel Behavioral and Psychological Symptoms of Dementia in Down Syndrome (BPSD-DS) scale was developed to identify frequency and severity of behavioral changes taking account of life-long characteristic behavior. 83 behavioral items in 12 clinically defined sections were evaluated. The central aim was to identify items that change in relation to the dementia status, and thus may differentiate between diagnostic groups. Structured interviews were conducted with informants of persons with DS without dementia (DS, n = 149), with questionable dementia (DS+Q, n = 65), and with diagnosed dementia (DS+AD, n = 67). First exploratory data suggest promising interrater, test-retest, and internal consistency reliability measures. Concerning item relevance, group comparisons revealed pronounced increases in frequency and severity in items of anxiety, sleep disturbances, agitation & stereotypical behavior, aggression, apathy, depressive symptoms, and eating/drinking behavior. The proportion of individuals presenting an increase was highest in DS+AD, intermediate in DS+Q, and lowest in DS. Interestingly, among DS+Q individuals, a substantial proportion already presented increased anxiety, sleep disturbances, apathy, and depressive symptoms, suggesting that these changes occur early in the course of AD. Future efforts should optimize the scale based on current results and clinical experiences, and further study applicability, reliability, and validity. Future application of the scale in daily care may aid caregivers to understand changes, and contribute to timely interventions and adaptation of caregiving.
Collapse
Affiliation(s)
- Alain D Dekker
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium
| | | | - Angelo Carfi
- Department of Geriatrics, Policlinico Gemelli, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Bessy Benejam
- Down Medical Center, Catalan Down Syndrome Foundation, Barcelona, Spain
| | - Yannick Vermeiren
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium
| | - Gonny Beugelsdijk
- Ipse de Bruggen, Center for Intellectual Disabilities, Nieuwveen/Zwammerdam, The Netherlands
| | - Mieke Schippers
- Ipse de Bruggen, Center for Intellectual Disabilities, Nieuwveen/Zwammerdam, The Netherlands
| | - Lyanne Hassefras
- Ipse de Bruggen, Center for Intellectual Disabilities, Nieuwveen/Zwammerdam, The Netherlands
| | - José Eleveld
- Cosis, Center for Intellectual Disabilities, Groningen, The Netherlands
| | - Sharina Grefelman
- Cosis, Center for Intellectual Disabilities, Groningen, The Netherlands
| | - Roelie Fopma
- Talant, Center for Intellectual Disabilities, Heerenveen, The Netherlands
| | | | - Mariángeles Boti
- Down Medical Center, Catalan Down Syndrome Foundation, Barcelona, Spain
| | | | - Esther Scholten
- Elver, Center for Intellectual Disabilities, Nieuw-Wehl, The Netherlands
| | - Marleen Tollenaere
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Laura Checkley
- Division of Psychiatry, University College London, London, UK
| | - André Strydom
- Division of Psychiatry, University College London, London, UK
| | - Gert Van Goethem
- Het GielsBos, Center for Intellectual Disabilities, Gierle, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Graziano Onder
- Department of Geriatrics, Policlinico Gemelli, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Rafael Blesa
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christine Zu Eulenburg
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Antonia M W Coppus
- Dichterbij, Center for Intellectual Disabilities, Gennep, The Netherlands.,Department of Primary and Community Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Juan Fortea
- Down Medical Center, Catalan Down Syndrome Foundation, Barcelona, Spain.,Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
23
|
Plenis A, Olędzka I, Kowalski P, Miękus N, Bączek T. Recent Trends in the Quantification of Biogenic Amines in Biofluids as Biomarkers of Various Disorders: A Review. J Clin Med 2019; 8:E640. [PMID: 31075927 PMCID: PMC6572256 DOI: 10.3390/jcm8050640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023] Open
Abstract
Biogenic amines (BAs) are bioactive endogenous compounds which play a significant physiological role in many cell processes like cell proliferation and differentiation, signal transduction and membrane stability. Likewise, they are important in the regulation of body temperature, the increase/decrease of blood pressure or intake of nutrition, as well as in the synthesis of nucleic acids and proteins, hormones and alkaloids. Additionally, it was confirmed that these compounds can be considered as useful biomarkers for the diagnosis, therapy and prognosis of several neuroendocrine and cardiovascular disorders, including neuroendocrine tumours (NET), schizophrenia and Parkinson's Disease. Due to the fact that BAs are chemically unstable, light-sensitive and possess a high tendency for spontaneous oxidation and decomposition at high pH values, their determination is a real challenge. Moreover, their concentrations in biological matrices are extremely low. These issues make the measurement of BA levels in biological matrices problematic and the application of reliable bioanalytical methods for the extraction and determination of these molecules is needed. This article presents an overview of the most recent trends in the quantification of BAs in human samples with a special focus on liquid chromatography (LC), gas chromatography (GC) and capillary electrophoresis (CE) techniques. Thus, new approaches and technical possibilities applied in these methodologies for the assessment of BA profiles in human samples and the priorities for future research are reported and critically discussed. Moreover, the most important applications of LC, GC and CE in pharmacology, psychology, oncology and clinical endocrinology in the area of the analysis of BAs for the diagnosis, follow-up and monitoring of the therapy of various health disorders are presented and critically evaluated.
