1
|
Zhang S, Hu W, Zhao Y, Liao Y, Zha K, Zhang W, Yu C, Liao J, Li H, Zhou W, Cao F, Mi B, Liu G. Bidirectional modulation of glycolysis using a multifunctional nanocomposite hydrogel promotes bone fracture healing in type 2 diabetes mellitus. Bioact Mater 2025; 50:152-170. [PMID: 40256330 PMCID: PMC12008547 DOI: 10.1016/j.bioactmat.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025] Open
Abstract
Fracture healing in patients with type 2 diabetes mellitus (T2D) is markedly impaired, characterized by a prolonged inflammation phase and defective osteoblast differentiation at the fracture site. In this study, we identified aberrant cellular glycolysis at T2D fracture sites, with bone marrow mesenchymal stem cells (BMSCs) exhibiting suppressed glycolysis and macrophages displaying enhanced glycolysis, mediated by the dysregulation of hypoxia-inducible factor-1α (HIF-1α). To rectify these metabolic imbalances, we developed a multifunctional nanocomposite PN@MHV hydrogel. Myricitrin, a flavonoid glycoside, forms the MHV hydrogel by cross-linking with HA-PBA and PVA via hydrogen bonds, and upregulates glycolysis through HIF-1α, thus promoting osteoblast differentiation under high glucose environment. To further regulate the inflammatory microenvironment, we incorporated nanoparticles loaded with PX-478, a HIF-1α specific inhibitor, into the hydrogel, with folic acid covalently modified to target proinflammatory M1 macrophages. This PN@MHV hydrogel bidirectionally regulated glycolysis via HIF-1α, enhancing osteoblast differentiation while attenuating macrophage-mediated inflammation. Comprehensive in vitro and in vivo experiments in a T2D fracture mouse model confirmed the hydrogel's ability to improve the inflammatory microenvironment and accelerate bone healing. Our findings underscore the therapeutic potential of targeting cellular glycolysis as a promising approach for enhancing fracture healing in diabetic patients.
Collapse
Affiliation(s)
- Shengming Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Weixian Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanzhi Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuheng Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chenyan Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiewen Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hui Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
2
|
Liu X, Liu Y, Gao Y, Zhang C, Gu C, Lv J, Wu J, Su W. Single-cell profiling unveils a geroprotective role of Procyanidin C1 in hematopoietic immune system via senolytic and senomorphic effects. NPJ AGING 2025; 11:31. [PMID: 40316527 PMCID: PMC12048486 DOI: 10.1038/s41514-025-00222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/10/2025] [Indexed: 05/04/2025]
Abstract
Aging of hematopoietic and immune system (HIS) leads to cellular senescence and immune dysregulation, contributing to age-related diseases. Here, we show that Procyanidin C1 (PCC1), a compound with both senolytic and senomorphic properties, can counteract aging-related changes in HIS. Using single-cell RNA sequencing and validation experiments, we found that aging induced cellular senescence, inflammation, and immune dysregulation in the bone marrow and spleen tissues of mice. Long-term PCC1 treatment improved key physiological parameters especially the grip strength of aged mice. Further single-cell analysis revealed PCC1's broad geroprotective effects on HIS, including an increase in the proportion of B cells (BCs) and hematopoietic stem cells (HSCs), suppression of senescence-associated markers, and restoration of normal immune processes. Specifically, PCC1 mitigated inflammation and restored immune homeostasis in BCs by suppressing Cebpb expression and age-associated BCs. Moreover, PCC1 reversed aging-induced alterations in HSCs through upregulating Nedd4 and CD62L-Ca2+ axis expression. Finally, we identified senescent cells (SnCs) using machine learning and gene set enrichment analysis, revealing that PCC1 induced apoptosis of SnCs and regulated their metabolic processes, particularly in granulocytes and myeloid cells. The experimental validation further confirmed the senolytic and senomorphic effects of PCC1 both in vivo and in vitro. Overall, PCC1 holds potential as a therapeutic agent for alleviating immune dysfunction and promoting healthy aging via senolytic and senomorphic effects.
Collapse
Affiliation(s)
- Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yidan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Chun Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jianjie Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Junying Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
3
|
Yang H, An Y, Meng J, Lv X. Fabrication of nano-ceria encapsulated with oleic acid to attenuate gestational diabetes mellitus in streptozotocin-induced diabetic pregnant mice model. J Microencapsul 2025:1-18. [PMID: 40230075 DOI: 10.1080/02652048.2024.2423629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/28/2024] [Indexed: 04/16/2025]
Abstract
AIM The study aims to fabricate and evaluate Nano-ceria encapsulated oleic acid (CeO2 NPs-OA) to treat gestational diabetes mellitus (GDM). METHODS The CeO2 NPs was synthesised by thermal decomposition. TEM, XRD, and FTIR confirms particles. In vitro studies on STZ-induced NIH 3T3 assessed antioxidant, anticancer, antidiabetic, and anti-inflammatory properties. In vivo studies were performed on pregnant mice induced with STZ, examined antidiabetic activity, oxidative stress, and dyslipidemia. RESULTS The CeO2 NPs-OA had a spherical structure and uniform distribution. A PDI of 0.5 with a zeta-potential of - 44 ± 2 mV. The DPPH and ABTS exhibit 40% and 39.21% antioxidant activity. The CeO2 NPs-OA inhibits diabetes at 500 μg/mL. The in vivo studies confirmed the reduction in oxidative stress by reducing MDA (p < 0.05). The histopathological analysis of the STZ-induced model shows capillary, which CeO2 NPs-OA reduced. CONCLUSION CeO2 NPs-OA shows promise for treating GDM and improving maternal and foetal health.
