1
|
Kim Y, Mondal S, Shin H, Tak S, Doan VHM, Oh J, Kang HW. Advanced Precision Dual Photothermal and Photodynamic Therapy for Prostate Cancer Using PSMA-ICG-Conjugated Gold Nanorods. ACS Biomater Sci Eng 2025. [PMID: 40340375 DOI: 10.1021/acsbiomaterials.5c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Prostate cancer is the second most common cancer among men globally. In this study, we developed a prostate-cancer-targeted gold nanoparticle-based photothermal and photodynamic complex (GNR-ICG-FA@PSMA) to enhance the targeting efficiency of prostate cancer cells and simultaneously deliver photothermal therapy (PTT) and photodynamic therapy (PDT). For the in vitro tests, ROS assays, annexin V/PI staining, and MTT assays were conducted. In the in vivo tests, fluorescence and photoacoustic imaging systems were used to track the distribution of nanoparticles in animal models. Tumor tissues were analyzed post-treatment using Triphenyl tetrazolium chloride (TTC) staining, Hematoxylin and Eosin (HE) staining, and Immunohistochemistry (IHC) staining. The in vitro results showed that GNR-ICG with laser irradiation produced high levels of ROS, the highest rate of apoptosis, and the lowest cell viability. In the in vivo tests, tail-injected GNR-ICG-FA@PSMA reached the tumor within 9 h. During laser irradiation, GNRs increased the temperature (<50 °C), inducing necrosis, while ICGs generated ROS, leading to apoptosis. The results demonstrated that folic acid (FA) and PSMA antibodies improved prostate cancer-specific targeting. GNRs and ICGs contributed to the photothermal and photodynamic effects, respectively. This study confirms the potential of GNR-ICG-FA@PSMA for targeted photothermal and photodynamic therapy of prostate cancer.
Collapse
Affiliation(s)
- Yeongeun Kim
- Biomedical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sudip Mondal
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Korea
| | - Hwarang Shin
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Marine-integrated Biomedical Technology Center, Pukyong National University, Busan 48513, Korea
| | - Soonhyuk Tak
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Korea
| | - Junghwan Oh
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Korea
- Marine-integrated Biomedical Technology Center, Pukyong National University, Busan 48513, Korea
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Korea
| | - Hyun Wook Kang
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea
- Marine-integrated Biomedical Technology Center, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
2
|
Rout B, Janjal PA, Shewale RS, Peddinti V, Agnihotri TG, Gomte SS, Jain A. Harnessing the power of inorganic nanoparticles for the management of TNBC. Int J Pharm 2025; 672:125333. [PMID: 39933607 DOI: 10.1016/j.ijpharm.2025.125333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic form of breast cancer characterized by the absence of hormonal receptors with a poor prognosis and limited treatment options. Addressing this challenge has become an urgent priority, driving substantial scientific efforts in this area. In recent years, inorganic nanoparticles have emerged as promising agents for the therapeutic and diagnostic management of this malignancy. Their unique physicochemical properties such as exceptional stability, uniform size, ease of surface functionalization, and distinctive optical and magnetic characteristics have positioned them as highly attractive candidates for these applications. This review primarily focuses on the therapeutic and diagnostic applications of inorganic nanoparticles, summarizing key research findings that demonstrate their efficacy against TNBC. Additionally, it addresses the toxicological concerns associated with these nanoparticles and explores advanced strategies to mitigate their adverse effects, thereby improving their clinical utility. Finally, the review concludes with a concise discussion of the prospects of these nanoparticles in biomedicine.
Collapse
Affiliation(s)
- Biswajit Rout
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Prashant Ambadas Janjal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Rushikesh Sanjay Shewale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Vasu Peddinti
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India.
