1
|
Adel-Mehraban MS, Karimi M, Alipour R, Mirali Z, Ghaem H, Zargaran A, Mirzaei K, Kazemi AH. Effectiveness of acupuncture and a cumin-based herbal formula on anthropometric indices of overweight patients: a randomized double-blind placebo-controlled clinical trial. J Diabetes Metab Disord 2024; 23:2329-2341. [PMID: 39610502 PMCID: PMC11599549 DOI: 10.1007/s40200-024-01499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/31/2024] [Indexed: 11/30/2024]
Abstract
Objectives To evaluate the effectiveness of a Persian Medicine herbal formula and a Traditional Chinese Medicine intervention (acupuncture) on the improvement of weight and anthropometric indices of overweight patients. Methods This study was a randomized placebo-controlled double-blind clinical trial. A total of 200 overweight patients were randomly divided into 4 groups receiving either (1) Herbal capsule, (2) placebo capsule, (3) acupuncture, or (4) sham acupuncture. Herbal capsules were filled with hydroethanolic extract of Cuminum cyminum L. seed, Apium graveolens L. seed, Ruta graveolens L. seed, Trachyspermum ammi (L.) Sprague seed, Origanum majorana L. leaf, and sodium tetraborate and placebo capsules with avicel. Patients received two 500mg capsules or 12 acupuncture sessions over 8 weeks. Study outcomes, consisted of weight, body mass index (BMI), anthropometric indices including chest, arm, wrist, waist, hip, and leg circumferences, and waist/hip ratio (WHR), were evaluated 3 times: before treatment, after 4 weeks, and after 8 weeks. Results The herbal formula significantly reduced weight, BMI, WHR, and chest and waist circumferences compared to the placebo capsule (P < 0.05). Furthermore, acupuncture improved all study outcomes, except WHR, compared to sham acupuncture (P < 0.05). Despite the effects of herbal formula and acupuncture were the same on WHR and chest, waist, and leg circumferences (P < 0.05), acupuncture reduced weight, BMI, and arm, wrist, and hip circumferences more than herbal formula (P < 0.05). Conclusion Complementary and alternative therapeutic methods, such as herbal treatments and acupuncture, show promising effects in improving weight and anthropometric indices of overweight patients.
Collapse
Affiliation(s)
- Mohammad Sadegh Adel-Mehraban
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reihane Alipour
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mirali
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Haleh Ghaem
- Epidemiology Department, School of Health, Non-Communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arman Zargaran
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hooman Kazemi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International School, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
He Y, Yang K, Zhang L, Zhan M, Xia XW, Wang HF, Xie Y, Huang L, Yang N, Zheng YL, Yang H, Ying-Ning, Sun JY, Yang YJ, Ding WJ. Electroacupuncture for weight loss by regulating microglial polarization in the arcuate nucleus of the hypothalamus. Life Sci 2023; 330:121981. [PMID: 37516430 DOI: 10.1016/j.lfs.2023.121981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Electroacupuncture (EA) has a weight loss effect, but the underlying molecular mechanisms of weight loss with EA have not been fully elucidated. This study aimed to investigate the modulatory effects of EA on the phenotype of hypothalamic microglia in obese mice. A total of 50 male C57BL/6J mice were used in this study. There were three groups in this experiment: The conventional diet group (Chow group), the high-fat diet group (HFD group), and the EA intervention group (HFD + EA group). EA was applied at "Tianshu (ST25)", "Guanyuan (RN4)", "Zusanli (ST36)" and "Zhongwan (RN12)" every day for 10 min. Hematoxylin and eosin (H&E) staining, immunohistochemical staining, and real-time PCR were applied in this study. The results showed that EA intervention was associated with a decrease in body weight, food intake, adipose tissue weight, and adipocyte size. At the same time, EA induced microglia to exhibit an M2 phenotype, representing reduced iNOS/TNF-α and increased Arg-1/IL-10/BDNF, which may be due to the promotion of TREM2 expression. EA also reduced microglia enrichment in the hypothalamic arcuate nucleus and declined TLR4 and IL-6, inhibiting microglia-mediated neuroinflammation. In addition, EA treatment promoted POMC expression, which may be associated with reduced food intake and weight loss in obese mice. This work provides novel evidence of EA against obesity. However, further study is necessary of EA as a therapy for obesity.
