1
|
Peters AA, Muqri F, Bunn C, Kassem M, Helkin A, Bruch D, Maier KG, Gahtan V. TSP-1, TSP-2, and TSP-5 demonstrate sexual dimorphism in intimal hyperplasia in rats and mice. Am J Physiol Heart Circ Physiol 2025; 328:H1296-H1305. [PMID: 40298323 DOI: 10.1152/ajpheart.00632.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
Thrombospondins (TSPs) are matricellular proteins involved in intimal hyperplasia (IH). We hypothesized that 1) TSP-1, TSP-2, and TSP-5 are interdependent regarding their effects on vascular smooth muscle (VSMC) physiology; 2) local or systemic knockout of THBS1 or THBS2 reduces IH, with its combination (THBS1/2) being most effective; 3) local or systemic knockout of THBS5 increases IH; and 4) the effects of TSPs differ between males and females. In vitro, VSMCs were transfected with siRNA against THBS1, THBS2, THBS5, or THBS1/2. VSMC proliferation by TSP-1, TSP-2, or PDGF-BB was tested, and chemotaxis to TSP-1, TSP-2, TSP-5, or PDGF-BB was assessed. Sprague-Dawley male and female rats underwent carotid artery balloon injury with intraluminal treatment of saline or adeno-associated virus containing siRNA against THBS1, THBS2, THBS1/2, THBS5, or scrambled siRNA. Wild-type, THBS1, THBS2, or THBS5 null male or female mice underwent carotid artery ligation. After 14 days (rat) or 28 days (mice), animals were perfusion-fixed, euthanized, and IH measured. In vitro, siRNA to THBS1, THBS2, THBS1/2, or THBS5 decreased VSMC response to exogenous TSPs. The novel combined siRNA THBS1/2 demonstrated the most robust decrease in proliferation and migration. In vivo, only male rats and mice had reduced IH with local or systemic knock down of THBS1 or THBS2 (P < 0.05), with combined siRNA to THBS1/2 having the most robust effect. Knockdown of THBS5 increased IH only in female mice (P < 0.05). In conclusion, TSPs affect one another and demonstrate a sexual dimorphism that may explain differences between male and female IH.NEW & NOTEWORTHY Thrombospondins (TSPs) are matricellular proteins involved in intimal hyperplasia (IH). We demonstrate in vitro, TSP-1, TSP-2, and TSP-5 affect one another and influence vascular smooth muscle cell proliferation and migration. In vivo, using a rat and mouse model of IH, we show that TSPs demonstrate a sexual dimorphism that may explain differences between male and female IH. Particularly, TSP-1 and TSP-2 appear to be strong mediators of IH in males only.
Collapse
MESH Headings
- Animals
- Male
- Thrombospondin 1/genetics
- Thrombospondin 1/metabolism
- Female
- Thrombospondins/genetics
- Thrombospondins/metabolism
- Rats, Sprague-Dawley
- Hyperplasia
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/genetics
- Cell Proliferation
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Mice, Knockout
- Mice
- Rats
- Sex Characteristics
- Cells, Cultured
- Mice, Inbred C57BL
- Disease Models, Animal
- Sex Factors
- Cell Movement
- Chemotaxis
- Tunica Intima/pathology
- Tunica Intima/metabolism
Collapse
Affiliation(s)
- Ashley A Peters
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States
- Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Edward Hines Jr. Veterans Affairs Hospital, Hines, Illinois, United States
| | - Furqan Muqri
- Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Veterans Affairs, VA Healthcare Network Upstate New York at Syracuse, Syracuse, New York, United States
| | - Corinne Bunn
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States
- Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Edward Hines Jr. Veterans Affairs Hospital, Hines, Illinois, United States
| | - Mohammed Kassem
- Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Veterans Affairs, VA Healthcare Network Upstate New York at Syracuse, Syracuse, New York, United States
| | - Alex Helkin
- Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Veterans Affairs, VA Healthcare Network Upstate New York at Syracuse, Syracuse, New York, United States
| | - David Bruch
- Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Veterans Affairs, VA Healthcare Network Upstate New York at Syracuse, Syracuse, New York, United States
| | - Kristopher G Maier