| |
Collapse
|
3
|
Shi L, Chen Z, Ou J, Liang E, Chen Z, Fu Q, Huang L, Cheng K. Pretheranostic agents with extraordinaryNIRF/photoacoustic imaging performanceand photothermal oncotherapy efficacy. Acta Pharm Sin B 2024; 14:5370-5381. [PMID: 39807319 PMCID: PMC11725032 DOI: 10.1016/j.apsb.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 01/16/2025] Open
Abstract
Cervical cancer, the most common gynecological malignancy, significantly and adversely affects women's physical health and well-being. Traditional surgical interventions and chemotherapy, while potentially effective, often entail serious side effects that have led to an urgent need for novel therapeutic methods. Photothermal therapy (PTT) has emerged as a promising approach due to its ability to minimize damage to healthy tissue. Connecting a biothiol detection group to PTT-sensitive molecules can improve tumor targeting and further minimize potential side effects. In this study, we developed a near-infrared fluorescence (NIRF)/photoacoustic (PA) dual-mode probe, S-NBD, which demonstrated robust PTT performance. This innovative probe is capable of activating NIRF/PA signals to enable the detection of biothiols with high emission wavelength (838 nm) and large Stokes shift (178 nm), allowing for in vivo monitoring of cancer cells. Additionally, the probe achieved an outstanding photothermal conversion efficiency of 67.1%. The application of laser irradiation (660 nm, 1.0 W/cm2, 5 min) was able to achieve complete tumor ablation without recurrence. In summary, this seminal study presents a pioneering NIRF/PA dual-mode dicyanoisophorone-based probe for biothiol imaging, incorporating features from PTT for the first time. This pioneering approach achieves the dual objectives of improving tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Liu Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou 510515, China
| | - Zhenzhou Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Jieyang Medical Research Center, Jieyang People’s Hospital, Jieyang 522000, China
| | - Jiaxin Ou
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - En Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiuyue Fu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Mondal S, Park S, Nguyen VT, Doan VHM, Choi J, Ly CD, Phan DT, Truong TT, Vo TH, Nguyen DT, Pal U, Lee B, Oh J. Precision Cancer Therapy Enabled Anti-Epidermal Growth Factor Receptor-Conjugated Manganese Core Phthalocyanine Bismuth Nanocomposite for Dual Imaging-Guided Breast Cancer Treatment. Biomater Res 2024; 2024:0092. [PMID: 39525484 PMCID: PMC11542904 DOI: 10.34133/bmr.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer remains a formidable global health challenge, demanding the exploration of innovative treatment modalities with minimized side effects. One promising avenue involves the synergistic integration of targeted photothermal/photodynamic therapy (PTT/PDT), utilizing specially designed functional nanomaterials for precise cancer diagnosis and treatment. This study introduces a composite biomaterial, anti-epidermal growth factor receptor-conjugated manganese core phthalocyanine bismuth (anti-EGFR-MPB), synthesized for precise cancer imaging and treatment. The biomaterial, synthesized via a solvothermal process, effectively treats and images breast cancer in mouse models. Its biomimetic design targets cancer cells precisely, with dual imaging for real-time monitoring. The biomimetic design of the composite enables precise targeting of cancer cells, whereas the dual imaging allows for real-time visualization and monitoring of the treatment. In vivo examinations confirm substantial damage to tumor tissues with no recurrence following 808-nm laser irradiation. The composite shows strong fluorescence/photoacoustic imaging (PAI) contrast, aiding malignancy detection. Biological assays and histological analyses confirmed the efficacy of the nanocomposite in inducing apoptosis in cancer cells. The integrated targeted dual image-guided phototherapy offered by this composite substantially enhances the precision and efficacy of cancer therapy, achieving an impressive photothermal efficiency of ~33.8%. Our findings demonstrate the utility of the anti-EGFR-MPB nanocomposite for both in vitro and in vivo photoacoustic image-guided PTT and PDT. The optimal treatment strategy for triple-negative breast cancer is found to be the use of 250 μg/ml of nanocomposite irradiated with 1.0 W/cm2 808-nm laser for 7 min.