Collapse
Affiliation(s)
- Alina Plenis
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| | - Ilona Olędzka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| | - Piotr Kowalski
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| | - Natalia Miękus
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
24
|
Benussi A, Alberici A, Buratti E, Ghidoni R, Gardoni F, Di Luca M, Padovani A, Borroni B. Toward a Glutamate Hypothesis of Frontotemporal Dementia. Front Neurosci 2019; 13:304. [PMID: 30983965 PMCID: PMC6449454 DOI: 10.3389/fnins.2019.00304] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is a heterogenous neurodegenerative disorder, characterized by diverse clinical presentations, neuropathological characteristics and underlying genetic causes. Emerging evidence has shown that FTD is characterized by a series of changes in several neurotransmitter systems, including serotonin, dopamine, GABA and, above all, glutamate. Indeed, several studies have now provided preclinical and clinical evidence that glutamate is key in the pathogenesis of FTD. Animal models of FTD have shown a selective hypofunction in N-methyl D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, while in patients, glutamatergic pyramidal neurons are depleted in several areas, including the frontal and temporal cortices. Recently, a selective involvement of the AMPA GluA3 subunit has been observed in patients with autoimmune anti-GluA3 antibodies, which accounted for nearly 25% of FTD patients, leading to a decrease of the GluA3 subunit synaptic localization of the AMPA receptor and loss of dendritic spines. Other in vivo evidence of the involvement of the glutamatergic system in FTD derives from non-invasive brain stimulation studies using transcranial magnetic stimulation, in which specific stimulation protocols have indirectly identified a selective and prominent impairment in glutamatergic circuits in patients with both sporadic and genetic FTD. In view of limited disease modifying therapies to slow or revert disease progression in FTD, an important approach could consist in targeting the neurotransmitter deficits, similarly to what has been achieved in Parkinson’s disease with dopaminergic therapy or Alzheimer’s disease with cholinergic therapy. In this review, we summarize the current evidence concerning the involvement of the glutamatergic system in FTD, suggesting the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonella Alberici
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Roberta Ghidoni
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
25
|
Banning LCP, Ramakers IHGB, Deckers K, Verhey FRJ, Aalten P. Apolipoprotein E and affective symptoms in mild cognitive impairment and Alzheimer's disease dementia: A systematic review and meta-analysis. Neurosci Biobehav Rev 2018; 96:302-315. [PMID: 30513312 DOI: 10.1016/j.neubiorev.2018.11.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/24/2018] [Accepted: 11/30/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVE APOE status has been associated to affective symptoms in cognitively impaired subjects, with conflicting results. METHODS Databases CINAHL, Embase, PsychINFO and PubMed were searched for studies evaluating APOE genotype with affective symptoms in MCI and AD dementia. Symptoms were meta-analyzed separately and possible sources of heterogeneity were examined. RESULTS Fifty-three abstracts fulfilled the eligibility criteria. No association was found between the individual symptoms and APOE ε4 carriership or zygosity. For depression and anxiety, only pooled unadjusted estimates showed positive associations with between-study heterogeneity, which could be explained by variation in study design, setting and way of symptom assessment. CONCLUSIONS There is no evidence that APOE ε4 carriership or zygosity is associated with the presence of depression, anxiety, apathy, agitation, irritability or sleep disturbances in cognitively impaired subjects. Future research should shift its focus from this single polymorphism to a more integrated view of other biological factors.