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States
- Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Veterans Affairs, VA Healthcare Network Upstate New York at Syracuse, Syracuse, New York, United States
| | - Vivian Gahtan
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States
- Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Edward Hines Jr. Veterans Affairs Hospital, Hines, Illinois, United States
- Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Veterans Affairs, VA Healthcare Network Upstate New York at Syracuse, Syracuse, New York, United States
| |
Collapse
|
2
|
Brennan PG, Mota L, Aridi T, Patel N, Liang P, Ferran C. Advancements in Omics and Breakthrough Gene Therapies: A Glimpse into the Future of Peripheral Artery Disease. Ann Vasc Surg 2024; 107:229-246. [PMID: 38582204 DOI: 10.1016/j.avsg.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 04/08/2024]
Abstract
Peripheral artery disease (PAD), a highly prevalent global disease, associates with significant morbidity and mortality in affected patients. Despite progress in endovascular and open revascularization techniques for advanced PAD, these interventions grapple with elevated rates of arterial restenosis and vein graft failure attributed to intimal hyperplasia (IH). Novel multiomics technologies, coupled with sophisticated analyses tools recently powered by advances in artificial intelligence, have enabled the study of atherosclerosis and IH with unprecedented single-cell and spatial precision. Numerous studies have pinpointed gene hubs regulating pivotal atherogenic and atheroprotective signaling pathways as potential therapeutic candidates. Leveraging advancements in viral and nonviral gene therapy (GT) platforms, gene editing technologies, and cutting-edge biomaterial reservoirs for delivery uniquely positions us to develop safe, efficient, and targeted GTs for PAD-related diseases. Gene therapies appear particularly fitting for ex vivo genetic engineering of IH-resistant vein grafts. This manuscript highlights currently available state-of-the-art multiomics approaches, explores promising GT-based candidates, and details GT delivery modalities employed by our laboratory and others to thwart mid-term vein graft failure caused by IH, as well as other PAD-related conditions. The potential clinical translation of these targeted GTs holds the promise to revolutionize PAD treatment, thereby enhancing patients' quality of life and life expectancy.
Collapse
Affiliation(s)
- Phillip G Brennan
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Lucas Mota
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tarek Aridi
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Nyah Patel
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Patric Liang
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Division of Nephrology and the Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
3
|
Mota L, Zhu M, Li J, Contreras M, Aridi T, Tomeo JN, Stafford A, Mooney DJ, Pradhan-Nabzdyk L, Ferran C, LoGerfo FW, Liang P. Perivascular CLICK-gelatin delivery of thrombospondin-2 small interfering RNA decreases development of intimal hyperplasia after arterial injury. FASEB J 2024; 38:e23321. [PMID: 38031974 PMCID: PMC10726962 DOI: 10.1096/fj.202301359r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Bypass graft failure occurs in 20%-50% of coronary and lower extremity bypasses within the first-year due to intimal hyperplasia (IH). TSP-2 is a key regulatory protein that has been implicated in the development of IH following vessel injury. In this study, we developed a biodegradable CLICK-chemistry gelatin-based hydrogel to achieve sustained perivascular delivery of TSP-2 siRNA to rat carotid arteries following endothelial denudation injury. At 21 days, perivascular application of TSP-2 siRNA embedded hydrogels significantly downregulated TSP-2 gene expression, cellular proliferation, as well as other associated mediators of IH including MMP-9 and VEGF-R2, ultimately resulting in a significant decrease in IH. Our data illustrates the ability of perivascular CLICK-gelatin delivery of TSP-2 siRNA to mitigate IH following arterial injury.