Collapse
Affiliation(s)
- Huili Yang
- Obstetrics Department, Central Hospital affiliated to Shandong First Medical University, Jinan City, PR China
| | - Yujun An
- Obstetrics Department, Central Hospital affiliated to Shandong First Medical University, Jinan City, PR China
| | - Juan Meng
- Obstetrics Department, Central Hospital affiliated to Shandong First Medical University, Jinan City, PR China
| | - Xiaomei Lv
- Obstetrics Department, Central Hospital affiliated to Shandong First Medical University, Jinan City, PR China
| |
Collapse
|
4
|
Yu X, Chen X, Wu W, Tang H, Su Y, Lian G, Zhang Y, Xie L. Zinc Alleviates Diabetic Muscle Atrophy via Modulation of the SIRT1/FoxO1 Autophagy Pathway Through GPR39. J Cachexia Sarcopenia Muscle 2025; 16:e13771. [PMID: 40026072 PMCID: PMC11873538 DOI: 10.1002/jcsm.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/14/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Muscle atrophy is a severe complication of diabetes, with autophagy playing a critical role in its progression. Zinc has been shown to alleviate hyperglycaemia and several diabetes-related complications, but its direct role in mediating diabetic muscle atrophy remains unclear. This study explores the potential role of zinc in the pathogenesis of diabetic muscle atrophy. METHODS In vivo, C57BL/6J mice were induced with diabetes by streptozotocin (STZ) and treated with ZnSO₄ (25 mg/kg/day) for six weeks. Gastrocnemius muscles were collected for histological analysis, including transmission electron microscopy (TEM). Serum zinc levels were measured by ICP-MS. Protein expression was evaluated using immunofluorescence (IF), immunohistochemistry (IHC) and Western blotting (WB). Bioinformatics analysis was used to identify key genes associated with muscle atrophy. In vitro, a high-glucose-induced diabetic C2C12 cell model was established and received ZnSO₄, rapamycin, SRT1720, TC-G-1008, or GPR39-CRISPR Cas9 intervention. Autophagy was observed by TEM, and protein expression was assessed by IF and WB. Intracellular zinc concentrations were measured using fluorescence resonance energy transfer (FRET). RESULTS In vivo, muscle atrophy, autophagy activation, and upregulation of SIRT1 and FoxO1, along with downregulation of GPR39, were confirmed in the T1D group. ZnSO₄ protected against muscle atrophy and inhibited autophagy (T1D + ZnSO₄ vs. T1D, all p < 0.0001), as evidenced by increased grip strength (212.40 ± 11.08 vs. 163.90 ± 10.95 gf), gastrocnemius muscle index (10.67 ± 0.44 vs. 8.80 ± 0.72 mg/g), muscle fibre cross-sectional area (978.20 ± 144.00 vs. 580.20 ± 103.30 μm2), and serum zinc levels (0.2335 ± 0.0227 vs. 0.1561 ± 0.0123 mg/L). ZnSO₄ down-regulated the expression of Atrogin-1 and MuRF1, and decreased the formation of autophagosomes in the gastrocnemius muscle of T1D mice (all p < 0.0001). RNA-seq analysis indicated activation of the SIRT1/FoxO1 signalling pathway in diabetic mice. ZnSO₄ down-regulated LC3B, SIRT1 and FoxO1, while upregulating P62 and GPR39 (all p < 0.05). In vitro, muscle atrophy, autophagy activation, and down-regulation of GPR39 were confirmed in the diabetic cell model (all p < 0.05). Both ZnSO₄ and TC-G-1008 down-regulated Atrogin-1, LC3B, SIRT1, and FoxO1, and up-regulated P62 and GPR39, inhibiting autophagy and improving muscle atrophy (all p < 0.05). The beneficial anti-atrophic effects of ZnSO₄ are diminished following treatment with SRT1720 or RAPA. Upon GPR39 knockout, SIRT1, FoxO1, and Atrogin-1 were upregulated, while P62 was downregulated. Intracellular zinc concentrations in ZnSO₄-treated group remained unchanged (p > 0.05), indicating that zinc supplementation did not affect zinc ion entry but acted through the cell surface receptor GPR39. CONCLUSION ZnSO4 inhibits excessive autophagy in skeletal muscle and alleviates muscle atrophy in diabetic mice via the GPR39-SIRT1/FoxO1 axis. These findings suggest that zinc supplementation may offer a potential therapeutic strategy for managing diabetic muscle atrophy.