Collapse
Affiliation(s)
- Leonie C P Banning
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Inez H G B Ramakers
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Kay Deckers
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Frans R J Verhey
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Pauline Aalten
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
26
|
Deví Bastida J, Jodas Clemente L, Jofre Font S, Arroyo Cardona E. [Premorbid personality as a risk factor in the appearance of psychological and behavioural symptoms of dementia: Systematic review]. Rev Esp Geriatr Gerontol 2018; 54:168-180. [PMID: 30482462 DOI: 10.1016/j.regg.2018.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/14/2018] [Accepted: 08/02/2018] [Indexed: 10/27/2022]
Abstract
The aetiology of behavioural and psychological symptoms of dementia (BPSD) is defined by a diversity of factors, and recent studies suggest that premorbid personality could be a risk factor for BPSD. This study aimed to review studies on the relationship between premorbid personality and BPSD. Studies were identified using PsycInfo, MedLine, and PubMed. The searches combined terms for premorbid personality, dementia and BPSD. Ten studies have been included in this review. Eight out of ten studies show a relationship between premorbid personality and BPSD. Neuroticism is associated with behavioural disturbances and anxiety. Extraversion is associated with wandering. Low agreeableness is associated with affective disturbance and aggression-related behaviours and high agreeableness is associated with wandering. The studies found no congruent results for openness and conscientiousness. In conclusion, premorbid personality may increase the risk of developing BPSD during the course of the disease. Even so, the relationship between personality and BPSD is complex due to multifactorial aetiology.
Collapse
Affiliation(s)
- Josep Deví Bastida
- Departamento de Psicología Clínica y de la Salud, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, España; Departament de Benestar i Familia - SISPAP/Grup Mutuam, Residencia y Centro de Día Sant Cugat, Sant Cugat del Vallés, Barcelona, España.
| | - Laia Jodas Clemente
- Asociación Multidisciplinar de Psicogeriatría y Demencias (AMPIDE), Sant Cugat del Vallés, Barcelona, España
| | - Susanna Jofre Font
- Sanitas Mayores Consell de Cent (Sanitas parte de Bupa), Barcelona, España
| | - Enric Arroyo Cardona
- Departament de Benestar i Familia - SISPAP/Grup Mutuam, Residencia y Centro de Día Sant Cugat, Sant Cugat del Vallés, Barcelona, España; Centro de Asistencia Primaria Sant Cugat - Mutua de Terrassa, Sant Cugat del Vallés, Barcelona, España
| |
Collapse
|
27
|
EEG-based neurophysiological indicators of hallucinations in Alzheimer's disease: Comparison with dementia with Lewy bodies. Neurobiol Aging 2018; 67:75-83. [DOI: 10.1016/j.neurobiolaging.2018.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/06/2018] [Accepted: 03/10/2018] [Indexed: 01/29/2023]
|
28
|
Murley AG, Rowe JB. Neurotransmitter deficits from frontotemporal lobar degeneration. Brain 2018; 141:1263-1285. [PMID: 29373632 PMCID: PMC5917782 DOI: 10.1093/brain/awx327] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal lobar degeneration causes a spectrum of complex degenerative disorders including frontotemporal dementia, progressive supranuclear palsy and corticobasal syndrome, each of which is associated with changes in the principal neurotransmitter systems. We review the evidence for these neurochemical changes and propose that they contribute to symptomatology of frontotemporal lobar degeneration, over and above neuronal loss and atrophy. Despite the development of disease-modifying therapies, aiming to slow neuropathological progression, it remains important to advance symptomatic treatments to reduce the disease burden and improve patients' and carers' quality of life. We propose that targeting the selective deficiencies in neurotransmitter systems, including dopamine, noradrenaline, serotonin, acetylcholine, glutamate and gamma-aminobutyric acid is an important strategy towards this goal. We summarize the current evidence-base for pharmacological treatments and suggest strategies to improve the development of new, effective pharmacological treatments.