Collapse
Affiliation(s)
- Lucas Mota
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Max Zhu
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Jennifer Li
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Mauricio Contreras
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Tarek Aridi
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - John N. Tomeo
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Alexander Stafford
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA
| | - Leena Pradhan-Nabzdyk
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
- The Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston MA
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA
| | - Frank W. LoGerfo
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Patric Liang
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| |
Collapse
|
4
|
Forbes T, Pauza AG, Adams JC. In the balance: how do thrombospondins contribute to the cellular pathophysiology of cardiovascular disease? Am J Physiol Cell Physiol 2021; 321:C826-C845. [PMID: 34495764 DOI: 10.1152/ajpcell.00251.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thrombospondins (TSPs) are multidomain, secreted proteins that associate with cell surfaces and extracellular matrix. In mammals, there is a large body of data on functional roles of various TSP family members in cardiovascular disease (CVD), including stroke, cardiac remodeling and fibrosis, atherosclerosis, and aortic aneurysms. Coding single nucleotide polymorphisms (SNPs) of TSP1 or TSP4 are also associated with increased risk of several forms of CVD. Whereas interactions and functional effects of TSPs on a variety of cell types have been studied extensively, the molecular and cellular basis for the differential effects of the SNPs remains under investigation. Here, we provide an integrative review on TSPs, their roles in CVD and cardiovascular cell physiology, and known properties and mechanisms of TSP SNPs relevant to CVD. In considering recent expansions to knowledge of the fundamental cellular roles and mechanisms of TSPs, as well as the effects of wild-type and variant TSPs on cells of the cardiovascular system, we aim to highlight knowledge gaps and areas for future research or of translational potential.
Collapse
Affiliation(s)
- Tessa Forbes
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Audrys G Pauza
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
5
|
Liu JF, Chen PC, Chang TM, Hou CH. Thrombospondin-2 stimulates MMP-9 production and promotes osteosarcoma metastasis via the PLC, PKC, c-Src and NF-κB activation. J Cell Mol Med 2020; 24:12826-12839. [PMID: 33021341 PMCID: PMC7686970 DOI: 10.1111/jcmm.15874] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma is an extremely common primary bone malignancy that is highly metastatic, with most deaths resulting from pulmonary metastases. The extracellular matrix protein thrombospondin‐2 (TSP‐2) is key to many biological processes, such as inflammation, wound repair and tissue remodelling. However, it is unclear as to what biological role TSP‐2 plays in human metastatic osteosarcoma. The immunochemistry analysis from osteosarcoma specimens identified marked up‐regulation of TSP‐2 in late‐stage osteosarcoma. Furthermore, we found that TSP‐2 increased the levels of matrix metallopeptidase 9 (MMP‐9) expression and thereby increased the migratory potential of human osteosarcoma cells. Osteosarcoma cells pre‐treated with an MMP‐9 monoclonal antibody (mAb), an MMP‐9 inhibitor, or transfected with MMP‐9 small interfering RNA (siRNA) reduced the capacity of TSP‐2 to potentiate cell migration. TSP‐2 treatment activated the PLCβ, PKCα, c‐Src and nuclear kappa factor B (NF‐κB) signalling pathways, while the specific siRNA, inhibitors and mutants of these cascades reduced TSP‐2‐induced stimulation of migration activity. Knockdown of TSP‐2 expression markedly reduced cell metastasis in cellular and animal experiments. It appears that an interaction between TSP‐2 and integrin αvβ3 activates the PLCβ, PKCα and c‐Src signalling pathways and subsequently activates NF‐κB signalling, increasing MMP‐9 expression and stimulating migratory activity amongst human osteosarcoma cells.
Collapse
Affiliation(s)
- Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan.,Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Po-Chun Chen
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Tsung-Ming Chang
- School of Medicine, Institute of Physiology, National Yang-Ming University, Taipei City, Taiwan
| | - Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei City, Taiwan
| |
Collapse
|
6
|
Zhang K, Li M, Yin L, Fu G, Liu Z. Role of thrombospondin‑1 and thrombospondin‑2 in cardiovascular diseases (Review). Int J Mol Med 2020; 45:1275-1293. [PMID: 32323748 PMCID: PMC7138268 DOI: 10.3892/ijmm.2020.4507] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Thrombospondin (TSP)-1 and TSP-2 are matricellular proteins in the extracellular matrix (ECM), which serve a significant role in the pathological processes of various cardiovascular diseases (CVDs). The multiple effects of TSP-1 and TSP-2 are due to their ability to interact with various ligands, such as structural components of the ECM, cytokines, cellular receptors, growth factors, proteases and other stromal cell proteins. TSP-1 and TSP-2 regulate the structure and activity of the aforementioned ligands by interacting directly or indirectly with them, thereby regulating the activity of different types of cells in response to environmental stimuli. The pathological processes of numerous CVDs are associated with the degradation and remodeling of ECM components, and with cell migration, dysfunction and apoptosis, which may be regulated by TSP-1 and TSP-2 through different mechanisms. Therefore, investigating the role of TSP-1 and TSP-2 in different CVDs and the potential signaling pathways they are associated with may provide a new perspective on potential therapies for the treatment of CVDs. In the present review, the current understanding of the roles TSP-1 and TSP-2 serve in various CVDs were summarized. In addition, the interacting ligands and the potential pathways associated with these thrombospondins in CVDs are also discussed.