Collapse
Affiliation(s)
- Sudip Mondal
- Digital Healthcare Research Center, Pukyong National University
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Van Tu Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior’s Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Cao Duong Ly
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Duc Tri Phan
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Thi Thuy Truong
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Tan Hung Vo
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Dinh Tuan Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Umapada Pal
- Institute of Physics, Autonomous University of Puebla, Puebla, Pue. 72570, Mexico
| | - Byeongil Lee
- Digital Healthcare Research Center, Pukyong National University
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Smart Gym-Based Translational Research Center for Active Senior’s Healthcare, Pukyong National University, Busan 48513, Republic of Korea
- Department of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Digital Healthcare Research Center, Pukyong National University
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Smart Gym-Based Translational Research Center for Active Senior’s Healthcare, Pukyong National University, Busan 48513, Republic of Korea
- Department of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
- Ohlabs Corp., Busan 48513, Republic of Korea
| |
Collapse
|
5
|
Truong TT, Mondal S, Doan VHM, Tak S, Choi J, Oh H, Nguyen TD, Misra M, Lee B, Oh J. Precision-engineered metal and metal-oxide nanoparticles for biomedical imaging and healthcare applications. Adv Colloid Interface Sci 2024; 332:103263. [PMID: 39121830 DOI: 10.1016/j.cis.2024.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The growing field of nanotechnology has witnessed numerous advancements over the past few years, particularly in the development of engineered nanoparticles. Compared with bulk materials, metal nanoparticles possess more favorable properties, such as increased chemical activity and toxicity, owing to their smaller size and larger surface area. Metal nanoparticles exhibit exceptional stability, specificity, sensitivity, and effectiveness, making them highly useful in the biomedical field. Metal nanoparticles are in high demand in biomedical nanotechnology, including Au, Ag, Pt, Cu, Zn, Co, Gd, Eu, and Er. These particles exhibit excellent physicochemical properties, including amenable functionalization, non-corrosiveness, and varying optical and electronic properties based on their size and shape. Metal nanoparticles can be modified with different targeting agents such as antibodies, liposomes, transferrin, folic acid, and carbohydrates. Thus, metal nanoparticles hold great promise for various biomedical applications such as photoacoustic imaging, magnetic resonance imaging, computed tomography (CT), photothermal, and photodynamic therapy (PDT). Despite their potential, safety considerations, and regulatory hurdles must be addressed for safe clinical applications. This review highlights advancements in metal nanoparticle surface engineering and explores their integration with emerging technologies such as bioimaging, cancer therapeutics and nanomedicine. By offering valuable insights, this comprehensive review offers a deep understanding of the potential of metal nanoparticles in biomedical research.
Collapse
Affiliation(s)
- Thi Thuy Truong
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Soonhyuk Tak
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Hanmin Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Tan Dung Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Mrinmoy Misra
- Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University, Jaipur, India
| | - Byeongil Lee
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
6
|
Kang M, Lee Y, Lee Y, Kim E, Jo J, Shin H, Choi J, Oh J, Yoon H, Kang HW. Wavelength-dependent photobiomodulation (PBM) for proliferation and angiogenesis of melanoma tumor in vitro and in vivo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112990. [PMID: 39032372 DOI: 10.1016/j.jphotobiol.2024.112990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Photobiomodulation (PBM) has widely been used to effectively treat complications associated with cancer treatment, including oral mucositis, radiation dermatitis, and surgical wounds. However, the safety of PBM against cancer still needs to be validated as the effects of PBM on cancer cells and their mechanisms are unclear. The current study investigated the wavelength-dependent PBM effects by examining four different laser wavelengths (405, 532, 635, and 808 nm) on B16F10 melanoma tumor cells. In vitro tests showed that PBM with 808 nm promoted both proliferation and migration of B16F10 cells. In vivo results demonstrated that PBM with 808 nm significantly increased the relative tumor volume and promoted angiogenesis with overexpression of VEGF and HIF-1α. In addition, PBM induced the phosphorylation of factors closely related to cancer cell proliferation and tumor growth and upregulated the related gene expression. The current result showed that compared to the other wavelengths, 808 nm yielded a significant tumor-stimulating effect the malignant melanoma cancer. Further studies will investigate the in-depth molecular mechanism of PBM on tumor stimulation in order to warrant the safety of PBM for clinical cancer treatment.
Collapse
Affiliation(s)
- Myungji Kang
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine-Integrated Biomedical Technology, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Yeachan Lee
- Center for Advanced Models for Translational Sciences and Therapeutics and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuri Lee
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Eunjung Kim
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Jihye Jo
- Research Center for Marine-Integrated Biomedical Technology, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare and Digital Healthcare Research Center, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Hwarang Shin
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine-Integrated Biomedical Technology, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare and Digital Healthcare Research Center, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Hongsup Yoon
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea.
