1
|
Lerga-Jaso J, Terpolovsky A, Novković B, Osama A, Manson C, Bohn S, De Marino A, Kunitomi M, Yazdi PG. Optimization of multi-ancestry polygenic risk score disease prediction models. Sci Rep 2025; 15:17495. [PMID: 40394127 PMCID: PMC12092622 DOI: 10.1038/s41598-025-02903-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 05/16/2025] [Indexed: 05/22/2025] Open
Abstract
Polygenic risk scores (PRS) have ushered in a new era in genetic epidemiology, offering insights into individual predispositions to a wide range of diseases. However, despite recent marked enhancements in predictive power, PRS-based models still need to overcome several hurdles before they can be broadly applied in the clinic. Chiefly, they need to achieve sufficient accuracy, easy interpretability and portability across diverse populations. Leveraging trans-ancestry genome-wide association study (GWAS) meta-analysis, we generated novel, diverse summary statistics for 30 medically-related traits and benchmarked the performance of six existing PRS algorithms using UK Biobank. We built an ensemble model using logistic regression to combine outputs of top-performing algorithms and validated it on the diverse eMERGE and PAGE MEC cohorts. It surpassed current state-of-the-art PRS models, with minimal performance drops in external cohorts, indicating good calibration. To enhance predictive accuracy for clinical application, we incorporated easily-accessible clinical characteristics such as age, gender, ancestry and risk factors, creating disease prediction models intended as prospective diagnostic tests, with easily interpretable positive or negative outcomes. After adding clinical characteristics, 12 out of 30 models surpassed 80% AUC. Further, 25 traits exceeded the diagnostic odds ratio (DOR) of five, and 19 traits exceeded DOR of 10 for all ancestry groups, indicating high predictive value. Our PRS model for coronary artery disease identified 55-80 times more true coronary events than rare pathogenic variant models, reinforcing its clinical potential. The polygenic component modulated the effect of high-risk rare variants, stressing the need to consider all genetic components in clinical settings. These findings show that newly developed PRS-based disease prediction models have sufficient accuracy and portability to warrant consideration of being used in the clinic.
Collapse
Affiliation(s)
| | | | | | - Alex Osama
- Research & Development, Omics Edge, Miami, FL, USA
| | | | - Sandra Bohn
- Research & Development, Omics Edge, Miami, FL, USA
| | | | | | - Puya G Yazdi
- Research & Development, Omics Edge, Miami, FL, USA.
| |
Collapse
|
2
|
Heo G, Xu Y, Wang E, Ali M, Oh HSH, Moran-Losada P, Anastasi F, González Escalante A, Puerta R, Song S, Timsina J, Liu M, Western D, Gong K, Chen Y, Kohlfeld P, Flynn A, Thomas AG, Lowery J, Morris JC, Holtzman DM, Perlmutter JS, Schindler SE, Vilor-Tejedor N, Suárez-Calvet M, García-González P, Marquié M, Fernández MV, Boada M, Cano A, Ruiz A, Zhang B, Bennett DA, Benzinger T, Wyss-Coray T, Ibanez L, Sung YJ, Cruchaga C. Large-scale plasma proteomic profiling unveils diagnostic biomarkers and pathways for Alzheimer's disease. NATURE AGING 2025:10.1038/s43587-025-00872-8. [PMID: 40394224 DOI: 10.1038/s43587-025-00872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/09/2025] [Indexed: 05/22/2025]
Abstract
Proteomic studies have been instrumental in identifying brain, cerebrospinal fluid and plasma proteins associated with Alzheimer's disease (AD). Here, we comprehensively examined 6,905 aptamers corresponding to 6,106 unique proteins in plasma in more than 3,300 well-characterized individuals to identify new proteins, pathways and predictive models for AD. We identified 416 proteins (294 new) associated with clinical AD status and validated the findings in two external datasets representing more than 7,000 samples. AD-related proteins reflected blood-brain barrier disruption and other processes implicated in AD, such as lipid dysregulation or immune responses. A machine learning model was used to identify a set of seven proteins that were highly predictive of both clinical AD (area under the curve (AUC) of >0.72) and biomarker-defined AD status (AUC of >0.88), which were replicated in multiple external cohorts and orthogonal platforms. These findings underscore the potential of using plasma proteins as biomarkers for the early detection and monitoring of AD and for guiding treatment decisions.
Collapse
Affiliation(s)
- Gyujin Heo
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Ying Xu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Erming Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Hamilton Se-Hwee Oh
- Graduate Program in Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Patricia Moran-Losada
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Federica Anastasi
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Armand González Escalante
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Raquel Puerta
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- PhD Program in Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Soomin Song
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Menghan Liu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Katherine Gong
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Yike Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Pat Kohlfeld
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Allison Flynn
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Alvin G Thomas
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Joseph Lowery
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurologic Diseases, Washington University, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Natalia Vilor-Tejedor
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Genetics, Radboud UMC, Nijmegen, Netherlands
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, Madrid, Spain
| | - Maria Victoria Fernández
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, Madrid, Spain
| | - Amanda Cano
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, Madrid, Spain
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Tammie Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA.
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurologic Diseases, Washington University, St. Louis, MO, USA.
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.
| |
Collapse
|
3
|
Butovsky O, Rosenzweig N. Alzheimer's disease and age-related macular degeneration: Shared and distinct immune mechanisms. Immunity 2025; 58:1120-1139. [PMID: 40324382 DOI: 10.1016/j.immuni.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
Alzheimer's disease (AD) and age-related macular degeneration (AMD) represent the leading causes of dementia and vision impairment in the elderly, respectively. The retina is an extension of the brain, yet these two central nervous system (CNS) compartments are often studied separately. Despite affecting cognition vs. vision, AD and AMD share neuroinflammatory pathways. By comparing these diseases, we can identify converging immune mechanisms and potential cross-applicable therapies. Here, we review immune mechanisms highlighting the shared and distinct aspects of these two age-related neurodegenerative conditions, focusing on responses to hallmark disease manifestations, the opposite role of overlapping immune risk loci, and potential unified therapeutic approaches. We also discuss unique tissue requirements that may dictate different outcomes of conserved immune mechanisms and how we can reciprocally utilize lessons from AD therapeutics to AMD. Looking forward, we suggest promising directions for research, including the exploration of regenerative medicine, gene therapies, and innovative diagnostics.
Collapse
Affiliation(s)
- Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Neta Rosenzweig
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Gonzalez MC, Oftedal L, Lange J, Tovar-Rios DA, Tysnes OB, Paquet C, Marquié M, Boada M, Alcolea D, Rejdak K, Papuc E, Hort J, Falup-Pecurariu C, Aarsland D, Alves G, Maple-Grødem J. Relationship of cognitive decline with glucocerebrosidase activity and amyloid-beta 42 in DLB and PD. Ann Clin Transl Neurol 2025; 12:915-924. [PMID: 40051075 DOI: 10.1002/acn3.52295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/18/2024] [Accepted: 12/16/2024] [Indexed: 05/22/2025] Open
Abstract
OBJECTIVE Dementia with Lewy bodies (DLB) and Parkinson's disease (PD) share clinical, pathological, and genetic risk factors, including GBA1 and APOEε4 mutations. Biomarkers associated with the pathways of these mutations, such as glucocerebrosidase enzyme (GCase) activity and amyloid-beta 42 (Aβ42) levels, may hold potential as predictive indicators, providing valuable insights into the likelihood of cognitive decline within these diagnoses. Our objective was to determine their association with cognitive decline in DLB and PD. METHODS A total of 121 DLB patients from the European-DLB Consortium and 117 PD patients from the Norwegian ParkWest Study were included in this study. The four most commonly associated variants of GBA1 mutations (E326K, T369M, N370S, L444P), APOEε4 status, and cerebrospinal fluid (CSF) Aβ42 levels and GCase activity were assessed, as well as global cognition using the Mini-Mental State Examination. Linear mixed-effects regression models were used to evaluate the association of CSF biomarkers with cognitive decline in each diagnostic group, adjusted for age, sex, education, and genetic mutation profile. RESULTS Low CSF Aβ42 levels were associated with accelerated cognitive decline in DLB, whereas reduced CSF GCase activity predicted faster cognitive decline in PD. These associations were independent of GBA1 gene mutations or APOEε4 status. INTERPRETATION Our study provides important evidence on the relationship between brain Aβ deposition and GCase activity in the Lewy body disease spectrum independent of their genetic mutation profile. This information could be relevant for designing future clinical trials targeting these pathways.
Collapse
Affiliation(s)
- Maria Camila Gonzalez
- Department of Quality and Health Technology, Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
- Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Linn Oftedal
- Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Johannes Lange
- Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Diego Alejandro Tovar-Rios
- Department of Quality and Health Technology, Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Claire Paquet
- Neurology Center, Assistance Publique Hôpitaux de Paris, Lariboisière Fernand-Widal Hospital, INSERMU1144, Université de Paris, Paris, France
| | - Marta Marquié
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, IIB Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Ewa Papuc
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Jakub Hort
- Department of Neurology, Memory Clinic, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Cristian Falup-Pecurariu
- Department of Neurology, County Clinic Hospital, Faculty of Medicine, Transilvania University, Brasov, Romania
| | - Dag Aarsland
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Psychological Medicine Institute of Psychiatry, Psychology & Neuroscience King's College London, London, UK
| | - Guido Alves
- Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Departement of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Jodi Maple-Grødem
- Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| |
Collapse
|
5
|
Yu L, Liu W, Liao C, Shen N, Liu A, Cheng L, Wang X. The interaction between circadian syndrome and genetic susceptibility in the risk of incident dementia: A longitudinal cohort study. J Prev Alzheimers Dis 2025; 12:100089. [PMID: 39922757 DOI: 10.1016/j.tjpad.2025.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Despite growing interest in circadian disturbances as potential triggers for dementia, the specific impact of circadian syndrome (CircS) on dementia incidence remains poorly understood. Moreover, the role of genetic susceptibility modulating these effects remains to be explored. METHODS Dementia-free participants from the UK Biobank cohort were included in the analysis. To evaluate the association between CircS and the incidence of dementia, as well as the modifying influence of genetic susceptibility on this relationship, Cox proportional hazards models were utilized. RESULTS During a median follow-up period of 14.55 years, 3,965 incident dementia cases were documented. CircS was found to significantly increased the risk of incident dementia, with a hazard ratio (HR) of 1.401 (95 % confidence interval [CI]: 1.296, 1.516). Compared to a CircS score of ≤3, mild CircS (HR: 1.259, 95 % CI: 1.146-1.383), moderate CircS (HR: 1.667, 95 % CI: 1.461-1.903), and severe CircS (HR: 2.028, 95 % CI: 1.397-2.944) were all significantly associated with an elevated risk of dementia. There were significant multiplicative interactions between CircS and genetic susceptibility (Pinteraction<0.001). Participants with both a high polygenic risk score (PRS) and CircS had the highest risk of incident dementia (HR: 2.551, 95 % CI: 2.169, 3.001), compared to those with a low PRS and no CircS. CONCLUSIONS CircS was associated with an increased risk of dementia, which might be aggravated by genetic susceptibility.
Collapse
Affiliation(s)
- Linling Yu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Public health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Liu
- Department of Public health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenqi Liao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Xavier C, Pinto N. Navigating the blurred boundary: Neuropathologic changes versus clinical symptoms in Alzheimer's disease, and its consequences for research in genetics. J Alzheimers Dis 2025; 104:611-626. [PMID: 39956949 DOI: 10.1177/13872877251317543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
During decades scientists tried to unveil the genetic architecture of Alzheimer's disease (AD), recurring to increasingly larger sample numbers for genome-wide association studies (GWAS) in hope for higher statistical gains. Here, a retrospective look on the most prominent GWAS was performed, focusing on the quality of the diagnosis associated with the used data and databases. Different methods for AD diagnosis (or absence) carry different levels of accuracy and certainty applied to both subsets of cases and controls. Furthermore, the different phenotypes included in these databases were explored, as several incorporate other ageing comorbidities and might be encompassing many confounding agents as well. Age of the samples' donors and origin populations were also investigated as these could be biasing factors in posterior analyses. A tendency for looser diagnostic methods in more recent GWAS was observed, where greater datasets of individuals are analyzed, which may have been hampering the discovery of associated genetic variants. Specifically for AD, a diagnostic method conveying a clinical outcome may be distinct from the disease neuropathological assessment, since the first has a practical perspective that not necessarily needs a confirmation. Due to its properties and complex diagnosis, this work highlights the importance of the neuropathological confirmation of AD (or its absence) in the subjects considered for research purposes to avoid reaching statistically weak and/or misleading conclusions that may trigger further studies with powerless groundwork.
Collapse
Affiliation(s)
- Catarina Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Nádia Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- CMUP - Centro de Matemática da Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Zhao B, Cheng B, Li X, Xia J, Gou Y, Kang M, Hui J, Liu Y, Zhou R, Liu C, Wang B, Shi P, Zhang F. Association of dietary diversity, genetic susceptibility, and the risk of incident dementia: A prospective cohort study. J Prev Alzheimers Dis 2025; 12:100078. [PMID: 39952880 DOI: 10.1016/j.tjpad.2025.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Previous studies have revealed how single foods or nutrients affect dementia, but the evidence for a potential link between dietary diversity and dementia is inconsistent. OBJECTIVES This study aimed to evaluate the association between dietary diversity and the risk of incident dementia. DESIGN, SETTING AND PARTICIPANTS This prospective study included 104,572 white participants without dementia at baseline recruited between 2006 and 2010 from the UK Biobank. MEASUREMENTS Dietary Diversity Score (DDS) was acquired through the Oxford WebQ's 24-hour dietary recall survey spanning from 2009 to 2012. Cox proportional hazards models were used to estimate the associations between DDS, diversity scores of food groups and the risk of incident dementia. Stratified analyses were subsequently conducted to assess the potential variations across different demographic, socioeconomic, and genetic risk groups. RESULTS Over a median follow-up period of 10.44 years, 725 participants developed incident dementia. A higher DDS was associated with a lower risk of incident dementia (HR: 0.95; 95 % CI: 0.93-0.97). Stratified analyses revealed statistical significance in this association for individuals under 65 years old (HR: 0.95; 95 % CI: 0.92-0.98), and those with higher polygenic risk scores (PRS; HR: 0.92; 95 % CI: 0.89-0.95). Among five food groups, a higher diversity score for meat and protein alternatives was associated with a lower risk of dementia (HR: 0.92; 95 % CI: 0.86-0.99). CONCLUSION Enhancing dietary diversity reduces dementia risk, and is potentially influenced by genetic predisposition. Consuming a diverse range of foods may be an effective strategy against dementia.
Collapse
Affiliation(s)
- Boyue Zhao
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, PR China
| | - Bolun Cheng
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, PR China
| | - Xinyang Li
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, PR China
| | - Jinyu Xia
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, PR China
| | - Yifan Gou
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, PR China
| | - Meijuan Kang
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, PR China
| | - Jingni Hui
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, PR China
| | - Ye Liu
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, PR China
| | - Ruixue Zhou
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, PR China
| | - Chen Liu
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, PR China
| | - Bingyi Wang
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, PR China
| | - Panxing Shi
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, PR China
| | - Feng Zhang
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, PR China.
| |
Collapse
|
8
|
García-González P, Puerta R, Cano A, Olivè C, Marquié M, Valero S, Rosende-Roca M, Alegret M, Sanz P, Brosseron F, Martino-Adami P, de Rojas I, Heneka M, Ramírez A, Navarro A, Sáez ME, Tárraga L, Cavazos JE, Boada M, Fernandez MV, Cabrera-Socorro A, Ruiz A. APOE Haplotype Phasing Using ONT Long-Read Sequencing Reveals Two Common ε3 and ε4 intragenic haplotypes in the Spanish Population. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.25.25324541. [PMID: 40196265 PMCID: PMC11974914 DOI: 10.1101/2025.03.25.25324541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background The apolipoprotein E (APOE) gene is a key genetic determinant of Alzheimer's disease (AD) risk, with the ε4 allele significantly increasing susceptibility. While the pathogenic effects of the ε4 allele are well established, the functional impact of distinct haplotype configurations within the broader ε3 and ε4 backgrounds remains poorly understood. This study investigates the role of intragenic sub haplotypes in modulating APOE expression and their potential influence on AD progression. Methods We utilized Oxford Nanopore Technology (ONT) long-read sequencing to phase variants within a 4-kilobase comprising the APOE locus in a cohort of 1,265 individuals with known APOE genotypes. We evaluated the impact of the identified intragenic haplotypes on APOE protein levels in cerebrospinal fluid (CSF) using the Olink platform, adjusting for demographic and molecular covariates. Statistical modeling was employed to assess the independent effects of these haplotypes alongside traditional APOE genotypes. Additionally, their influence on dementia progression in mild cognitive impairment (MCI) subjects was analyzed using adjusted Cox proportional hazards models. Results Our analysis identified 48 Single Nucleotide Variants (SNVs) within a 4-kilobase region containing the APOE gene, including nine novel variants. Phasing of variants within the APOE locus revealed 59 unique haplotypes in the Spanish population, which were grouped into five major haplogroups-ε2, ε3A, ε3B, ε4A, and ε4B-including two common haplogroups for each of the ε3 and ε4 isoforms. The ε4A haplogroup was associated with a significant decrease in APOE ε4 protein levels in CSF (p = 0.004), suggesting a regulatory mechanism that may mitigate the toxic gain-of-function effect typically attributed to the ε4 allele. Conversely, the ε3B haplogroup was linked to increased APOE ε3 protein levels in ε3/ε4 carriers (p = 0.025), potentially serving a compensatory role.These effects were independent of overall APOE genotype and remained significant after adjusting for covariates. Both haplogroups (ε4A and ε3B) demonstrated protective effects in the progression from MCI to dementia, underscoring their potential relevance in Alzheimer's disease. Conclusions This study provides new insights into the intragenic allelic variability of the APOE gene, demonstrating that intragenic APOE haplogroups within the ε3 and ε4 backgrounds can modulate APOE isoform expression in ways that might modulate AD. Our findings highlight the importance of considering haplotype-specific effects when interpreting the functional impact of APOE and in designing targeted therapeutic strategies. Further research is needed to explore the broader regulatory network of the APOE locus and its interaction with neighboring loci in the 19q13 region.
