1
|
Wang D, Xie A, Luo J, Li L, Zhang Z, Deng W, Yang B, Chang Y, Liang Y. Thiotaurine inhibits melanoma progression by enhancing Ca 2+ overload-induced cellular apoptosis. J Dermatol Sci 2025; 118:29-37. [PMID: 40189970 DOI: 10.1016/j.jdermsci.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Melanoma is the most dangerous type of skin cancer with poor therapy outcomes. Since malignant cells are more susceptible to Ca2+ overload than normal cells, activating Ca2+ overload-mediated apoptosis may be a promising strategy to inhibit melanoma progression. Hydrogen sulfide (H2S) donors can regulate Ca2+ channels, but their effects on melanoma cells remain unclear. OBJECTIVE To explore the effects of Thiotaurine (TTAU), an H2S donor, on melanoma cells and its underlying mechanisms. METHODS We tested the effect of TTAU by culturing melanoma cells in vitro and establishing the xenograft model of mice in vivo. Cell proliferation and apoptosis were assessed using the CCK-8 test and flow cytometry. Molecules involved in apoptosis or Ca2+-related signal transduction were analyzed by western blotting. Immunofluorescence was used to measure Ca2+ levels, mitochondrial damage, and reactive oxygen species (ROS). RESULTS TTAU significantly reduced melanoma cell viability and induced apoptosis both in vitro and in vivo. Mechanistically, TTAU increased intracellular Ca2+, upregulated transient receptor potential vanilloid 1(TRPV1), and decreased activating transcription factor 3(ATF3) by nuclear factor of activated T cell cytoplasmic 1(NFATc1). TTAU also caused mitochondrial damage and ROS overproduction, which also promoted apoptosis. CONCLUSION We first elucidate that TTAU inhibits melanoma progression by activating Ca2+ influx-NFATc1-ATF3 signaling and aggravating mitochondrial oxidative stress, in which TRPV1 may act as an amplifier for Ca2+ influx. Our research is expected to provide new ideas for the treatment of tumors such as melanoma, as well as the clinical application of reactive sulfur species-based drugs.
Collapse
Affiliation(s)
- Di Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ansheng Xie
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jialiang Luo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lei Li
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiwen Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Deng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Chang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yunsheng Liang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Munteanu C, Galaction AI, Onose G, Turnea M, Rotariu M. Hydrogen Sulfide (H 2S- or H 2S n-Polysulfides) in Synaptic Plasticity: Modulation of NMDA Receptors and Neurotransmitter Release in Learning and Memory. Int J Mol Sci 2025; 26:3131. [PMID: 40243915 PMCID: PMC11988931 DOI: 10.3390/ijms26073131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Hydrogen sulfide (H2S) has emerged as a pivotal gaseous transmitter in the central nervous system, influencing synaptic plasticity, learning, and memory by modulating various molecular pathways. This review examines recent evidence regarding how H2S regulates NMDA receptor function and neurotransmitter release in neuronal circuits. By synthesizing findings from animal and cellular models, we investigate the impacts of enzymatic H2S production and exogenous H2S on excitatory synaptic currents, long-term potentiation, and intracellular calcium signaling. Data suggest that H2S interacts directly with NMDA receptor subunits, altering receptor function and modulating neuronal excitability. Simultaneously, H2S promotes the release of neurotransmitters such as glutamate and GABA, shaping synaptic dynamics and plasticity. Furthermore, reports indicate that disruptions in H2S metabolism contribute to cognitive impairments and neurodegenerative disorders, underscoring the potential therapeutic value of targeting H2S-mediated pathways. Although the precise mechanisms of H2S-induced changes in synaptic strength remain elusive, a growing body of evidence positions H2S as a significant regulator of memory formation processes. This review calls for more rigorous exploration into the molecular underpinnings of H2S in synaptic plasticity, paving the way for novel pharmacological interventions in cognitive dysfunction.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| |
Collapse
|
3
|