Collapse
Affiliation(s)
- Kaijie Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Miaomiao Li
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li Yin
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
7
|
Borton AH, Benson BL, Neilson LE, Saunders A, Alaiti MA, Huang AY, Jain MK, Proweller A, Ramirez-Bergeron DL. Aryl Hydrocarbon Receptor Nuclear Translocator in Vascular Smooth Muscle Cells Is Required for Optimal Peripheral Perfusion Recovery. J Am Heart Assoc 2018; 7:e009205. [PMID: 29858371 PMCID: PMC6015385 DOI: 10.1161/jaha.118.009205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/02/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Limb ischemia resulting from peripheral vascular disease is a common cause of morbidity. Vessel occlusion limits blood flow, creating a hypoxic environment that damages distal tissue, requiring therapeutic revascularization. Hypoxia-inducible factors (HIFs) are key transcriptional regulators of hypoxic vascular responses, including angiogenesis and arteriogenesis. Despite vascular smooth muscle cells' (VSMCs') importance in vessel integrity, little is known about their functional responses to hypoxia in peripheral vascular disease. This study investigated the role of VSMC HIF in mediating peripheral ischemic responses. METHODS AND RESULTS We used ArntSMKO mice with smooth muscle-specific deletion of aryl hydrocarbon receptor nuclear translocator (ARNT, HIF-1β), required for HIF transcriptional activity, in a femoral artery ligation model of peripheral vascular disease. ArntSMKO mice exhibit impaired perfusion recovery despite normal collateral vessel dilation and angiogenic capillary responses. Decreased blood flow manifests in extensive tissue damage and hypoxia in ligated limbs of ArntSMKO mice. Furthermore, loss of aryl hydrocarbon receptor nuclear translocator changes the proliferation, migration, and transcriptional profile of cultured VSMCs. ArntSMKO mice display disrupted VSMC morphologic features and wrapping around arterioles and increased vascular permeability linked to decreased local blood flow. CONCLUSIONS Our data demonstrate that traditional vascular remodeling responses are insufficient to provide robust peripheral tissue reperfusion in ArntSMKO mice. In all, this study highlights HIF responses to hypoxia in arteriole VSMCs critical for the phenotypic and functional stability of vessels that aid in the recovery of blood flow in ischemic peripheral tissues.
Collapse
MESH Headings
- Animals
- Aryl Hydrocarbon Receptor Nuclear Translocator/biosynthesis
- Aryl Hydrocarbon Receptor Nuclear Translocator/genetics
- Blotting, Western
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Regulation
- Immunohistochemistry
- Ischemia/genetics
- Ischemia/metabolism
- Ischemia/pathology
- Lower Extremity/blood supply
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Peripheral Vascular Diseases/genetics
- Peripheral Vascular Diseases/metabolism
- Peripheral Vascular Diseases/pathology
- RNA/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Anna Henry Borton
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Bryan L Benson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Lee E Neilson
- Neurological Institute, University Hospitals, Cleveland, OH
| | - Ashley Saunders
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - M Amer Alaiti
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Alex Y Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
- Angie Fowler Adolescent and Young Adult Cancer Institute and University Hospitals Rainbow Babies and Children's Hospital University Hospitals, Cleveland, OH
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Aaron Proweller
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Diana L Ramirez-Bergeron
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| |
Collapse
|
8
|
Bodewes TCF, Johnson JM, Auster M, Huynh C, Muralidharan S, Contreras M, LoGerfo FW, Pradhan-Nabzdyk L. Intraluminal delivery of thrombospondin-2 small interfering RNA inhibits the vascular response to injury in a rat carotid balloon angioplasty model. FASEB J 2016; 31:109-119. [PMID: 27671229 DOI: 10.1096/fj.201600501r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/16/2016] [Indexed: 01/06/2023]
Abstract