Collapse
Affiliation(s)
- Pablo García-González
- ACE Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- PhD program in Biotecnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028- Barcelona, Spain
| | - Raquel Puerta
- ACE Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Barcelona, Spain
- PhD program in Biotecnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028- Barcelona, Spain
| | - Amanda Cano
- ACE Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Claudia Olivè
- ACE Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Barcelona, Spain
| | - Marta Marquié
- ACE Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sergi Valero
- ACE Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Maitee Rosende-Roca
- ACE Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Montserrat Alegret
- ACE Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pilar Sanz
- ACE Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Barcelona, Spain
| | - Frederik Brosseron
- Universitätsklinikum Bonn & Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn, Germany
| | - Pamela Martino-Adami
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Itziar de Rojas
- ACE Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Eschsur-Alzette/Belvaux, Luxembourg
| | - Michael Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Eschsur-Alzette/Belvaux, Luxembourg
| | - Alfredo Ramírez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Department of Psychiatry and Glenn, Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San An TX USA
| | - Arcadi Navarro
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra. Pg. Lluís Companys 23, 08010, Barcelona, Spain
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Av. Doctor Aiguader, N88, 08003 Barcelona, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, C. Wellington 30, 08005, Barcelona, Spain
| | - María Eugenia Sáez
- ACE Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Barcelona, Spain
- CAEBI, Centro Andaluz de Estudios Bioinformáticos, Sevilla, Spain
| | - Lluís Tárraga
- ACE Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - José E. Cavazos
- South Texas Medical Science Training Program, University of Texas Health San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Mercè Boada
- ACE Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | | | - Agustín Ruiz
- ACE Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Microbiology, Immunology and Molecular Genetics. Long School of Medicine. University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
9
|
Cruchaga C, Heo G, Thomas A, Wang E, Oh H, Ali M, Timsina J, Song S, Liu M, Gong K, Western D, Chen Y, Kohlfeld P, Flynn A, Lowery J, Morris J, Holtzman D, Perlmutter J, Schindler S, Zhang B, Bennett D, Benzinger T, Wyss-Coray T, Ibanez L, Sung YJ, Xu Y, Losada PM, Anastasi F, Gonzalez-Escalante A, Puerta R, Vilor-Tejedor N, Suárez-Calvet M, Garcia-Gonzalez P, Fernández M, Boada M, Cano A, Ruiz A. Large-scale Plasma Proteomic Profiling Unveils Novel Diagnostic Biomarkers and Pathways for Alzheimer's Disease. RESEARCH SQUARE 2025:rs.3.rs-5167552. [PMID: 40166037 PMCID: PMC11957210 DOI: 10.21203/rs.3.rs-5167552/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Alzheimer disease (AD) is a complex neurodegenerative disorder. Proteomic studies have been instrumental in identifying AD-related proteins present in the brain, cerebrospinal fluid, and plasma. This study comprehensively examined 6,905 plasma proteins in more than 3,300 well-characterized individuals to identify new proteins, pathways, and predictive model for AD. With three-stage analysis (discovery, replication, and meta-analysis) we identified 416 proteins (294 novel) associated with clinical AD status and the findings were further validated in two external datasets including more than 7,000 samples and seven previous studies. Pathway analysis revealed that these proteins were involved in endothelial and blood hemostatic (ACHE, SMOC1, SMOC2, VEGFA, VEGFB, SPARC), capturing blood brain barrier (BBB) disruption due to disease. Other pathways were capturing known processes implicated in AD, such as lipid dysregulation (APOE, BIN1, CLU, SMPD1, PLA2G12A, CTSF) or immune response (C5, CFB, DEFA5, FBXL4), which includes proteins known to be part of the causal pathway indicating that some of the identified proteins and pathways are involved in disease pathogenesis. An enrichment of brain and neural pathways (axonal guidance signaling or myelination signaling) indicates that, in fact, blood proteomics capture brain- and disease-related changes, which can lead to the identification of novel biomarkers and predictive models. Machine learning model was employed to identify a set of seven proteins that were highly predictive of both clinical AD (AUC > 0.72) and biomarker-defined AD status (AUC > 0.88), that were replicated in multiple external cohorts as well as with orthogonal platforms. These extensive findings underscore the potential of using plasma proteins as biomarkers for early detection and monitoring of AD, as well as potentially guiding treatment decisions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | - Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Patsy Kohlfeld
- Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | - Bin Zhang
- Icahn School of Medicine at Mount Sinai
| | | | | | | | | | | | - Ying Xu
- Washington University Medical School
| | | | | | | | - Raquel Puerta
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya. Universitat de Barcelona (UB)
| | | | | | | | | | | | | | - Agustín Ruiz
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
10
|
İş Ö, Min Y, Wang X, Oatman SR, Abraham Daniel A, Ertekin‐Taner N. Multi Layered Omics Approaches Reveal Glia Specific Alterations in Alzheimer's Disease: A Systematic Review and Future Prospects. Glia 2025; 73:539-573. [PMID: 39652363 PMCID: PMC11784841 DOI: 10.1002/glia.24652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative dementia with multi-layered complexity in its molecular etiology. Multiple omics-based approaches, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and lipidomics are enabling researchers to dissect this molecular complexity, and to uncover a plethora of alterations yielding insights into the pathophysiology of this disease. These approaches reveal multi-omics alterations essentially in all cell types of the brain, including glia. In this systematic review, we screen the literature for human studies implementing any omics approach within the last 10 years, to discover AD-associated molecular perturbations in brain glial cells. The findings from over 200 AD-related studies are reviewed under four different glial cell categories: microglia, oligodendrocytes, astrocytes and brain vascular cells. Under each category, we summarize the shared and unique molecular alterations identified in glial cells through complementary omics approaches. We discuss the implications of these findings for the development, progression and ultimately treatment of this complex disease as well as directions for future omics studies in glia cells.
Collapse
Affiliation(s)
- Özkan İş
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Yuhao Min
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Xue Wang
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Nilüfer Ertekin‐Taner
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|
11
|
Guillen-Guio B, Marcelino-Rodriguez I, Lorenzo-Salazar JM, Leavy OC, Allen RJ, Pompa-Mera EN, Riancho JA, Rojas-Martinez A, Lapunzina P, Carracedo Á, Wain LV, Flores C. Polygenic risk of idiopathic pulmonary fibrosis and COVID-19 severity. ERJ Open Res 2025; 11:00978-2024. [PMID: 40247961 PMCID: PMC12004260 DOI: 10.1183/23120541.00978-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/01/2024] [Indexed: 04/19/2025] Open
Abstract
Background A shared genetic component between coronavirus disease 2019 (COVID-19) and idiopathic pulmonary fibrosis (IPF) has been described based on analyses of individual risk variants. Here we used a whole-genome polygenic risk score (PRS) approach to further evaluate age- and sex-stratified genetic overlap between IPF and severe COVID-19 to give insight into shared biological mechanisms that might both inform therapeutic strategies for both diseases. Methods We used results from the largest genome-wide association study of clinically defined IPF risk (4125 cases/20 464 controls) and individual-level data from the SCOURGE European study of COVID-19 (5968 cases/9056 controls). We calculated IPF PRSs and assessed their association with COVID-19 severity, stratified by age and sex. We performed replication in an independent dataset of Latin-American patients (1625 cases/1887 controls). Enrichment and pathway-specific PRS analyses were performed to study biological pathways associated with COVID-19 severity. Results IPF PRSs were significantly associated with COVID-19 hospitalisation and severe illness in Europeans and replicated in a Latin-American cohort. The strongest association was found in <60 years patients, especially among younger males (p=6.39×10-5). Pathway-specific PRSs analyses supported a link to cadherin and integrin signalling pathways. Conclusions The study indicates age and sex-dependent genome-wide genetic overlap between IPF and severe COVID-19 and highlights specific shared biological mechanisms underlying both conditions. This could also imply that individuals with a high IPF genetic risk are at an overall increased risk of developing lung sequelae resulting from severe COVID-19.
Collapse
Affiliation(s)
- Beatriz Guillen-Guio
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Itahisa Marcelino-Rodriguez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias, Santa Cruz de Tenerife, Spain
- Preventive Medicine and Public Health Area, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Olivia C. Leavy
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Richard J. Allen
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Ericka N. Pompa-Mera
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional s.XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Unidad de Investigación, Hospital de Infectología, Centro Médico Nacional “La Raza”. Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - José A. Riancho
- IDIVAL, Cantabria, Spain
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Cantabria, Spain
- Servicio de Medicina Interna, Hospital Universitario Marqués de Valdecilla, Cantabria, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Augusto Rojas-Martinez
- Tecnologico de Monterrey, The Institute for Obesity Research and Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Pablo Lapunzina
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular, Hospital Universitario La Paz-IDIPAZ, Madrid, Spain
- ERN-ITHACA-European Reference Network, Madrid, Spain
| | - Ángel Carracedo
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Grupo de Medicina Xeómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Centro Nacional de Genotipado, Sistema Galego de Saúde, Santiago de Compostela, Spain
| | - Louise V. Wain
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
- These authors contributed equally
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- These authors contributed equally
| |
Collapse
|
12
|
Puerta R, Cano A, García-González P, García-Gutiérrez F, Capdevila M, de Rojas I, Olivé C, Blázquez-Folch J, Sotolongo-Grau O, Miguel A, Montrreal L, Martino-Adami P, Khan A, Orellana A, Sung YJ, Frikke-Schmidt R, Marchant N, Lambert JC, Rosende-Roca M, Alegret M, Fernández MV, Marquié M, Valero S, Tárraga L, Cruchaga C, Ramírez A, Boada M, Smets B, Cabrera-Socorro A, Ruiz A. Head-to-Head Comparison of Aptamer- and Antibody-Based Proteomic Platforms in Human Cerebrospinal Fluid Samples from a Real-World Memory Clinic Cohort. Int J Mol Sci 2024; 26:286. [PMID: 39796148 PMCID: PMC11720409 DOI: 10.3390/ijms26010286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
High-throughput proteomic platforms are crucial to identify novel Alzheimer's disease (AD) biomarkers and pathways. In this study, we evaluated the reproducibility and reliability of aptamer-based (SomaScan® 7k) and antibody-based (Olink® Explore 3k) proteomic platforms in cerebrospinal fluid (CSF) samples from the Ace Alzheimer Center Barcelona real-world cohort. Intra- and inter-platform reproducibility were evaluated through correlations between two independent SomaScan® assays analyzing the same samples, and between SomaScan® and Olink® results. Association analyses were performed between proteomic measures, CSF biological traits, sample demographics, and AD endophenotypes. Our 12-category metric of reproducibility combining correlation analyses identified 2428 highly reproducible SomaScan CSF measures, with over 600 proteins well reproduced on another proteomic platform. The association analyses among AD clinical phenotypes revealed that the significant associations mainly involved reproducible proteins. The validation of reproducibility in these novel proteomics platforms, measured using this scarce biomaterial, is essential for accurate analysis and proper interpretation of innovative results. This classification metric could enhance confidence in multiplexed proteomic platforms and improve the design of future panels.
Collapse
Affiliation(s)
- Raquel Puerta
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- PhD Program in Biotecnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Amanda Cano
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Fernando García-Gutiérrez
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
| | - Maria Capdevila
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Clàudia Olivé
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
| | - Josep Blázquez-Folch
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
| | - Oscar Sotolongo-Grau
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
| | - Andrea Miguel
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
| | - Laura Montrreal
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
| | - Pamela Martino-Adami
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (P.M.-A.); (A.R.)
| | - Asif Khan
- Janssen Pharmaceutica NV, a Johnson & Johnson Company, 2340 Beerse, Belgium; (A.K.); (B.S.); (A.C.-S.)
| | - Adelina Orellana
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Yun Ju Sung
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63108, USA; (Y.J.S.); (C.C.)
- Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63110, USA
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Natalie Marchant
- Division of Psychiatry, University College London, London W1T 7NK, UK;
| | - Jean Charles Lambert
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Université de Lille, F-59000 Lille, France;
- Institut Pasteur de Lille, Inserm U1167, CHU de Lille, LabEx DISTALZ, Université de Lille, F-59000 Lille, France
| | - Maitée Rosende-Roca
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
| | - Montserrat Alegret
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Maria Victoria Fernández
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Carlos Cruchaga
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63108, USA; (Y.J.S.); (C.C.)
- Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63110, USA
| | - Alfredo Ramírez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (P.M.-A.); (A.R.)
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, Medical Faculty, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Psychiatry and Glenn, Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX 78229, USA
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Bart Smets
- Janssen Pharmaceutica NV, a Johnson & Johnson Company, 2340 Beerse, Belgium; (A.K.); (B.S.); (A.C.-S.)
| | - Alfredo Cabrera-Socorro
- Janssen Pharmaceutica NV, a Johnson & Johnson Company, 2340 Beerse, Belgium; (A.K.); (B.S.); (A.C.-S.)
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX 77204, USA
| |
Collapse
|
13
|
Fonseca E, Lallana S, Ortega G, Cano A, Sarria-Estrada S, Pareto D, Quintana M, Lorenzo-Bosquet C, López-Maza S, Gifreu A, Campos-Fernández D, Abraira L, Santamarina E, Orellana A, Montrreal L, Puerta R, Aguilera N, Ramis M, de Rojas I, Ruiz A, Tárraga L, Rovira À, Marquié M, Boada M, Toledo M. Amyloid deposition in adults with drug-resistant temporal lobe epilepsy. Epilepsia 2024; 65:3664-3675. [PMID: 39403981 DOI: 10.1111/epi.18142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE Pathological amyloid-β (Aβ) accumulation and hyperphosphorylated tau proteins have been described in resected temporal lobe specimens of epilepsy patients. We aimed to determine cerebrospinal fluid (CSF) Aβ1-42 and p181-tau levels and cerebral Aβ deposits on positron emission tomography (Aβ PET) and correlate these findings with cognitive performance in adults with drug-resistant temporal lobe epilepsy (TLE). METHODS In this cross-sectional study, we enrolled individuals with drug-resistant TLE who were 25-55 years old. Each participant underwent 18F-flutemetamol PET, determination of CSF Aβ1-42, p181-tau, and total tau, and a comprehensive neuropsychological assessment. We evaluated normalized standard uptake value ratios (SUVRs) for different brain regions on Aβ PET. RESULTS Thirty patients (mean age = 41.9 ± SD 8.1 years, 57% men) were included. The median disease duration was 9.5 (interquartile range = 4-24) years. Twenty-six patients (87%) had a clinically significant cognitive impairment on neuropsychological evaluation, 18 (69%) of the amnesic type. On Aβ PET, high uptake was observed in both mesial temporal regions (ipsilateral: SUVR z-score = .90, 95% confidence interval [CI] = .60-1.20; contralateral: SUVR z-score = .92, 95% CI = .57-1.27; p < .001), which was higher when compared to SUVR z-scores in all the remaining regions (p < .001) and in the ipsilateral anterior cingulate (SUVR z-score = .27, 95% CI = .04-.49, p = .020). No significant deposition was observed in other regions. Seven patients (23%) had low Aβ1-42 levels, and two (7%) had elevated p181-tau levels in CSF. Higher p181-tau levels correlated with poorer verbal fluency (R = -.427, p = .044). SIGNIFICANCE Our findings reveal a considerable Aβ deposition in mesial temporal regions and ipsilateral anterior cingulate among adults with drug-resistant TLE. Additionally, abnormal CSF Aβ1-42 levels were observed in a significant proportion of patients, and p181-tau levels were associated with verbal fluency. These results suggest that markers of neuronal damage can be observed in adults with TLE, warranting further investigation.
Collapse
Affiliation(s)
- Elena Fonseca
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Sofía Lallana
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Gemma Ortega
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Amanda Cano
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvana Sarria-Estrada
- Neuroradiology Section, Radiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Deborah Pareto
- Neuroradiology Section, Radiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Manuel Quintana
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Carles Lorenzo-Bosquet
- Nuclear Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Samuel López-Maza
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Ariadna Gifreu
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Daniel Campos-Fernández
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Laura Abraira
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Estevo Santamarina
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Adelina Orellana
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Montrreal
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raquel Puerta
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Núria Aguilera
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Maribel Ramis
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Lluis Tárraga
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Àlex Rovira
- Neuroradiology Section, Radiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Toledo
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| |
Collapse
|
14
|
Shen Y, Timsina J, Heo G, Beric A, Ali M, Wang C, Yang C, Wang Y, Western D, Liu M, Gorijala P, Budde J, Do A, Liu H, Gordon B, Llibre-Guerra JJ, Joseph-Mathurin N, Perrin RJ, Maschi D, Wyss-Coray T, Pastor P, Renton AE, Surace EI, Johnson ECB, Levey AI, Alvarez I, Levin J, Ringman JM, Allegri RF, Seyfried N, Day GS, Wu Q, Fernández MV, Tarawneh R, McDade E, Morris JC, Bateman RJ, Goate A, Ibanez L, Sung YJ, Cruchaga C. CSF proteomics identifies early changes in autosomal dominant Alzheimer's disease. Cell 2024; 187:6309-6326.e15. [PMID: 39332414 PMCID: PMC11531390 DOI: 10.1016/j.cell.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/02/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
In this high-throughput proteomic study of autosomal dominant Alzheimer's disease (ADAD), we sought to identify early biomarkers in cerebrospinal fluid (CSF) for disease monitoring and treatment strategies. We examined CSF proteins in 286 mutation carriers (MCs) and 177 non-carriers (NCs). The developed multi-layer regression model distinguished proteins with different pseudo-trajectories between these groups. We validated our findings with independent ADAD as well as sporadic AD datasets and employed machine learning to develop and validate predictive models. Our study identified 137 proteins with distinct trajectories between MCs and NCs, including eight that changed before traditional AD biomarkers. These proteins are grouped into three stages: early stage (stress response, glutamate metabolism, neuron mitochondrial damage), middle stage (neuronal death, apoptosis), and late presymptomatic stage (microglial changes, cell communication). The predictive model revealed a six-protein subset that more effectively differentiated MCs from NCs, compared with conventional biomarkers.
Collapse
Affiliation(s)
- Yuanyuan Shen
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Gyujin Heo
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Aleksandra Beric
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Muhammad Ali
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Ciyang Wang
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Chengran Yang
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Yueyao Wang
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Daniel Western
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Menghan Liu
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - John Budde
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Anh Do
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Haiyan Liu
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Gordon
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jorge J Llibre-Guerra
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nelly Joseph-Mathurin
- Mallinckrodt Institute of Radiology, Washington University St Louis, St Louis, MO 63110, USA
| | - Richard J Perrin
- Department of Pathology and Immunology, Washington University St. Louis, St. Louis, MO 63110, USA
| | - Dario Maschi
- Department of Cell Biology and Physiology, Washington University St. Louis, St. Louis, MO 63110, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona 08916, Spain
| | - Alan E Renton
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ezequiel I Surace
- Laboratory of Neurodegenerative Diseases, Institute of Neurosciences (INEU-Fleni-CONICET), Buenos Aires, Argentina
| | - Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA 30307, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Ignacio Alvarez
- Department of Neurology, University Hospital Mútua de Terrassa and Fundació Docència i Recerca Mútua de Terrassa, Terrassa 08221, Barcelona, Spain
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich 80336, Germany; German Center for Neurodegenerative Diseases, site Munich, Munich 80336, Germany
| | - John M Ringman
- Alzheimer's Disease Research Center, Department of Neurology, Keck School of Medicine at USC, Los Angeles, CA 90033, USA
| | - Ricardo Francisco Allegri
- Department of Cognitive Neurology, Neuropsychology and Neuropsychiatry, FLENI, Buenos Aires, Argentina
| | - Nicholas Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Gregg S Day
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL 32224, USA
| | - Qisi Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | - Rawan Tarawneh
- The University of New Mexico, Albuquerque, NM 87131, USA
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alison Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Frick EA, Emilsson V, Jonmundsson T, Steindorsdottir AE, Johnson ECB, Puerta R, Dammer EB, Shantaraman A, Cano A, Boada M, Valero S, García-González P, Gudmundsson EF, Gudjonsson A, Pitts R, Qiu X, Finkel N, Loureiro JJ, Orth AP, Seyfried NT, Levey AI, Ruiz A, Aspelund T, Jennings LL, Launer LJ, Gudmundsdottir V, Gudnason V. Serum proteomics reveal APOE-ε4-dependent and APOE-ε4-independent protein signatures in Alzheimer's disease. NATURE AGING 2024; 4:1446-1464. [PMID: 39169269 PMCID: PMC11485263 DOI: 10.1038/s43587-024-00693-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
A deeper understanding of the molecular processes underlying late-onset Alzheimer's disease (LOAD) could aid in biomarker and drug target discovery. Using high-throughput serum proteomics in the prospective population-based Age, Gene/Environment Susceptibility-Reykjavik Study (AGES) cohort of 5,127 older Icelandic adults (mean age, 76.6 ± 5.6 years), we identified 303 proteins associated with incident LOAD over a median follow-up of 12.8 years. Over 40% of these proteins were associated with LOAD independently of APOE-ε4 carrier status, were implicated in neuronal processes and overlapped with LOAD protein signatures in brain and cerebrospinal fluid. We identified 17 proteins whose associations with LOAD were strongly dependent on APOE-ε4 carrier status, with mostly consistent associations in cerebrospinal fluid. Remarkably, four of these proteins (TBCA, ARL2, S100A13 and IRF6) were downregulated by APOE-ε4 yet upregulated due to LOAD, a finding replicated in external cohorts and possibly reflecting a response to disease onset. These findings highlight dysregulated pathways at the preclinical stages of LOAD, including those both independent of and dependent on APOE-ε4 status.