Collapse
Affiliation(s)
- Xing Yu
- Department of GeriatricsThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Fujian Hypertension Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Branch of National Clinical Research Center for Aging and MedicineThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of GeriatricsNational Regional Medical CenterBinhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| | - Xiaojun Chen
- Department of GeriatricsThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Fujian Hypertension Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Branch of National Clinical Research Center for Aging and MedicineThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of GeriatricsNational Regional Medical CenterBinhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| | - Weibin Wu
- Department of GeriatricsThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Fujian Hypertension Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Branch of National Clinical Research Center for Aging and MedicineThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of GeriatricsNational Regional Medical CenterBinhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| | - Huibin Tang
- Department of GeriatricsThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Fujian Hypertension Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Branch of National Clinical Research Center for Aging and MedicineThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of GeriatricsNational Regional Medical CenterBinhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| | - Yunyun Su
- Department of GeriatricsThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Fujian Hypertension Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Branch of National Clinical Research Center for Aging and MedicineThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of GeriatricsNational Regional Medical CenterBinhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| | - Guili Lian
- Department of GeriatricsThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Fujian Hypertension Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Branch of National Clinical Research Center for Aging and MedicineThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of GeriatricsNational Regional Medical CenterBinhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| | - Yujie Zhang
- Department of GeriatricsThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Fujian Hypertension Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Liangdi Xie
- Department of GeriatricsThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Fujian Hypertension Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Branch of National Clinical Research Center for Aging and MedicineThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of GeriatricsNational Regional Medical CenterBinhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
5
|
Sha Y, Huang L, Zhang L, Hou X, Mo C, Pan C, Chen G, Luo S, Ou M. SUGAR-seq reveals the transcriptome and N-linked glycosylation landscape of mononuclear phagocytes at single-cell resolution in a mouse model of autosomal dominant osteopetrosis type 2. BMC Biol 2025; 23:91. [PMID: 40165215 PMCID: PMC11959739 DOI: 10.1186/s12915-025-02193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/14/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Heterozygous mutation of CLCN7 (R286W) is commonly found in patients with benign autosomal dominant osteopetrosis. However, there is no evidence from animal models to confirm that it is a disease mutation. And the characteristics of the bone marrow cell (BMC) landscape in osteopetrosis at the single-cell level are completely unknown till now. RESULTS In this study, we generated the first autosomal dominant osteopetrosis type 2 (ADO2) mouse model with typical phenotypes carried a mutation Clcn7 (r284w) corresponding to CLCN7 (R286W) observed in human patients using gene editing technology. And then, we conducted the first-ever single-cell analysis of the RNA expression and N-linked glycosylation profiles for the mouse BMCs by SUrface-protein Glycan And RNA-sequencing (SUGAR-seq). We identified 14 distinct cell types and similar proportion of neutrophils in both ADO2 and wild type mice, confirmed by flow cytometry analysis. The N-linked glycosylation modifications of BMCs were significantly downregulated detecting by SUGAR-seq, which was similar to the situation of N-Glycan profiling by the 4D Label-Free N-Glycosylation Proteomics Analysis. Particularly noteworthy is the heterogeneity of classic monocytes. We identified six cell subtypes, but only two cell subtypes were found with different proportion of cell, whose different expressed genes were associated with NF-κB-inducing kinase / Nuclear Factor-kappa B (NIK/NF-κB) signaling and other pathway associated with osteoclast differentiation. CONCLUSIONS Our murine model confirms that the human CLCN7 (R286W) is a pathogenic mutation for ADO2. Additionally, our single-cell analyses reveal the heterogeneity of monocytes in ADO2, and the abnormal glycosylation modifications across various subtypes may represent important events in the pathogenesis of osteopetrosis.
Collapse
Affiliation(s)
- Yu Sha
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Lingyu Huang
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Lei Zhang
- The Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Xianliang Hou
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Chune Mo
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Cuiping Pan
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Gengshuo Chen
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Sha Luo
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Minglin Ou
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
- Key Laboratory of Medical Biotechnology and Translational Medicine (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541199, China.
| |
Collapse
|
6
|
Lou J, Zhang B, Cai J, Zhang L, Zhao Y, Zhao Z. Diabetes exacerbates periodontitis by disrupting IL-33-mediated interaction between periodontal ligament fibroblasts and macrophages. Int Immunopharmacol 2025; 147:113896. [PMID: 39740505 DOI: 10.1016/j.intimp.2024.113896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
Tissue-resident fibroblasts with immunomodulatory properties have recently been identified as key players in inflammation. However, their roles within the periodontal niche in diabetes-associated periodontitis remain unclear. Interleukin (IL)-33, known as an "alarmin" in inflammatory responses, has recently emerged as a potential contributor to periodontitis. Herein, we show that IL-33 levels are reduced in periodontal ligament fibroblasts (PDLFs) in the in vivo models of diabetes-associated periodontitis and in vitro models of diabetic inflammation. In the in vitro co-culture model, overexpression of IL-33 in PDLFs promotes M2 macrophage polarization, while knockdown of IL-33 in PDLFs instigates M1 macrophage polarization. Notably, supplementation with IL-33 in vivosignificantly alleviates periodontal tissue destruction and enhances M2 macrophage infiltration, whereas targeting the IL-33/ST2 axis exacerbates tissue damage and promotes M1 macrophage polarization in diabetes-associated periodontitis. Additionally, theCUT&RUN assay confirms the direct regulation of IL-33 by Yes-associated protein (YAP). These findings demonstrate that IL-33 deficiency in PDLFs favors M1 macrophage polarization, thereby exacerbating the pathogenesis of diabetes-associated periodontitis. Our study underscores the essential immunomodulatory role of PDLFs in creating an inflammatory niche and unveils a novel interaction axis between PDLFs and macrophages in diabetes-associated periodontitis.