| | - Hyun Wook Kang
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine-Integrated Biomedical Technology, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare and Digital Healthcare Research Center, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
7
|
Birhanu Hayilesilassie R, Gemta AB, Maremi FT, Getahun Kumela A, Gudishe K, Dana BD. Detection and photothermal inactivation of Gram-positive and Gram-negative bloodstream bacteria using photonic crystal biosensor and plasmonic core-shell. RSC Adv 2024; 14:11594-11603. [PMID: 38601705 PMCID: PMC11004602 DOI: 10.1039/d4ra01802h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Plasmonics and core-shell nanomaterials hold great potential to develop pharmaceuticals and medical equipment due to their eco-friendly and cost effective fabrication procedures. Despite these advancements, combating drug-resistant bacterial infections remains a global challenge. Therefore, this study aims to introduce a tailored theoretical framework for a one-dimensional (1D) photonic crystal biosensor (PCB) composed of (ZrO2/GaN)N/defect layer/(ZrO2/GaN)N, designed to detect Gram-positive and Gram-negative bloodstream bacteria employing the transfer matrix method (TMM). In addition, using the finite difference methods (FDM), the photothermal inactivation of bloodstream bacteria with plasmonic core-shell structures (FeO@AuBiS2) was explored using key factors such as light absorption, heat generation, and thermal diffusion. By incorporating six dielectric layers and contaminated blood into the proposed PCB, a maximum sensitivity of 562 nm per RIU was recorded, and using rod-shaped plasmonic core-shell structures, 5.8 nm-1 light absorption capacity and 152 K change in temperature were achieved. The maximum detection sensitivity, light absorption, heat conduction and heat convection capacity of the proposed 1D PCB and plasmonic core-shell show an effective approach to combating drug-resistant bacteria.
Collapse
Affiliation(s)
- Ruth Birhanu Hayilesilassie
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University P.O.Box 1888 Adama Ethiopia
| | - Abebe Belay Gemta
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University P.O.Box 1888 Adama Ethiopia
| | - Fekadu Tolessa Maremi
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University P.O.Box 1888 Adama Ethiopia
| | - Alemayehu Getahun Kumela
- Department of Applied Physics, College of Natural and Computational Sciences, Mekdela Amba University P.O.Box 032 Tullu Awulia Ethiopia
| | - Kusse Gudishe
- Department of Applied Physics, College of Natural and Computational Sciences, Jinka University Jinka Ethiopia
| | - Bereket Delga Dana
- Department of Applied Physics, College of Natural and Computational Sciences, Jinka University Jinka Ethiopia
| |
Collapse
|
8
|
Taheri-Ledari R, Ganjali F, Zarei-Shokat S, Dinmohammadi R, Asl FR, Emami A, Mojtabapour ZS, Rashvandi Z, Kashtiaray A, Jalali F, Maleki A. Plasmonic porous micro- and nano-materials based on Au/Ag nanostructures developed for photothermal cancer therapy: challenges in clinicalization. NANOSCALE ADVANCES 2023; 5:6768-6786. [PMID: 38059020 PMCID: PMC10696950 DOI: 10.1039/d3na00763d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Photothermal therapy (PTT) has developed in recent decades as a relatively safe method for the treatment of cancers. Recently, various species of gold and silver (Au and Ag) nanostructures have been developed and investigated to achieve PTT due to their highly localized surface plasmon resonance (LSPR) effect. Concisely, the collective oscillation of electrons on the surface of Au and Ag nanostructures upon exposure to a specific wavelength (depending on their size and shape) and further plasmonic resonance leads to the heating of the surface of these particles. Hence, porous species can be equipped with tiny plasmonic ingredients that add plasmonic properties to therapeutic cargoes. In this case, a precise review of the recent achievements is very important to figure out to what extent plasmonic photothermal therapy (PPTT) by Au/Ag-based plasmonic porous nanomedicines successfully treated cancers with satisfactory biosafety. Herein, we classify the various species of LSPR-active micro- and nano-materials. Moreover, the routes for the preparation of Ag/Au-plasmonic porous cargoes and related bench assessments are carefully reviewed. Finally, as the main aim of this study, principal requirements for the clinicalization of Ag/Au-plasmonic porous cargoes and their further challenges are discussed, which are critical for specialists in this field.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Reihane Dinmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Fereshteh Rasouli Asl
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Ali Emami
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Zahra Sadat Mojtabapour
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Zahra Rashvandi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| |
Collapse
|
9
|
Farzam OR, Mehran N, Bilan F, Aghajani E, Dabbaghipour R, Shahgoli GA, Baradaran B. Nanoparticles for imaging-guided photothermal therapy of colorectal cancer. Heliyon 2023; 9:e21334. [PMID: 37920521 PMCID: PMC10618772 DOI: 10.1016/j.heliyon.2023.e21334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies with a high mortality rate worldwide. While surgery, chemotherapy, and radiotherapy have shown some effectiveness in improving survival rates, they come with drawbacks such as side effects and harm to healthy tissues. The theranostic approach, which integrates the processes of cancer diagnosis and treatment, can minimize biological side effects. Photothermal therapy (PTT) is an emerging treatment method that usages light-sensitive agents to generate heat at the tumor site and induce thermal erosion. The development of nanotechnology for CRC treatment using imaging-guided PTT has garnered significant. Nanoparticles with suitable physical and chemical properties can enhance the efficiency of cancer diagnosis and PTT. This approach enables the monitoring of cancer treatment progress and safeguards healthy tissues. In this article, we concisely introduce the application of metal nanoparticles, polymeric nanoparticles, and carbon nanoparticles in imaging-guided PTT of colorectal cancer.