Collapse
Affiliation(s)
| | - Valur Emilsson
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | - Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Raquel Puerta
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
| | - Eric B Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Anantharaman Shantaraman
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda Cano
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sergi Valero
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pablo García-González
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Agustin Ruiz
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Thor Aspelund
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - Valborg Gudmundsdottir
- Icelandic Heart Association, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
16
|
Cano A, Capdevila M, Puerta R, Arranz J, Montrreal L, de Rojas I, García-González P, Olivé C, García-Gutiérrez F, Sotolongo-Grau O, Orellana A, Aguilera N, Ramis M, Rosende-Roca M, Lleó A, Fortea J, Tartari JP, Lafuente A, Vargas L, Pérez-Cordón A, Muñoz N, Sanabria Á, Alegret M, Morató X, Tárraga L, Fernández V, Marquié M, Valero S, Alcolea D, Boada M, Ruiz A. Clinical value of plasma pTau181 to predict Alzheimer's disease pathology in a large real-world cohort of a memory clinic. EBioMedicine 2024; 108:105345. [PMID: 39299003 PMCID: PMC11424964 DOI: 10.1016/j.ebiom.2024.105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The identification of patients with an elevated risk of developing Alzheimer's disease (AD) dementia and eligible for the disease-modifying treatments (DMTs) in the earliest stages is one of the greatest challenges in the clinical practice. Plasma biomarkers has the potential to predict these issues, but further research is still needed to translate them to clinical practice. Here we evaluated the clinical applicability of plasma pTau181 as a predictive marker of AD pathology in a large real-world cohort of a memory clinic. METHODS Three independent cohorts (modelling [n = 991, 59.7% female], testing [n = 642, 56.2% female] and validation [n = 441, 55.1% female]) of real-world patients with subjective cognitive decline (SCD), mild cognitive impairment (MCI), AD dementia, and other dementias were included. Paired cerebrospinal fluid (CSF) and plasma samples were used to measure AT(N) CSF biomarkers and plasma pTau181. FINDINGS CSF and plasma pTau181 showed correlation in all phenotypes except in SCD and other dementias. Age significantly influenced the biomarker's performance. The general Aβ(+) vs Aβ(-) ROC curve showed an AUC = 0.77 [0.74-0.80], whereas the specific ROC curve of MCI due to AD vs non-AD MCI showed an AUC = 0.89 [0.85-0.93]. A cut-off value of 1.30 pg/ml of plasma pTau181 exhibited a sensitivity of 93.57% [88.72-96.52], specificity of 72.38% [62.51-79.01], VPP of 77.85% [70.61-83.54], and 8.30% false negatives in the subjects with MCI of the testing cohort. The HR of cox regression showed that patients with MCI up to this cut-off value exhibited a HR = 1.84 [1.05-3.22] higher risk to convert to AD dementia than patients with MCI below the cut-off value. INTERPRETATION Plasma pTau181 has the potential to be used in the memory clinics as a screening biomarker of AD pathology in subjects with MCI, presenting a valuable prognostic utility in predicting the MCI conversion to AD dementia. In the context of a real-world population, a confirmatory test employing gold-standard procedures is still advisable. FUNDING This study has been mainly funded by Ace Alzheimer Center Barcelona, Instituto de Salud Carlos III (ISCIII), Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science and Innovation, Fundación ADEY, Fundación Echevarne and Grífols S.A.
Collapse
Affiliation(s)
- Amanda Cano
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - María Capdevila
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Spain
| | - Raquel Puerta
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Javier Arranz
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Montrreal
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Itziar de Rojas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo García-González
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Claudia Olivé
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | | | - Oscar Sotolongo-Grau
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Adelina Orellana
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Nuria Aguilera
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Maribel Ramis
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Maitee Rosende-Roca
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Fortea
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Juan Pablo Tartari
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Asunción Lafuente
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Liliana Vargas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Alba Pérez-Cordón
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Nathalia Muñoz
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Ángela Sanabria
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Xavier Morató
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Lluís Tárraga
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Victoria Fernández
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sergi Valero
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
17
|
Joseph PV, Abbas M, Goodney G, Diallo A, Gaye A. Genomic study of taste perception genes in African Americans reveals SNPs linked to Alzheimer's disease. Sci Rep 2024; 14:21560. [PMID: 39284855 PMCID: PMC11405524 DOI: 10.1038/s41598-024-71669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
While previous research has shown the potential links between taste perception pathways and brain-related conditions, the area involving Alzheimer's disease remains incompletely understood. Taste perception involves neurotransmitter signaling, including serotonin, glutamate, and dopamine. Disruptions in these pathways are implicated in neurodegenerative diseases. The integration of olfactory and taste signals in flavor perception may impact brain health, evident in olfactory dysfunction as an early symptom in neurodegenerative conditions. Shared immune response and inflammatory pathways may contribute to the association between altered taste perception and conditions like neurodegeneration, present in Alzheimer's disease. This study consists of an exploration of expression-quantitative trait loci (eQTL), utilizing whole-blood transcriptome profiles, of 28 taste perception genes, from a combined cohort of 475 African American subjects. This comprehensive dataset was subsequently intersected with single-nucleotide polymorphisms (SNPs) identified in Genome-Wide Association Studies (GWAS) of Alzheimer's Disease (AD). Finally, the investigation delved into assessing the association between eQTLs reported in GWAS of AD and the profiles of 741 proteins from the Olink Neurological Panel. The eQTL analysis unveiled 3,547 statistically significant SNP-Gene associations, involving 412 distinct SNPs that spanned all 28 taste genes. In 17 GWAS studies encompassing various traits, a total of 14 SNPs associated with 12 genes were identified, with three SNPs consistently linked to Alzheimer's disease across four GWAS studies. All three SNPs demonstrated significant associations with the down-regulation of TAS2R41, and two of them were additionally associated with the down-regulation of TAS2R60. In the subsequent pQTL analysis, two of the SNPs linked to TAS2R41 and TAS2R60 genes (rs117771145 and rs10228407) were correlated with the upregulation of two proteins, namely EPHB6 and ADGRB3. Our investigation introduces a new perspective to the understanding of Alzheimer's disease, emphasizing the significance of bitter taste receptor genes in its pathogenesis. These discoveries set the stage for subsequent research to delve into these receptors as promising avenues for both intervention and diagnosis. Nevertheless, the translation of these genetic insights into clinical practice requires a more profound understanding of the implicated pathways and their pertinence to the disease's progression across diverse populations.
Collapse
Affiliation(s)
- Paule Valery Joseph
- Sensory Science and Metabolism Unit, Biobehavioral Branch, National Institute On Alcohol Abuse and Alcoholism, National Institue of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Malak Abbas
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gabriel Goodney
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ana Diallo
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA.
| |
Collapse
|
18
|
Puerta R, de Rojas I, García-González P, Olivé C, Sotolongo-Grau O, García-Sánchez A, García-Gutiérrez F, Montrreal L, Pablo Tartari J, Sanabria Á, Pytel V, Lage C, Quintela I, Aguilera N, Rodriguez-Rodriguez E, Alarcón-Martín E, Orellana A, Pastor P, Pérez-Tur J, Piñol-Ripoll G, de Munian AL, García-Alberca JM, Royo JL, Bullido MJ, Álvarez V, Real LM, Anchuelo AC, Gómez-Garre D, Larrad MTM, Franco-Macías E, Mir P, Medina M, Sánchez-Valle R, Dols-Icardo O, Sáez ME, Carracedo Á, Tárraga L, Alegret M, Valero S, Marquié M, Boada M, Juan PS, Cavazos JE, Cabrera A, Cano A, Alzheimer’s Disease Neuroimaging Initiative.. Connecting genomic and proteomic signatures of amyloid burden in the brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.06.24313124. [PMID: 39281766 PMCID: PMC11398581 DOI: 10.1101/2024.09.06.24313124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background Alzheimer's disease (AD) has a high heritable component characteristic of complex diseases, yet many of the genetic risk factors remain unknown. We combined genome-wide association studies (GWAS) on amyloid endophenotypes measured in cerebrospinal fluid (CSF) and positron emission tomography (PET) as surrogates of amyloid pathology, which may be helpful to understand the underlying biology of the disease. Methods We performed a meta-analysis of GWAS of CSF Aβ42 and PET measures combining six independent cohorts (n=2,076). Due to the opposite effect direction of Aβ phenotypes in CSF and PET measures, only genetic signals in the opposite direction were considered for analysis (n=376,599). Polygenic risk scores (PRS) were calculated and evaluated for AD status and amyloid endophenotypes. We then searched the CSF proteome signature of brain amyloidosis using SOMAscan proteomic data (Ace cohort, n=1,008) and connected it with GWAS results of loci modulating amyloidosis. Finally, we compared our results with a large meta-analysis using publicly available datasets in CSF (n=13,409) and PET (n=13,116). This combined approach enabled the identification of overlapping genes and proteins associated with amyloid burden and the assessment of their biological significance using enrichment analyses. Results After filtering the meta-GWAS, we observed genome-wide significance in the rs429358-APOE locus and nine suggestive hits were annotated. We replicated the APOE loci using the large CSF-PET meta-GWAS and identified multiple AD-associated genes as well as the novel GADL1 locus. Additionally, we found a significant association between the AD PRS and amyloid levels, whereas no significant association was found between any Aβ PRS with AD risk. CSF SOMAscan analysis identified 1,387 FDR-significant proteins associated with CSF Aβ42 levels. The overlap among GWAS loci and proteins associated with amyloid burden was very poor (n=35). The enrichment analysis of overlapping hits strongly suggested several signalling pathways connecting amyloidosis with the anchored component of the plasma membrane, synapse physiology and mental disorders that were replicated in the large CSF-PET meta-analysis. Conclusions The strategy of combining CSF and PET amyloid endophenotypes GWAS with CSF proteome analyses might be effective for identifying signals associated with the AD pathological process and elucidate causative molecular mechanisms behind the amyloid mobilization in AD.
Collapse
Affiliation(s)
- Raquel Puerta
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- Universitat de Barcelona (UB)
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Clàudia Olivé
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
| | | | | | | | - Laura Montrreal
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
| | - Ángela Sanabria
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Carmen Lage
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Inés Quintela
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII). Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Nuria Aguilera
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
| | - Eloy Rodriguez-Rodriguez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | | | - Adelina Orellana
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- The Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Jordi Pérez-Tur
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unitat de Genètica Molecular, Institut de Biomedicina de València-CSIC, Valencia, Spain
- Unidad Mixta de Neurologia Genètica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Adolfo López de Munian
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology. Hospital Universitario Donostia. San Sebastian, Spain
- Department of Neurosciences. Faculty of Medicine and Nursery. University of the Basque Country, San Sebastián, Spain
- Neurosciences Area. Instituto Biodonostia. San Sebastian, Spain
| | - Jose María García-Alberca
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Alzheimer Research Center & Memory Clinic, Andalusian Institute for Neuroscience, Málaga, Spain
| | - Jose Luís Royo
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología. School of Medicine. University of Malaga. Málaga, Spain
| | - María Jesús Bullido
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC)
- Instituto de Investigacion Sanitaria ‘Hospital la Paz’ (IdIPaz), Madrid, Spain
- Universidad Autónoma de Madrid
| | - Victoria Álvarez
- Laboratorio de Genética. Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)
| | - Luis Miguel Real
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología. School of Medicine. University of Malaga. Málaga, Spain
- Unidad Clínica de Enfermedades Infecciosas y Microbiología.Hospital Universitario de Valme, Sevilla, Spain
| | - Arturo Corbatón Anchuelo
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos
| | - Dulcenombre Gómez-Garre
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid (UCM)
- Biomedical Research Networking Center in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - María Teresa Martínez Larrad
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)
| | - Emilio Franco-Macías
- Dementia Unit, Department of Neurology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Pablo Mir
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Miguel Medina
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center
| | - Raquel Sánchez-Valle
- Alzheimer’s disease and other cognitive disorders unit. Service of Neurology. Hospital Clínic of Barcelona. Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Oriol Dols-Icardo
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII). Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica – CIBERER-IDIS, Santiago de Compostela, Spain
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Montse Alegret
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pascual Sánchez Juan
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Jose Enrique Cavazos
- South Texas Medical Science Training Program, University of Texas Health San Antonio, San Antonio
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA
| | - Alfredo Cabrera
- Neuroscience Therapeutic Area, Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Amanda Cano
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Alzheimer’s Disease Neuroimaging Initiative.
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA
| |
Collapse
|
19
|
The Mega Vascular Cognitive Impairment and Dementia (MEGAVCID) consortium. A genome-wide association meta-analysis of all-cause and vascular dementia. Alzheimers Dement 2024; 20:5973-5995. [PMID: 39046104 PMCID: PMC11497727 DOI: 10.1002/alz.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Dementia is a multifactorial disease with Alzheimer's disease (AD) and vascular dementia (VaD) pathologies making the largest contributions. Yet, most genome-wide association studies (GWAS) focus on AD. METHODS We conducted a GWAS of all-cause dementia (ACD) and examined the genetic overlap with VaD. Our dataset includes 800,597 individuals, with 46,902 and 8702 cases of ACD and VaD, respectively. Known AD loci for ACD and VaD were replicated. Bioinformatic analyses prioritized genes that are likely functionally relevant and shared with closely related traits and risk factors. RESULTS For ACD, novel loci identified were associated with energy transport (SEMA4D), neuronal excitability (ANO3), amyloid deposition in the brain (RBFOX1), and magnetic resonance imaging markers of small vessel disease (SVD; HBEGF). Novel VaD loci were associated with hypertension, diabetes, and neuron maintenance (SPRY2, FOXA2, AJAP1, and PSMA3). DISCUSSION Our study identified genetic risks underlying ACD, demonstrating overlap with neurodegenerative processes, vascular risk factors, and cerebral SVD. HIGHLIGHTS We conducted the largest genome-wide association study of all-cause dementia (ACD) and vascular dementia (VaD). Known genetic variants associated with AD were replicated for ACD and VaD. Functional analyses identified novel loci for ACD and VaD. Genetic risks of ACD overlapped with neurodegeneration, vascular risk factors, and cerebral small vessel disease.
Collapse
|
20
|
Hirakawa H, Terao T. The genetic association between bipolar disorder and dementia: a qualitative review. Front Psychiatry 2024; 15:1414776. [PMID: 39228919 PMCID: PMC11368786 DOI: 10.3389/fpsyt.2024.1414776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Bipolar disorder is a chronic disorder characterized by fluctuations in mood state and energy and recurrent episodes of mania/hypomania and depression. Bipolar disorder may be regarded as a neuro-progressive disorder in which repeated mood episodes may lead to cognitive decline and dementia development. In the current review, we employed genome-wide association studies to comprehensively investigate the genetic variants associated with bipolar disorder and dementia. Thirty-nine published manuscripts were identified: 20 on bipolar disorder and 19 on dementia. The results showed that the genes CACNA1C, GABBR2, SCN2A, CTSH, MSRA, and SH3PXD2A were overlapping between patients with bipolar disorder and dementia. In conclusion, the genes CACNA1C, GABBR2, SCN2A, CTSH, MSRA, and SH3PXD2A may be associated with the neuro-progression of bipolar disorder to dementia. Further genetic studies are needed to comprehensively clarify the role of genes in cognitive decline and the development of dementia in patients with bipolar disorder.
Collapse
Affiliation(s)
- Hirofumi Hirakawa
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | | |
Collapse
|
21
|
Joseph PV, Abbas M, Goodney G, Diallo A, Gaye A. Genomic Study of Taste Perception Genes in African Americans Reveals SNPs Linked to Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607452. [PMID: 39372803 PMCID: PMC11451608 DOI: 10.1101/2024.08.10.607452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background While previous research has shown the potential links between taste perception pathways and brain-related conditions, the area involving Alzheimer's disease remains incompletely understood. Taste perception involves neurotransmitter signaling, including serotonin, glutamate, and dopamine. Disruptions in these pathways are implicated in neurodegenerative diseases. The integration of olfactory and taste signals in flavor perception may impact brain health, evident in olfactory dysfunction as an early symptom in neurodegenerative conditions. Shared immune response and inflammatory pathways may contribute to the association between altered taste perception and conditions like neurodegeneration, present in Alzheimer's disease. Methods This study consists of an exploration of expression-quantitative trait loci (eQTL), utilizing whole-blood transcriptome profiles, of 28 taste perception genes, from a combined cohort of 475 African American subjects. This comprehensive dataset was subsequently intersected with single-nucleotide polymorphisms (SNPs) identified in Genome-Wide Association Studies (GWAS) of Alzheimer's Disease (AD). Finally, the investigation delved into assessing the association between eQTLs reported in GWAS of AD and the profiles of 741 proteins from the Olink Neurological Panel. Results The eQTL analysis unveiled 3,547 statistically significant SNP-Gene associations, involving 412 distinct SNPs that spanned all 28 taste genes. In 17 GWAS studies encompassing various traits, a total of 14 SNPs associated with 12 genes were identified, with three SNPs consistently linked to Alzheimer's disease across four GWAS studies. All three SNPs demonstrated significant associations with the down-regulation of TAS2R41, and two of them were additionally associated with the down-regulation of TAS2R60. In the subsequent pQTL analysis, two of the SNPs linked to TAS2R41 and TAS2R60 genes (rs117771145 and rs10228407) were correlated with the upregulation of two proteins, namely EPHB6 and ADGRB3. Conclusions Our investigation introduces a new perspective to the understanding of Alzheimer's disease, emphasizing the significance of bitter taste receptor genes in its pathogenesis. These discoveries set the stage for subsequent research to delve into these receptors as promising avenues for both intervention and diagnosis. Nevertheless, the translation of these genetic insights into clinical practice requires a more profound understanding of the implicated pathways and their pertinence to the disease's progression across diverse populations.
Collapse
Affiliation(s)
- Paule Valery Joseph
- National Institute on Alcohol Abuse and Alcoholism, National Institue of Nursing Research, Sensory Science and Metabolism Unit, Biobehavioral Branch, National Institutes of Health, Bethesda, MD, USA
| | - Malak Abbas
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gabriel Goodney
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ana Diallo
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA
| | - Amadou Gaye
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Rajabli F, Emekci A. Addressing overlapping sample challenges in genome-wide association studies: Meta-reductive approach. PLoS One 2024; 19:e0296207. [PMID: 39088468 PMCID: PMC11293628 DOI: 10.1371/journal.pone.0296207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/10/2024] [Indexed: 08/03/2024] Open
Abstract
Polygenic risk scores (PRS) are instrumental in genetics, offering insights into an individual level genetic risk to a range of diseases based on accumulated genetic variations. These scores rely on Genome-Wide Association Studies (GWAS). However, precision in PRS is often challenged by the requirement of extensive sample sizes and the potential for overlapping datasets that can inflate PRS calculations. In this study, we present a novel methodology, Meta-Reductive Approach (MRA), that was derived algebraically to adjust GWAS results, aiming to neutralize the influence of select cohorts. Our approach recalibrates summary statistics using algebraic derivations. Validating our technique with datasets from Alzheimer disease studies, we showed that the summary statistics of the MRA and those derived from individual-level data yielded the exact same values. This innovative method offers a promising avenue for enhancing the accuracy of PRS, especially when derived from meta-analyzed GWAS data.