Collapse
Affiliation(s)
- Jingyang Lou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingyi Cai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Linli Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yifan Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Fan YP, Lou JS, Wei ZQ, Zhou CH, Shen HH, Wei ZY, Mao XJ, Hong L, Qian J, Jin MR, Wu JS. Schlafen5, regulated by the AP-1 family transcription factor c-Fos, affects diabetic wound healing through modulating PI3K/Akt/NRF2 axis. Int J Biol Macromol 2024; 283:137805. [PMID: 39566766 DOI: 10.1016/j.ijbiomac.2024.137805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/10/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Diabetic ulcers (DUs) present significant physical and psychological challenges to patients, while placing a significant economic burden on healthcare systems. Promoting the blood vessel regeneration is critical for ensuring the delivery of essential nutrients and oxygen to the injured area, thereby supporting the healing process. To gain insight into the complex molecular mechanisms that drive DUs healing, we performed a comprehensive analysis of single-cell transcriptomic data from healing and non-healing DU states. This analysis revealed a key role of Schlafen5 (SLFN5) signal in modulating key healing processes. SLFN5, a protein known to regulate cellular processes like migration, invasion, inflammation, and cell death, emerged as an important player. Yet, although it is prominent, the specific function of SLFN5 in diabetic skin wounds remained unclear. Our study discovered a marked elevation of SLFN5 levels in endothelial cells within DUs and its suppression notably mitigates the oxidative stress and endoplasmic reticulum stress (ERS)-mediated cell death pathways, including pyroptosis and apoptosis. This finding implies that excessive SLFN5 activity might obstruct wound closure by intensifying cellular stress reactions. Upon further investigation, we found that the antioxidant and cytoprotective effects were mediated through enhanced NRF2 activity, facilitated by the PI3K/Akt signaling pathway. Moreover, our investigation identified that c-Fos as a pivotal transcription factor governing SLFN5 transcription during the development of DUs, offering valuable insights into the regulation of SLFN5 expression. In diabetic mice model, SLFN5 knockdown accelerating wound healing, which was intervened by PI3K/Akt inhibitor. These results hold significant therapeutic potential, indicating that targeting SLFN5 may represent a novel and effective strategy for improving wound healing outcomes in patients with DUs.
Collapse
Affiliation(s)
- Yun-Peng Fan
- Department of Orthopaedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Jun-Sheng Lou
- Department of Orthopaedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Zhuo-Qun Wei
- Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Cong-Hui Zhou
- Department of Orthopaedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Hong-Hao Shen
- Department of Orthopaedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zi-Yao Wei
- Department of Orthopaedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Xing-Jia Mao
- Department of Basic Medicine Sciences, Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Lue Hong
- Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Jin Qian
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China.
| | - Meng-Ran Jin
- Department of Orthopaedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Jun-Song Wu
- Department of Orthopaedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
8
|
Chen T, Zhou Z, Liu Y, Xu J, Zhu C, Sun R, Hu H, Liu Y, Dai L, Holmdahl R, Herrmann M, Zhang L, Muñoz LE, Meng L, Zhao Y. Neutrophils with low production of reactive oxygen species are activated during immune priming and promote development of arthritis. Redox Biol 2024; 78:103401. [PMID: 39471640 PMCID: PMC11550370 DOI: 10.1016/j.redox.2024.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease mediated by immune cell dysfunction for which there is no universally effective prevention and treatment strategy. As primary effector cells, neutrophils are important in the inflammatory joint attack during the development of RA. Here, we used single-cell sequencing technology to thoroughly analyze the phenotypic characteristics of bone marrow-derived neutrophils in type II collagen (COL2)-induced arthritis (CIA) models, including mice primed and boosted with COL2. We identified a subpopulation of neutrophils with high expression of neutrophil cytoplasmic factor 1 (NCF1) in primed mice, accompanied by a characteristic reactive oxygen species (ROS) response, and a decrease in Ncf1 expression in boosted mice with the onset of arthritis. Furthermore, we found that after ROS reduction, arthritis occurred in primed mice but was attenuated in boosted mice. This bidirectional effect of ROS suggested a protective role of ROS during immune priming. Mechanistically, we combined functional assays and metabolomics identifying Ncf1-deficient neutrophils with enhanced migration, chemotactic receptor CXCR2 expression, inflammatory cytokine secretion, and Th1/Th17 differentiation. This alteration was mainly due to the metabolic reprogramming of Ncf1-deficient neutrophils from an energy supply pathway dominated by gluconeogenesis to an inflammatory immune pathway associated with the metabolism of histidine, glycine, serine, and threonine signaling, which in turn induced arthritis. In conclusion, we have systematically identified the functional and inflammatory phenotypic characteristics of neutrophils under ROS regulation, which provides a theoretical basis for understanding the pathogenesis of RA, to further improve prevention strategies and identify novel therapeutic targets.
Collapse
MESH Headings
- Animals
- Neutrophils/immunology
- Neutrophils/metabolism
- Reactive Oxygen Species/metabolism
- Mice
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/genetics
- Receptors, Interleukin-8B/metabolism
- Receptors, Interleukin-8B/genetics
- Male
- NADPH Oxidases/metabolism
- NADPH Oxidases/genetics
- Disease Models, Animal
- Collagen Type II/metabolism
- Collagen Type II/immunology
Collapse
Affiliation(s)
- Tao Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Zhen Zhou
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jiayi Xu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Chenxi Zhu
- Frontiers Science Center for Disease-related Molecular Network, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Rui Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Huifang Hu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Yan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Lunzhi Dai
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Rikard Holmdahl
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Lulu Zhang
- College of Foreign Languages and Cultures, Sichuan University, 610064, Chengdu, Sichuan, China
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany.