In an effort to inhibit the response to vascular injury that leads to intimal hyperplasia, this study investigated the in vivo efficacy of intraluminal delivery of thrombospondin-2 (TSP-2) small interfering RNA (siRNA). Common carotid artery (CCA) balloon angioplasty injury was performed in rats. Immediately after denudation, CCA was transfected intraluminally (15 min) with one of the following: polyethylenimine (PEI)+TSP-2 siRNA, saline, PEI only, or PEI+control siRNA. CCA was analyzed at 24 h or 21 d by using quantitative real-time PCR and immunohistochemistry. TSP-2 gene and protein expression were significantly up-regulated after endothelial denudation at 24 h and 21 d compared with contralateral untreated, nondenuded CCA. Treatment with PEI+TSP-2 siRNA significantly suppressed TSP-2 gene expression (3.1-fold) at 24 h and TSP-2 protein expression, cell proliferation, and collagen deposition up to 21 d. These changes could be attributed to changes in TGF-β and matrix metalloproteinase-9, the downstream effectors of TSP-2. TSP-2 knockdown induced anti-inflammatory M2 macrophage polarization at 21 d; however, it did not significantly affect intima/media ratios. In summary, these data demonstrate effective siRNA transfection of the injured arterial wall and provide a clinically effective and translationally applicable therapeutic strategy that involves nonviral siRNA delivery to ameliorate the response to vascular injury.-Bodewes, T. C. F., Johnson, J. M., Auster, M., Huynh, C., Muralidharan, S., Contreras, M., LoGerfo, F. W., Pradhan-Nabzdyk, L. Intraluminal delivery of thrombospondin-2 small interfering RNA inhibits the vascular response to injury in a rat carotid balloon angioplasty model.
Collapse
Affiliation(s)
- Thomas C F Bodewes
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Vascular Surgery, University Medical Center, Utrecht, The Netherlands; and
| | - Joel M Johnson
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Auster
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Cindy Huynh
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| | - Sriya Muralidharan
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mauricio Contreras
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Frank W LoGerfo
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Leena Pradhan-Nabzdyk
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
9
|
Raof NA, Rajamani D, Chu HC, Gurav A, Johnson JM, LoGerfo FW, Pradhan-Nabzdyk L, Bhasin M. The effects of transfection reagent polyethyleneimine (PEI) and non-targeting control siRNAs on global gene expression in human aortic smooth muscle cells. BMC Genomics 2016; 17:20. [PMID: 26728506 PMCID: PMC4700750 DOI: 10.1186/s12864-015-2267-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) is a powerful platform utilized to target transcription of specific genes and downregulate the protein product. To achieve effective silencing, RNAi is usually applied to cells or tissue with a transfection reagent to enhance entry into cells. A commonly used control is the same transfection reagent plus a "noncoding RNAi". However, this does not control for the genomic response to the transfection reagent alone or in combination with the noncoding RNAi. These control effects while not directly targeting the gene in question may influence expression of other genes that in turn alter expression of the target. The current study was prompted by our work focused on prevention of vascular bypass graft failure and our experience with gene silencing in human aortic smooth muscle cells (HAoSMCs) where we suspected that off target effects through this mechanism might be substantial. We have used Next Generation Sequencing (NGS) technology and bioinformatics analysis to examine the genomic response of HAoSMCs to the transfection reagent alone (polyethyleneimine (PEI)) or in combination with commercially obtained control small interfering RNA (siRNAs) (Dharmacon and Invitrogen). RESULTS Compared to untreated cells, global gene expression of HAoSMcs after transfection either with PEI or in combination with control siRNAs displayed significant alterations in gene transcriptome after 24 h. HAoSMCs transfected by PEI alone revealed alterations of 213 genes mainly involved in inflammatory and immune responses. HAoSMCs transfected by PEI complexed with siRNA from either Dharmacon or Invitrogen showed substantial gene variation of 113 and 85 genes respectively. Transfection of cells with only PEI or with PEI and control siRNAs resulted in identification of 20 set of overlapping altered genes. Further, systems biology analysis revealed key master regulators in cells transfected with control siRNAs including the cytokine, Interleukin (IL)-1, transcription factor GATA Binding Protein (GATA)-4 and the methylation enzyme, Enhancer of zeste homolog 2 (EZH-2) a cytokine with an apical role in initiating the inflammatory response. CONCLUSIONS Significant off-target effects in HAoSMCs transfected with PEI alone or in combination with control siRNAs may lead to misleading conclusions concerning the effectiveness of a targeted siRNA strategy. The lack of structural information about transfection reagents and "non coding" siRNA is a hindrance in the development of siRNA based therapeutics.