Collapse
Affiliation(s)
- Alexander G Murley
- Department of Clinical Neurosciences, University of Cambridge, Herchel Smith Building, Robinson Way, Cambridge, CB2 0SZ, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Herchel Smith Building, Robinson Way, Cambridge, CB2 0SZ, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Sir William Hardy Building, Downing Street, Cambridge, CB2 3EB, UK
| |
Collapse
|
29
|
Cerebrospinal fluid and serum MHPG improve Alzheimer's disease versus dementia with Lewy bodies differential diagnosis. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:172-181. [PMID: 29552632 PMCID: PMC5852321 DOI: 10.1016/j.dadm.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction Given the challenges concerning the differential diagnosis of dementia, we investigated the possible added value of monoaminergic compounds to the standard cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers. Particularly, regarding the AD versus dementia with Lewy bodies (DLB) comparison, monoamines or their metabolites might have added discriminative value as there is a more severe neuropathological burden in the locus coeruleus of DLB patients, the principal site of noradrenaline synthesis. Methods We applied enzyme-linked immunosorbent assay (ELISA) to analyze CSF amyloid β peptide of 42 amino acids, total tau, and tau phosphorylated at threonine 181, in patients with AD, frontotemporal dementia, DLB/Parkinson's disease dementia, and controls. Reversed-phase high-performance liquid chromatography with electrochemical detection was implemented to study monoamine and metabolite levels in CSF and serum. Stepwise forward conditional logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic accuracy of these newly fitted models containing the most discriminative indicators of disease status. Results Most significant differences in CSF and serum were confined to the noradrenergic system. More specifically, CSF 3-methoxy-4-hydroxyphenylglycol (MHPG) levels were higher, whereas serum MHPG levels were lower, in DLB patients compared with all other groups. Addition of CSF and serum MHPG levels to the CSF AD biomarker panel significantly increased diagnostic accuracy between DLB/Parkinson's disease dementia and AD. Interestingly, a model only including CSF and serum MHPG without the classic AD biomarker panel reached similar area under the curve values. Discussion We hypothesize that varying degrees of neuronal loss in the locus coeruleus of DLB/Parkinson's disease dementia versus AD patients result in differentially altered MHPG levels, making this metabolite a valuable biomarker.
Collapse
|
30
|
Vermeiren Y, Janssens J, Aerts T, Martin JJ, Sieben A, Van Dam D, De Deyn PP. Brain Serotonergic and Noradrenergic Deficiencies in Behavioral Variant Frontotemporal Dementia Compared to Early-Onset Alzheimer's Disease. J Alzheimers Dis 2018; 53:1079-96. [PMID: 27314528 DOI: 10.3233/jad-160320] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Routinely prescribed psychoactive drugs in behavioral variant frontotemporal dementia (FTD) for improvement of (non)cognitive symptoms are primarily based on monoamine replacement or augmentation strategies. These were, however, initially intended to symptomatically treat other degenerative, behavioral, or personality disorders, and thus lack disease specificity. Moreover, current knowledge on brain monoaminergic neurotransmitter deficiencies in this presenile disorder is scarce, particularly with reference to changes in Alzheimer's disease (AD). The latter hence favors neurochemical comparison studies in order to elucidate the monoaminergic underpinnings of FTD compared to early-onset AD, which may contribute to better pharmacotherapy. Therefore, frozen brain samples, i.e., Brodmann area (BA) 6/8/9/10/11/12/22/24/46, amygdala, and hippocampus, of 10 neuropathologically confirmed FTD, AD, and control subjects were analyzed by means of reversed-phase high-performance liquid chromatography. Levels of serotonergic, dopaminergic, and noradrenergic compounds were measured. In nine brain areas, serotonin (5-HT) concentrations were significantly increased in FTD compared to AD patients, while 5-hydroxyindoleacetic acid/5-HT ratios were decreased in eight regions, also compared to controls. Furthermore, in all regions, noradrenaline (NA) levels were significantly higher, and 3-methoxy-4-hydroxyphenylglycol/NA ratios were significantly lower in FTD than in AD and controls. Contrarily, significantly higher dopamine (DA) levels and reduced homovanillic acid/DA ratios were only found in BA12 and BA46. Results indicate that FTD is defined by distinct serotonergic and noradrenergic deficiencies. Additional research regarding the interactions between both monoaminergic networks is required. Similarly, clinical trials investigating the effects of 5-HT1A receptor antagonists or NA-modulating agents, such as α1/2/β1-blockers, seem to have a rationale and should be considered.