| | - Liesu Meng
- Department of Rheumatology, and National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Li Y, Wu A, Jin X, Shen H, Zhao C, Yi X, Nie H, Wang M, Yin S, Zuo H, Ju Z, Jiang Z, Wang H. DDO1002, an NRF2-KEAP1 inhibitor, improves hematopoietic stem cell aging and stress response. LIFE MEDICINE 2024; 3:lnae043. [PMID: 39872153 PMCID: PMC11748272 DOI: 10.1093/lifemedi/lnae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025]
Abstract
Oxidative stress diminishes the functionality of hematopoietic stem cells (HSCs) as age advances, with heightened reactive oxygen species (ROS) levels exacerbating DNA damage, cellular senescence, and hematopoietic impairment. DDO1002, a potent inhibitor of the NRF2-KEAP1 pathway, modulates the expression of antioxidant genes. Yet, the extent to which it mitigates hematopoietic decline post-total body irradiation (TBI) or in the context of aging remains to be elucidated. Our study has elucidated the role of DDO1002 in modulating NRF2 activity, which, in turn, activates the NRF2-driven antioxidant response element (ARE) signaling cascade. This activation can diminish intracellular levels of ROS, thereby attenuating cellular senescence. In addition, DDO1002 has been demonstrated to ameliorate DNA damage and avert HSC apoptosis, underscoring its potential to mitigate hematopoietic injury precipitated by TBI. Competitive transplantation assay revealed that the administration of DDO1002 can improve the reconstitution and self-renewal capacity of HSCs in aged mice. Single-cell sequencing analysis elucidated that DDO1002 treatment attenuated intracellular inflammatory signaling pathways and mitigated ROS pathway in aged HSCs, suggesting its potential to restore the viability of these cells. Consequently, DDO1002 effectively activated the NRF2-ARE pathway, delaying cellular senescence and ameliorating impaired hematopoiesis, thereby demonstrating its potential as a therapeutic agent for age-related hematopoietic disorders.
Collapse
Affiliation(s)
- Yuwen Li
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Aiwei Wu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinrong Jin
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Haiping Shen
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenyan Zhao
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao Yi
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Hui Nie
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingwei Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Shouchun Yin
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Hongna Zuo
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenyu Ju
- MOE Key Laboratory of Regenerative Medicine, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Zhenyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hu Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Wu Z, Hou Q, Chi H, Liu J, Mei Y, Chen T, Yang K, Zheng J, Xu J, Wei F, Wang L. Single-cell RNA sequencing reveals a distinct profile of bone immune microenvironment and decreased osteoclast differentiation in type 2 diabetic mice. Genes Dis 2024; 11:101145. [PMID: 39281831 PMCID: PMC11399629 DOI: 10.1016/j.gendis.2023.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/07/2023] [Accepted: 09/16/2023] [Indexed: 09/18/2024] Open
Abstract
The pathogenic effects of type 2 diabetes on bone tissue are gaining attention, but the cellular and molecular mechanisms underlying osteoimmunology are still unclear in diabetes-related bone diseases. We delineated the single-cell transcriptome of bone marrow cells from both wide type and type 2 diabetes mice, which provided the first detailed global profile of bone marrow cells and revealed a distinct bone immune microenvironment at the genetic level under type 2 diabetic condition. It was observed that osteoclast activity was inhibited due to a dysregulated cytokine network, which ultimately led to decreased osteoclast formation and differentiation. In type 2 diabetes mice, a specific C d 36 + cluster (cluster 18, monocytes/macrophages 2) was identified as the precursor of osteoclasts with diminished differentiation potential. AP-1 was demonstrated to be the key transcription factor in the underlying mechanism.
Collapse
Affiliation(s)
- Zimei Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qiaodan Hou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Heng Chi
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jihong Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Yixin Mei
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tingting Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kunkun Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jingna Zheng
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jing Xu
- Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Fuxin Wei
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Lin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| |
Collapse
|
11
|
Mótyán JA, Tőzsér J. The human retroviral-like aspartic protease 1 (ASPRV1): From in vitro studies to clinical correlations. J Biol Chem 2024; 300:107634. [PMID: 39098535 PMCID: PMC11402058 DOI: 10.1016/j.jbc.2024.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024] Open
Abstract
The human retroviral-like aspartic protease 1 (ASPRV1) is a retroviral-like protein that was first identified in the skin due to its expression in the stratum granulosum layer of the epidermis. Accordingly, it is also referred to as skin-specific aspartic protease. Similar to the retroviral polyproteins, the full-length ASPRV1 also undergoes self-proteolysis, the processing of the precursor is necessary for the autoactivation of the protease domain. ASPRV1's functions are well-established at the level of the skin: it is part of the epidermal proteolytic network and has a significant contribution to skin moisturization via the limited proteolysis of filaggrin; it is only natural protein substrate identified so far. Filaggrin and ASPRV1 are also specific for mammalians, these proteins provide unique features for the skins of these species, and the importance of filaggrin processing in hydration is proved by the fact that some ASPRV1 mutations are associated with skin diseases such as ichthyosis. ASPRV1 was also found to be expressed in macrophage-like neutrophil cells, indicating that its functions are not limited to the skin. In addition, differential expression of ASPRV1 was detected in many diseases, with yet unknown significance. The currently known enzymatic characteristics-that had been revealed mainly by in vitro studies-and correlations with pathogenic phenotypes imply potentially important functions in multiple cell types, which makes the protein a promising target of functional studies. In this review we describe the currently available knowledge and future perspective in regard to ASPRV1.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Mulenge F, Gern OL, Busker LM, Aringo A, Ghita L, Waltl I, Pavlou A, Kalinke U. Transcriptomic analysis unveils bona fide molecular signatures of microglia under conditions of homeostasis and viral encephalitis. J Neuroinflammation 2024; 21:203. [PMID: 39153993 PMCID: PMC11330067 DOI: 10.1186/s12974-024-03197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Microglia serve as a front-line defense against neuroinvasive viral infection, however, determination of their actual transcriptional profiles under conditions of health and disease is challenging. Here, we used various experimental approaches to delineate the transcriptional landscape of microglia during viral infection. Intriguingly, multiple activation genes were found to be artificially induced in sorted microglia and we demonstrated that shear stress encountered during cell sorting was one of the key inducers. Post-hoc analysis revealed that publicly available large-scale single-cell RNA sequencing datasets were significantly tainted by aberrant signatures that are associated with cell sorting. By exploiting the ribosomal tagging approach, we developed a strategy to enrich microglia-specific transcripts by comparing immunoprecipitated RNA with total RNA. Such enriched transcripts were instrumental in defining bona fide signatures of microglia under conditions of health and virus infection. These unified microglial signatures may serve as a benchmark to retrospectively assess ex vivo artefacts from available atlases. Leveraging the microglial translatome, we found enrichment of genes implicated in T-cell activation and cytokine production during the course of VSV infection. These data linked microglia with T-cell re-stimulation and further underscored that microglia are involved in shaping antiviral T-cell responses in the brain. Collectively, our study defines the transcriptional landscape of microglia under steady state and during viral encephalitis and highlights cellular interactions between microglia and T cells that contribute to the control of virus dissemination.