Hou B, Cai W, Zhang S, Xu A, Wen Y, Wang Y, Zhu X, Wang F, Pan L, Qiu L, Sun H. Sustained-Release H 2S Nanospheres Regulate the Inflammatory Microenvironment of Wounds, Promote Angiogenesis and Collagen Deposition, and Accelerate Diabetic Wound Healing. ACS APPLIED BIO MATERIALS 2025; 8:2519-2534. [PMID: 39966083 DOI: 10.1021/acsabm.4c01955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Diabetic wounds are blocked in the inflammatory stage, growth factors are degraded, and blood vessels are difficult to regenerate, leading to continuous necrosis and nonhealing of the wound. Hydrogen sulfide (H2S) plays an important role in the pathophysiological process of wound healing and has a long history of treating skin diseases. Although the sulfide salt solution is the preferred donor of exogenous H2S, its rapid release rate, excess production, and difficulty in accurately controlling the dose limit its use. Herein, we developed H2S sustained-release nanospheres NaHS@MS@LP for the treatment of diabetic wounds. NaHS@MS@LP nanosphere was composed of a NaHS-loaded mesoporous silicon core and a DSPE-PEG liposome outer membrane. When NaHS@MS@LP nanospheres were used to treat the wound of diabetic rats, mesoporous silicon was delivered into the cells and the loaded NaHS slowly released H2S through hydrolysis, participating in all stages of wound healing. In conclusion, NaHS@MS@LP nanospheres regulated the inflammatory microenvironment of wound skin by inducing the transformation of macrophages into M2 type and promoted angiogenesis and collagen deposition to accelerate wound healing in diabetic rats. Our findings provide strategies for the treatment of chronic wounds, including but not limited to diabetic wounds.
Collapse
Affiliation(s)
- Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Shijie Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Anjing Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Wen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yutong Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xuexue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Fangming Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214125, China
| | - Lin Pan
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
4
|
Yuan Z, Zhang W, Wang C, Zhang C, Hu C, Liu L, Xiang L, Yao S, Shi R, Fan D, Ren B, Luo G, Deng J. A microenvironment-adaptive GelMA-ODex@RRHD hydrogel for responsive release of H 2S in promoted chronic diabetic wound repair. Regen Biomater 2024; 12:rbae134. [PMID: 39776857 PMCID: PMC11703554 DOI: 10.1093/rb/rbae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic diabetic wounds present significant treatment challenges due to their complex microenvironment, often leading to suboptimal healing outcomes. Hydrogen sulfide (H2S), a crucial gaseous signaling molecule, has shown great potential in modulating inflammation, oxidative stress and extracellular matrix remodeling, which are essential for effective wound healing. However, conventional H2S delivery systems lack the adaptability required to meet the dynamic demands of different healing stages, thereby limiting their therapeutic efficacy. To address this, we developed an injectable, ROS-responsive H2S donor system integrated within a gelatin methacryloyl (GelMA) hydrogel matrix, forming a double-network hydrogel (GelMA-ODex@RRHD). The injectability of this hydrogel allows for minimally invasive application, conforming closely to wound contours and ensuring uniform distribution. The incorporation of oxidatively modified dextran derivatives (ODex) not only preserves biocompatibility but also enables the chemical attachment of ROS-responsive H2S donors. The GelMA-ODex@RRHD hydrogel releases H2S in response to oxidative stress, optimizing the environment for cell growth, modulating macrophage polarization and supporting vascular regeneration. This innovative material effectively suppresses inflammation during the initial phase, promotes tissue regeneration in the proliferative phase and facilitates controlled matrix remodeling in later stages, ultimately enhancing wound closure and functional recovery. The H2S released by GelMA-ODex@RRHD not only expedited the process of wound healing but also improved the biomechanical characteristics of newborn skin in diabetic mice, particularly in terms of stiffness and elasticity. This enhancement resulted in the skin quality being more similar to normal skin during the wound healing process. By aligning therapeutic delivery with the natural healing process, this approach offers a promising pathway toward more effective and personalized treatments for chronic diabetic wounds.