Collapse
Affiliation(s)
- Yannick Vermeiren
- Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk (Antwerp), Belgium.,Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Jana Janssens
- Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk (Antwerp), Belgium.,Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Tony Aerts
- Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk (Antwerp), Belgium
| | - Jean-Jacques Martin
- Biobank, Institute Born-Bunge, University of Antwerp, Wilrijk (Antwerp), Belgium
| | - Anne Sieben
- Biobank, Institute Born-Bunge, University of Antwerp, Wilrijk (Antwerp), Belgium.,Department of Neurology, University Hospital Ghent and University of Ghent, Ghent, Belgium
| | - Debby Van Dam
- Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk (Antwerp), Belgium.,Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Peter P De Deyn
- Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk (Antwerp), Belgium.,Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, The Netherlands.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium.,Biobank, Institute Born-Bunge, University of Antwerp, Wilrijk (Antwerp), Belgium
| |
Collapse
|
31
|
Yu J, Kong L, Zhang A, Han Y, Liu Z, Sun H, Liu L, Wang X. High-Throughput Metabolomics for Discovering Potential Metabolite Biomarkers and Metabolic Mechanism from the APPswe/PS1dE9 Transgenic Model of Alzheimer’s Disease. J Proteome Res 2017; 16:3219-3228. [DOI: 10.1021/acs.jproteome.7b00206] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jingbo Yu
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Ling Kong
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Aihua Zhang
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Ying Han
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Zhidong Liu
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Hui Sun
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Liang Liu
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Xijun Wang
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| |
Collapse
|
32
|
Guzmàn DC, Herrera MO, Brizuela NO, Mejía GB, García EH, Olguín HJ, Peraza AV, Ruíz NL, Del Angel DS. Assessment of Mexican Arnica ( Heterotheca inuloides Cass) and Rosemary ( Rosmarinus officinalis) Extracts on Dopamine and Selected Biomarkers of Oxidative Stress in Stomach and Brain of Salmonella typhimurium Infected rats. Pharmacogn Mag 2017; 13:203-208. [PMID: 28539708 PMCID: PMC5421413 DOI: 10.4103/0973-1296.204553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/17/2016] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The effects of some natural products on dopamine (DA) and 5-hydroxyindole acetic acid (5-HIAA) in brain of infected models are still unclear. OBJECTIVE The purpose of this study was to measure the effect of Mexican arnica/rosemary (MAR) water extract and oseltamivir on both biogenic amines and some oxidative biomarkers in the brain and stomach of young rats under infection condition. METHODS Female Wistar rats (weight 80 g) in the presence of MAR or absence (no-MAR) were treated as follows: group 1, buffer solution (controls); oseltamivir (100 mg/kg), group 2; culture of Salmonella typhimurium (S.Typh) (1 × 106 colony-forming units/rat) group 3; oseltamivir (100 mg/kg) + S.Typh (same dose) group 4. Drug and extracts were administered intraperitoneally every 24 h for 5 days, and S.Typh was given orally on days 1 and 3. On the fifth day, blood was collected to measure glucose and hemoglobin. The brains and stomachs were obtained to measure levels of DA, 5-HIAA, glutathione (GSH), TBARS, H2O2, and total ATPase activity using validated methods. RESULTS DA levels increased in MAR group treated with oseltamivir alone but decreased in no-MAR group treated with oseltamivir plus S.Typh. 5-HIAA, GSH, and H2O2 decreased in this last group, and ATPase activity increased in MAR group treated with oseltamivir plus S.Typh. TBARS (lipid peroxidation) increased in MAR group that received oseltamivir alone. Most of the biomarkers were not altered significantly in the stomach. CONCLUSION MAR extract alters DA and metabolism of 5-HIAA in the brain of young animals infected. Antioxidant capacity may be involved in these effects. SUMMARY The purpose of this study was to measure the effect of Mexican arnica/rosemary water extract and oseltamivir on both biogenic amines and some oxidative biomarkers in the brain and stomach of young rats under infection condition. Results: Mexican arnica and rosemary extract alter dopamine and metabolism of 5-HIAA in the brain of young animals infected. Antioxidant capacity may be involved in these effects. Abbreviations used: AS: Automated system, ATP: Adenosine triphosphate, CNS: Central nervous system, CFU: Colony-forming unit, DA: Dopamine EDTA: Ethylenediaminetetraacetic acid, 5-HIAA: Äcido 5-hidroxindolacético (serotonina), GABA: γ-aminobutyric acid, GSH: Glutathione, H2O2: Hidrogen peroxide, HCLO4: Perchloric acid, iNOS: Inducible nitric oxide synthase, LPS: Lipopolysaccharides, MAR: Arnica/Rosemary, NaCl: Sodium Chloride, NOGSH: nitrosoglutathione, NOS: Nitric oxide, OPT: Ortho-phtaldialdehyde, Pbs: Phosphate buffered saline, pH: potential of Hydrogen, Pi: Inorganic phosphate, ROS: Reactive oxygen species, RNSs: Reactive nitrogen species Tba: Thiobarbaturic acid, TBARS: Thiobarbituric aid reactive, Tca: Trichloroacetic, Tris-HCL: Tris hydrochloride, TSA: Trypticasein Soya Agar.