Collapse
Affiliation(s)
- Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloofar Mehran
- Clinical Research Development Unit, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Bilan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Aghajani
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Dabbaghipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Research Development Unit, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Kaur S, Dadwal R, Nandanwar H, Soni S. Limits of antibacterial activity of triangular silver nanoplates and photothermal enhancement thereof for Bacillus subtilis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 247:112787. [PMID: 37738748 DOI: 10.1016/j.jphotobiol.2023.112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/28/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Currently, nanoparticles are being actively explored for antimicrobial applications involving variety of pathogens. Bacillus subtilis is a major concern considering its sporulation and biofilm formation capability which involves high bacteria loadings. Also, there is natural ability of B subtilis to adapt and develop resistance to the silver nanoparticles alone. So, this study reports the limits of antibacterial activity of triangular silver nanoplates (∆AgNPs) and further photothermal enhancement for B. subtilis ATCC 6051 for considerably high bacterial load of 2.5 × 107 to 5 × 108 CFU/ml. Triangular silver nanoplates were synthesized using one pot synthesis method and showed significant photothermal response i.e., ∼36 °C temperature rise on near infrared irradiation as well as photothermal stability. Triangular silver nanoplates alone showed absolute destruction for 2.5 × 107 CFU/ml initial B. subtilis load in 5 min. Whereas, for further higher bacterial loads, the antibacterial efficacy of ∆AgNPs is observed to be insignificant. For higher initial bacterial loads of 5 × 107 CFU/ml and 5 × 108 CFU/ml, photothermally enhanced triangular silver nanoplates resulted in complete destruction of bacteria in about 5 and 10 min, respectively. Antibacterial efficacy and mechanism of the destruction assessed via scanning electron microscopy and LIVE/DEAD assay confirmed morphological deformities. Further the generation of higher levels of reactive oxygen species is also confirmed due to photothermal activation of ∆AgNPs. The study concludes that ∆AgNPs alone are effective only up to bacterial load of 2.5 × 107 CFU/ml. Whereas, for higher bacterial loads of B. subtilis, photothermally activated ∆AgNPs lead to irreversible damage due to multiple targeting mechanisms leading to absolute elimination in short span of 5-10 min for the chosen irradiation conditions. Ultimately, this study demonstrates photothermally enhanced silver nanoplates as a potential antimicrobial agent for considerably high bacterial loads of B. subtilis. Overall, the broader window of considered high bacterial loadings and its irradiation by this technique shows the full-proof nature of photothermal applications for scenarios involving high cell density such as biofilms and wound infections etc. Further, the concept may be useful for sterilization or decontamination of samples, devices, etc. because B. subtilis and its spores are the challenges during sterilization.
