1
|
Leão APA, de Souza AV, Barbosa DR, da Silva CFG, Alvarenga RR, de Araújo ICS, Geraldo A, Resende CO, Zangeronimo MG. Thermal Manipulation During the Embryonic Stage and the Post-Hatch Characteristics of Broiler Chickens. Animals (Basel) 2024; 14:3436. [PMID: 39682400 DOI: 10.3390/ani14233436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The objective of this study was to evaluate the influence of thermal manipulation during incubation on the hatchability, the performance, the carcass characteristics, the intestinal villi, the nutrient metabolizability, and some physiological parameters in broiler chickens. Ross eggs were randomly distributed into four commercial automatic incubators. The treatments were as follows: incubator kept at 37.5 °C throughout the incubation period (Ctrl-control), and incubator temperature increased to 39 °C on days 16, 17, and 18 of incubation for 3 (T3h), 12 (T12h), or 24 h (T24h). The chicks were housed in an experimental performance barn and kept until 42 days of age under standard rearing conditions. The hatchability was lower when T24h was used. During the time after hatching, T3h caused higher levels of heat shock protein 70 (HSP70) in the liver, a faster breathing rate, and a drop in the cloacal temperature and hematocrit. T12h increased the respiratory rate. T24h decreased the hematocrit, the weight gain, and the feed intake. The thermal manipulation during incubation did not affect the carcass characteristics, intestinal villi, or metabolizability of nutrients. It was concluded that raising the incubator temperature for 3 h during late incubation may be beneficial for thermoregulation, but raising it for 24 h during this period impairs animal performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adriano Geraldo
- Department of Animal Science, Federal Institute of Minas Gerais, Bambuí 38900-000, MG, Brazil
| | - Carla Oliveira Resende
- Department of Animal Science, Federal University of Lavras, Lavras 37202-203, MG, Brazil
| | | |
Collapse
|
2
|
Al Amaz S, Mishra B. Embryonic thermal manipulation: a potential strategy to mitigate heat stress in broiler chickens for sustainable poultry production. J Anim Sci Biotechnol 2024; 15:75. [PMID: 38831417 PMCID: PMC11149204 DOI: 10.1186/s40104-024-01028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 06/05/2024] Open
Abstract
Due to high environmental temperatures and climate change, heat stress is a severe concern for poultry health and production, increasing the propensity for food insecurity. With climate change causing higher temperatures and erratic weather patterns in recent years, poultry are increasingly vulnerable to this environmental stressor. To mitigate heat stress, nutritional, genetic, and managerial strategies have been implemented with some success. However, these strategies did not adequately and sustainably reduce the heat stress. Therefore, it is crucial to take proactive measures to mitigate the effects of heat stress on poultry, ensuring optimal production and promoting poultry well-being. Embryonic thermal manipulation (TM) involves manipulating the embryonic environment's temperature to enhance broilers' thermotolerance and growth performance. One of the most significant benefits of this approach is its cost-effectiveness and saving time associated with traditional management practices. Given its numerous advantages, embryonic TM is a promising strategy for enhancing broiler production and profitability in the poultry industry. TM increases the standard incubation temperature in the mid or late embryonic stage to induce epigenetic thermal adaption and embryonic metabolism. Therefore, this review aims to summarize the available literature and scientific evidence of the beneficial effect of pre-hatch thermal manipulation on broiler health and performance.
Collapse
Affiliation(s)
- Sadid Al Amaz
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA.