Collapse
Affiliation(s)
- Farid Rajabli
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Azra Emekci
- Pioneer High School, San Jose, CA, United States of America
| |
Collapse
|
23
|
Huq A, Thompson B, Winship I. Clinical application of whole genome sequencing in young onset dementia: challenges and opportunities. Expert Rev Mol Diagn 2024; 24:659-675. [PMID: 39135326 DOI: 10.1080/14737159.2024.2388765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024]
Abstract
INTRODUCTION Young onset dementia (YOD) by its nature is difficult to diagnose. Despite involvement of multidisciplinary neurogenetics services, patients with YOD and their families face significant diagnostic delays. Genetic testing for people with YOD currently involves a staggered, iterative approach. There is currently no optimal single genetic investigation that simultaneously identifies the different genetic variants resulting in YOD. AREAS COVERED This review discusses the advances in clinical genomic testing for people with YOD. Whole genome sequencing (WGS) can be employed as a 'one stop shop' genomic test for YOD. In addition to single nucleotide variants, WGS can reliably detect structural variants, short tandem repeat expansions, mitochondrial genetic variants as well as capture single nucleotide polymorphisms for the calculation of polygenic risk scores. EXPERT OPINION WGS, when used as the initial genetic test, can enhance the likelihood of a precision diagnosis and curtail the time taken to reach this. Finding a clinical diagnosis using WGS can reduce invasive and expensive investigations and could be cost effective. These advances need to be balanced against the limitations of the technology and the genetic counseling needs for these vulnerable patients and their families.
Collapse
Affiliation(s)
- Aamira Huq
- Department of Genomic Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Bryony Thompson
- Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Ingrid Winship
- Department of Genomic Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Jonson C, Levine KS, Lake J, Hertslet L, Jones L, Patel D, Kim J, Bandres‐Ciga S, Terry N, Mata IF, Blauwendraat C, Singleton AB, Nalls MA, Yokoyama JS, Leonard HL. Assessing the lack of diversity in genetics research across neurodegenerative diseases: A systematic review of the GWAS Catalog and literature. Alzheimers Dement 2024; 20:5740-5756. [PMID: 39030740 PMCID: PMC11350004 DOI: 10.1002/alz.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 07/22/2024]
Abstract
The under-representation of non-European cohorts in neurodegenerative disease genome-wide association studies (GWAS) hampers precision medicine efforts. Despite the inherent genetic and phenotypic diversity in these diseases, GWAS research consistently exhibits a disproportionate emphasis on participants of European ancestry. This study reviews GWAS up to 2022, focusing on non-European or multi-ancestry neurodegeneration studies. We conducted a systematic review of GWAS results and publications up to 2022, focusing on non-European or multi-ancestry neurodegeneration studies. Rigorous article inclusion and quality assessment methods were employed. Of 123 neurodegenerative disease (NDD) GWAS reviewed, 82% predominantly featured European ancestry participants. A single European study identified over 90 risk loci, compared to a total of 50 novel loci in identified in all non-European or multi-ancestry studies. Notably, only six of the loci have been replicated. The significant under-representation of non-European ancestries in NDD GWAS hinders comprehensive genetic understanding. Prioritizing genomic diversity in future research is crucial for advancing NDD therapies and understanding. HIGHLIGHTS: Eighty-two percent of neurodegenerative genome-wide association studies (GWAS) focus on Europeans. Only 6 of 50 novel neurodegenerative disease (NDD) genetic loci have been replicated. Lack of diversity significantly hampers understanding of NDDs. Increasing diversity in NDD genetic research is urgently required. New initiatives are aiming to enhance diversity in NDD research.
Collapse
Affiliation(s)
- Caroline Jonson
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
- Pharmaceutical Sciences and Pharmacogenomics Graduate ProgramUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Kristin S. Levine
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
| | - Julie Lake
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- Laboratory of NeurogeneticsNational Institutes on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Linnea Hertslet
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
| | - Lietsel Jones
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
| | - Dhairya Patel
- Integrative Neurogenomics UnitLaboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Jeff Kim
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- Laboratory of NeurogeneticsNational Institutes on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Sara Bandres‐Ciga
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
| | - Nancy Terry
- Division of Library ServicesOffice of Research ServicesNational Institutes of HealthBethesdaMarylandUSA
| | - Ignacio F. Mata
- Genomic Medicine Institute, Lerner Research Institute, Genomic MedicineCleveland Clinic FoundationClevelandOhioUSA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- Integrative Neurogenomics UnitLaboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Andrew B. Singleton
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- Laboratory of NeurogeneticsNational Institutes on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Mike A. Nalls
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
- Laboratory of NeurogeneticsNational Institutes on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Jennifer S. Yokoyama
- Pharmaceutical Sciences and Pharmacogenomics Graduate ProgramUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Hampton L. Leonard
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
- Laboratory of NeurogeneticsNational Institutes on AgingNational Institutes of HealthBethesdaMarylandUSA
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| |
Collapse
|
25
|
Manzoni C, Kia DA, Ferrari R, Leonenko G, Costa B, Saba V, Jabbari E, Tan MM, Albani D, Alvarez V, Alvarez I, Andreassen OA, Angiolillo A, Arighi A, Baker M, Benussi L, Bessi V, Binetti G, Blackburn DJ, Boada M, Boeve BF, Borrego-Ecija S, Borroni B, Bråthen G, Brooks WS, Bruni AC, Caroppo P, Bandres-Ciga S, Clarimon J, Colao R, Cruchaga C, Danek A, de Boer SC, de Rojas I, di Costanzo A, Dickson DW, Diehl-Schmid J, Dobson-Stone C, Dols-Icardo O, Donizetti A, Dopper E, Durante E, Ferrari C, Forloni G, Frangipane F, Fratiglioni L, Kramberger MG, Galimberti D, Gallucci M, García-González P, Ghidoni R, Giaccone G, Graff C, Graff-Radford NR, Grafman J, Halliday GM, Hernandez DG, Hjermind LE, Hodges JR, Holloway G, Huey ED, Illán-Gala I, Josephs KA, Knopman DS, Kristiansen M, Kwok JB, Leber I, Leonard HL, Libri I, Lleo A, Mackenzie IR, Madhan GK, Maletta R, Marquié M, Maver A, Menendez-Gonzalez M, Milan G, Miller BL, Morris CM, Morris HR, Nacmias B, Newton J, Nielsen JE, Nilsson C, Novelli V, Padovani A, Pal S, Pasquier F, Pastor P, Perneczky R, Peterlin B, Petersen RC, Piguet O, Pijnenburg YA, Puca AA, Rademakers R, Rainero I, Reus LM, Richardson AM, Riemenschneider M, et alManzoni C, Kia DA, Ferrari R, Leonenko G, Costa B, Saba V, Jabbari E, Tan MM, Albani D, Alvarez V, Alvarez I, Andreassen OA, Angiolillo A, Arighi A, Baker M, Benussi L, Bessi V, Binetti G, Blackburn DJ, Boada M, Boeve BF, Borrego-Ecija S, Borroni B, Bråthen G, Brooks WS, Bruni AC, Caroppo P, Bandres-Ciga S, Clarimon J, Colao R, Cruchaga C, Danek A, de Boer SC, de Rojas I, di Costanzo A, Dickson DW, Diehl-Schmid J, Dobson-Stone C, Dols-Icardo O, Donizetti A, Dopper E, Durante E, Ferrari C, Forloni G, Frangipane F, Fratiglioni L, Kramberger MG, Galimberti D, Gallucci M, García-González P, Ghidoni R, Giaccone G, Graff C, Graff-Radford NR, Grafman J, Halliday GM, Hernandez DG, Hjermind LE, Hodges JR, Holloway G, Huey ED, Illán-Gala I, Josephs KA, Knopman DS, Kristiansen M, Kwok JB, Leber I, Leonard HL, Libri I, Lleo A, Mackenzie IR, Madhan GK, Maletta R, Marquié M, Maver A, Menendez-Gonzalez M, Milan G, Miller BL, Morris CM, Morris HR, Nacmias B, Newton J, Nielsen JE, Nilsson C, Novelli V, Padovani A, Pal S, Pasquier F, Pastor P, Perneczky R, Peterlin B, Petersen RC, Piguet O, Pijnenburg YA, Puca AA, Rademakers R, Rainero I, Reus LM, Richardson AM, Riemenschneider M, Rogaeva E, Rogelj B, Rollinson S, Rosen H, Rossi G, Rowe JB, Rubino E, Ruiz A, Salvi E, Sanchez-Valle R, Sando SB, Santillo AF, Saxon JA, Schlachetzki JC, Scholz SW, Seelaar H, Seeley WW, Serpente M, Sorbi S, Sordon S, St George-Hyslop P, Thompson JC, Van Broeckhoven C, Van Deerlin VM, Van der Lee SJ, Van Swieten J, Tagliavini F, van der Zee J, Veronesi A, Vitale E, Waldo ML, Yokoyama JS, Nalls MA, Momeni P, Singleton AB, Hardy J, Escott-Price V. Genome-wide analyses reveal a potential role for the MAPT, MOBP, and APOE loci in sporadic frontotemporal dementia. Am J Hum Genet 2024; 111:1316-1329. [PMID: 38889728 PMCID: PMC11267522 DOI: 10.1016/j.ajhg.2024.05.017] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10-12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10-12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10-8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex.
Collapse
Affiliation(s)
| | - Demis A Kia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Raffaele Ferrari
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Ganna Leonenko
- Division of Psychological Medicine and Clinical Neurosciences, UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Beatrice Costa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Valentina Saba
- Medical and Genomic Statistics Unit, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Edwin Jabbari
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Manuela Mx Tan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Diego Albani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Victoria Alvarez
- Hospital Universitario Central de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Ignacio Alvarez
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain; Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona, Spain
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Antonella Angiolillo
- Centre for Research and Training in Medicine of Aging, Department of Medicine and Health Science "V. Tiberio," University of Molise, Campobasso, Italy
| | - Andrea Arighi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Matt Baker
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Giuliano Binetti
- MAC-Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Merce Boada
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Sergi Borrego-Ecija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology. Hospital Clínic de Barcelona, Fundació Clínic Barcelona-IDIBAPS, Barcelona, Spain
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Geir Bråthen
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - William S Brooks
- Neuroscience Research Australia, and Randwick Clinical Campus, UNSW Medicine and Health, University of New South Wales, Sydney, Australia
| | - Amalia C Bruni
- Regional Neurogenetic Centre, ASPCZ, Lamezia Terme, Italy
| | - Paola Caroppo
- Unit of Neurology (V) and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jordi Clarimon
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosanna Colao
- Regional Neurogenetic Centre, ASPCZ, Lamezia Terme, Italy
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrian Danek
- Neurologische Klinik, LMU Klinikum, Munich, Germany
| | - Sterre Cm de Boer
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Itziar de Rojas
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Alfonso di Costanzo
- Centre for Research and Training in Medicine of Aging, Department of Medicine and Health Science "V. Tiberio," University of Molise, Campobasso, Italy
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany; kbo-Inn-Salzach-Klinikum, Wasserburg, Germany
| | - Carol Dobson-Stone
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Oriol Dols-Icardo
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Elise Dopper
- Department of Neurology & Alzheimer Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Elisabetta Durante
- Immunohematology and Transfusional Medicine Service, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
| | - Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Gianluigi Forloni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | | | - Laura Fratiglioni
- Karolinska Institutet, Department NVS, KI-Alzheimer Disease Research Center, Stockholm, Sweden; Theme Inflammation and Aging, Karolinska Universtiy Hospital, Stockholm, Sweden
| | - Milica G Kramberger
- Department of Neurology, University Medical Center, Medical faculty, Ljubljana University of Ljubljana, Ljubljana, Slovenia; Karolinska Institutet, Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, Huddinge, Sweden
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Gallucci
- Cognitive Impairment Center, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
| | - Pablo García-González
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giorgio Giaccone
- Unit of Neurology (V) and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Caroline Graff
- Karolinska Institutet, Department NVS, KI-Alzheimer Disease Research Center, Stockholm, Sweden; Unit for hereditary dementia, Karolinska Universtiy Hospital-Solna, Stockholm, Sweden
| | | | | | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Lena E Hjermind
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Copenhagen, Denmark
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Guy Holloway
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Edward D Huey
- Bio Med Psychiatry & Human Behavior, Brown University, Providence, RI, USA
| | - Ignacio Illán-Gala
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic Rochester, Rochester, MN, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Mark Kristiansen
- UCL Genomics, London, UK; UCL Great Ormond Street Institute of Child Health, London, UK; Zayed Centre for Research into Rare Disease in Children, London, UK
| | - John B Kwok
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Isabelle Leber
- Sorbonne Université, INSERM U1127, CNRS 7225, Institut du Cerveau - ICM, Paris, France; AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, Department of Neurology, Institute of Memory and Alzheimer's Disease, Paris, France
| | - Hampton L Leonard
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International LLC, Washington, DC, USA; DZNE Tübingen, Tübingen, Germany
| | - Ilenia Libri
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Lleo
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Ian R Mackenzie
- Department of Pathology, University of British Columbia, Vancouver, Canada; Department of Pathology, Vancouver Coastal Health, Vancouver, Canada
| | - Gaganjit K Madhan
- UCL Genomics, London, UK; UCL Great Ormond Street Institute of Child Health, London, UK; Zayed Centre for Research into Rare Disease in Children, London, UK
| | | | - Marta Marquié
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Ales Maver
- Clinical institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenija
| | - Manuel Menendez-Gonzalez
- Hospital Universitario Central de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Universidad de Oviedo, Medicine Department, Oviedo, Spain
| | | | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA; Trinity College Dublin, Dublin, Ireland
| | - Christopher M Morris
- Newcastle Brain Tissue Resource, Newcastle University, Edwardson Building, Nuns Moor Road, Newcastle upon Tyne, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Judith Newton
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Jørgen E Nielsen
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christer Nilsson
- Department of Clinical Sciences, Neurology, Lund University, Lund/Malmö, Sweden
| | | | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Suvankar Pal
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Florence Pasquier
- University of Lille, Lille, France; CHU Lille, Lille, France; Inserm, Labex DISTALZ, LiCEND, Lille, France
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain; The Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, LMU Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK; Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Borut Peterlin
- Clinical institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenija
| | | | - Olivier Piguet
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - Yolande Al Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Annibale A Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Fisciano, Italy; Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA; VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Innocenzo Rainero
- Department of Neuroscience, "Rita Levi Montalcini," University of Torino, Torino, Italy; Center for Alzheimer's Disease and Related Dementias, Department of Neuroscience and Mental Health, A.O.UCittà della Salute e della Scienza di Torino, Torino, Italy
| | - Lianne M Reus
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Anna Mt Richardson
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Trust, Manchester Academic Health Sciences Unit, University of Manchester, Manchester, UK
| | | | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Rollinson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Howard Rosen
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Giacomina Rossi
- Unit of Neurology (V) and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - James B Rowe
- University of Cambridge Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Elisa Rubino
- Department of Neuroscience, "Rita Levi Montalcini," University of Torino, Torino, Italy; Center for Alzheimer's Disease and Related Dementias, Department of Neuroscience and Mental Health, A.O.UCittà della Salute e della Scienza di Torino, Torino, Italy
| | - Agustin Ruiz
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Erika Salvi
- Unit of Neuroalgologia (III), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy; Data science center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology. Hospital Clínic de Barcelona, Fundació Clínic Barcelona-IDIBAPS, Barcelona, Spain
| | - Sigrid Botne Sando
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alexander F Santillo
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
| | - Jennifer A Saxon
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Trust, Manchester Academic Health Sciences Unit, University of Manchester, Manchester, UK
| | - Johannes Cm Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Harro Seelaar
- Department of Neurology & Alzheimer Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Serpente
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Sabrina Sordon
- Department of Psychiatry, Saarland University, Homburg, Germany
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Neurology, Columbia University, New York, NY, USA
| | - Jennifer C Thompson
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Trust, Manchester Academic Health Sciences Unit, University of Manchester, Manchester, UK; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Vivianna M Van Deerlin
- Perelman School of Medicine at the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - Sven J Van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - John Van Swieten
- Department of Neurology & Alzheimer Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Fabrizio Tagliavini
- Unit of Neurology (V) and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Julie van der Zee
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Arianna Veronesi
- Immunohematology and Transfusional Medicine Service, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
| | - Emilia Vitale
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Naples, Italy; School of Integrative Science and Technology Department of Biology Kean University, Union, NJ, USA
| | - Maria Landqvist Waldo
- Clinical Sciences Helsingborg, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA; Trinity College Dublin, Dublin, Ireland
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International LLC, Washington, DC, USA
| | | | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - John Hardy
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK; NIHR University College London Hospitals Biomedical Research Centre, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Valentina Escott-Price
- Division of Psychological Medicine and Clinical Neurosciences, UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
26
|
Yang W, Wang J, Dove A, Dunk MM, Qi X, Bennett DA, Xu W. Association of cognitive reserve with the risk of dementia in the UK Biobank: role of polygenic factors. Br J Psychiatry 2024; 224:213-220. [PMID: 38328972 DOI: 10.1192/bjp.2024.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
BACKGROUND It remains unclear whether cognitive reserve can attenuate dementia risk among people with different genetic predispositions. AIMS We aimed to examine the association between cognitive reserve and dementia, and further to explore whether and to what extent cognitive reserve may modify the risk effect of genetic factors on dementia. METHOD Within the UK Biobank, 210 631 dementia-free participants aged ≥60 years were followed to detect incident dementia. Dementia was ascertained through medical and death records. A composite cognitive reserve indicator encompassing education, occupation and multiple cognitively loaded activities was created using latent class analysis, categorised as low, moderate and high level. Polygenic risk scores for Alzheimer's disease were constructed to evaluate genetic risk for dementia, categorised by tertiles (high, moderate and low). Data were analysed using Cox models and Laplace regression. RESULTS In multi-adjusted Cox models, the hazard ratio (HR) of dementia was 0.66 (95% confidence interval (CI) 0.61-0.70) for high cognitive reserve compared with low cognitive reserve. In Laplace regression, participants with high cognitive reserve developed dementia 1.62 (95% CI 1.35-1.88) years later than those with low cognitive reserve. In stratified analysis by genetic risk, high cognitive reserve was related to more than 30% lower dementia risk compared with low cognitive reserve in each stratum. There was an additive interaction between low cognitive reserve and high genetic risk on dementia (attributable proportion 0.24, 95% CI 0.17-0.31). CONCLUSIONS High cognitive reserve is associated with reduced risk of dementia and may delay dementia onset. Genetic risk for dementia may be mitigated by high cognitive reserve. Our findings underscore the importance of enhancing cognitive reserve in dementia prevention.