Collapse
Affiliation(s)
- Zhixian Yuan
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wei Zhang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chang Wang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chuwei Zhang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chao Hu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lu Liu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lunli Xiang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shun Yao
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rong Shi
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Breast Surgery, Gansu Provincial People's Hospital, Lanzhou, Gansu 730030, China
| | - Dejiang Fan
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Bibo Ren
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
5
|
Mandel RM, Lotlikar PS, Runčevski T, Lee JH, Woods JJ, Pitt TA, Wilson JJ, Milner PJ. Transdermal Hydrogen Sulfide Delivery Enabled by Open-Metal-Site Metal-Organic Frameworks. J Am Chem Soc 2024; 146:18927-18937. [PMID: 38968420 PMCID: PMC11323067 DOI: 10.1021/jacs.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Hydrogen sulfide (H2S) is an endogenously produced gasotransmitter involved in many physiological processes that are integral to proper cellular functioning. Due to its profound anti-inflammatory and antioxidant properties, H2S plays important roles in preventing inflammatory skin disorders and improving wound healing. Transdermal H2S delivery is a therapeutically viable option for the management of such disorders. However, current small-molecule H2S donors are not optimally suited for transdermal delivery and typically generate electrophilic byproducts that may lead to undesired toxicity. Here, we demonstrate that H2S release from metal-organic frameworks (MOFs) bearing coordinatively unsaturated metal centers is a promising alternative for controlled transdermal delivery of H2S. Gas sorption measurements and powder X-ray diffraction (PXRD) studies of 11 MOFs support that the Mg-based framework Mg2(dobdc) (dobdc4- = 2,5-dioxidobenzene-1,4-dicarboxylate) is uniquely well-suited for transdermal H2S delivery due to its strong yet reversible binding of H2S, high capacity (14.7 mmol/g at 1 bar and 25 °C), and lack of toxicity. In addition, Rietveld refinement of synchrotron PXRD data from H2S-dosed Mg2(dobdc) supports that the high H2S capacity of this framework arises due to the presence of three distinct binding sites. Last, we demonstrate that transdermal delivery of H2S from Mg2(dobdc) is sustained over a 24 h period through porcine skin. Not only is this significantly longer than sodium sulfide but this represents the first example of controlled transdermal delivery of pure H2S gas. Overall, H2S-loaded Mg2(dobdc) is an easily accessible, solid-state source of H2S, enabling safe storage and transdermal delivery of this therapeutically relevant gas.
Collapse
Affiliation(s)
- Ruth M. Mandel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Piyusha S. Lotlikar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Tomče Runčevski
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, United States
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Joshua J. Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
- Robert F. Smith School for Chemical and Biomedical Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Tristan A. Pitt
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| |
Collapse
|
6
|
Yang J, Dong X, Wei W, Liu K, Wu X, Dai H. An injectable hydrogel dressing for controlled release of hydrogen sulfide pleiotropically mediates the wound microenvironment. J Mater Chem B 2024; 12:5377-5390. [PMID: 38716615 DOI: 10.1039/d4tb00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The healing of scalded wounds faces many challenges such as chronic inflammation, oxidative stress, wound infection, and difficulties in vascular and nerve regeneration. Treating a single problem cannot effectively coordinate the complex regenerative microenvironment of scalded wounds, limiting the healing and functional recovery of the skin. Therefore, there is a need to develop a multi-effect treatment plan that can adaptively address the issues at each stage of wound healing. In this study, we propose a scheme for on-demand release of hydrogen sulfide (H2S) based on the concentration of reactive oxygen species (ROS) in the wound microenvironment. This is achieved by encapsulating peroxythiocarbamate (PTCM) in the ROS-responsive polymer poly(ethylene glycol)-poly(L-methionine) (PMet) to form nanoparticles, which are loaded into a thermosensitive injectable hydrogel, F127-poly(L-aspartic acid-N-hydroxysuccinimide) (F127-P(Asp-NHS)), to create a scald dressing. The H2S released by the hydrogel dressing on demand regulates the wound microenvironment by alleviating infection, reducing oxidative stress, and remodeling inflammation, thereby accelerating the healing of full-thickness scalded wounds. This hydrogel dressing for the adaptive release of H2S has great potential in addressing complex scalded wounds associated with infection and chronic inflammation.