Collapse
Affiliation(s)
- Sarabjot Kaur
- CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajneesh Dadwal
- CSIR-Institute of Microbial Technology, Sector-39, Chandigarh 160036, India
| | - Hemraj Nandanwar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Microbial Technology, Sector-39, Chandigarh 160036, India
| | - Sanjeev Soni
- CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Xiong Y, Rao Y, Hu J, Luo Z, Chen C. Nanoparticle-Based Photothermal Therapy for Breast Cancer Noninvasive Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305140. [PMID: 37561994 DOI: 10.1002/adma.202305140] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Rapid advancements in materials science and nanotechnology, intertwined with oncology, have positioned photothermal therapy (PTT) as a promising noninvasive treatment strategy for cancer. The breast's superficial anatomical location and aesthetic significance render breast cancer a particularly pertinent candidate for the clinical application of PTT following melanoma. This review comprehensively explores the research conducted on the various types of nanoparticles employed in PTT for breast cancer and elaborates on their specific roles and mechanisms of action. The integration of PTT with existing clinical therapies for breast cancer is scrutinized, underscoring its potential for synergistic outcomes. Additionally, the mechanisms underlying PTT and consequential modifications to the tumor microenvironment after treatment are elaborated from a medical perspective. Future research directions are suggested, with an emphasis on the development of integrative platforms that combine multiple therapeutic approaches and the optimization of nanoparticle synthesis for enhanced treatment efficacy. The goal is to push the boundaries of PTT toward a comprehensive, clinically applicable treatment for breast cancer.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Yan Rao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, Hubei, 430000, P. R. China
| | - Jiawei Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Zixuan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| |
Collapse
|
12
|
Nanostructures as Photothermal Agents in Tumor Treatment. Molecules 2022; 28:molecules28010277. [PMID: 36615470 PMCID: PMC9822183 DOI: 10.3390/molecules28010277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Traditional methods of tumor treatment such as surgical resection, chemotherapy, and radiation therapy have certain limitations, and their treatment effects are not always satisfactory. As a new tumor treatment method, photothermal therapy based on nanostructures has attracted the attention of researchers due to its characteristics of minimally invasive, low side effects, and inhibition of cancer metastasis. In recent years, there has been a variety of inorganic or organic nanostructures used in the field of photothermal tumor treatment, and they have shown great application prospects. In this paper, the advantages and disadvantages of a variety of nanomaterials/nanostructures as photothermal agents (PTAs) for photothermal therapy as well as their research progress are reviewed. For the sake of clarity, the recently reported nanomaterials/nanostructures for photothermal therapy of tumor are classified into five main categories, i.e., carbon nanostructures, noble metal nanostructures, transition metal sulfides, organic polymer, and other nanostructures. In addition, future perspectives or challenges in the related field are discussed.
Collapse
|
13
|
Park S, Choi J, Doan VHM, O SH. Biodegradable manganese-doped hydroxyapatite antitumor adjuvant as a promising photo-therapeutic for cancer treatment. Front Mol Biosci 2022; 9:1085458. [PMID: 36504716 PMCID: PMC9726924 DOI: 10.3389/fmolb.2022.1085458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
The efficiency of a cancer therapy agent depends on its ability to eliminate tumors without endangering neighboring healthy tissues. In this present study, a novel multifunctional property enriched nanostructured system was synthesized on manganese-doped hydroxyapatite (Mn-HAp) conjugated with counter folic acid (FA) IR-783 fluorescence dye. The tailored synthesis of nano rod-shaped Mn-HAp nanoparticles with high surface area allows to conjugate FA/IR-783 dye which enhanced retention time during in vivo circulation. The drug-free Photothermal Photodynamic therapy mediated cancer treatment permits the prevention of collateral damages to non-cancerous cells. The safe HAp biomaterial matrix allows a large number of molecules on its surface due to its active different charge moieties (Ca2+/PO4 3-) without any recurrence toxicity. The doped Mn allows releasing of Mn2+ ions which triggered the production of toxic hydroxyl radicals (•OH) via Fenton or Fenton-like reactions to decompose H2O2 in the tumor sites. Herein, IR-783 and FA were selected for targeted fluorescence imaging-guided photothermal therapy. 6The PTT performance of synthesized nanostructured system shows enhanced potential with ∼60°C temperature elevation with 0.75 W∙cm-2 power irradiated within 7 min of treatment. PDT activity was also observed initially with Methylene Blue (MB) as a targeted material which shows a drastic degradation of MB and further in vitro studies with MDA-MB-231 breast cancer cell line show cytotoxicity due to the generated reactive oxygen species (ROS) effect. FA/IR-783 conjugated Mn-HAp nanoparticles (2.0 mol% Mn-HAp/FA-IR-783) show significant tumor-specific targeting and treatment efficiency while intravenously injected in (tail vain) BALB/c nude mice model without any recurrence. The synthesized nanostructured system had ample scope to be a promising Photo-Therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, South Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior′s Healthcare, Pukyong National University, Busan, South Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior′s Healthcare, Pukyong National University, Busan, South Korea
| | - Se Hwi O
- Smart Gym-Based Translational Research Center for Active Senior′s Healthcare, Pukyong National University, Busan, South Korea,*Correspondence: Se Hwi O,
| |
Collapse
|