Collapse
Affiliation(s)
- Wenzhe Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jiao Wang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Abigail Dove
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Michelle M Dunk
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Xiuying Qi
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; and Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, USA
| | - Weili Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China; Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; and Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
27
|
Xicota L, Cosentino S, Vardarajan B, Mayeux R, Perls TT, Andersen SL, Zmuda JM, Thyagarajan B, Yashin A, Wojczynski MK, Krinsky‐McHale S, Handen BL, Christian BT, Head E, Mapstone ME, Schupf N, Lee JH, Barral S, the Long‐Life Family Study (LLFS). Whole genome-wide sequence analysis of long-lived families (Long-Life Family Study) identifies MTUS2 gene associated with late-onset Alzheimer's disease. Alzheimers Dement 2024; 20:2670-2679. [PMID: 38380866 PMCID: PMC11032545 DOI: 10.1002/alz.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Late-onset Alzheimer's disease (LOAD) has a strong genetic component. Participants in Long-Life Family Study (LLFS) exhibit delayed onset of dementia, offering a unique opportunity to investigate LOAD genetics. METHODS We conducted a whole genome sequence analysis of 3475 LLFS members. Genetic associations were examined in six independent studies (N = 14,260) with a wide range of LOAD risk. Association analysis in a sub-sample of the LLFS cohort (N = 1739) evaluated the association of LOAD variants with beta amyloid (Aβ) levels. RESULTS We identified several single nucleotide polymorphisms (SNPs) in tight linkage disequilibrium within the MTUS2 gene associated with LOAD (rs73154407, p = 7.6 × 10-9). Association of MTUS2 variants with LOAD was observed in the five independent studies and was significantly stronger within high levels of Aβ42/40 ratio compared to lower amyloid. DISCUSSION MTUS2 encodes a microtubule associated protein implicated in the development and function of the nervous system, making it a plausible candidate to investigate LOAD biology. HIGHLIGHTS Long-Life Family Study (LLFS) families may harbor late onset Alzheimer's dementia (LOAD) variants. LLFS whole genome sequence analysis identified MTUS2 gene variants associated with LOAD. The observed LLFS variants generalized to cohorts with wide range of LOAD risk. The association of MTUS2 with LOAD was stronger within high levels of beta amyloid. Our results provide evidence for MTUS2 gene as a novel LOAD candidate locus.
Collapse
Affiliation(s)
- Laura Xicota
- Department of NeurologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Stephanie Cosentino
- Department of NeurologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Badri Vardarajan
- Department of NeurologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical CenterNew York CityNew YorkUSA
- Gertrude H. Sergievsky CenterColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Richard Mayeux
- Department of NeurologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical CenterNew York CityNew YorkUSA
- Gertrude H. Sergievsky CenterColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Thomas T. Perls
- Section of GeriatricsDepartment of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Stacy L. Andersen
- Section of GeriatricsDepartment of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Joseph M. Zmuda
- Department of EpidemiologyGraduate School of Public Health, University of PittsburghPittsburghPennsylvaniaUSA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Anatoli Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke UniversityDurhamNorth CarolinaUSA
| | - Mary K. Wojczynski
- Division of Statistical GenomicsDepartment of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
| | - Sharon Krinsky‐McHale
- Gertrude H. Sergievsky CenterColumbia University Irving Medical CenterNew York CityNew YorkUSA
- Department of PsychologyNew York Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - Benjamin L. Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bradley T. Christian
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin‐Madison School of Medicine and Public HealthMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin‐Madison School of Medicine, and Public HealthMadisonWisconsinUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Mark E. Mapstone
- Department of NeurologyInstitute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineCaliforniaUSA
| | - Nicole Schupf
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Joseph H. Lee
- Department of NeurologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical CenterNew York CityNew YorkUSA
- Gertrude H. Sergievsky CenterColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Sandra Barral
- Department of NeurologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical CenterNew York CityNew YorkUSA
- Gertrude H. Sergievsky CenterColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | | |
Collapse
|
28
|
Gao S, Wang T, Han Z, Hu Y, Zhu P, Xue Y, Huang C, Chen Y, Liu G. Interpretation of 10 years of Alzheimer's disease genetic findings in the perspective of statistical heterogeneity. Brief Bioinform 2024; 25:bbae140. [PMID: 38711368 PMCID: PMC11074593 DOI: 10.1093/bib/bbae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/22/2024] [Accepted: 03/14/2024] [Indexed: 05/08/2024] Open
Abstract
Common genetic variants and susceptibility loci associated with Alzheimer's disease (AD) have been discovered through large-scale genome-wide association studies (GWAS), GWAS by proxy (GWAX) and meta-analysis of GWAS and GWAX (GWAS+GWAX). However, due to the very low repeatability of AD susceptibility loci and the low heritability of AD, these AD genetic findings have been questioned. We summarize AD genetic findings from the past 10 years and provide a new interpretation of these findings in the context of statistical heterogeneity. We discovered that only 17% of AD risk loci demonstrated reproducibility with a genome-wide significance of P < 5.00E-08 across all AD GWAS and GWAS+GWAX datasets. We highlighted that the AD GWAS+GWAX with the largest sample size failed to identify the most significant signals, the maximum number of genome-wide significant genetic variants or maximum heritability. Additionally, we identified widespread statistical heterogeneity in AD GWAS+GWAX datasets, but not in AD GWAS datasets. We consider that statistical heterogeneity may have attenuated the statistical power in AD GWAS+GWAX and may contribute to explaining the low repeatability (17%) of genome-wide significant AD susceptibility loci and the decreased AD heritability (40-2%) as the sample size increased. Importantly, evidence supports the idea that a decrease in statistical heterogeneity facilitates the identification of genome-wide significant genetic loci and contributes to an increase in AD heritability. Collectively, current AD GWAX and GWAS+GWAX findings should be meticulously assessed and warrant additional investigation, and AD GWAS+GWAX should employ multiple meta-analysis methods, such as random-effects inverse variance-weighted meta-analysis, which is designed specifically for statistical heterogeneity.
Collapse
Affiliation(s)
- Shan Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No. 10, Xitoutiao, You’an Men Wai, Fengtai District, Beijing 100069, China
| | - Tao Wang
- Chinese Institute for Brain Research, No. 26, Kexueyuan Road, Changping District, Beijing 102206, China
| | - Zhifa Han
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, No. 5, Dongdan Santichao, Dongcheng District, Beijing 100193, China
| | - Yang Hu
- School of Computer Science and Technology, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin 150006, China
| | - Ping Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No. 10, Xitoutiao, You’an Men Wai, Fengtai District, Beijing 100069, China
| | - Yanli Xue
- School of Biomedical Engineering, Capital Medical University, No. 10 Xitoutiao, You'an Men Wai, Fengtai District, Beijing 100069, China
| | - Chen Huang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida WaiLong, Taipa 999078, Macao SAR, China
| | - Yan Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, No. 22, Wenchang Road, Wuhu 241002, Anhui, China
- Institute of Chronic Disease Prevention and Control, Wannan Medical College, No. 22, Wenchang Road, Wuhu 241002, Anhui, China
| | - Guiyou Liu
- Chinese Institute for Brain Research, No. 26, Kexueyuan Road, Changping District, Beijing 102206, China
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, No. 22, Wenchang Road, Wuhu 241002, Anhui, China
- Institute of Chronic Disease Prevention and Control, Wannan Medical College, No. 22, Wenchang Road, Wuhu 241002, Anhui, China
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Department of Neurology, Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
- Beijing Key Laboratory of Hypoxia Translational Medicine, National Engineering Laboratory of Internet Medical Diagnosis and Treatment Technology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Road, Xicheng District, Beijing 100053, China
| |
Collapse
|
29
|
Le Borgne J, EADB, GR@ACE, Degesco, EADI, GERAD, DemGene, Amouyel P, Andreassen O, Frikke‐Schmidt R, Hiltunen M, Ingelsson M, Ramirez A, Rossi G, Ruiz A, Sanchez‐Juan P, Sims R, Sleegers K, Tsolaki M, van der Lee SJ, Williams J, Lambert J, Bellenguez C. Association of MGMT and BIN1 genes with Alzheimer's disease risk across sex and APOE ε4 status. Alzheimers Dement 2024; 20:2282-2284. [PMID: 38041824 PMCID: PMC10984453 DOI: 10.1002/alz.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 12/04/2023]
Affiliation(s)
- Julie Le Borgne
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, LabEx DISTALZ ‐ U1167 ‐ RID‐AGE ‐ Facteurs de risque et déterminants moléculaires des maladies liées au vieillissementLilleFrance
| | | | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, LabEx DISTALZ ‐ U1167 ‐ RID‐AGE ‐ Facteurs de risque et déterminants moléculaires des maladies liées au vieillissementLilleFrance
| | | | - Ruth Frikke‐Schmidt
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical BiochemistryRigshospitaletCopenhagenDenmark
| | - Mikko Hiltunen
- Institute of BiomedicineUniversity of Eastern FinlandKuopioFinland
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/GeriatricsUppsala UniversityUppsalaSweden
- Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Alfredo Ramirez
- Department of Neurodegenerative Diseases and Geriatric PsychiatryUniversity Hospital BonnBonnGermany
- Division of Neurogenetics and Molecular psychiatryDepartment of Psychiatry and PsychotherapyUniversity of Cologne, Medical FacultyCologneGermany
- German Center for Neurodegenerative Diseases (DZNE Bonn)BonnGermany
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexasUSA
- Cluster of Excellence on Cellular Stress responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | | | - Agustin Ruiz
- Research Center and Memory Clinic Fundació ACEInstitut Català de Neurociències AplicadesUniversitat Internacional de CatalunyaBarcelonaSpain
- CiBERNED, Network Center for Biomedical research in Neurodegenerative DiseasesNational Institute of Health Carlos IIIMadridSpain
| | - Pascual Sanchez‐Juan
- CiBERNED, Network Center for Biomedical research in Neurodegenerative DiseasesNational Institute of Health Carlos IIIMadridSpain
- Alzheimer's Centre Reina Sofia‐CIEN FoundationMadridSpain
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of MedicineCardiff UniversityCardiffUK
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease GroupVIB Center for Molecular Neurology, VIBAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Magda Tsolaki
- First Department of NeurologyMedical SchoolAristotle University of ThessalonikiThessalonikiGreece
- Alzheimer HellasThessalonikiGreece
| | - Sven J. van der Lee
- Genomics of Neurodegenerative Diseases and Aging, Human GeneticsVrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamThe Netherlands
- Alzheimer Center Amsterdam, NeurologyVrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamThe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamThe Netherlands
| | - Julie Williams
- Division of Psychological Medicine and Clinical Neuroscience, School of MedicineCardiff UniversityCardiffUK
- UKDRI@ Cardiff, School of MedicineCardiff UniversityCardiffUK
| | - Jean‐Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, LabEx DISTALZ ‐ U1167 ‐ RID‐AGE ‐ Facteurs de risque et déterminants moléculaires des maladies liées au vieillissementLilleFrance
| | - Céline Bellenguez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, LabEx DISTALZ ‐ U1167 ‐ RID‐AGE ‐ Facteurs de risque et déterminants moléculaires des maladies liées au vieillissementLilleFrance
| |
Collapse
|
30
|
Sáez ME, García-Sánchez A, de Rojas I, Alarcón-Martín E, Martínez J, Cano A, García-González P, Puerta R, Olivé C, Capdevila M, García-Gutiérrez F, Castilla-Martí M, Castilla-Martí L, Espinosa A, Alegret M, Ricciardi M, Pytel V, Valero S, Tárraga L, Boada M, Ruiz A, Marquié M. Genome-wide association study and polygenic risk scores of retinal thickness across the cognitive continuum: data from the NORFACE cohort. Alzheimers Res Ther 2024; 16:38. [PMID: 38365752 PMCID: PMC10870444 DOI: 10.1186/s13195-024-01398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Several studies have reported a relationship between retinal thickness and dementia. Therefore, optical coherence tomography (OCT) has been proposed as an early diagnosis method for Alzheimer's disease (AD). In this study, we performed a genome-wide association study (GWAS) aimed at identifying genes associated with retinal nerve fiber layer (RNFL) and ganglion cell inner plexiform layer (GCIPL) thickness assessed by OCT and exploring the relationships between the spectrum of cognitive decline (including AD and non-AD cases) and retinal thickness. METHODS RNFL and GCIPL thickness at the macula were determined using two different OCT devices (Triton and Maestro). These determinations were tested for association with common single nucleotide polymorphism (SNPs) using adjusted linear regression models and combined using meta-analysis methods. Polygenic risk scores (PRSs) for retinal thickness and AD were generated. RESULTS Several genetic loci affecting retinal thickness were identified across the genome in accordance with previous reports. The genetic overlap between retinal thickness and dementia, however, was weak and limited to the GCIPL layer; only those observable with all-type dementia cases were considered. CONCLUSIONS Our study does not support the existence of a genetic link between dementia and retinal thickness.
Collapse
Grants
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- Intramural Funding ACE alzheimer Center Barcelona
- PI19/00335, PI17/01474, AC17/00100, PI19/01301, PI22/01403, PMP22/00022 Instituto de Salud Carlos III (ISCIII)
- PI19/00335, PI17/01474, AC17/00100, PI19/01301, PI22/01403, PMP22/00022 Instituto de Salud Carlos III (ISCIII)
- PI19/00335, PI17/01474, AC17/00100, PI19/01301, PI22/01403, PMP22/00022 Instituto de Salud Carlos III (ISCIII)
- PI19/00335, PI17/01474, AC17/00100, PI19/01301, PI22/01403, PMP22/00022 Instituto de Salud Carlos III (ISCIII)
- PI19/00335, PI17/01474, AC17/00100, PI19/01301, PI22/01403, PMP22/00022 Instituto de Salud Carlos III (ISCIII)
- PI19/00335, PI17/01474, AC17/00100, PI19/01301, PI22/01403, PMP22/00022 Instituto de Salud Carlos III (ISCIII)
- PI19/00335, PI17/01474, AC17/00100, PI19/01301, PI22/01403, PMP22/00022 Instituto de Salud Carlos III (ISCIII)
- PI19/00335, PI17/01474, AC17/00100, PI19/01301, PI22/01403, PMP22/00022 Instituto de Salud Carlos III (ISCIII)
- PI19/00335, PI17/01474, AC17/00100, PI19/01301, PI22/01403, PMP22/00022 Instituto de Salud Carlos III (ISCIII)
Collapse
Affiliation(s)
- María Eugenia Sáez
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- Centro Andaluz de Estudios Bioinformáticos (CAEBI), Seville, Spain
| | - Ainhoa García-Sánchez
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Emilio Alarcón-Martín
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Joan Martínez
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Amanda Cano
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Raquel Puerta
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Clàudia Olivé
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Maria Capdevila
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | | | - Miguel Castilla-Martí
- Clínica Oftalmológica Dr. Castilla, Barcelona, Spain
- Vista Alpina Eye Clinic, Visp, Switzerland
| | - Luis Castilla-Martí
- PhD Programme in Surgery and Morphological Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
- Hôpital ophtalmique Jules-Gonin, Fondation asiles des aveugles, University of Lausanne, Lausanne, Switzerland
| | - Ana Espinosa
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Alegret
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mario Ricciardi
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA.
| | - Marta Marquié
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
31
|
Wang S, Li T, Zhao B, Dai W, Yao Y, Li C, Li T, Zhu H, Zhang H. Identification and validation of supervariants reveal novel loci associated with human white matter microstructure. Genome Res 2024; 34:20-33. [PMID: 38190638 PMCID: PMC10904010 DOI: 10.1101/gr.277905.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
As an essential part of the central nervous system, white matter coordinates communications between different brain regions and is related to a wide range of neurodegenerative and neuropsychiatric disorders. Previous genome-wide association studies (GWASs) have uncovered loci associated with white matter microstructure. However, GWASs suffer from limited reproducibility and difficulties in detecting multi-single-nucleotide polymorphism (multi-SNP) and epistatic effects. In this study, we adopt the concept of supervariants, a combination of alleles in multiple loci, to account for potential multi-SNP effects. We perform supervariant identification and validation to identify loci associated with 22 white matter fractional anisotropy phenotypes derived from diffusion tensor imaging. To increase reproducibility, we use United Kingdom (UK) Biobank White British (n = 30,842) data for discovery and internal validation, and UK Biobank White but non-British (n = 1927) data, Europeans from the Adolescent Brain Cognitive Development study (n = 4399) data, and Europeans from the Human Connectome Project (n = 319) data for external validation. We identify 23 novel loci on the discovery set that have not been reported in the previous GWASs on white matter microstructure. Among them, three supervariants on genomic regions 5q35.1, 8p21.2, and 19q13.32 have P-values lower than 0.05 in the meta-analysis of the three independent validation data sets. These supervariants contain genetic variants located in genes that have been related to brain structures, cognitive functions, and neuropsychiatric diseases. Our findings provide a better understanding of the genetic architecture underlying white matter microstructure.
Collapse
Affiliation(s)
- Shiying Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut 06510, USA
| | - Ting Li
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-1686, USA
| | - Wei Dai
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut 06510, USA
| | - Yisha Yao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut 06510, USA
| | - Cai Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Heping Zhang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut 06510, USA;
| |
Collapse
|
32
|
Dalmasso MC, de Rojas I, Olivar N, Muchnik C, Angel B, Gloger S, Sanchez Abalos MS, Chacón MV, Aránguiz R, Orellana P, Cuesta C, Galeano P, Campanelli L, Novack GV, Martinez LE, Medel N, Lisso J, Sevillano Z, Irureta N, Castaño EM, Montrreal L, Thoenes M, Hanses C, Heilmann‐Heimbach S, Kairiyama C, Mintz I, Villella I, Rueda F, Romero A, Wukitsevits N, Quiroga I, Gona C, Lambert J, Solis P, Politis DG, Mangone CA, Gonzalez‐Billault C, Boada M, Tàrraga L, Slachevsky A, Albala C, Fuentes P, Kochen S, Brusco LI, Ruiz A, Morelli L, Ramírez A. The first genome-wide association study in the Argentinian and Chilean populations identifies shared genetics with Europeans in Alzheimer's disease. Alzheimers Dement 2024; 20:1298-1308. [PMID: 37985413 PMCID: PMC10917041 DOI: 10.1002/alz.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION Genome-wide association studies (GWAS) are fundamental for identifying loci associated with diseases. However, they require replication in other ethnicities. METHODS We performed GWAS on sporadic Alzheimer's disease (AD) including 539 patients and 854 controls from Argentina and Chile. We combined our results with those from the European Alzheimer and Dementia Biobank (EADB) in a meta-analysis and tested their genetic risk score (GRS) performance in this admixed population. RESULTS We detected apolipoprotein E ε4 as the single genome-wide significant signal (odds ratio = 2.93 [2.37-3.63], P = 2.6 × 10-23 ). The meta-analysis with EADB summary statistics revealed four new loci reaching GWAS significance. Functional annotations of these loci implicated endosome/lysosomal function. Finally, the AD-GRS presented a similar performance in these populations, despite the score diminished when the Native American ancestry rose. DISCUSSION We report the first GWAS on AD in a population from South America. It shows shared genetics modulating AD risk between the European and these admixed populations. HIGHLIGHTS This is the first genome-wide association study on Alzheimer's disease (AD) in a population sample from Argentina and Chile. Trans-ethnic meta-analysis reveals four new loci involving lysosomal function in AD. This is the first independent replication for TREM2L, IGH-gene-cluster, and ADAM17 loci. A genetic risk score (GRS) developed in Europeans performed well in this population. The higher the Native American ancestry the lower the GRS values.