Collapse
Affiliation(s)
- Felix Mulenge
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Olivia Luise Gern
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Lena Mareike Busker
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, 30559, Foundation, Hannover, Germany
| | - Angela Aringo
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Luca Ghita
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
- , Genentech, South San Francisco, CA, 94080, USA
| | - Inken Waltl
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
13
|
Tang X, Zhang Y, Zhang H, Zhang N, Dai Z, Cheng Q, Li Y. Single-Cell Sequencing: High-Resolution Analysis of Cellular Heterogeneity in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:376-400. [PMID: 39186216 DOI: 10.1007/s12016-024-09001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
Autoimmune diseases (AIDs) are complex in etiology and diverse in classification but clinically show similar symptoms such as joint pain and skin problems. As a result, the diagnosis is challenging, and usually, only broad treatments can be available. Consequently, the clinical responses in patients with different types of AIDs are unsatisfactory. Therefore, it is necessary to conduct more research to figure out the pathogenesis and therapeutic targets of AIDs. This requires research technologies with strong extraction and prediction capabilities. Single-cell sequencing technology analyses the genomic, epigenomic, or transcriptomic information at the single-cell level. It can define different cell types and states in greater detail, further revealing the molecular mechanisms that drive disease progression. These advantages enable cell biology research to achieve an unprecedented resolution and scale, bringing a whole new vision to life science research. In recent years, single-cell technology especially single-cell RNA sequencing (scRNA-seq) has been widely used in various disease research. In this paper, we present the innovations and applications of single-cell sequencing in the medical field and focus on the application contributing to the differential diagnosis and precise treatment of AIDs. Despite some limitations, single-cell sequencing has a wide range of applications in AIDs. We finally present a prospect for the development of single-cell sequencing. These ideas may provide some inspiration for subsequent research.
Collapse
Affiliation(s)
- Xuening Tang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
14
|
Yang H, Luo J, Liu X, Luo Y, Lai X, Zou F. Unveiling cell subpopulations in T1D mouse islets using single-cell RNA sequencing. Am J Physiol Endocrinol Metab 2024; 326:E723-E734. [PMID: 38506753 PMCID: PMC11376805 DOI: 10.1152/ajpendo.00323.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of beta cells by immune cells. The interactions among cells within the islets may be closely linked to the pathogenesis of T1D. In this study, we used single-cell RNA sequencing (scRNA-Seq) to analyze the cellular heterogeneity within the islets of a T1D mouse model. We established a T1D mouse model induced by streptozotocin and identified cell subpopulations using scRNA-Seq technology. Our results revealed 11 major cell types in the pancreatic islets of T1D mice, with heterogeneity observed in the alpha and beta cell subgroups, which may play a crucial role in the progression of T1D. Flow cytometry further confirmed a mature alpha and beta cell reduction in T1D mice. Overall, our scRNA-Seq analysis provided insights into the cellular heterogeneity of T1D islet tissue and highlighted the potential importance of alpha and beta cells in developing T1D.NEW & NOTEWORTHY In this study, we created a comprehensive single-cell atlas of pancreatic islets in a T1D mouse model using scRNA-Seq and identified 11 major cell types in the islets, highlighting the role of alpha and beta cells in T1D. This study revealed a significant reduction in the maturity alpha and beta cells in T1D mice through flow cytometry. It also demonstrated the heterogeneity of alpha and beta cells, potentially crucial for T1D progression. Overall, our scRNA-Seq analysis provided new insights for understanding and treating T1D by studying cell subtype changes and functions.