Collapse
Affiliation(s)
- Yan He
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Kun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Lu Zhang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Meng Zhan
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Xiu-Wen Xia
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Huai-Fu Wang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Ya Xie
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Ling Huang
- Hospital of Traditional Chinese Medicine, Yibin, Sichuan 644000, China
| | - Ni Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Ya-Li Zheng
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Hong Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Ying-Ning
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Jia-Yi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - You-Jun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China.
| | - Wei-Jun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China.
| |
Collapse
|
3
|
Lu PH, Chen YY, Tsai FM, Liao YL, Huang HF, Yu WH, Kuo CY. Combined Acupoints for the Treatment of Patients with Obesity: An Association Rule Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7252213. [PMID: 35341146 PMCID: PMC8947926 DOI: 10.1155/2022/7252213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022]
Abstract
Obesity is a prevalent metabolic disease that increases the risk of other diseases, such as hypertension, diabetes, hyperlipidemia, cardiovascular disease, and certain cancers. A meta-analysis of 11 randomized sham-controlled trials indicates that acupuncture had adjuvant benefits in improving simple obesity, and previous studies have reported that acupoint combinations were more useful than single-acupoint therapy. The Apriori algorithm, a data mining-based analysis that finds potential correlations in datasets, is broadly applied in medicine and business. This study, based on the Apriori algorithm-based association rule analysis, found the association rules of acupoints among 11 randomized controlled trials (RCTs). There were 23 acupoints extracted from 11 RCTs. We used Python to calculate the association between acupoints and disease. We found the top 10 frequency acupoints were Extra12, TF4, LI4, LI11, ST25, ST36, ST44, CO4, CO18, and CO1. We investigated the 1118 association rule and found that {LI4, ST36} ≥ {ST44}, {LI4, ST44} ≥ {ST36}, and {ST36, ST44} ≥ {LI4} were the most associated rules in the data. Acupoints, including LI4, ST36, and ST44, are the core acupoint combinations in the treatment of simple obesity.
Collapse
Affiliation(s)
- Ping-Hsun Lu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu-Yang Chen
- Department of Mathematics National Central University, Taoyuan, Taiwan
| | - Fu-Ming Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yuan-Ling Liao
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Hui-Fen Huang
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Hsuan Yu
- Department of Mathematics National Central University, Taoyuan, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
4
|
Li N, Guo Y, Gong Y, Zhang Y, Fan W, Yao K, Chen Z, Dou B, Lin X, Chen B, Chen Z, Xu Z, Lyu Z. The Anti-Inflammatory Actions and Mechanisms of Acupuncture from Acupoint to Target Organs via Neuro-Immune Regulation. J Inflamm Res 2022; 14:7191-7224. [PMID: 34992414 PMCID: PMC8710088 DOI: 10.2147/jir.s341581] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammation plays a significant role in the occurrence and development of multiple diseases. This study comprehensively reviews and presents literature from the last five years, showing that acupuncture indeed exerts strong anti-inflammatory effects in multiple biological systems, namely, the immune, digestive, respiratory, nervous, locomotory, circulatory, endocrine, and genitourinary systems. It is well known that localized acupuncture-mediated anti-inflammatory effects involve the regulation of multiple populations and functions of immune cells, including macrophages, granulocytes, mast cells, and T cells. In acupuncture stimulation, macrophages transform from the M1 to the M2 phenotype and the negative TLR4 regulator PPARγ is activated to inhibit the intracellular TLR/MyD88 and NOD signaling pathways. The downstream IκBα/NF-κB and P38 MAPK pathways are subsequently inhibited by acupuncture, followed by suppressed production of inflammasome and proinflammatory mediators. Acupuncture also modulates the balance of helper T cell populations. Furthermore, it inhibits oxidative stress by enhancing SOD activity via the Nrf2/HO-1 pathway and eliminates the generation of oxygen free radicals, thereby preventing inflammatory cell infiltration. The anti-inflammatory effects of acupuncture on different biological systems are also specific to individual organ microenvironments. As part of its anti-inflammatory action, acupuncture deforms connective tissue and upregulates the secretion of various molecules in acupoints, further activating the NF-κB, MAPK, and ERK pathways in mast cells, fibroblasts, keratinocytes, and monocytes/macrophages. The somatic afferents present in acupuncture-activated acupoints also convey sensory signals to the spinal cord, brainstem, and hypothalamic neurons. Upon information integration in the brain, acupuncture further stimulates multiple neuro-immune pathways, including the cholinergic anti-inflammatory, vagus-adrenal medulla-dopamine, and sympathetic pathways, as well as the hypothalamus-pituitary-adrenal axis, ultimately acting immune cells via the release of crucial neurotransmitters and hormones. This review provides a scientific and reliable basis and viewpoints for the clinical application of acupuncture in various inflammatory conditions.