Collapse
Affiliation(s)
- Junwei Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
- Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528400, China
| |
Collapse
|
7
|
Cao Y, Jiang Y, Bai R, Wu J, Dai L, Wan S, Zhu H, Su J, Liu M, Sun H. A multifunctional protein-based hydrogel with Au nanozyme-mediated self generation of H 2S for diabetic wound healing. Int J Biol Macromol 2024; 271:132560. [PMID: 38782332 DOI: 10.1016/j.ijbiomac.2024.132560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/01/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Diabetics usually suffer from chronic impaired wound healing due to facile infection, excessive inflammation, diabetic neuropathy, and peripheral vascular disease. Hence, the development of effective diabetic wound therapy remains a critical clinical challenge. Hydrogen sulfide (H2S) regulates inflammation, oxidative stress, and angiogenesis, suggesting a potential role in promoting diabetic wound healing. Herein, we propose a first example of fabricating an antibiotic-free antibacterial protein hydrogel with self-generation of H2S gas (H2S-Hydrogel) for diabetic wound healing by simply mixing bovine serum albumin‑gold nanoclusters (BSA-AuNCs) with Bis[tetrakis(hydroxymethyl)phosphonium] sulfate (THPS) at room temperature within a few minutes. In this process, the amino group in BAS and the aldehyde group in THPS are crossed together by Mannich reaction. At the same time, tris(hydroxymethyl) phosphorus (trivalent phosphorus) from THPS hydrolysis could reduce disulfide bonds in BSA to sulfhydryl groups, and then the sulfhydryl group generates H2S gas under the catalysis of BSA-AuNCs. THPS in H2S-Hydrogel can destroy bacterial biofilms, while H2S can inhibit oxidative stress, promote proliferation and migration of epidermal/endothelial cells, increase angiogenesis, and thus significantly increase wound closure. It would open a new perspective on the development of effective diabetic wound dressing.
Collapse
Affiliation(s)
- Yuyu Cao
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Yunjing Jiang
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Rongxian Bai
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Jie Wu
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Lei Dai
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Shufan Wan
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Hongda Zhu
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Jiangtao Su
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Mingxing Liu
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Hongmei Sun
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
8
|
He Z, Zhu Y, Ma H, Shen Q, Chen X, Wang X, Shao H, Wang Y, Yang S. Hydrogen sulfide regulates macrophage polarization and necroptosis to accelerate diabetic skin wound healing. Int Immunopharmacol 2024; 132:111990. [PMID: 38574702 DOI: 10.1016/j.intimp.2024.111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Hydrogen sulfide (H2S), recognized as the third gasotransmitter, plays a pivotal role in the pathophysiological processes of various diseases. Cystathionine γ-lyase (CSE) is the main enzyme for H2S production in the skin. However, effects and mechanisms of H2S in diabetic skin wound healing remain unclear. Our findings revealed a decrease in plasma H2S content in diabetic patients with skin wounds. CSE knockout (KO) diabetic mice resulted in delayed wound healing, reduced blood perfusion, and CD31 expression around the wounds. It also led to increased infiltration of inflammatory cells and M1-type macrophages, decreased collagen levels, α-smooth muscle actin (α-SMA), and proliferating cell nuclear antigen (PCNA) expression. Additionally, there were enhanced expressions of necroptosis related proteins, including receptor interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain like protein (MLKL). In comparison, sodium hydrosulfide (NaHS), H2S donor, accelerated skin wound healing in leptin receptor deficiency (db/db) mice. This acceleration was accompanied by increased blood perfusion and CD31 expression, reduced infiltration of inflammatory cells and M1-type macrophages, elevated collagen levels, α-SMA, and PCNA expressions, and decreased necroptosis-related protein expressions together with nuclear factor-κB (NF-κB) p65 phosphorylation. In conclusion, H2S regulates macrophage polarization and necroptosis, contributing to the acceleration of diabetic skin wound healing. These findings offer a novel strategy for the treatment of diabetic skin wounds.