Collapse
Affiliation(s)
| | - Itziar de Rojas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona – Universitat Internacional de CatalunyaBarcelonaSpain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative DiseasesNational Institute of Health Carlos IIIMadridSpain
| | - Natividad Olivar
- Center of Neuropsychiatry and Neurology of BehaviorSchool of MedicineUniversity of Buenos AiresBuenos AiresArgentina
| | - Carolina Muchnik
- Center of Neuropsychiatry and Neurology of BehaviorSchool of MedicineUniversity of Buenos AiresBuenos AiresArgentina
| | - Bárbara Angel
- Public Health Nutrition UnitInstitute of Nutrition and Food TechnologyUniversity of ChileSantiagoChile
- Interuniversity Center for Healthy Aging RED21993SantiagoChile
| | - Sergio Gloger
- Biomedica Research GroupCentro de Estudios ClínicosSantiagoChile
- Departamento de Psiquiatría y Salud MentalCampus Oriente, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | | | | | - Rafael Aránguiz
- Biomedica Research GroupCentro de Estudios ClínicosSantiagoChile
- Instituto Nacional de GeriatríaSantiagoChile
| | - Paulina Orellana
- Geroscience Center for Brain Health and MetabolismSantiagoChile
- Latin American Institute for Brain Health (BrainLat)Universidad Adolfo IbanezSantiagoChile
- Center for Social and Cognitive Neuroscience (CSCN)School of PsychologyUniversidad Adolfo IbanezSantiagoChile
| | - Carolina Cuesta
- Hospital Interzonal General de Agudos‐Eva PerónSan MartínArgentina
| | - Pablo Galeano
- Laboratory of Brain Aging and Neurodegeneration, Fundacion Instituto Leloir‐IIBBABuenos AiresArgentina
| | - Lorenzo Campanelli
- Laboratory of Brain Aging and Neurodegeneration, Fundacion Instituto Leloir‐IIBBABuenos AiresArgentina
| | - Gisela Vanina Novack
- Laboratory of Brain Aging and Neurodegeneration, Fundacion Instituto Leloir‐IIBBABuenos AiresArgentina
| | | | - Nancy Medel
- Studies in Neuroscience and Complex Systems Unit‐CONICET‐HEC‐UNAJFlorencio VarelaArgentina
- Asistencia Medica IntegralHospital El CruceFlorencio VarelaArgentina
| | - Julieta Lisso
- Studies in Neuroscience and Complex Systems Unit‐CONICET‐HEC‐UNAJFlorencio VarelaArgentina
- Asistencia Medica IntegralHospital El CruceFlorencio VarelaArgentina
| | - Zulma Sevillano
- Studies in Neuroscience and Complex Systems Unit‐CONICET‐HEC‐UNAJFlorencio VarelaArgentina
- Asistencia Medica IntegralHospital El CruceFlorencio VarelaArgentina
| | - Nicolás Irureta
- Studies in Neuroscience and Complex Systems Unit‐CONICET‐HEC‐UNAJFlorencio VarelaArgentina
- Asistencia Medica IntegralHospital El CruceFlorencio VarelaArgentina
| | - Eduardo Miguel Castaño
- Laboratory of Brain Aging and Neurodegeneration, Fundacion Instituto Leloir‐IIBBABuenos AiresArgentina
| | - Laura Montrreal
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona – Universitat Internacional de CatalunyaBarcelonaSpain
| | - Michaela Thoenes
- Division of Neurogenetics and Molecular PsychiatryDepartment of Psychiatry and PsychotherapyFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Claudia Hanses
- Department of Psychiatry and PsychotherapyUniversity Hospital of BonnBonnGermany
| | | | | | - Inés Mintz
- Studies in Neuroscience and Complex Systems Unit‐CONICET‐HEC‐UNAJFlorencio VarelaArgentina
- Asistencia Medica IntegralHospital El CruceFlorencio VarelaArgentina
| | - Ivana Villella
- Studies in Neuroscience and Complex Systems Unit‐CONICET‐HEC‐UNAJFlorencio VarelaArgentina
- Asistencia Medica IntegralHospital El CruceFlorencio VarelaArgentina
| | - Fabiana Rueda
- Imaging Diagnostics ServiceHospital El CruceFlorencio VarelaArgentina
| | - Amanda Romero
- Imaging Diagnostics ServiceHospital El CruceFlorencio VarelaArgentina
| | - Nancy Wukitsevits
- Asistencia Medica IntegralHospital El CruceFlorencio VarelaArgentina
| | - Ivana Quiroga
- Asistencia Medica IntegralHospital El CruceFlorencio VarelaArgentina
| | - Cristian Gona
- Asistencia Medica IntegralHospital El CruceFlorencio VarelaArgentina
| | - Jean‐Charles Lambert
- Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167‐RID‐AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissementLilleFrance
| | - Patricia Solis
- Studies in Neuroscience and Complex Systems Unit‐CONICET‐HEC‐UNAJFlorencio VarelaArgentina
- Asistencia Medica IntegralHospital El CruceFlorencio VarelaArgentina
| | | | | | - Christian Gonzalez‐Billault
- Geroscience Center for Brain Health and MetabolismSantiagoChile
- Faculty of SciencesUniversity of ChileSantiagoChile
| | - Mercè Boada
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona – Universitat Internacional de CatalunyaBarcelonaSpain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative DiseasesNational Institute of Health Carlos IIIMadridSpain
| | - Lluís Tàrraga
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona – Universitat Internacional de CatalunyaBarcelonaSpain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative DiseasesNational Institute of Health Carlos IIIMadridSpain
| | - Andrea Slachevsky
- Faculty of SciencesUniversity of ChileSantiagoChile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC)Physiopathology Department ‐ Intitute of Biomedical Sciences (ICBM)Neuroscience and East Neuroscience DepartmentsFaculty of MedicineUniversity of ChileSantiagoChile
- Memory and Neuropsychiatric Center (CMYN)Memory Unit ‐ Neurology DepartmentHospital del Salvador and Faculty of MedicineUniversity of ChileSantiagoChile
- Departamento de Neurología y PsiquiatríaClínica Alemana‐Universidad del DesarrolloSantiagoChile
| | - Cecilia Albala
- Public Health Nutrition UnitInstitute of Nutrition and Food TechnologyUniversity of ChileSantiagoChile
- Interuniversity Center for Healthy Aging RED21993SantiagoChile
| | - Patricio Fuentes
- Geriatrics Section Clinical Hospital University of ChileSantiagoChile
- Neurology Service Hospital del SalvadorSantiagoChile
| | - Silvia Kochen
- Studies in Neuroscience and Complex Systems Unit‐CONICET‐HEC‐UNAJFlorencio VarelaArgentina
| | - Luis Ignacio Brusco
- Center of Neuropsychiatry and Neurology of BehaviorSchool of MedicineUniversity of Buenos AiresBuenos AiresArgentina
| | - Agustín Ruiz
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona – Universitat Internacional de CatalunyaBarcelonaSpain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative DiseasesNational Institute of Health Carlos IIIMadridSpain
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, Fundacion Instituto Leloir‐IIBBABuenos AiresArgentina
| | - Alfredo Ramírez
- Division of Neurogenetics and Molecular PsychiatryDepartment of Psychiatry and PsychotherapyFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- University of Bonn Medical CenterDepartment of Neurodegenerative Disease and Geriatric PsychiatryBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
| |
Collapse
|
33
|
Sánchez Moreno B, Adán-Lirola L, Rubio-Serrano J, Real de Asúa D. Causes of mortality among adults with Down syndrome before and after the COVID-19 pandemic in Spain. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2024; 68:128-139. [PMID: 37779228 DOI: 10.1111/jir.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND The life expectancy of people with Down syndrome (DS) is limited by Alzheimer's disease (AD)-related deaths, mainly due to respiratory infections. The emergence of the COVID-19 pandemic could have changed known, past trends in mortality in this population. We analysed the differences in causes of mortality between individuals with DS deceased before and after the onset of the pandemic. METHOD This is a cross-sectional study of adults with DS recruited at a tertiary, university outpatient clinic in Madrid, Spain. Demographic and clinical data were retrospectively collected from their medical records, including information on their deaths, if any. RESULTS Five hundred seventy-two adults were included in the study, and 67 (11.7%) died. The main cause of death was respiratory infections, which occurred in 36 participants [9 (45.0%) before, and 27 (58.7%) after the appearance of COVID-19]. No significant differences were found in the determinants of pre-pandemic and post-pandemic death after adjusting for age and AD, except for an association between the use of psychotropic medication and death in the post-pandemic period (odds ratio: 2.24; 95% confidence interval: 1.04-4.82). Vaccination against COVID-19 showed a marked protective effect against mortality (odds ratio: 0.0002; 95% confidence interval: 6.7e10-6 to 0.004). CONCLUSIONS The appearance of COVID-19 has not impacted the overall trend of increase in mean age of death of adults with DS in our milieu, probably thanks to the very important protective effect of vaccination, which supports prioritising people with DS in future immunisation campaigns. The association between psychotropic medication use and mortality requires further exploration.
Collapse
Affiliation(s)
- Beatriz Sánchez Moreno
- Department of Internal Medicine, Adult Down Syndrome Unit, Hospital Universitario de La Princesa, Madrid, Spain
- Fundación de Investigación Biomédica del Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Adán-Lirola
- Department of Internal Medicine, Adult Down Syndrome Unit, Hospital Universitario de La Princesa, Madrid, Spain
- Fundación de Investigación Biomédica del Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Javier Rubio-Serrano
- Department of Internal Medicine, Adult Down Syndrome Unit, Hospital Universitario de La Princesa, Madrid, Spain
- Fundación de Investigación Biomédica del Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Diego Real de Asúa
- Department of Internal Medicine, Adult Down Syndrome Unit, Hospital Universitario de La Princesa, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
34
|
Jonson C, Levine KS, Lake J, Hertslet L, Jones L, Patel D, Kim J, Bandres-Ciga S, Terry N, Mata IF, Blauwendraat C, Singleton AB, Nalls MA, Yokoyama JS, Leonard HL. Assessing the lack of diversity in genetics research across neurodegenerative diseases: a systematic review of the GWAS Catalog and literature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.08.24301007. [PMID: 38260595 PMCID: PMC10802650 DOI: 10.1101/2024.01.08.24301007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Importance The under-representation of participants with non-European ancestry in genome-wide association studies (GWAS) is a critical issue that has significant implications, including hindering the progress of precision medicine initiatives. This issue is particularly significant in the context of neurodegenerative diseases (NDDs), where current therapeutic approaches have shown limited success. Addressing this under-representation is crucial to harnessing the full potential of genomic medicine in underserved communities and improving outcomes for NDD patients. Objective Our primary objective was to assess the representation of non-European ancestry participants in genetic discovery efforts related to NDDs. We aimed to quantify the extent of inclusion of diverse ancestry groups in NDD studies and determine the number of associated loci identified in more inclusive studies. Specifically, we sought to highlight the disparities in research efforts and outcomes between studies predominantly involving European ancestry participants and those deliberately targeting non-European or multi-ancestry populations across NDDs. Evidence Review We conducted a systematic review utilizing existing GWAS results and publications to assess the inclusion of diverse ancestry groups in neurodegeneration and neurogenetics studies. Our search encompassed studies published up to the end of 2022, with a focus on identifying research that deliberately included non-European or multi-ancestry cohorts. We employed rigorous methods for the inclusion of identified articles and quality assessment. Findings Our review identified a total of 123 NDD GWAS. Strikingly, 82% of these studies predominantly featured participants of European ancestry. Endeavors specifically targeting non-European or multi-ancestry populations across NDDs identified only 52 risk loci. This contrasts with predominantly European studies, which reported over 90 risk loci for a single disease. Encouragingly, over 65% of these discoveries occurred in 2020 or later, indicating a recent increase in studies deliberately including non-European cohorts. Conclusions and relevance Our findings underscore the pressing need for increased diversity in neurodegenerative research. The significant under-representation of non-European ancestry participants in NDD GWAS limits our understanding of the genetic underpinnings of these diseases. To advance the field of neurodegenerative research and develop more effective therapies, it is imperative that future investigations prioritize and harness the genomic diversity present within and across global populations.
Collapse
Affiliation(s)
- Caroline Jonson
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- DataTecnica LLC, Washington, DC USA 20037
- Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, CA, USA
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA USA
| | - Kristin S. Levine
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- DataTecnica LLC, Washington, DC USA 20037
| | - Julie Lake
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD USA 20892
| | - Linnea Hertslet
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
| | - Lietsel Jones
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- DataTecnica LLC, Washington, DC USA 20037
| | - Dhairya Patel
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jeff Kim
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD USA 20892
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
| | - Nancy Terry
- Division of Library Services, Office of Research Services, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Ignacio F. Mata
- Genomic Medicine Institute, Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD USA 20892
| | - Mike A. Nalls
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- DataTecnica LLC, Washington, DC USA 20037
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD USA 20892
| | - Jennifer S. Yokoyama
- Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, CA, USA
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA USA
| | - Hampton L. Leonard
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- DataTecnica LLC, Washington, DC USA 20037
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD USA 20892
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
35
|
Cao C, Zhang S, Wang J, Tian M, Ji X, Huang D, Yang S, Gu N. PGS-Depot: a comprehensive resource for polygenic scores constructed by summary statistics based methods. Nucleic Acids Res 2024; 52:D963-D971. [PMID: 37953384 PMCID: PMC10767792 DOI: 10.1093/nar/gkad1029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Polygenic score (PGS) is an important tool for the genetic prediction of complex traits. However, there are currently no resources providing comprehensive PGSs computed from published summary statistics, and it is difficult to implement and run different PGS methods due to the complexity of their pipelines and parameter settings. To address these issues, we introduce a new resource called PGS-Depot containing the most comprehensive set of publicly available disease-related GWAS summary statistics. PGS-Depot includes 5585 high quality summary statistics (1933 quantitative and 3652 binary trait statistics) curated from 1564 traits in European and East Asian populations. A standardized best-practice pipeline is used to implement 11 summary statistics-based PGS methods, each with different model assumptions and estimation procedures. The prediction performance of each method can be compared for both in- and cross-ancestry populations, and users can also submit their own summary statistics to obtain custom PGS with the available methods. Other features include searching for PGSs by trait name, publication, cohort information, population, or the MeSH ontology tree and searching for trait descriptions with the experimental factor ontology (EFO). All scores, SNP effect sizes and summary statistics can be downloaded via FTP. PGS-Depot is freely available at http://www.pgsdepot.net.
Collapse
Affiliation(s)
- Chen Cao
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuting Zhang
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jianhua Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300203, China
| | - Min Tian
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaolong Ji
- Department of Biostatistics, Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dandan Huang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300203, China
| | - Sheng Yang
- Department of Biostatistics, Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ning Gu
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
36
|
Wang L, Nykänen NP, Western D, Gorijala P, Timsina J, Li F, Wang Z, Ali M, Yang C, Liu M, Brock W, Marquié M, Boada M, Alvarez I, Aguilar M, Pastor P, Ruiz A, Puerta R, Orellana A, Rutledge J, Oh H, Greicius MD, Le Guen Y, Perrin RJ, Wyss-Coray T, Jefferson A, Hohman TJ, Graff-Radford N, Mori H, Goate A, Levin J, Sung YJ, Cruchaga C. Proteo-genomics of soluble TREM2 in cerebrospinal fluid provides novel insights and identifies novel modulators for Alzheimer's disease. Mol Neurodegener 2024; 19:1. [PMID: 38172904 PMCID: PMC10763080 DOI: 10.1186/s13024-023-00687-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) plays a critical role in microglial activation, survival, and apoptosis, as well as in Alzheimer's disease (AD) pathogenesis. We previously reported the MS4A locus as a key modulator for soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF). To identify additional novel genetic modifiers of sTREM2, we performed the largest genome-wide association study (GWAS) and identified four loci for CSF sTREM2 in 3,350 individuals of European ancestry. Through multi-ethnic fine mapping, we identified two independent missense variants (p.M178V in MS4A4A and p.A112T in MS4A6A) that drive the association in MS4A locus and showed an epistatic effect for sTREM2 levels and AD risk. The novel TREM2 locus on chr 6 contains two rare missense variants (rs75932628 p.R47H, P=7.16×10-19; rs142232675 p.D87N, P=2.71×10-10) associated with sTREM2 and AD risk. The third novel locus in the TGFBR2 and RBMS3 gene region (rs73823326, P=3.86×10-9) included a regulatory variant with a microglia-specific chromatin loop for the promoter of TGFBR2. Using cell-based assays we demonstrate that overexpression and knock-down of TGFBR2, but not RBMS3, leads to significant changes of sTREM2. The last novel locus is located on the APOE region (rs11666329, P=2.52×10-8), but we demonstrated that this signal was independent of APOE genotype. This signal colocalized with cis-eQTL of NECTIN2 in the brain cortex and cis-pQTL of NECTIN2 in CSF. Overexpression of NECTIN2 led to an increase of sTREM2 supporting the genetic findings. To our knowledge, this is the largest study to date aimed at identifying genetic modifiers of CSF sTREM2. This study provided novel insights into the MS4A and TREM2 loci, two well-known AD risk genes, and identified TGFBR2 and NECTIN2 as additional modulators involved in TREM2 biology.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Niko-Petteri Nykänen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Fuhai Li
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhaohua Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Chengran Yang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Menghan Liu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - William Brock
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Marta Marquié
- Networking Research Center on Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mercè Boada
- Networking Research Center on Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ignacio Alvarez
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
| | - Miquel Aguilar
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Agustín Ruiz
- Networking Research Center on Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raquel Puerta
- Networking Research Center on Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Adelina Orellana
- Networking Research Center on Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Jarod Rutledge
- Wu-Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Hamilton Oh
- Wu-Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | | | - Yann Le Guen
- Wu-Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Richard J Perrin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tony Wyss-Coray
- Wu-Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Angela Jefferson
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Alison Goate
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Johannes Levin
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, BJC Institute of Health, 425 S. Euclid Ave, Box 8134, St. Louis, MO, 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurologic Diseases, Washington University, St. Louis, MO, USA.
| |
Collapse
|
37
|
Holtman IR, Glass CK, Nott A. Interpretation of Neurodegenerative GWAS Risk Alleles in Microglia and their Interplay with Other Cell Types. ADVANCES IN NEUROBIOLOGY 2024; 37:531-544. [PMID: 39207711 DOI: 10.1007/978-3-031-55529-9_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia have been implicated in numerous neurodegenerative and neuroinflammatory disorders; however, the causal contribution of this immune cell type is frequently debated. Genetic studies offer a unique vantage point in that they infer causality over a secondary consequence. Genome-wide association studies (GWASs) have identified hundreds of loci in the genome that are associated with susceptibility to neurodegenerative disorders. GWAS studies implicate microglia in the pathogenesis of Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and to a lesser degree suggest a role for microglia in vascular dementia (VaD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS), and other neurodegenerative and neuropsychiatric disorders. The contribution and function of GWAS risk loci on disease progression is an ongoing field of study, in which large genomic datasets, and an extensive framework of computational tools, have proven to be crucial. Several GWAS risk loci are shared between disorders, pointing towards common pleiotropic mechanisms. In this chapter, we introduce key concepts in GWAS and post-GWAS interpretation of neurodegenerative disorders, with a focus on GWAS risk genes implicated in microglia, their interplay with other cell types and shared convergence of GWAS risk loci on microglia.
Collapse
Affiliation(s)
- Inge R Holtman
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, UC San Diego, La Jolla, CA, USA.