Collapse
Affiliation(s)
- David Calderón Guzmàn
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | | | - Norma Osnaya Brizuela
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | - Gerardo Barragàn Mejía
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | - Ernestina Hernàndez García
- Laboratorio de Farmacología, INP, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hugo Juàrez Olguín
- Laboratorio de Farmacología, INP, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Norma Labra Ruíz
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | | |
Collapse
|
33
|
Stefani A, Pierantozzi M, Olivola E, Galati S, Cerroni R, D'Angelo V, Hainsworth AH, Saviozzi V, Fedele E, Liguori C. Homovanillic acid in CSF of mild stage Parkinson's disease patients correlates with motor impairment. Neurochem Int 2017; 105:58-63. [PMID: 28108196 DOI: 10.1016/j.neuint.2017.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/31/2016] [Accepted: 01/16/2017] [Indexed: 01/22/2023]
Abstract
In Parkinson's disease (PD), several efforts have been spent in order to find biochemical parameters able to identify the progression of the pathological processes at the basis of the disease. It is already known that advanced PD patients manifesting dyskinesia are featured by the high homovanillic acid (HVA)/dopamine (DA) ratio, suggesting the increased turnover of DA in these patients. Less clear is whether similar changes affect mild and moderate stages of the disease (between 1 and 2.5 of Hoehn & Yahr -H&Y- stage). Hence, here we tested whether cerebrospinal fluid (CSF) concentrations of DA and its major metabolites, either 3,4-dihydroxyphenylacetic acid (DOPAC) or HVA, correlate with motor performance in mild and moderate PD patients. CSF samples were collected after 2 days of anti-PD drugs washout, via lumbar puncture (LP) performed 130 min following administration of oral levodopa (LD) dose (200 mg). LP timing was determined in light of our previous tests clarifying that 2 h after oral LD administration CSF DA concentration reaches a plateau, which was un-respective of PD stage or duration. DA, DOPAC and HVA were assayed by high performance liquid chromatography in a group of 19 patients, distributed in two groups on the basis of the H&Y stage with a cut-off of 1.5. In these PD patients, HVA was correlated with DOPAC (R = 0,56, p < 0,01) and both HVA and DOPAC CSF levels increased in parallel with the motor impairment. More importantly, HVA correlated with motor impairment measured by the Unified Parkinson's Disease Score -III (UPDRS) (R = 0.61; p < 0.0001). The present findings showed the early alteration of the DA pre-synaptic machinery, as documented by the progressive increase of CSF HVA concentrations, which also correlated with PD motor impairment. Therefore, we suggest the potential use of measuring the CSF HVA level as a possible biomarker of PD stage changes in order to monitor the effectiveness of PD-modifying pharmacological therapies.
Collapse
Affiliation(s)
- Alessandro Stefani
- Movement Disorders Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Mariangela Pierantozzi
- Movement Disorders Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Enrica Olivola
- Movement Disorders Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Rocco Cerroni
- Movement Disorders Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Vincenza D'Angelo
- Movement Disorders Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Atticus H Hainsworth
- Stroke & Dementia Research Centre, St George's University of London, London, United Kingdom
| | - Valentina Saviozzi
- Movement Disorders Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Claudio Liguori
- Movement Disorders Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
34
|
Krolak-Salmon P, Roubaud C, Finne-Soveri H, Riolacci-Dhoyen N, Richard G, Rouch I, Leperre-Desplanques A, Dauphinot V. Evaluation of a mobile team dedicated to behavioural disorders as recommended by the Alzheimer Cooperative Valuation in Europe joint action: observational cohort study. Eur J Neurol 2016; 23:979-88. [PMID: 26945537 DOI: 10.1111/ene.12975] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/18/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Preventing behavioural crises appears to be crucial to promote quality of life of the patient-caregiver dyad, to reduce inappropriate hospitalizations and to delay institutionalization. The Alzheimer Cooperative Valuation in Europe promotes mobile care to prevent patients from severe behavioural and psychological symptoms in dementia. This study assessed the potential efficacy of a mobile team for Alzheimer's disease on hospitalization sparing and behavioural disorder reduction. METHODS A cohort study was set up from 1 January 2012 to 31 December 2013 by the Clinical and Research Memory Centre of Lyon (France). It included patients with behavioural and psychological symptoms living at home or in a nursing home. An interview explored the alternative patient pathways used by general practitioners (GPs) if the mobile team had not existed (hospitalization sparing). The Neuropsychiatry Inventory score was assessed at inclusion and 30 days later. The sample included 424 consecutive patients with Alzheimer's disease or related disorders and behavioural disorders at any cognitive and functional stage of the disease, taken in charge by the mobile team. RESULTS Amongst the 424 patients (84.0 ± 7.2 years), 220 (51.9%) hospitalizations were considered by their GPs and 181 (82.3%) were avoided. The Neuropsychiatric Inventory score declined after mobile team intervention (45.8-29.9, P < 0.001). Sleep and appetite disorders, endangered situation and caregiver burnout were associated with higher risk of hospitalization at 30 days. CONCLUSIONS The mobile team for Alzheimer's disease allows a high proportion of hospitalizations related to behavioural disorders to be avoided and may help to reduce behavioural disorders.