Collapse
Affiliation(s)
- Ziying He
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yue Zhu
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Haojie Ma
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Qiyan Shen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xudong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hongmei Shao
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yuqin Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
9
|
MA YANAN, WANG SHANSHAN, DING HUIGUO. Bioinformatics analysis and experimental validation of cystathionine-gamma-lyase as a potential prognosis biomarker in hepatocellular carcinoma. BIOCELL 2024; 48:463-471. [DOI: 10.32604/biocell.2024.048244] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 04/17/2025]
|
10
|
Li L, Chen X, Liu C, He Z, Shen Q, Zhu Y, Wang X, Cao S, Yang S. Endogenous hydrogen sulphide deficiency and exogenous hydrogen sulphide supplement regulate skin fibroblasts proliferation via necroptosis. Exp Dermatol 2024; 33:e14972. [PMID: 37975594 DOI: 10.1111/exd.14972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
An excessive proliferation of skin fibroblasts usually results in different skin fibrotic diseases. Hydrogen sulphide (H2 S) is regarded as an important endogenous gasotransmitter with various functions. The study aimed to investigate the roles and mechanisms of H2 S on primary mice skin fibroblasts proliferation. Cell proliferation and collagen synthesis were assessed with the expression of α-smooth muscle actin (α-SMA), proliferating cell nuclear antigen (PCNA), Collagen I and Collagen III. The degree of oxidative stress was evaluated by dihydroethidium (DHE) and MitoSOX staining. Mitochondrial membrane potential (ΔΨm) was detected by JC-1 staining. Necroptosis was evaluated with TDT-mediated dUTP nick end labelling (TUNEL) and expression of receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL). The present study found that α-SMA, PCNA, Collagen I and Collagen III expression were increased, oxidative stress was promoted, ΔΨm was impaired and positive rate of TUNEL staining, RIPK1 and RIPK3 expression as well as MLKL phosphorylation were all enhanced in skin fibroblasts from cystathionine γ-lyase (CSE) knockout (KO) mice or transforming growth factor-β1 (TGF-β1, 10 ng/mL)-stimulated mice skin fibroblasts, which was restored by exogenous sodium hydrosulphide (NaHS, 50 μmol/L). In conclusion, endogenous H2 S production impairment in CSE-deficient mice accelerated skin fibroblasts proliferation via promoted necroptosis, which was attenuated by exogenous H2 S. Exogenous H2 S supplement alleviated proliferation of skin fibroblasts with TGF-β1 stimulation via necroptosis inhibition. This study provides evidence for H2 S as a candidate agent to prevent and treat skin fibrotic diseases.
Collapse
Affiliation(s)
- Ling Li
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First people's Hospital of Yancheng, Yancheng, China
| | - Xudong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chang Liu
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Ziying He
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Qiyan Shen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yue Zhu
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Shuanglin Cao
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
11
|
Zhu J, Miao C, Wang X. An ICT-PET Dual-Controlled Strategy for Improving Molecular Probe Sensitivity: Application to Photoactivatable Fluorescence Imaging and H2S Detection. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
Lu C, Li Y, Zhu W, Yang Y, Liu K, Li Q, Gao M. A Theranostic Probe for Promotion of Skin Wound Healing by Exudate-Triggered H 2S Release with Self-Monitoring Ability. ACS APPLIED BIO MATERIALS 2023; 6:674-680. [PMID: 36647570 DOI: 10.1021/acsabm.2c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hydrogen sulfide (H2S) as an endogenous gasotransmitter plays a critical role in promotion of wound healing. However, the current H2S release system lacks the in situ monitoring ability, which may lead to insufficient or overdose release of H2S and serious side effects. Herein, we develop a self-monitoring theranostic probe TPATCF-S, which can quickly release H2S under water stimuli associated with a self-monitoring ability by a color change from colorless to deep blue. With a full thickness dermal defect as a model, the TPATCF-S absorbed on alginate dressings can be used for wound exudate-responsive release of H2S to efficiently promote skin wound healing.