- Department of Medicine, School of Medicine, UC San Diego, La Jolla, CA, USA.
| | - Alexi Nott
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| |
Collapse
|
38
|
García-Alberca JM, de Rojas I, Sanchez-Mejias E, Garrido-Martín D, Gonzalez-Palma L, Jimenez S, Pino-Angeles A, Cruz-Gamero JM, Mendoza S, Alarcón-Martín E, Muñoz-Castro C, Real LM, Tena JJ, Polvillo R, Govantes F, Lopez A, Royo-Aguado JL, Navarro V, Gonzalez I, Ruiz M, Reyes-Engel A, Gris E, Bravo MJ, Lopez-Gutierrez L, Mejias-Ortega M, De la Guía P, López de la Rica M, Ocejo O, Torrecilla J, Zafra C, Nieto MD, Urbano C, Jiménez-Sánchez R, Pareja N, Luque M, García-Peralta M, Carrillejo R, Furniet MDC, Rueda L, Sánchez-Fernández A, Mancilla T, Peña I, García-Casares N, Moreno-Grau S, Hernández I, Montrreal L, Quintela I, González-Pérez A, Calero M, Franco-Macías E, Macías J, Menéndez-González M, Frank-García A, Huerto Vilas R, Diez-Fairen M, Lage C, García-Madrona S, García-González P, Valero S, Sotolongo-Grau O, Pérez-Cordón A, Rábano A, Arias Pastor A, Pastor AB, Espinosa A, Corma-Gómez A, Martín Montes Á, Sanabria Á, Martínez Rodríguez C, Buiza-Rueda D, Rodriguez-Rodriguez E, Ortega G, Alvarez I, Rosas Allende I, Pineda JA, Rosende-Roca M, Bernal Sánchez-Arjona M, Fernández-Fuertes M, Alegret M, Roberto N, Del Ser T, Garcia-Ribas G, Sánchez-Juan P, Pastor P, Piñol-Ripoll G, Bullido MJ, Álvarez V, Mir P, Medina M, Marquié M, Sáez ME, Carracedo Á, Laplana M, Tomas-Gallardo L, Orellana A, Tárraga L, Boada M, Fibla Palazon J, Vitorica J, Ruiz A, et alGarcía-Alberca JM, de Rojas I, Sanchez-Mejias E, Garrido-Martín D, Gonzalez-Palma L, Jimenez S, Pino-Angeles A, Cruz-Gamero JM, Mendoza S, Alarcón-Martín E, Muñoz-Castro C, Real LM, Tena JJ, Polvillo R, Govantes F, Lopez A, Royo-Aguado JL, Navarro V, Gonzalez I, Ruiz M, Reyes-Engel A, Gris E, Bravo MJ, Lopez-Gutierrez L, Mejias-Ortega M, De la Guía P, López de la Rica M, Ocejo O, Torrecilla J, Zafra C, Nieto MD, Urbano C, Jiménez-Sánchez R, Pareja N, Luque M, García-Peralta M, Carrillejo R, Furniet MDC, Rueda L, Sánchez-Fernández A, Mancilla T, Peña I, García-Casares N, Moreno-Grau S, Hernández I, Montrreal L, Quintela I, González-Pérez A, Calero M, Franco-Macías E, Macías J, Menéndez-González M, Frank-García A, Huerto Vilas R, Diez-Fairen M, Lage C, García-Madrona S, García-González P, Valero S, Sotolongo-Grau O, Pérez-Cordón A, Rábano A, Arias Pastor A, Pastor AB, Espinosa A, Corma-Gómez A, Martín Montes Á, Sanabria Á, Martínez Rodríguez C, Buiza-Rueda D, Rodriguez-Rodriguez E, Ortega G, Alvarez I, Rosas Allende I, Pineda JA, Rosende-Roca M, Bernal Sánchez-Arjona M, Fernández-Fuertes M, Alegret M, Roberto N, Del Ser T, Garcia-Ribas G, Sánchez-Juan P, Pastor P, Piñol-Ripoll G, Bullido MJ, Álvarez V, Mir P, Medina M, Marquié M, Sáez ME, Carracedo Á, Laplana M, Tomas-Gallardo L, Orellana A, Tárraga L, Boada M, Fibla Palazon J, Vitorica J, Ruiz A, Guigo R, Gutierrez A, Royo JL. An Insertion Within SIRPβ1 Shows a Dual Effect Over Alzheimer's Disease Cognitive Decline Altering the Microglial Response. J Alzheimers Dis 2024; 98:601-618. [PMID: 38427484 DOI: 10.3233/jad-231150] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Microglial dysfunction plays a causative role in Alzheimer's disease (AD) pathogenesis. Here we focus on a germline insertion/deletion variant mapping SIRPβ1, a surface receptor that triggers amyloid-β(Aβ) phagocytosis via TYROBP. Objective To analyze the impact of this copy-number variant in SIRPβ1 expression and how it affects AD molecular etiology. Methods Copy-number variant proxy rs2209313 was evaluated in GERALD and GR@ACE longitudinal series. Hippocampal specimens of genotyped AD patients were also examined. SIRPβ1 isoform-specific phagocytosis assays were performed in HEK393T cells. Results The insertion alters the SIRPβ1 protein isoform landscape compromising its ability to bind oligomeric Aβ and its affinity for TYROBP. SIRPβ1 Dup/Dup patients with mild cognitive impairment show an increased cerebrospinal fluid t-Tau/Aβ ratio (p = 0.018) and a higher risk to develop AD (OR = 1.678, p = 0.018). MRIs showed that Dup/Dup patients exhibited a worse initial response to AD. At the moment of diagnosis, all patients showed equivalent Mini-Mental State Examination scores. However, AD patients with the duplication had less hippocampal degeneration (p < 0.001) and fewer white matter hyperintensities. In contrast, longitudinal studies indicate that patients bearing the duplication allele show a slower cognitive decline (p = 0.013). Transcriptional analysis also shows that the SIRPβ1 duplication allele correlates with higher TREM2 expression and an increased microglial activation. Conclusions The SIRPβ1 internal duplication has opposite effects over MCI-to-Dementia conversion risk and AD progression, affecting microglial response to Aβ. Given the pharmacological approaches focused on the TREM2-TYROBP axis, we believe that SIRPβ1 structural variant might be considered as a potential modulator of this causative pathway.
Collapse
Affiliation(s)
- José María García-Alberca
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), Málaga, Spain
| | - Itziar de Rojas
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Elisabeth Sanchez-Mejias
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Departamento Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga-IBIMA, Universidad de Málaga, Málaga, Spain
| | - Diego Garrido-Martín
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Section of Statistics, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
| | - Laura Gonzalez-Palma
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Sebastian Jimenez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio CSIC, Universidad de Sevilla, Seville, Spain
| | - Almudena Pino-Angeles
- Unidad de Lípidos y Arteriosclerosis, Servicio de Medicina Interna, Hospital Universitario Reina Sofia, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba, Spain
- Centro de Investigación Biomédicaen Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Jose Manuel Cruz-Gamero
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Institute of Psychiatry and Neuroscience of Paris, Université de Paris, INSERM U1266, Paris, France
| | - Silvia Mendoza
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), Málaga, Spain
| | - Emilio Alarcón-Martín
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Clara Muñoz-Castro
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio CSIC, Universidad de Sevilla, Seville, Spain
| | - Luis Miguel Real
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Juan Jesus Tena
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| | - Rocio Polvillo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| | - Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| | - Aroa Lopez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| | | | - Victoria Navarro
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio CSIC, Universidad de Sevilla, Seville, Spain
| | - Irene Gonzalez
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Maximiliano Ruiz
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Armando Reyes-Engel
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Esther Gris
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), Málaga, Spain
| | - Maria Jose Bravo
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Lidia Lopez-Gutierrez
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience, Institute (UNI), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Marina Mejias-Ortega
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Departamento Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga-IBIMA, Universidad de Málaga, Málaga, Spain
| | - Paz De la Guía
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), Málaga, Spain
| | - María López de la Rica
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), Málaga, Spain
| | - Olga Ocejo
- Centro Residencial Almudena, Malaga, Spain
| | | | | | | | | | | | - Nuria Pareja
- Asociación de Familiares de Enfermos de Alzheimer de la Axarquía, Vélez-Málaga, Spain
| | | | | | | | | | - Lourdes Rueda
- Asociación de Familiares de Alzheimer de Archidona, Archidona, Spain
| | | | - Tomás Mancilla
- Residencia DomusViFuentesol, Alhaurín de la Torre, Spain
| | - Isabel Peña
- Residencia DomusViFuentesol, Alhaurín de la Torre, Spain
| | | | - Sonia Moreno-Grau
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Isabel Hernández
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Laura Montrreal
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Inés Quintela
- Fundación Pública Galega de Medicina Xenómica, Centro Nacional de Genotipado, IDIS, Santiago de Compostela, Spain
| | | | - Miguel Calero
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Emilio Franco-Macías
- Unidad de Demencias, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Juan Macías
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Manuel Menéndez-González
- Servicio de Neurología, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Ana Frank-García
- Department of Neurology, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Raquel Huerto Vilas
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Mónica Diez-Fairen
- Department of Neurology, Unit of Neurodegenerative Diseases, Hospital Universitari Germans Triasi Pujol and Germans Triasi Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
- Department of Neurology, Memory Disorders Unit, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - Carmen Lage
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | | | - Pablo García-González
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sergi Valero
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Oscar Sotolongo-Grau
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Alba Pérez-Cordón
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Alberto Rábano
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Alfonso Arias Pastor
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Ana Belén Pastor
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Ana Espinosa
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Anaïs Corma-Gómez
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Ángel Martín Montes
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Department of Neurology, La Paz University Hospital, Madrid, Spain
| | - Ángela Sanabria
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | - Dolores Buiza-Rueda
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Eloy Rodriguez-Rodriguez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Gemma Ortega
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Ignacio Alvarez
- Department of Neurology, Unit of Neurodegenerative Diseases, Hospital Universitari Germans Triasi Pujol and Germans Triasi Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Irene Rosas Allende
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan A Pineda
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Maitée Rosende-Roca
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - María Bernal Sánchez-Arjona
- Unidad de Demencias, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Marta Fernández-Fuertes
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Natalia Roberto
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Teodoro Del Ser
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | | | | | - Pau Pastor
- Department of Neurology, Unit of Neurodegenerative Diseases, Hospital Universitari Germans Triasi Pujol and Germans Triasi Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
| | - María José Bullido
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - Victoria Álvarez
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Pablo Mir
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Miguel Medina
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica, Centro Nacional de Genotipado, IDIS, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica CIBERER-CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marina Laplana
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
- Departament de Ciencies Mediques Basiques, Universitat de Lleida, Lleida, Spain
| | - Laura Tomas-Gallardo
- Proteomics and Biochemistry Unit, Andalusian Centre for Developmental Biology, CSIC-Pablo de Olavide University, Seville, Spain
| | - Adelina Orellana
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Lluís Tárraga
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Joan Fibla Palazon
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
- Departament de Ciencies Mediques Basiques, Universitat de Lleida, Lleida, Spain
| | - Javier Vitorica
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio CSIC, Universidad de Sevilla, Seville, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonia Gutierrez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Departamento Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga-IBIMA, Universidad de Málaga, Málaga, Spain
| | - Jose Luis Royo
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
39
|
Sun Y, Zhu J, Yang Y, Zhang Z, Zhong H, Zeng G, Zhou D, Nowakowski RS, Long J, Wu C, Wu L. Identification of candidate DNA methylation biomarkers related to Alzheimer's disease risk by integrating genome and blood methylome data. Transl Psychiatry 2023; 13:387. [PMID: 38092781 PMCID: PMC10719322 DOI: 10.1038/s41398-023-02695-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Alzheimer disease (AD) is a common neurodegenerative disease with a late onset. It is critical to identify novel blood-based DNA methylation biomarkers to better understand the extent of the molecular pathways affected in AD. Two sets of blood DNA methylation genetic prediction models developed using different reference panels and modelling strategies were leveraged to evaluate associations of genetically predicted DNA methylation levels with AD risk in 111,326 (46,828 proxy) cases and 677,663 controls. A total of 1,168 cytosine-phosphate-guanine (CpG) sites showed a significant association with AD risk at a false discovery rate (FDR) < 0.05. Methylation levels of 196 CpG sites were correlated with expression levels of 130 adjacent genes in blood. Overall, 52 CpG sites of 32 genes showed consistent association directions for the methylation-gene expression-AD risk, including nine genes (CNIH4, THUMPD3, SERPINB9, MTUS1, CISD1, FRAT2, CCDC88B, FES, and SSH2) firstly reported as AD risk genes. Nine of 32 genes were enriched in dementia and AD disease categories (P values ranged from 1.85 × 10-4 to 7.46 × 10-6), and 19 genes in a neurological disease network (score = 54) were also observed. Our findings improve the understanding of genetics and etiology for AD.
Collapse
Affiliation(s)
- Yanfa Sun
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, P. R. China
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Yaohua Yang
- Center for Public Health Genomics, Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, Charlottesville, VA, 22093, USA
| | - Zichen Zhang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Guanghua Zeng
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, P. R. China
| | - Dan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P.R. China
| | - Richard S Nowakowski
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, 32304, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, 96813, USA.
| |
Collapse
|
40
|
Li D, Farrell JJ, Mez J, Martin ER, Bush WS, Ruiz A, Boada M, de Rojas I, Mayeux R, Haines JL, Vance MAP, Wang LS, Schellenberg GD, Lunetta KL, Farrer LA. Novel loci for Alzheimer's disease identified by a genome-wide association study in Ashkenazi Jews. Alzheimers Dement 2023; 19:5550-5562. [PMID: 37260021 PMCID: PMC10689571 DOI: 10.1002/alz.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Most Alzheimer's disease (AD) loci have been discovered in individuals with European ancestry (EA). METHODS We applied principal component analysis using Gaussian mixture models and an Ashkenazi Jewish (AJ) reference genome-wide association study (GWAS) data set to identify Ashkenazi Jews ascertained in GWAS (n = 42,682), whole genome sequencing (WGS, n = 16,815), and whole exome sequencing (WES, n = 20,504) data sets. The association of AD was tested genome wide (GW) in the GWAS and WGS data sets and exome wide (EW) in all three data sets (EW). Gene-based analyses were performed using aggregated rare variants. RESULTS In addition to apolipoprotein E (APOE), GW analyses (1355 cases and 1661 controls) revealed associations with TREM2 R47H (p = 9.66 × 10-9 ), rs541586606 near RAB3B (p = 5.01 × 10-8 ), and rs760573036 between SPOCK3 and ANXA10 (p = 6.32 × 10-8 ). In EW analyses (1504 cases and 2047 controls), study-wide significant association was observed with rs1003710 near SMAP2 (p = 1.91 × 10-7 ). A significant gene-based association was identified with GIPR (p = 7.34 × 10-7 ). DISCUSSION Our results highlight the efficacy of founder populations for AD genetic studies.
Collapse
Affiliation(s)
- Donghe Li
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Jesse Mez
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Eden R. Martin
- Dr. John T. Macdonald Foundation, University of Miami, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami, Miami, FL 33136, USA
| | - William S. Bush
- Department of Population & Quantitative Health Science and Cleveland Institute for Computational Biology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Agustin Ruiz
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Itziar de Rojas
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Richard Mayeux
- Taub Institute on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032, USA
| | - Jonathan L. Haines
- Department of Population & Quantitative Health Science and Cleveland Institute for Computational Biology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Margaret A. Pericak Vance
- Dr. John T. Macdonald Foundation, University of Miami, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami, Miami, FL 33136, USA
- Department of Neurology, University of Miami, Miami, FL 33136, USA
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Gerard D. Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| |
Collapse
|
41
|
Castro-Santos P, Rojas-Martinez A, Riancho JA, Lapunzina P, Flores C, Carracedo Á, Díaz-Peña R. HLA-A*11:01 and HLA-C*04:01 are associated with severe COVID-19. HLA 2023; 102:731-739. [PMID: 37528566 DOI: 10.1111/tan.15160] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023]
Abstract
We analyzed the association between HLA polymorphisms and susceptibility to SARS-CoV-2 infection and disease severity. Genotyping data from a total of 9373 COVID-19-positive cases from the Spanish Coalition to Unlock Research on Host Genetics on COVID-19 (SCOURGE) consortium and 5943 population controls were included in the study. We found an association of the alleles HLA-B*14:02 and HLA-C*08:02 with a lower risk to COVID-19 infection (p = 0.006, OR = 0.84, 95% CI = [0.75-0.95], p = 0.024, OR = 0.86, 95% CI = [0.78-0.95], respectively). We also found the alleles HLA-A*11:01 and HLA-C*04:01 associated with disease severity (p = 0.033, OR = 1.16, 95% CI = [1.04-1.31], p = 0.045, OR = 1.14, 95% CI = [1.05-1.25], respectively). These results suggest that an effective presentation of viral peptides by HLA class I alleles involve a faster infection clearance, decreasing the susceptibility and severity of COVID-19.
Collapse
Affiliation(s)
- Patricia Castro-Santos
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile
| | | | - José A Riancho
- IDIVAL, Cantabria, Spain
- Universidad de Cantabria, Cantabria, Spain
- Hospital U M Valdecilla, Cantabria, Spain
| | - Pablo Lapunzina
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IDIPAZ, Madrid, Spain
- ERN-ITHACA-European Reference Network, Paris, France
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Grupo de Medicina Xenómica-CIMUS-Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
42
|
Yu C, Ryan J, Orchard SG, Robb C, Woods RL, Wolfe R, Renton AE, Goate AM, Brodtmann A, Shah RC, Chong TTJ, Sheets K, Kyndt C, Sood A, Storey E, Murray AM, McNeil JJ, Lacaze P. Validation of newly derived polygenic risk scores for dementia in a prospective study of older individuals. Alzheimers Dement 2023; 19:5333-5342. [PMID: 37177856 PMCID: PMC10640662 DOI: 10.1002/alz.13113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023]
Abstract
INTRODUCTION Recent genome-wide association studies identified new dementia-associated variants. We assessed the performance of updated polygenic risk scores (PRSs) using these variants in an independent cohort. METHODS We used Cox models and area under the curve (AUC) to validate new PRSs (PRS-83SNP, PRS-SBayesR, and PRS-CS) compared with an older PRS-23SNP in 12,031 initially-healthy participants ≥70 years of age. Dementia was rigorously adjudicated according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria. RESULTS PRS-83SNP, PRS-SBayesR, and PRS-CS were associated with incident dementia, with fully adjusted (including apolipoprotein E [APOE] ε4) hazard ratios per standard deviation (SD) of 1.35 (1.23-1.47), 1.37 (1.25-1.50), and 1.42 (1.30-1.56), respectively. The AUC of a model containing conventional/non-genetic factors and APOE was 74.7%. This was improved to 75.7% (p = 0.007), 76% (p = 0.004), and 76.1% (p = 0.003) with addition of PRS-83SNP, PRS-SBayesR, and PRS-CS, respectively. The PRS-23SNP did not improve AUC (74.7%, p = 0.95). CONCLUSION New PRSs for dementia significantly improve risk-prediction performance, but still account for less risk than APOE genotype overall.