Collapse
Affiliation(s)
- Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China.,School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| | - Yue Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Wen Fan
- Suzuka University of Medical Science, Suzuka City, Japan
| | - Kaifang Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China.,School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| | - Zhongxi Lyu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| |
Collapse
|
5
|
Lu M, Yu Z, Li Q, Gong M, An L, Xu T, Yuan M, Liang C, Yu Z, Xu B. Electroacupuncture Stimulation Regulates Adipose Lipolysis via Catecholamine Signaling Mediated by NLRP3 Suppression in Obese Rats. Front Endocrinol (Lausanne) 2022; 12:773127. [PMID: 35046893 PMCID: PMC8762326 DOI: 10.3389/fendo.2021.773127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic low-grade inflammation of visceral adipose tissue can cause obesity-associated insulin resistance, leading to metabolic syndrome. However, anti-inflammatory drugs and those for obesity management can lead to serious side effects such as abnormal heart rate and blood pressure. Consequently, this study aimed to explore the therapeutic potential of electroacupuncture stimulation (ES) for obesity and associated chronic inflammation. Sprague-Dawley male rats were fed a high-fat diet (HFD) for ten weeks to build an obesity model, and half of the diet-induced obesity (DIO) rats were received ES. The levels of inflammatory factors were detected by ELISA and qPCR analysis. The nerve-associated macrophages were marked with immunofluorescence staining. The molecular mechanism of NLRP3 inflammasome in ES was determined by the NLRP3 inflammasome activation model. Compared to HDF rats, ES showed decreased body weight and chronic inflammatory damage. Specifically, this occurred via a decrease in monoamine oxidase-A (MAOA) expression, which suppressed noradrenaline degradation. MAOA is expressed in nerve-associated macrophages (NAMs), and ES attenuated NAMs by suppressing the NLRP3 inflammasome. The NLRP3 agonist blocked the noradrenaline degradation-reducing effect of ES, and an increase in lipolysis via the inhibition of the NLRP3 inflammasome attenuated NAMs. Thus, our findings suggest that ES induced lipolysis via activation of the NLRP3 inflammasome in nerve-associated macrophages (NAMs), independently of sympathetic nervous system activity.
Collapse
Affiliation(s)
- Mengjiang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziwei Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meirong Gong
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li An
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengqian Yuan
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Liang
- Medical College, Hebei University of Engineering, Hebei, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Obesity Animal Models for Acupuncture and Related Therapy Research Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6663397. [PMID: 34630614 PMCID: PMC8497105 DOI: 10.1155/2021/6663397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Obesity and related diseases are considered as pandemic representing a worldwide threat for health. Animal models are critical to validate the effects and understand the mechanisms related to classical or innovative preventive and therapeutic strategies. It is, therefore, important to identify the best animal models for translational research, using different evaluation criteria such as the face, construct, and predictive validity. Because the pharmacological treatments and surgical interventions currently used for treating obesity often present many undesirable side effects, relatively high relapse probabilities, acupuncture, electroacupuncture (EA), and related therapies have gained more popularity and attention. Many kinds of experimental animal models have been used for obesity research studies, but in the context of acupuncture, most of the studies were performed in rodent obesity models. Though, are these obesity rodent models really the best for acupuncture or related therapies research studies? In this study, we review different obesity animal models that have been used over the past 10 years for acupuncture and EA research studies. We present their respective advantages, disadvantages, and specific constraints. With the development of research on acupuncture and EA and the increasing interest regarding these approaches, proper animal models are critical for preclinical studies aiming at developing future clinical trials in the human. The aim of the present study is to provide researchers with information and guidance related to the preclinical models that are currently available to investigate the outcomes of acupuncture and related therapies.