Collapse
Affiliation(s)
- Chao Lu
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Youzhen Li
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Wenchao Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yan Yang
- Foshan University, Foshan 528225, China
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qingtao Li
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
13
|
Wang D, Li S, Chen Y, Luo J, Li L, Wang B, Xu Y, Liang Y. Sodium thiosulfate inhibits epithelial-mesenchymal transition in melanoma via regulating the Wnt/β-catenin signaling pathway. J Dermatol Sci 2023; 109:89-98. [PMID: 36870927 DOI: 10.1016/j.jdermsci.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/03/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Melanoma is the most common form of skin cancer. Given its high metastasis and high recurrence, its therapies are constantly updated. OBJECTIVE The study aims to prove the efficacy of sodium thiosulfate (STS), an antidote to cyanide or nitroprusside poisoning, in melanoma treatment. METHODS We tested the effect of STS by culturing melanoma cells (B16 and A375) in vitro and establishing melanoma mouse models in vivo. The proliferation and viability of melanoma cells were measured by the CCK-8 test, cell cycle assay, apoptosis analysis, wound healing assay, and transwell migration assay. The expression of apoptosis-related molecules, epithelial-mesenchymal transition (EMT)-associated molecules, and the Wnt/β-catenin signaling pathway-related molecules were determined by Western blotting and immunofluorescence. RESULTS The high metastasis of melanoma is considered to be linked to the EMT process. The scratch assay using B16 and A375 cells also showed that STS could inhibit the EMT process of melanoma. We demonstrated that STS inhibited the proliferation, viability, and EMT process of melanoma by releasing H2S. STS-mediated weakening of cell migration was related to the inhibition of the Wnt/β-catenin signaling pathway. Mechanistically, we defined that STS inhibited the EMT process via the Wnt/β-catenin signaling pathway. CONCLUSIONS These results suggest that the negative effect of STS on melanoma development is mediated by the reduction of EMT via the regulation of the Wnt/β-catenin signaling pathway, which provides a new clue to treating melanoma.
Collapse
Affiliation(s)
- Di Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Shuheng Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yishan Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jialiang Luo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Li
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bocheng Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yingping Xu
- Experimental Research Center, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yunsheng Liang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Krizanova O, Penesova A, Sokol J, Hokynkova A, Samadian A, Babula P. Signaling pathways in cutaneous wound healing. Front Physiol 2022; 13:1030851. [PMID: 36505088 PMCID: PMC9732733 DOI: 10.3389/fphys.2022.1030851] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Wound healing is a very complex process, where variety of different pathways is activated, depending on the phase of healing. Improper or interrupted healing might result in development of chronic wounds. Therefore, novel approaches based on detailed knowledge of signalling pathways that are activated during acute or chronic cutaneous wound healing enables quicker and more effective healing. This review outlined new possibilities of cutaneous wound healing by modulation of some signalling molecules, e.g., gasotransmitters, or calcium. Special focus is given to gasotransmitters, since these bioactive signalling molecules that can freely diffuse into the cell and exert antioxidative effects. Calcium is an important booster of immune system and it can significantly contribute to healing process. Special interest is given to chronic wounds caused by diabetes mellitus and overcoming problems with the inflammation.
Collapse
Affiliation(s)
- Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center SAS, Bratislava, Slovakia,Department of Chemistry, Faculty of Natural Sciences, University of St. Cyril and Methodius, Trnava, Slovakia,Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Adela Penesova
- Institute of Clinical and Translational Research, Biomedical Research Center SAS, Bratislava, Slovakia
| | - Jozef Sokol
- Department of Chemistry, Faculty of Natural Sciences, University of St. Cyril and Methodius, Trnava, Slovakia
| | - Alica Hokynkova
- Department of Burns and Plastic Surgery, Faculty of Medicine, Masaryk University and University Hospital, Brno, Czechia
| | - Amir Samadian
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia,*Correspondence: Petr Babula,
| |
Collapse
|
15
|
Hydrogen Sulfide Suppresses Skin Fibroblast Proliferation via Oxidative Stress Alleviation and Necroptosis Inhibition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7434733. [PMID: 35774378 PMCID: PMC9239837 DOI: 10.1155/2022/7434733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Keloid is a common dermatofibrotic disease with excessive skin fibroblast proliferation. Hydrogen sulfide (H2S) as the third gasotransmitter improves fibrosis of various organs and tissues. Our study is aimed at investigating the effects and possible mechanisms of H2S on skin fibroblast proliferation. Scar tissues from six patients with keloid and discarded skin tissue from six normal control patients were collected after surgery, respectively. Plasma H2S content and skin H2S production in patients with keloid were measured. Keloid fibroblasts and transforming growth factor-β1- (TGF-β1, 10 ng/mL) stimulated normal skin fibroblasts were pretreated with H2S donor as NaHS (50 μM) for 4 h. Cell migration after scratch was assessed. The expressions of α-smooth muscle actin (α-SMA), proliferating cell nuclear antigen (PCNA), collagen I, and collagen III were detected by immunofluorescence, real-time PCR, and/or Western blot. Intracellular superoxide anion and mitochondrial superoxide were evaluated by dihydroethidium (DHE) and MitoSOX staining, respectively. Mitochondrial membrane potential was detected by JC-1 staining. Apoptotic cells were detected by TDT-mediated dUTP nick end labeling (TUNEL). The expressions of receptor interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL) were measured by Western blot. We found that H2S production was impaired in both the plasma and skin of patients with keloid. In keloid fibroblasts and TGF-β1-stimulated normal skin fibroblasts, exogenous H2S supplementation suppressed the expressions of α-SMA, PCNA, collagen I, and collagen III, reduced intracellular superoxide anion and mitochondrial superoxide, improved the mitochondrial membrane potential, decreased the positive rate of TUNEL staining, and inhibited RIPK1 and RIPK3 expression as well as MLKL phosphorylation. Overall, H2S suppressed skin fibroblast proliferation via oxidative stress alleviation and necroptosis inhibition.