Collapse
Affiliation(s)
- Chenglong Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Suzanne G. Orchard
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Catherine Robb
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robyn L. Woods
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rory Wolfe
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Alan E. Renton
- Department Genetics and Genomic Sciences and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alison M. Goate
- Department Genetics and Genomic Sciences and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amy Brodtmann
- Cognitive Health Initiative, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Raj C. Shah
- Department of Family & Preventive Medicine and the Rush Alzheimer’s Disease Center, Chicago, Illinois, USA
| | - Trevor T.-J. Chong
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Clinical Neurosciences, St. Vincent’s Hospital, Melbourne, Victoria, Australia
| | - Kerry Sheets
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Geriatrics, Hennepin Healthcare, Minneapolis, Minnesota, USA
| | - Christopher Kyndt
- Department of Neurology, Melbourne Health, Parkville, Victoria, Australia
- Department of Neuroscience, Eastern Health, Box Hill, Victoria, Australia
| | - Ajay Sood
- Department of Neurology and the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Elsdon Storey
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Anne M. Murray
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Geriatrics, Hennepin Healthcare, Minneapolis, Minnesota, USA
- Berman Center for Outcomes and Clinical Research, Hennepin Healthcare Research Institute, Hennepin Healthcare, and University of Minnesota, Minneapolis, Minnesota, USA
| | - John J. McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Paul Lacaze
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Frick EA, Emilsson V, Jonmundsson T, Steindorsdottir AE, Johnson ECB, Puerta R, Dammer EB, Shantaraman A, Cano A, Boada M, Valero S, García-González P, Gudmundsson EF, Gudjonsson A, Loureiro JJ, Orth AP, Seyfried NT, Levey AI, Ruiz A, Aspelund T, Jennings LL, Launer LJ, Gudmundsdottir V, Gudnason V. Serum proteomics reveals APOE dependent and independent protein signatures in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.08.23298251. [PMID: 37986771 PMCID: PMC10659486 DOI: 10.1101/2023.11.08.23298251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The current demand for early intervention, prevention, and treatment of late onset Alzheimer's disease (LOAD) warrants deeper understanding of the underlying molecular processes which could contribute to biomarker and drug target discovery. Utilizing high-throughput proteomic measurements in serum from a prospective population-based cohort of older adults (n=5,294), we identified 303 unique proteins associated with incident LOAD (median follow-up 12.8 years). Over 40% of these proteins were associated with LOAD independently of APOE-ε4 carrier status. These proteins were implicated in neuronal processes and overlapped with protein signatures of LOAD in brain and cerebrospinal fluid. We found 17 proteins which LOAD-association was strongly dependent on APOE-ε4 carrier status. Most of them showed consistent associations with LOAD in cerebrospinal fluid and a third had brain-specific gene expression. Remarkably, four proteins in this group (TBCA, ARL2, S100A13 and IRF6) were downregulated by APOE-ε4 yet upregulated as a consequence of LOAD as determined in a bi-directional Mendelian randomization analysis, reflecting a potential response to the disease onset. Accordingly, the direct association of these proteins to LOAD was reversed upon APOE-ε4 genotype adjustment, a finding which we replicate in an external cohort (n=719). Our findings provide an insight into the dysregulated pathways that may lead to the development and early detection of LOAD, including those both independent and dependent on APOE-ε4. Importantly, many of the LOAD-associated proteins we find in the circulation have been found to be expressed - and have a direct link with AD - in brain tissue. Thus, the proteins identified here, and their upstream modulating pathways, provide a new source of circulating biomarker and therapeutic target candidates for LOAD.
Collapse
Affiliation(s)
| | - Valur Emilsson
- Icelandic Heart Association, Kopavogur, 200, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | | | | | - Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, 30329, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, 30329, GA, USA
| | - Raquel Puerta
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, 08028, Spain, Barcelona
| | - Eric B Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, 30329, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, 30329, GA, USA
| | - Anantharaman Shantaraman
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, 30329, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, 30329, GA, USA
| | - Amanda Cano
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, 08028, Spain, Barcelona
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, 28029, Spain
| | - Mercè Boada
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, 08028, Spain, Barcelona
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, 28029, Spain
| | - Sergi Valero
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, 08028, Spain, Barcelona
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, 28029, Spain
| | - Pablo García-González
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, 08028, Spain, Barcelona
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, 28029, Spain
| | | | | | | | | | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, 30329, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, 30329, GA, USA
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, 30329, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, 30329, GA, USA
| | - Agustin Ruiz
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, 08028, Spain, Barcelona
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, 28029, Spain
| | - Thor Aspelund
- Icelandic Heart Association, Kopavogur, 200, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, 20892, MD, USA
| | - Valborg Gudmundsdottir
- Icelandic Heart Association, Kopavogur, 200, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, 200, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| |
Collapse
|
44
|
Smith MC, O'Loughlin J, Karageorgiou V, Casanova F, Williams GKR, Hilton M, Tyrrell J. The genetics of falling susceptibility and identification of causal risk factors. Sci Rep 2023; 13:19493. [PMID: 37945700 PMCID: PMC10636011 DOI: 10.1038/s41598-023-44566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Falls represent a huge health and economic burden. Whilst many factors are associated with fall risk (e.g. obesity and physical inactivity) there is limited evidence for the causal role of these risk factors. Here, we used hospital and general practitioner records in UK Biobank, deriving a balance specific fall phenotype in 20,789 cases and 180,658 controls, performed a Genome Wide Association Study (GWAS) and used Mendelian Randomisation (MR) to test causal pathways. GWAS indicated a small but significant SNP-based heritability (4.4%), identifying one variant (rs429358) in APOE at genome-wide significance (P < 5e-8). MR provided evidence for a causal role of higher BMI on higher fall risk even in the absence of adverse metabolic consequences. Depression and neuroticism predicted higher risk of falling, whilst higher hand grip strength and physical activity were protective. Our findings suggest promoting lower BMI, higher physical activity as well as psychological health is likely to reduce falls.
Collapse
Affiliation(s)
- Matt C Smith
- Genetics of Complex Traits, College of Biomedical and Clinical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Jessica O'Loughlin
- Genetics of Complex Traits, College of Biomedical and Clinical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Vasileios Karageorgiou
- Genetics of Complex Traits, College of Biomedical and Clinical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Francesco Casanova
- Genetics of Complex Traits, College of Biomedical and Clinical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Genevieve K R Williams
- Public Health and Sports Sciences Department, University of Exeter Medical School, Exeter, UK
| | - Malcolm Hilton
- Clinical and Biomedical Science, University of Exeter Medical School, Exeter, UK
| | - Jessica Tyrrell
- Genetics of Complex Traits, College of Biomedical and Clinical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
45
|
Signal B, Pérez Suárez TG, Taberlay PC, Woodhouse A. Cellular specificity is key to deciphering epigenetic changes underlying Alzheimer's disease. Neurobiol Dis 2023; 186:106284. [PMID: 37683959 DOI: 10.1016/j.nbd.2023.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Different cell types in the brain play distinct roles in Alzheimer's disease (AD) progression. Late onset AD (LOAD) is a complex disease, with a large genetic component, but many risk loci fall in non-coding genome regions. Epigenetics implicates the non-coding genome with control of gene expression. The epigenome is highly cell-type specific and dynamically responds to the environment. Therefore, epigenetic mechanisms are well placed to explain genetic and environmental factors that are associated with AD. However, given this cellular specificity, purified cell populations or single cells need to be profiled to avoid effect masking. Here we review the current state of cell-type specific genome-wide profiling in LOAD, covering DNA methylation (CpG, CpH, and hydroxymethylation), histone modifications, and chromatin changes. To date, these data reveal that distinct cell types contribute and react differently to AD progression through epigenetic alterations. This review addresses the current gap in prior bulk-tissue derived work by spotlighting cell-specific changes that govern the complex interplay of cells throughout disease progression and are critical in understanding and developing effective treatments for AD.
Collapse
Affiliation(s)
- Brandon Signal
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| | | | - Phillippa C Taberlay
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
46
|
Jiang MZ, Gaynor SM, Li X, Van Buren E, Stilp A, Buth E, Wang FF, Manansala R, Gogarten SM, Li Z, Polfus LM, Salimi S, Bis JC, Pankratz N, Yanek LR, Durda P, Tracy RP, Rich SS, Rotter JI, Mitchell BD, Lewis JP, Psaty BM, Pratte KA, Silverman EK, Kaplan RC, Avery C, North K, Mathias RA, Faraday N, Lin H, Wang B, Carson AP, Norwood AF, Gibbs RA, Kooperberg C, Lundin J, Peters U, Dupuis J, Hou L, Fornage M, Benjamin EJ, Reiner AP, Bowler RP, Lin X, Auer PL, Raffield LM, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed Inflammation Working Group. Whole Genome Sequencing Based Analysis of Inflammation Biomarkers in the Trans-Omics for Precision Medicine (TOPMed) Consortium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.555215. [PMID: 37745480 PMCID: PMC10515765 DOI: 10.1101/2023.09.10.555215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38,465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program. We identified 22 distinct single-variant associations across 6 traits - E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin - that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.
Collapse
Affiliation(s)
- Min-Zhi Jiang
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Sheila M. Gaynor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
- Regeneron Genetics Center, Tarrytown, NY, 10591, USA
| | - Xihao Li
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Eric Van Buren
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Adrienne Stilp
- Department of Biostatistics, University of Washington, Seattle, WA, 98105, USA
| | - Erin Buth
- Department of Biostatistics, University of Washington, Seattle, WA, 98105, USA
| | - Fei Fei Wang
- Department of Biostatistics, University of Washington, Seattle, WA, 98105, USA
| | - Regina Manansala
- Centre for Health Economics Research & Modelling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO) WHO Collaborating Centre, University of Antwerp, Antwerp, BE
| | | | - Zilin Li
- School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Linda M. Polfus
- Department of Preventive Medicine, Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shabnam Salimi
- Department of Epidemiology and Public Health, Division of Gerontology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 4333 Brooklyn Ave NE, Box 359458, Seattle, WA, 98195, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Lisa R. Yanek
- Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, 1830 E Monument St Rm 8024, Baltimore, MD, 21287, USA
| | - Peter Durda
- Department of Pathology & Laboratory Medicine, University of Vermont Larner College of Medicine, 360 South Park Drive, Colchester, VT, 05446, USA
| | - Russell P. Tracy
- Department of Pathology & Laboratory Medicine, University of Vermont Larner College of Medicine, 360 South Park Drive, Colchester, VT, 05446, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, 200 Jeanette Lancaster Way, Charlottesville, VA, 22903, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA, 90502, USA
| | - Braxton D. Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 670 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Joshua P. Lewis
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 670 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 4333 Brooklyn Ave NE, Box 359458, Seattle, WA, 98195, USA
- Departments of Epidemiology and Health Systems and Population Health, University of Washington, 4333 Brooklyn Ave NE, Seattle, WA, 98101, USA
| | - Katherine A. Pratte
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Edwin K. Silverman
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Christy Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kari North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rasika A. Mathias
- Department of Medicine, Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Cir JHAAC Room 3B53, Baltimore, MD, 21287, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, 55 Lake Ave North, Worcester, MA, 01655, USA
| | - Biqi Wang
- Department of Medicine, University of Massachusetts Chan Medical School, 55 Lake Ave North, Worcester, MA, 01655, USA
| | - April P. Carson
- Department of Medicine, University of Mississippi Medical Center, 350 W. Woodrow Wilson Avenue, Suite 701, Jackson, MS, 39213, USA
| | - Arnita F. Norwood
- Department of Medicine, University of Mississippi Medical Center, 350 W. Woodrow Wilson Avenue, Suite 701, Jackson, MS, 39213, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jessica Lundin
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Josée Dupuis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Québec, H3A 1G1, Canada
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Emelia J. Benjamin
- Department of Medicine, Cardiovascular Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02118, USA
- Boston University and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, 01702, USA
| | - Alexander P. Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, 98105, USA
| | - Russell P. Bowler
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Paul L. Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | | |
Collapse
|
47
|
Nazarian A, Cook B, Morado M, Kulminski AM. Interaction Analysis Reveals Complex Genetic Associations with Alzheimer's Disease in the CLU and ABCA7 Gene Regions. Genes (Basel) 2023; 14:1666. [PMID: 37761806 PMCID: PMC10531324 DOI: 10.3390/genes14091666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Sporadic Alzheimer's disease (AD) is a polygenic neurodegenerative disorder. Single-nucleotide polymorphisms (SNPs) in multiple genes (e.g., CLU and ABCA7) have been associated with AD. However, none of them were characterized as causal variants that indicate the complex genetic architecture of AD, which is likely affected by individual variants and their interactions. We performed a meta-analysis of four independent cohorts to examine associations of 32 CLU and 50 ABCA7 polymorphisms as well as their 496 and 1225 pair-wise interactions with AD. The single SNP analyses revealed that six CLU and five ABCA7 SNPs were associated with AD. Ten of them were previously not reported. The interaction analyses identified AD-associated compound genotypes for 25 CLU and 24 ABCA7 SNP pairs, whose comprising SNPs were not associated with AD individually. Three and one additional CLU and ABCA7 pairs composed of the AD-associated SNPs showed partial interactions as the minor allele effect of one SNP in each pair was intensified in the absence of the minor allele of the other SNP. The interactions identified here may modulate associations of the CLU and ABCA7 variants with AD. Our analyses highlight the importance of the roles of combinations of genetic variants in AD risk assessment.
Collapse
Affiliation(s)
- Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA (M.M.)
| | | | | | - Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA (M.M.)
| |
Collapse
|
48
|
Bouzid H, Belk JA, Jan M, Qi Y, Sarnowski C, Wirth S, Ma L, Chrostek MR, Ahmad H, Nachun D, Yao W, Beiser A, Bick AG, Bis JC, Fornage M, Longstreth WT, Lopez OL, Natarajan P, Psaty BM, Satizabal CL, Weinstock J, Larson EB, Crane PK, Keene CD, Seshadri S, Satpathy AT, Montine TJ, Jaiswal S. Clonal hematopoiesis is associated with protection from Alzheimer's disease. Nat Med 2023; 29:1662-1670. [PMID: 37322115 PMCID: PMC10353941 DOI: 10.1038/s41591-023-02397-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a premalignant expansion of mutated hematopoietic stem cells. As CHIP-associated mutations are known to alter the development and function of myeloid cells, we hypothesized that CHIP may also be associated with the risk of Alzheimer's disease (AD), a disease in which brain-resident myeloid cells are thought to have a major role. To perform association tests between CHIP and AD dementia, we analyzed blood DNA sequencing data from 1,362 individuals with AD and 4,368 individuals without AD. Individuals with CHIP had a lower risk of AD dementia (meta-analysis odds ratio (OR) = 0.64, P = 3.8 × 10-5), and Mendelian randomization analyses supported a potential causal association. We observed that the same mutations found in blood were also detected in microglia-enriched fraction of the brain in seven of eight CHIP carriers. Single-nucleus chromatin accessibility profiling of brain-derived nuclei in six CHIP carriers revealed that the mutated cells comprised a large proportion of the microglial pool in the samples examined. While additional studies are required to validate the mechanistic findings, these results suggest that CHIP may have a role in attenuating the risk of AD.
Collapse
Affiliation(s)
- Hind Bouzid
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A Belk
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Max Jan
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Yanyan Qi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chloé Sarnowski
- Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA
| | - Sara Wirth
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa Ma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew R Chrostek
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Herra Ahmad
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Cardiology, Charité Universitätsmedizin, Berlin, Germany
| | - Daniel Nachun
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Winnie Yao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexa Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alexander G Bick
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - William T Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, USA
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pradeep Natarajan
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Joshua Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
49
|
Sun Y, Bae YE, Zhu J, Zhang Z, Zhong H, Yu J, Wu C, Wu L. A splicing transcriptome-wide association study identifies novel altered splicing for Alzheimer's disease susceptibility. Neurobiol Dis 2023:106209. [PMID: 37354922 DOI: 10.1016/j.nbd.2023.106209] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/26/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease in aging individuals. Alternative splicing is reported to be relevant to AD development while their roles in etiology of AD remain largely elusive. We performed a comprehensive splicing transcriptome-wide association study (spTWAS) using intronic excision expression genetic prediction models of 12 brain tissues developed through three modelling strategies, to identify candidate susceptibility splicing introns for AD risk. A total of 111,326 (46,828 proxy) cases and 677,663 controls of European ancestry were studied. We identified 343 associations of 233 splicing introns (143 genes) with AD risk after Bonferroni correction (0.05/136,884 = 3.65 × 10-7). Fine-mapping analyses supported 155 likely causal associations corresponding to 83 splicing introns of 55 genes. Eighteen causal splicing introns of 15 novel genes (EIF2D, WDR33, SAP130, BYSL, EPHB6, MRPL43, VEGFB, PPP1R13B, TLN2, CLUHP3, LRRC37A4P, CRHR1, LINC02210, ZNF45-AS1, and XPNPEP3) were identified for the first time to be related to AD susceptibility. Our study identified novel genes and splicing introns associated with AD risk, which can improve our understanding of the etiology of AD.
Collapse
Affiliation(s)
- Yanfa Sun
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian 364012, PR China; Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Ye Eun Bae
- Department of Statistics, Florida State University, Tallahassee, FL 32304, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Zichen Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32304, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Jie Yu
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian 364012, PR China
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| |
Collapse
|
50
|
Alemany-Navarro M, Diz-de Almeida S, Cruz R, Riancho JA, Rojas-Martínez A, Lapunzina P, Flores C, Carracedo A. Psychiatric polygenic risk as a predictor of COVID-19 risk and severity: insight into the genetic overlap between schizophrenia and COVID-19. Transl Psychiatry 2023; 13:189. [PMID: 37280221 DOI: 10.1038/s41398-023-02482-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/24/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Despite the high contagion and mortality rates that have accompanied the coronavirus disease-19 (COVID-19) pandemic, the clinical presentation of the syndrome varies greatly from one individual to another. Potential host factors that accompany greater risk from COVID-19 have been sought and schizophrenia (SCZ) patients seem to present more severe COVID-19 than control counterparts, with certain gene expression similarities between psychiatric and COVID-19 patients reported. We used summary statistics from the last SCZ, bipolar disorder (BD), and depression (DEP) meta-analyses available on the Psychiatric Genomics Consortium webpage to calculate polygenic risk scores (PRSs) for a target sample of 11,977 COVID-19 cases and 5943 subjects with unknown COVID-19 status. Linkage disequilibrium score (LDSC) regression analysis was performed when positive associations were obtained from the PRS analysis. The SCZ PRS was a significant predictor in the case/control, symptomatic/asymptomatic, and hospitalization/no hospitalization analyses in the total and female samples; and of symptomatic/asymptomatic status in men. No significant associations were found for the BD or DEP PRS or in the LDSC regression analysis. SNP-based genetic risk for SCZ, but not for BD or DEP, may be associated with higher risk of SARS-CoV-2 infection and COVID-19 severity, especially among women; however, predictive accuracy barely exceeded chance level. We believe that the inclusion of sexual loci and rare variations in the analysis of genomic overlap between SCZ and COVID-19 will help to elucidate the genetic commonalities between these conditions.
Collapse
Affiliation(s)
- M Alemany-Navarro
- IBIS (Universidad de Sevilla, HUVR, Junta de Andalucia, CSIC), Sevilla, Spain.
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS) Santiago de Compostela, Santiago de Compostela, Spain.
- Grupo de Genética. Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.
| | - S Diz-de Almeida
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
| | - R Cruz
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
| | - J A Riancho
- IDIVAL, Cantabria, Spain
- Universidad de Cantabria, Cantabria, Spain
- Hospital U M Valdecilla, Cantabria, Spain
| | - A Rojas-Martínez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - P Lapunzina
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM) del Hospital Universitario La Paz, Madrid, Spain
- ERN-ITHACA-European Reference Network, Santa Cruz de Tenerife, Canarias, Spain
| | - C Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - A Carracedo
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS) Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Genética. Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|