Collapse
|
7
|
Bintoro DA, Nareswari I. The Role of Electroacupuncture in the Regulation of Appetite-Controlling Hormone and Inflammatory Response in Obesity. Med Acupunct 2021; 33:264-268. [PMID: 34471444 PMCID: PMC8403175 DOI: 10.1089/acu.2020.1500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Obesity, a condition with serious complications, needs special attention. It is a complex and multifactorial problem and regulation of calorie balance involving various humoral and central factors is the main key for managing obesity. In addition, there is an increase in various proinflammatory cytokines and an increase in oxidative stress. There is a need to discover a useful therapy for obesity management. The goal of this review was to examine the literature on electroacupuncture (EA) as a potential therapy. Methods: This review explores the literature on EA, which has proven to be effective for inducing weight loss in experimental human and animal studies. Both continuous and dense-disperse EA waves have their own roles in hormone regulation of obesity using ST 25, CV 9, CV 12, CV 4, SP 6, ST 36, and ST 44; this is discussed the associated mechanism related to this is through suppression of various orexigenic peptides, enhancement of anorexigenic peptides, suppression of inflammatory factors, and improvement in the balance of pro-oxidants and antioxidants. Conclusions: The absence of another definitive therapy for obesity and EA's minimal side-effects make it a potential therapy for managing obesity.
Collapse
Affiliation(s)
- Dinda Aniela Bintoro
- Department of Medical Acupuncture, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Central Public Hospital, Central Jakarta, Jakarta, Indonesia
| | - Irma Nareswari
- Department of Medical Acupuncture, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Central Public Hospital, Central Jakarta, Jakarta, Indonesia
| |
Collapse
|
8
|
Wang HF, Chen L, Xie Y, Wang XF, Yang K, Ning Y, He JY, Ding WJ. Electroacupuncture facilitates M2 macrophage polarization and its potential role in the regulation of inflammatory response. Biomed Pharmacother 2021; 140:111655. [PMID: 34029955 DOI: 10.1016/j.biopha.2021.111655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/06/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
The underlying mechanism of electroacupuncture (EA) in relieving obesity, anti-inflammation and the interaction with metabolic pathways in obese mice has not been elaborated. The aim of this study was to investigate the regulation of EA on macrophage polarization in obesity tissue of diet-induced obesity mice. Mice were divided in 6 groups: normal control group, model group, EA-7 group, EA-14 group, EA-21 group and EA-28 group. Low-frequency EA was applied at "Tianshu (ST 25)", "Guanyuan (CV 4)", "Zusanli (ST 36)" and "Sanyinjiao (SP 6)" for 10 min. Adipose tissue was assessed with hematoxylin and eosin staining. Adipocytokines and pro-inflammatory factors expression was measured by ELISA. The protein and mRNA levels of macrophage markers were examined by immumohistochemical staining and RT-PCR, respectively. EA treatment was associated with a decrease of adipose tissue and large adipocytes, and an increase of small adipocytes. After EA treatment, the levels of Leptin, Chemerin, TNF-α, F4/80, iNOS, and CD11c decreased obviously in adipose tissue, while IL-4, IL-10 and CD206 levels increased significantly. Besides, TNF-α in spleen tissue was also downregulated, but IL-4 and IL-10 were upregulated. EA prevents weight gain through modulation inflammatory response and macrophage polarization in obese adipose tissues.