| |
Collapse
|
3
|
Lai S, Wei P, Wang A, Tang R, Zheng Y, Yang J, Rao K. Protective effects of ferulic acid on embryonic development by improving antioxidant function in broilers embryo of thermal manipulation. J Therm Biol 2024; 122:103878. [PMID: 38852486 DOI: 10.1016/j.jtherbio.2024.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/15/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
This study aimed to elucidate the effects of broiler embryos soaked in ferulic acid (FA) solution on alleviating the negative impact of thermal manipulation (TM) on chicken embryo development and to provide a theoretical and experimental basis for applying TM and FA in the poultry feeding industry. A total of 120 broiler fertilized eggs were randomly divided into three groups: control group, TM group, and comprehensive group (TM + FA), with 40 eggs in each group. The TM group and the comprehensive group from the 7th embryonic age to the 16th embryonic age received TM for ten days, treated with a temperature of 39.5 °C and relative humidity of 65% for 18 h a day. In the comprehensive group, broiler embryos were immersed in FA solution at a concentration of 80 mg/L for 6 min at 16:00 every day from the 6th to the 8th embryo age. They were incubated continuously after being soaked until the chicks hatched. The results showed that the rates of dead embryos and weak chicks in the TM group were significantly higher than those in the control group and comprehensive group. Chick body temperatures of the TM group and comprehensive group were significantly lower than those of the control group. The heart weights of the TM group and comprehensive group were significantly lower than those of the control group, and the leg weights of the TM group were significantly decreased compared with those of the control group and comprehensive group. The SOD activity of serum in the comprehensive group was significantly higher than that in the control group and TM group, while the CAT activity of serum in the comprehensive group and control group was significantly higher than that in the TM group; however, there was no difference between the comprehensive group and control group. The activities of SOD and CAT in the liver were significantly higher than those of the TM group; however, the MDA content of the liver in the comprehensive group and control group was significantly lower than that of the TM group. The gene expression of Nrf2 and SOD in the comprehensive group and TM group was significantly higher than that in the control group; however, there was no significant difference between the comprehensive group and TM group. Soaking broiler embryonic eggs in an FA solution can improve the antioxidant capacity of the liver by upregulating Nrf2-Keap1 signal pathway-related gene expression. FA can effectively alleviate the side effects of TM on chicken embryos and does not impact the effects of TM.
Collapse
Affiliation(s)
- Shixiong Lai
- College of Animal and Veterinary Sciences, Southwest Minzu University; Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, 610041, PR China.
| | - Panqi Wei
- College of Animal and Veterinary Sciences, Southwest Minzu University; Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, 610041, PR China.
| | - Ailin Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University; Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, 610041, PR China.
| | - Runzi Tang
- College of Animal and Veterinary Sciences, Southwest Minzu University; Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, 610041, PR China.
| | - Yucai Zheng
- College of Animal and Veterinary Sciences, Southwest Minzu University; Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, 610041, PR China.
| | - Jia Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University; Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, 610041, PR China.
| | - Kaiqing Rao
- College of Animal and Veterinary Sciences, Southwest Minzu University; Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, 610041, PR China.
| |
Collapse
|
4
|
Amaz SA, Shahid MAH, Chaudhary A, Jha R, Mishra B. Embryonic thermal manipulation reduces hatch time, increases hatchability, thermotolerance, and liver metabolism in broiler embryos. Poult Sci 2024; 103:103527. [PMID: 38412748 PMCID: PMC10907853 DOI: 10.1016/j.psj.2024.103527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024] Open
Abstract
The broilers' health and growth performance are affected by egg quality, incubation conditions, and posthatch management. Broilers are more susceptible to heat stress because they have poor thermoregulatory capacity. So, it is crucial to develop a strategy to make chicks thermotolerant and cope with heat stress in post-hatch life. This study investigated the effects of embryonic thermal manipulation (TM) on different hatching parameters (hatch time, hatchability, and hatch weight), brain thermotolerance, and liver metabolism. Six hundred fertile Cobb 500 eggs were incubated for 21 d. After candling on embryonic day (ED) 10, 238 eggs were thermally manipulated at 38.5°C with 55% relative humidity (RH) from ED 12 to 18, then transferred to the hatcher (ED 19-21, standard temperature, 37.5°C) and 236 eggs were incubated at a standard temperature (37.5°C) till hatch. The samples were collected from the Control and TM groups on ED 15 and 18 of the embryonic periods. Hatchability was significantly higher (P < 0.05) in the TM group (94.50%) than in the control group (91.0%). Hatch weight did not differ significantly between the TM group (50.54 g) and the Control group (50.39 g). Most importantly, hatch time was significantly lower (P < 0.05) in the TM group than in the Control. In the D15 embryo brain, the mRNA expression of TRPV1,TRPV2, TRPV3, and the epigenetic marker H3K27 were significantly lower (P < 0.05) in the TM group compared to the Control group. However, in the D18 brain, the expression of TRPV1, TRPV2, and CRHR1 was significantly higher (P < 0.05) in the TM group than in the Control group. In the liver, the mRNA expression of SLC6A14 was significantly lower (P < 0.05) in the D15 TM group than in the D15 Control group. Conversely, the DIO3 mRNA expression was significantly higher (P < 0.05) in the D15 TM group than in the D15 Control group. The expression of GPX3, FOXO1, IGF2, and GHR in the liver was significantly higher in the D18 TM group compared to the D18 Control group (P < 0.05). In conclusion, increased expression of the aforementioned markers during the later embryonic period has been linked to reduced hatch time by increasing liver metabolism and thermotolerance capacity in the brain.