Collapse
Affiliation(s)
- P Krolak-Salmon
- Clinical and Research Memory Centre of Lyon (CMRR), Charpennes Hospital, University Hospital of Lyon, Villeurbanne, France.,Clinical Research Centre (CRC) - VCF (Aging - Brain - Frailty), Charpennes Hospital, University Hospital of Lyon, Villeurbanne, France.,University Lyon 1, Lyon, France.,INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre, Brain Dynamics and Cognition Team, Lyon, France
| | - C Roubaud
- Clinical and Research Memory Centre of Lyon (CMRR), Charpennes Hospital, University Hospital of Lyon, Villeurbanne, France
| | - H Finne-Soveri
- Ageing and Services Unit, National Institute of Health and Welfare (THL), Helsinki, Finland
| | | | - G Richard
- Clinical and Research Memory Centre of Lyon (CMRR), Charpennes Hospital, University Hospital of Lyon, Villeurbanne, France
| | - I Rouch
- Clinical and Research Memory Centre of Lyon (CMRR), Charpennes Hospital, University Hospital of Lyon, Villeurbanne, France
| | | | - V Dauphinot
- Clinical and Research Memory Centre of Lyon (CMRR), Charpennes Hospital, University Hospital of Lyon, Villeurbanne, France.,University Lyon 1, Lyon, France
| |
Collapse
|
35
|
Rosenberg PB, Nowrangi MA, Lyketsos CG. Neuropsychiatric symptoms in Alzheimer's disease: What might be associated brain circuits? Mol Aspects Med 2015; 43-44:25-37. [PMID: 26049034 DOI: 10.1016/j.mam.2015.05.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 12/15/2022]
Abstract
Neuropsychiatric symptoms (NPS) are very common in Alzheimer's disease (AD), particularly agitation, apathy, depression, and delusions. Brain networks or circuits underlying these symptoms are just starting to be understood, and there is a growing imaging and neurochemical evidence base for understanding potential mechanisms for NPS. We offer a synthetic review of the recent literature and offer hypotheses for potential networks/circuits underlying these NPS, particularly agitation, apathy, and delusions. Agitation in AD appears to be associated with deficits in structure and function of frontal cortex, anterior cingulate cortex, posterior cingulate cortex, amygdala, and hippocampus, and may be associated with mechanisms underlying misinterpretation of threats and affective regulation. Apathy in AD is associated with frontal cortex, anterior cingulate cortex, posterior cingulate cortex, as well as orbitofrontal cortex, and inferior temporal cortex, and may be associated with mechanisms underlying avoidance behaviors.
Collapse
Affiliation(s)
- Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences, Division of Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins School of Medicine, USA.