Collapse
Affiliation(s)
- Huai-Fu Wang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Li Chen
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China; Department of Endocrinology, Meishan Hospital of Traditional Chinese Medicine, 14# Suci Road, Dongpo District, Meishan, Sichuan, China
| | - Ya Xie
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Xiao-Fang Wang
- Department of Nursing, Sichuan Nursing Vocational College, Longdu South Road, Longquanyi District, Chengdu 610100, China
| | - Kun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Ying Ning
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Jia-Yue He
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wei-Jun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| |
Collapse
|
9
|
Potential Benefits of Acupuncture and Herbs for Obesity-Related Chronic Inflammation by Adipokines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3285363. [PMID: 33133214 PMCID: PMC7568779 DOI: 10.1155/2020/3285363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 11/18/2022]
Abstract
The adipose tissue is an organ that stores energy in the form of fats. It also has been known as an endocrine playing an integral role in metabolic homeostasis by secreting various adipokines. In obesity, the adipokine components and secretion patterns are altered toward proinflammation with weight gain, causing low chronic inflammation, which is closely linked to various metabolic diseases. Acupuncture and herbs are used for the management of obesity and its comorbidities, and it has been observed that these therapies affect the amount of expression and concentration of adipokines with improved metabolic phenotypes in both animal and human metabolic diseases. In this review, we discuss the role of adipokines and summarize beneficial effects of the treatments such as electroacupuncture, pharmacopuncture, catgut embedding acupuncture, and single and multiple medicinal herbs on obesity and its relations to adipokine composition. It will provide a new insight for applying adipokines as surrogate markers in complementary and alternative medicine practice.
Collapse
|
10
|
Wang LH, Huang W, Wei D, Ding DG, Liu YR, Wang JJ, Zhou ZY. Mechanisms of Acupuncture Therapy for Simple Obesity: An Evidence-Based Review of Clinical and Animal Studies on Simple Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:5796381. [PMID: 30854010 PMCID: PMC6378065 DOI: 10.1155/2019/5796381] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/25/2018] [Indexed: 12/15/2022]
Abstract
Simple obesity is a worldwide epidemic associated with rapidly growing morbidity and mortality which imposes an enormous burden on individual and public health. As a part of Traditional Chinese Medicine (TCM), acupuncture has shown the positive efficacy in the management of simple obesity. In this article, we comprehensively review the clinical and animal studies that demonstrated the potential mechanisms of acupuncture treatment for simple obesity. Clinical studies suggested that acupuncture regulates endocrine system, promotes digestion, attenuates oxidative stress, and modulates relevant molecules of metabolism in patients of simple obesity. Evidence from laboratory indicated that acupuncture regulates lipid metabolism, modulates inflammatory responses, and promotes white adipose tissue browning. Acupuncture also suppresses appetite through regulating appetite regulatory hormones and the downstream signaling pathway. The evidence from clinical and animal studies indicates that acupuncture induces multifaceted regulation through complex mechanisms and moreover a single factor may not be enough to explain the beneficial effects against simple obesity.
Collapse
Affiliation(s)
- Li-Hua Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
| | - Wei Huang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Dan Wei
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - De-Guang Ding
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yi-Ran Liu
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Jia-Jie Wang
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhong-Yu Zhou
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
11
|
Liaw JJT, Peplow PV. Differential Effect of Electroacupuncture on Inflammatory Adipokines in Two Rat Models of Obesity. J Acupunct Meridian Stud 2016; 9:183-90. [PMID: 27555223 DOI: 10.1016/j.jams.2016.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/13/2016] [Accepted: 02/18/2016] [Indexed: 01/21/2023] Open
Abstract
Chronic inflammation is known to be associated with visceral obesity and insulin resistance which are characterized by altered levels of production of pro- and anti-inflammatory adipokines. The dysregulation of the production of inflammatory adipokines and their functions in obese individuals leads to a state of chronic low-grade inflammation and may promote obesity-linked metabolic disorders and cardiovascular diseases such as insulin resistance, metabolic syndrome, and atherosclerosis. Electroacupuncture (EA) was tested to see if there was a difference in its effect on pro- and anti-inflammatory adipokine levels in the blood serum and the white adipose tissue of obese Zucker fatty rats and high-fat diet-induced obese Long Evans rats. In the two rat models of obesity, on Day 12 of treatment, repeated applications of EA were seen to have had a significant differential effect for serum tumor necrosis factor-α, adiponectin, the adiponectin:leptin ratio, and blood glucose. For the adipose tissue, there was a differential effect for adiponectin that was on the borderline of significance. To explore these changes further and how they might affect insulin resistance would require a modification to the research design to use larger group sizes for the two models or to give a greater number of EA treatments.
Collapse
Affiliation(s)
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
12
|
Affiliation(s)
- Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|