Collapse
Affiliation(s)
- Sadid Al Amaz
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Md Ahosanul Haque Shahid
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Ajay Chaudhary
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, 96822.
| |
Collapse
|
5
|
Yousefi J, Taherpour K, Ghasemi HA, Akbari Gharaei M, Mohammadi Y, Rostami F. Effects of emulsifier, betaine, and L-carnitine on growth performance, immune response, gut morphology, and nutrient digestibility in broiler chickens exposed to cyclic heat stress. Br Poult Sci 2023:1-14. [PMID: 36607291 DOI: 10.1080/00071668.2022.2160626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. This experiment investigated the efficacy of varying doses of an emulsifier blend (EB; 0 and 1 g/kg of diet), betaine (BT; 0 and 1 g/kg of diet) and L-carnitine (CT; 0 and 0.5 g/kg of diet) in broilers subjected to circular heat stress (HS) conditions. A total of 1080 one-day-old male broiler chickens (Ross 308) were randomly assigned to one of nine treatment groups (six pens/treatment with 20 birds/pen) according to a completely randomised design. The thermoneutral control broiler chickens were housed at a comfortable temperature and fed a standard diet (no additives). The other eight groups were exposed to cyclic HS conditions (34°C) for 8 h (10:00-18:00).2. There were EB × BT × CT interactions for body weight (BW) at 24 d (P = 0.038) and average daily gain (ADG) during the 10-24 d period (P = 0.049), with the greatest values found with concurrent supplementation of three supplements.3. Inclusion of EB resulted in greater (P < 0.05) BW, ADG, European performance index, uniformity rate, primary antibody titres against sheep red blood cells (SRBC), duodenal villus height (VH) and villus surface area, digestible energy (DE) and the coefficient of apparent ileal digestibility (CAID) of dry matter, crude protein, and fat However, feed conversion ratio, mortality rate and heterophile to lymphocyte ratio were lower (P < 0.05).4. Dietary BT supplementation improved (P < 0.05) all performance indicators, primary antibody titres against SRBC and Newcastle disease virus, serum total antioxidant capacity, duodenal VH, Jejunal VH/crypt depth and the CAID of dry matter and crude protein. The effect of dietary supplementation with CT was limited to an increase (P < 0.05) in ADG (d 10-24) and a decrease (P < 0.05) in serum malondialdehyde concentration (42 d) and jejunal crypt depth (42 d).5. In conclusion, dietary supplementation of either EB or BT alone or in combination ameliorated some of the detrimental effects of HS on growth performance, immunity and intestinal health in broilers, while a minor positive effect on performance and antioxidant status was observed with CT supplementation.