Collapse
|
16
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
17
|
Ni Q, Zhang P, Li Q, Han Z. Oxidative Stress and Gut Microbiome in Inflammatory Skin Diseases. Front Cell Dev Biol 2022; 10:849985. [PMID: 35321240 PMCID: PMC8937033 DOI: 10.3389/fcell.2022.849985] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress plays a dominant role in inflammatory skin diseases. Emerging evidence has shown that the close interaction occurred between oxidative stress and the gut microbiome. Overall, in this review, we have summarized the impact of oxidative stress and gut microbiome during the progression and treatment for inflammatory skin diseases, the interactions between gut dysbiosis and redox imbalance, and discussed the potential possible role of oxidative stress in the gut-skin axis. In addition, we have also elucidated the promising gut microbiome/redox-targeted therapeutic strategies for inflammatory skin diseases.
Collapse
Affiliation(s)
- Qingrong Ni
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Ping Zhang
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Qiang Li
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Zheyi Han
- Department of Gastroenterology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
- *Correspondence: Zheyi Han,
| |
Collapse
|
18
|
Pozzi G, Gobbi G, Masselli E, Carubbi C, Presta V, Ambrosini L, Vitale M, Mirandola P. Buffering Adaptive Immunity by Hydrogen Sulfide. Cells 2022; 11:cells11030325. [PMID: 35159135 PMCID: PMC8834412 DOI: 10.3390/cells11030325] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
T cell-mediated adaptive immunity is designed to respond to non-self antigens and pathogens through the activation and proliferation of various T cell populations. T helper 1 (Th1), Th2, Th17 and Treg cells finely orchestrate cellular responses through a plethora of paracrine and autocrine stimuli that include cytokines, autacoids, and hormones. Hydrogen sulfide (H2S) is one of these mediators able to induce/inhibit immunological responses, playing a role in inflammatory and autoimmune diseases, neurological disorders, asthma, acute pancreatitis, and sepsis. Both endogenous and exogenous H2S modulate numerous important cell signaling pathways. In monocytes, polymorphonuclear, and T cells H2S impacts on activation, survival, proliferation, polarization, adhesion pathways, and modulates cytokine production and sensitivity to chemokines. Here, we offer a comprehensive review on the role of H2S as a natural buffer able to maintain over time a functional balance between Th1, Th2, Th17 and Treg immunological responses.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Giuliana Gobbi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Elena Masselli
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Correspondence: (E.M.); (P.M.)
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Valentina Presta
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Luca Ambrosini
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Marco Vitale
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Italian Foundation for the Research in Balneology, Via Po 22, 00198 Rome, Italy
| | - Prisco Mirandola
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- Correspondence: (E.M.); (P.M.)