Collapse
Affiliation(s)
- Huan Yang
- Department of Endocrinology, Jiujiang University Affiliated Hospital, Jiujiang, People's Republic of China
| | - Junming Luo
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xuyang Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yue Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xiaoyang Lai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
15
|
Lin Y, Zhang Y, Cai X, He H, Yang C, Ban J, Guo B. Design and Self-Assembly of Peptide-Copolymer Conjugates into Nanoparticle Hydrogel for Wound Healing in Diabetes. Int J Nanomedicine 2024; 19:2487-2506. [PMID: 38486937 PMCID: PMC10938256 DOI: 10.2147/ijn.s452915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
Background Delayed wound healing in skin injuries has become a significant problem in clinics, seriously affecting and even threatening life and health. Recently, research interest has increased in developing wound dressings containing bioactive compounds capable of improving outcomes for complex healing needs. Methods In this study, Puerarin-loaded nanoparticles (Pue-NPs) were prepared using the cell-penetrating peptide-poly (lactic-co-glycolic acid) (CPP-PLGA) as a drug carrier by the emulsified solvent evaporation method. Then, they were added into poly (acrylic acid) to obtain a self-assembled nanocomposite hydrogels (SANHs) drug delivery system using the co-polymerization method. The particle size, zeta potential, and micromorphology of Pue-NPs were measured; the appearance, mechanical properties, adhesive strength, and biological activity of SANHs were performed. Finally, the potential of SANHs for wound healing was further evaluated in streptozotocin-induced diabetic mice. Results Pue-NPs were regularly spherical, with an average particle size of 134.57 ± 1.42 nm and a zeta potential of 2.14 ± 0.78 mV. SANHs was colorless and transparent with a honeycomb-like porous structure and had an excellent swelling ratio (917%), water vapor transmission rate (3077 g·m-2·day-1), mechanical properties (Young's modulus of 18 kPa, elongation at break of 307%), and adhesive strength (15.5 kPa). SANHs exhibited sustained release of Pue over 48h, with a cumulative release of 55.60 ± 6.01%. In vitro tests revealed that the SANHs presented a 92.22% antibacterial rate against Escherichia coli after 4h, and a 61.91% scavenging rate of 1.1-diphenyl-2-trinitrophenylhydrazine (DPPH) radical. In vivo experiments showed that SANHs accelerated wound repair by reducing the inflammatory response at the wound site, promoting angiogenesis, and facilitating epidermal regeneration and collagen deposition. Conclusion In conclusion, we successfully prepared SANHs. Our results show that SANHs have excellent performance and improves wound healing in diabetic mice model, indicating that it can be used to develop an effective strategy for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yiling Lin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yingneng Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xia Cai
- Guangdong Institute for Drug Control, Guangzhou, People’s Republic of China
| | - Huashen He
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Chuangzan Yang
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Junfeng Ban
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Bohong Guo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
16
|
Ma Y, Lin Q, Yang W, Liu Y, Xing Y, Ren Z, Wang X, Zhou R, Wu G, Li P, Duan W, Zhang X, Wei X. High-Speed Centrifugation Efficiently Removes Immunogenic Elements in Osteochondral Allografts. Orthop Surg 2024; 16:675-686. [PMID: 38238250 PMCID: PMC10925494 DOI: 10.1111/os.13991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 03/12/2024] Open
Abstract
OBJECTIVES The current clinical pulse lavage technique for flushing fresh osteochondral allografts (OCAs) to remove immunogenic elements from the subchondral bone is ineffective. This study aimed to identify the optimal method for removing immunogenic elements from OCAs. METHODS We examined five methods for the physical removal of immunogenic elements from OCAs from the femoral condyle of porcine knees. We distributed the OCAs randomly into the following seven groups: (1) control, (2) saline, (3) ultrasound, (4) vortex vibration (VV), (5) low-pulse lavage (LPL), (6) high-pulse lavage (HPL), and (7) high-speed centrifugation (HSC). OCAs were evaluated using weight measurement, micro-computed tomography (micro-CT), macroscopic and histological evaluation, DNA quantification, and chondrocyte activity testing. Additionally, the subchondral bone was zoned to assess the bone marrow and nucleated cell contents. One-way ANOVA and paired two-tailed Student's t-test are used for statistical analysis. RESULTS Histological evaluation and DNA quantification showed no significant reduction in marrow elements compared to the control group after the OCAs were treated with saline, ultrasound, or VV treatments; however, there was a significant reduction in marrow elements after LPL, HPL, and HSC treatments. Furthermore, HSC more effectively reduced the marrow elements of OCAs in the middle and deep zones compared with LPL (p < 0.0001) and HPL (p < 0.0001). Macroscopic evaluation revealed a significant reduction in blood, lipid, and marrow elements in the subchondral bone after HSC. Micro-CT, histological analyses, and chondrocyte viability results showed that HSC did not damage the subchondral bone and cartilage; however, LPL and HPL may damage the subchondral bone. CONCLUSION HSC may play an important role in decreasing immunogenicity and therefore potentially increasing the success of OCA transplantation.