Collapse
Affiliation(s)
- J Yousefi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - K Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - H A Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, Iran
| | - M Akbari Gharaei
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Y Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - F Rostami
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| |
Collapse
|
6
|
Ramiah SK, Balakrishnan KN, Subramaniam Y, Iyasere OS, Idrus Z. Effects of Thermal Manipulation on mRNA Regulation of Response Genes Regarding Improvement of Thermotolerance Adaptation in Chickens during Embryogenesis. Animals (Basel) 2022; 12:ani12233354. [PMID: 36496875 PMCID: PMC9737942 DOI: 10.3390/ani12233354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
The phenomenon of increasing heat stress (HS) among animals is of particular significance when it is seen in economically significant industries, such as poultry. Due to the identification of the physiological, molecular, and genetic roots of HS responses in chickens, a substantial number of studies have focused on reducing the effects of HS in poultry through environmental management, dietary manipulation, and genetic alterations. Temperature manipulation (TM) during embryogenesis has been claimed to increase the thermal tolerance and well-being of chickens without affecting their capacity for future growth. There has been little investigation into the vulnerability of the epigenome involving TM during embryogenesis, although the cellular pathways activated by HS have been explored in chickens. Epigenetic changes caused by prenatal TM enhance postnatal temperature adaption and produce physiological memory. This work offers a thorough analysis that explains the cumulative impact of HS response genes, such as genes related to heat shock proteins, antioxidants, and immunological genes, which may aid in the enhanced adaptability of chickens that have undergone thermal manipulation during their embryonic stages.
Collapse
Affiliation(s)
- Suriya Kumari Ramiah
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: (S.K.R.); (K.N.B.); Tel.: +60-3-9769-4286 (S.K.R.)
| | - Krishnan Nair Balakrishnan
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: (S.K.R.); (K.N.B.); Tel.: +60-3-9769-4286 (S.K.R.)
| | - Yashini Subramaniam
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Oluwaseun Serah Iyasere
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta P.M.B 2240, Nigeria
| | - Zulkifli Idrus
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| |
Collapse
|
7
|
Yousefi J, Taherpour K, Ghasemi HA, Akbari Gharaei M, Mohammadi Y, Rostami F. RETRACTED ARTICLE: Effects of emulsifier, betaine, and L-carnitine on growth performance, immune response, gut morphology, and nutrient digestibility in broiler chickens exposed to cyclic heat stress. Br Poult Sci 2022. [PMID: 36103130 DOI: 10.1080/00071668.2022.2124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1. This experiment investigated the efficiency of varying doses of an emulsifier blend (EB; 0 and 1 g/kg of diet), betaine (BT; 0 and 1 g/kg of diet) and L-carnitine (CT; 0 and 0.5 g/kg of diet) in broilers subjected to circular heat stress (HS) conditions.2. A total of 1080 one-day-old male broiler chickens (Ross 308) were randomly assigned to nine treatment groups (six pens/treatment with 20 birds/pen) in a completely randomised design. The thermoneutral control broiler chickens were housed at a comfortable temperature and fed a standard diet (no additives). The other 8 groups were exposed to cyclic HS conditions (34°C) for 8 h (10:00-18:00).3. There were EB × BT × CT interactions for body weight (BW) at 24 d (P=0.038) and average daily gain (ADG) during the 10-24 d period (P=0.049), with the greatest values with concurrent supplementation of all three ingredients.4. Inclusion of EB resulted in greater (P<0.05) BW, ADG, European performance index, uniformity rate, primary antibody titres against sheep red blood cells (SRBC), duodenal villus height (VH) and villus surface area, nitrogen-corrected apparent metabolisable energy (AMEn) and apparent ileal digestibility (AID) of dry matter, crude protein and fat, but lower (P<0.05) feed conversion ratio, mortality rate and heterophile to lymphocyte ratio.5. Dietary BT supplementation improved (P<0.05) overall performance indicators, primary antibody titres against SRBC and Newcastle disease virus, serum total antioxidant capacity, duodenal VH, Jejunal VH/crypt depth, AID of dry matter and crude protein. The effect of dietary supplementation with CT was limited to an increase (P<0.05) in ADG (d 10-24) and a decrease (P<0.05) in serum malondialdehyde concentration (42 d) and jejunal crypt depth (42 d).6. In conclusion, dietary supplementation of either EB or BT alone or in combination can ameliorate some of the detrimental effects of HS on growth performance, immunity and intestinal health in broilers, while a minor positive effect on performance and antioxidant status was observed with CT supplementation.
Collapse
Affiliation(s)
- Jalal Yousefi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran
| | | | - Yahya Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Farhad Rostami
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| |
Collapse
|