| |
Collapse
|
19
|
Tang Y, Zeng X, Feng Y, Chen Q, Liu Z, Luo H, Zha L, Yu Z. Association of Systemic Immune-Inflammation Index With Short-Term Mortality of Congestive Heart Failure: A Retrospective Cohort Study. Front Cardiovasc Med 2021; 8:753133. [PMID: 34869661 PMCID: PMC8632819 DOI: 10.3389/fcvm.2021.753133] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/26/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose: The present study aimed to clarify the potential predictive significance of Systemic immune-inflammation index (SII) in assessing the poor prognosis of critically ill patients with congestive heart failure (CHF). Methods: Detailed clinical data were extracted from the Multiparameter Intelligent Monitoring in Intensive Care III database after gaining access and building the local platform. The 30- and 90-day and hospital all-cause mortalities of the patient was the primary outcome, and the readmission rate and the occurrence of major cardiovascular adverse events (MACEs) were the secondary outcomes. the Cox proportional hazard model and Logistic regression analysis were selected to reveal the relationship between SII level and the research outcome. Further, the propensity score matching (PSM) analysis was performed to improve the reliability of results by reducing the imbalance across groups. Results: There were a total of 4,606 subjects who passed the screening process and entered the subsequent analysis. Multivariate regression analysis showed that after adjusting for possible confounders, including age, heart rate, and albumin, etc., the high level of SII was independently associated with 30- and 90-day and hospital mortalities (tertile 3 vs. tertile 1: HR, 95% CIs: 1.23, 1.04-1.45; 1.21, 1.06-1.39; 1.26, 1.05-1.50) and the incidence of MACEs (tertile 3 vs. tertile 1: OR, 95% CI: 1.39, 1.12-1.73) in critically ill patients with CHF, but no significant correlation was found between SII and the readmission rate. Consistently, patients with high SII level still presented a significantly higher short-term mortality than patients with low SII in the PSM subset. Conclusion: In critically ill patients with CHF, high level of SII could effectively predict high 30- and 90-day and hospital mortalities, as well as the high risk of occurrence of MACEs.
Collapse
Affiliation(s)
- Yiyang Tang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaofang Zeng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Yilu Feng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Chen
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenghui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Luo
- Department of Cardiovascular Medicine, the First Hospital of Changsha, Changsha, China
| | - Lihuang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Lihuang Zha
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders (Xiang Ya), Changsha, China,Zaixin Yu
| |
Collapse
|
20
|
Wang L, Xie X, Ke B, Huang W, Jiang X, He G. Recent advances on endogenous gasotransmitters in inflammatory dermatological disorders. J Adv Res 2021; 38:261-274. [PMID: 35572410 PMCID: PMC9091779 DOI: 10.1016/j.jare.2021.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Endogenous gasotransmitters nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and potential candidates sulfur dioxide (SO2), methane (CH4), hydrogen gas (H2), ammonia (NH3) and carbon dioxide (CO2), are generated within the human body. Endogenous and potential gasotransmitters regulate inflammation, vasodilation, and oxidation in inflammatory dermatological disorders. Endogenous and potential gasotransmitters play potential roles in psoriasis, atopic dermatitis, acne, and chronic skin ulcers. Further research should explore the function of these gases and gas donors and inhibitors in inflammatory dermatological disorders.
Background Endogenous gasotransmitters are small gaseous mediators that can be generated endogenously by mammalian organisms. The dysregulation of the gasotransmitter system is associated with numerous disorders ranging from inflammatory diseases to cancers. However, the relevance of these endogenous gasotransmitters, prodrug donors and inhibitors in inflammatory dermatological disorders has not yet been thoroughly reviewed and discussed. Aim of review This review discusses the recent progress and will provide perspectives on endogenous gasotransmitters in the context of inflammatory dermatological disorders. Key scientific concepts of review Endogenous gasotransmitters nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are signaling molecules that regulate several physiological and pathological processes. In addition, sulfur dioxide (SO₂), methane (CH4), hydrogen gas (H2), ammonia (NH3), and carbon dioxide (CO2) can also be generated endogenously and may take part in physiological and pathological processes. These signaling molecules regulate inflammation, vasodilation, and oxidative stress, offering therapeutic potential and attracting interest in the field of inflammatory dermatological disorders including psoriasis, atopic dermatitis, acne, rosacea, and chronic skin ulcers. The development of effective gas donors and inhibitors is a promising alternative to treat inflammatory dermatological disorders with controllable and precise delivery in the future.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bowen Ke
- Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| | - Wei Huang
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| |
Collapse
|