Collapse
Affiliation(s)
- Yongsheng Ma
- Department of OrthopaedicsSecond Hospital of Shanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Bone and Soft Tissue Injury RepairTaiyuanChina
| | - Qitai Lin
- Department of OrthopaedicsSecond Hospital of Shanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Bone and Soft Tissue Injury RepairTaiyuanChina
| | - Wenming Yang
- Department of OrthopaedicsSecond Hospital of Shanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Bone and Soft Tissue Injury RepairTaiyuanChina
| | - Yang Liu
- Department of OrthopaedicsSecond Hospital of Shanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Bone and Soft Tissue Injury RepairTaiyuanChina
| | - Yugang Xing
- Department of OrthopaedicsSecond Hospital of Shanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Bone and Soft Tissue Injury RepairTaiyuanChina
| | - Zhiyuan Ren
- Department of OrthopaedicsSecond Hospital of Shanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Bone and Soft Tissue Injury RepairTaiyuanChina
| | - Xueding Wang
- Department of OrthopaedicsSecond Hospital of Shanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Bone and Soft Tissue Injury RepairTaiyuanChina
| | - Raorao Zhou
- Department of OrthopaedicsSecond Hospital of Shanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Bone and Soft Tissue Injury RepairTaiyuanChina
| | - Gaige Wu
- Department of OrthopaedicsSecond Hospital of Shanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Bone and Soft Tissue Injury RepairTaiyuanChina
| | - Pengcui Li
- Department of OrthopaedicsSecond Hospital of Shanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Bone and Soft Tissue Injury RepairTaiyuanChina
| | - Wangping Duan
- Department of OrthopaedicsSecond Hospital of Shanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Bone and Soft Tissue Injury RepairTaiyuanChina
| | - Xiaoling Zhang
- Department of Orthopedic SurgeryXin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaochun Wei
- Department of OrthopaedicsSecond Hospital of Shanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Bone and Soft Tissue Injury RepairTaiyuanChina
| |
Collapse
|
17
|
Wang YH, Chen X, Bai YZ, Gao P, Yang Z, Guo Q, Lu YY, Zheng J, Liu D, Yang J, Tu PF, Zeng KW. Palmitoylation of PKCδ by ZDHHC5 in hypothalamic microglia presents as a therapeutic target for fatty liver disease. Theranostics 2024; 14:988-1009. [PMID: 38250049 PMCID: PMC10797291 DOI: 10.7150/thno.89602] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
The hypothalamus plays a fundamental role in controlling lipid metabolism through neuroendocrine signals. However, there are currently no available drug targets in the hypothalamus that can effectively improve human lipid metabolism. In this study, we found that the antimalarial drug artemether (ART) significantly improved lipid metabolism by specifically inhibiting microglial activation in the hypothalamus of high-fat diet-induced mice. Mechanically, ART protects the thyrotropin-releasing hormone (TRH) neurons surrounding microglial cells from inflammatory damage and promotes the release of TRH into the peripheral circulation. As a result, TRH stimulates the synthesis of thyroid hormone (TH), leading to a significant improvement in hepatic lipid disorders. Subsequently, we employed a biotin-labeled ART chemical probe to identify the direct cellular target in microglial cells as protein kinase Cδ (PKCδ). Importantly, ART directly targeted PKCδ to inhibit its palmitoylation modification by blocking the binding of zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5), which resulted in the inhibition of downstream neuroinflammation signaling. In vivo, hypothalamic microglia-specific PKCδ knockdown markedly impaired ART-dependent neuroendocrine regulation and lipid metabolism improvement in mice. Furthermore, single-cell transcriptomics analysis in human brain tissues revealed that the level of PKCδ in microglia positively correlated with individuals who had hyperlipemia, thereby highlighting a clinical translational value. Collectively, these data suggest that the palmitoylation of microglial PKCδ in the hypothalamus plays a role in modulating peripheral lipid metabolism through hypothalamus-liver communication, and provides a promising therapeutic target for fatty liver diseases.
Collapse
Affiliation(s)
- Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
| | - Yi-Zhen Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peng Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying-Yuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiao Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
18
|
Peng X, Rao G, Li X, Tong N, Tian Y, Fu X. Preclinical models for Type 1 Diabetes Mellitus - A practical approach for research. Int J Med Sci 2023; 20:1644-1661. [PMID: 37859703 PMCID: PMC10583179 DOI: 10.7150/ijms.86566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Numerous preclinical models have been developed to advance biomedical research in type 1 diabetes mellitus (T1DM). They are essential for improving our knowledge of T1DM development and progression, allowing researchers to identify potential therapeutic targets and evaluate the effectiveness of new medications. A deeper comprehension of these models themselves is critical not only to determine the optimal strategies for their utilization but also to fully unlock their potential applications in both basic and translational research. Here, we will comprehensively summarize and discuss the applications, advantages, and limitations of the commonly used animal models for human T1DM and also overview the up-to-date human tissue bioengineering models for the investigation of T1DM. By combining these models with a better understanding of the pathophysiology of T1DM, we can enhance our insights into disease initiation and development, ultimately leading to improved therapeutic responses and outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianghui Fu
- Department of Endocrinology and Metabolism, Center for Diabetes Metabolism Research, Cancer Center West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Yang X, Hou X, Zhang J, Liu Z, Wang G. Research progress on the application of single-cell sequencing in autoimmune diseases. Genes Immun 2023; 24:220-235. [PMID: 37550409 DOI: 10.1038/s41435-023-00216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Autoimmune diseases (AIDs) are caused by immune tolerance deficiency or abnormal immune regulation, leading to damage to host organs. The complicated pathogenesis and varied clinical symptoms of AIDs pose great challenges in diagnosing and monitoring this disease. Regrettably, the etiological factors and pathogenesis of AIDs are still not completely understood. It is noteworthy that the development of single-cell RNA sequencing (scRNA-seq) technology provides a new tool for analyzing the transcriptome of AIDs. In this essay, we have summarized the development of scRNA-seq technology, and made a relatively systematic review of the current research progress of scRNA-seq technology in the field of AIDs, providing a reference to preferably understand the pathogenesis, diagnosis, and treatment of AIDs.
Collapse
Affiliation(s)
- Xueli Yang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| | - Junning Zhang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Zhenyu Liu
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Guangyu Wang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| |
Collapse
|