| | - Milap A Nowrangi
- Department of Psychiatry and Behavioral Sciences, Division of Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins School of Medicine, USA
| | - Constantine G Lyketsos
- Department of Psychiatry and Behavioral Sciences, Division of Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins School of Medicine, USA
| |
Collapse
|
36
|
The monoaminergic footprint of depression and psychosis in dementia with Lewy bodies compared to Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2015; 7:7. [PMID: 25717350 PMCID: PMC4339739 DOI: 10.1186/s13195-014-0090-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/16/2014] [Indexed: 11/16/2022]
Abstract
Introduction Depression and psychosis are two of the most severe neuropsychiatric symptoms (NPS) in dementia with Lewy bodies (DLB) and Alzheimer’s disease (AD). Both NPS have negative effects on cognitive performance and life expectancy. The current study aimed to investigate and compare monoaminergic etiologies between both neurodegenerative conditions, given the lack of an efficient pharmacological treatment until present. Methods Eleven behaviorally relevant brain regions of the left frozen hemisphere of 10 neuropathologically confirmed AD patients with/without depression (AD + D/-D; 5 were psychotic within AD + D), 10 confirmed DLB patients, all of whom were depressed (DLB + D; 5 psychotic patients), and, finally, 10 confirmed control subjects were regionally dissected. All patients were retrospectively assessed before death using the Behavioral Pathology in Alzheimer’s Disease Rating Scale (Behave-AD) and Cornell Scale for Depression in Dementia amongst others. The concentrations of dopamine (DA), serotonin (5-HT), (nor)adrenaline and respective metabolites, i.e. 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), 5-hydroxy-3-indoleacetic acid (5-HIAA), and, 3-methoxy-4-hydroxyphenylglycol (MHPG), were determined using reversed-phase high-performance liquid chromatography with electrochemical detection. Results DLB subjects had the overall lowest monoamine and metabolite concentrations regarding 33 out of 41 significant monoaminergic group alterations. Moreover, MHPG levels were significantly decreased in almost 8 out of 11 brain regions of DLB- compared to AD patients. We also observed the lowest 5-HT and 5-HIAA levels, and 5-HIAA/5-HT turnover ratios in DLB + D compared to AD + D subjects. Additionally, a 4- and 7-fold increase of DOPAC/DA and HVA/DA turnover ratios, and, a 10-fold decrease of thalamic DA levels in DLB + D compared to AD + D patients and control subjects was noticed. Regarding psychosis, hippocampal DA levels in the overall DLB group significantly correlated with Behave-AD AB scores. In the total AD group, DA levels and HVA/DA ratios in the amygdala significantly correlated with Behave-AD AB scores instead. Conclusions Monoaminergic neurotransmitter alterations contribute differently to the pathophysiology of depression and psychosis in DLB as opposed to AD, with a severely decreased serotonergic neurotransmission as the main monoaminergic etiology of depression in DLB. Similarly, psychosis in DLB might, in part, be etiologically explained by dopaminergic alterations in the hippocampus, whereas in AD, the amygdala might be involved.
Collapse
|
37
|
Vermeiren Y, Van Dam D, De Deyn PP. Psychiatric Disorders in Dementia. PET AND SPECT IN PSYCHIATRY 2014:271-324. [DOI: 10.1007/978-3-642-40384-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
Nagata T, Kobayashi N, Shinagawa S, Yamada H, Kondo K, Nakayama K. Plasma BDNF levels are correlated with aggressiveness in patients with amnestic mild cognitive impairment or Alzheimer disease. J Neural Transm (Vienna) 2013; 121:433-41. [PMID: 24253237 DOI: 10.1007/s00702-013-1121-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/08/2013] [Indexed: 12/29/2022]
Abstract
In the present study, we examined whether neuropsychiatric symptoms were correlated with plasma brain-derived neurotrophic factor (BDNF) levels as a state marker or were associated with the BDNF polymorphism Val66Met in patients with amnestic mild cognitive impairment (A-MCI) or Alzheimer disease (AD). One hundred and seventy-six outpatients with AD (n = 129) or A-MCI (n = 47) were selected and their plasma BDNF concentrations measured. Next, we investigated the correlation between the plasma BDNF level and the Behavioral Pathology in Alzheimer Disease (Behave-AD) subscale scores, which reflect neuropsychiatric symptoms. We also compared the plasma BDNF level and the Behave-AD subscale scores among the BDNF Val66Met genotypic groups. Among the seven Behave-AD subscale scores, aggressiveness was positively correlated with the plasma BDNF level (ρ = 0.237, P < 0.005), but did not differ significantly among the three BDNF Val66Met genotypic groups. The Behave-AD total and other subscale scores did not differ significantly among the BDNF Val66Met genotypic groups and were not associated with the plasma BDNF level. Moreover, the plasma BDNF level did not differ significantly among the three BDNF Val66Met genotypic groups or between patients with A-MCI and those with AD. The plasma BDNF level was robustly correlated with aggressiveness, implying that the plasma BDNF level might be useful as a behavioral state marker in patients with AD or A-MCI.
Collapse
Affiliation(s)
- Tomoyuki Nagata
- Department of Psychiatry, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8471, Japan,
| | | | | | | | | | | |
Collapse
|