Collapse
Affiliation(s)
- Nurazhani A Raof
- The Frank W. LoGerfo Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Stoneman 8 M-10E, Boston, 02215, MA, USA.
| | - Deepa Rajamani
- Division of Interdisciplinary Medicine and Biotechnology, Genomics and Proteomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA, 02215, USA.
| | - Hsun-Chieh Chu
- The Frank W. LoGerfo Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Stoneman 8 M-10E, Boston, 02215, MA, USA. .,Department of Medicine, National Yang-Ming University, School of Medicine, Taipei City, Taiwan.
| | - Aniket Gurav
- The Frank W. LoGerfo Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Stoneman 8 M-10E, Boston, 02215, MA, USA.
| | - Joel M Johnson
- The Frank W. LoGerfo Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Stoneman 8 M-10E, Boston, 02215, MA, USA.
| | - Frank W LoGerfo
- The Frank W. LoGerfo Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Stoneman 8 M-10E, Boston, 02215, MA, USA.
| | - Leena Pradhan-Nabzdyk
- The Frank W. LoGerfo Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Stoneman 8 M-10E, Boston, 02215, MA, USA.
| | - Manoj Bhasin
- Division of Interdisciplinary Medicine and Biotechnology, Genomics and Proteomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
10
|
Pradhan-Nabzdyk L, Huang C, LoGerfo FW, Nabzdyk CS. Current siRNA targets in the prevention and treatment of intimal hyperplasia. DISCOVERY MEDICINE 2014; 18:125-132. [PMID: 25227753 PMCID: PMC4265021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Intimal hyperplasia (IH) is the leading cause of late vein and prosthetic bypass graft failure. Injury at the time of graft implantation leading to the activation of endothelial cells and dedifferentiation of vascular smooth muscle cells to a synthetic phenotype are known causes of IH. Prior attempts to develop therapy to mitigate these cellular changes to prevent IH and graft failure have failed. Small interfering RNA (siRNA) mediated targeted gene silencing is a promising tool to prevent IH. Several studies have been performed in this direction to target genes that are involved in IH. In this review we discuss siRNA targets that are being investigated for prevention and treatment of IH.
Collapse
Affiliation(s)
- Leena Pradhan-Nabzdyk
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
11
|
Gene silencing in human aortic smooth muscle cells induced by PEI-siRNA complexes released from dip-coated electrospun poly(ethylene terephthalate) grafts. Biomaterials 2014; 35:3071-9. [PMID: 24397987 DOI: 10.1016/j.biomaterials.2013.12.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/13/2013] [Indexed: 11/20/2022]
Abstract
An excessive tissue response to prosthetic arterial graft material leads to intimal hyperplasia (IH), the leading cause of late graft failure. Seroma and abnormal capsule formation may also occur after prosthetic material implantation. The matricellular protein Thrombospondin-2 (TSP-2) has shown to be upregulated in response to biomaterial implantation. This study evaluates the uptake and release of small interfering RNA (siRNA) from unmodified and surface functionalized electrospun PET graft materials. ePET graft materials were synthesized using electrospinning technology. Subsets of the ePET materials were then chemically modified to create surface functional groups. Unmodified and surface-modified ePET grafts were dip-coated in siRNAs alone or siRNAs complexed with transfection reagents polyethyleneimine (PEI) or Lipofectamine RNAiMax. Further, control and TSP-2 siRNA-PEI complex treated ePET samples were placed onto a confluent layer of human aortic smooth muscle cells (AoSMCs). Complexation of all siRNAs with PEI led to a significant increase in adsorption to unmodified ePET. TSP-2 siRNA-PEI released from unmodified-ePET silenced TSP-2 in AoSMC. Regardless of the siRNA-PEI complex evaluated, AoSMC migrated into the ePET. siRNA-PEI complexes delivered to AoSMC from dip-coated ePET can result in gene knockdown. This methodology for siRNA delivery may improve the tissue response to vascular and other prosthetics.
Collapse
|