1
|
Zeng H, Wang J, Qiu Z, Tan Y, Huang Y, Luo J, Shu W. Natural High Strontium Mineral Water Might Reduce Liver Protein Synthesis: A Non-Targeted Metabolomics Study in Rats. Biol Trace Elem Res 2024:10.1007/s12011-024-04379-y. [PMID: 39320572 DOI: 10.1007/s12011-024-04379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Strontium-rich mineral water (strontium > 0.20 mg/L) is the second largest type of mineral water on commercial drinking water market. Exposure to high levels of strontium through drinking water or soil may interfere with calcium metabolism and increase the risk of cardiovascular and skeletal diseases, but no in-depth mechanism has been disclosed to date. Data on liver metabolic alterations in rats resulted from drinking natural high strontium mineral water (strontium 26.06 mg/L, SrHW) or tap water (filtered by activated carbon, strontium 0.49 mg/L, TW) for 3 months were obtained and analyzed with non-targeted metabolomics strategy. Compared with rats drinking TW, those drinking SrHW showed a significant change in 36 liver metabolites. Among them, 33 liver metabolites (including 14 amino acids, 6 carbohydrates, 4 short-chain fatty acids, 4 organic acids, 2 phenylpropanoic acids, 1 fatty acid, 1 peptide, and 1 bile acid) were down-regulated, and 3 (hydroxyphenyllactic acid, propionylcarnitine and S-adenosine homocysteine) were up-regulated. Metabolic pathway analysis showed that aminoacyl-tRNA biosynthesis, valine, leucine and isoleucine biosynthesis, and alanine, aspartate and glutamate metabolism are most impacted. Furthermore, the serum prealbumin content also significantly decreased in rats drinking SrHW. Therefore, changes in liver metabolites and serum protein levels suggested that high concentration of strontium in water was associated with decreased liver protein synthesis; changes in liver metabolites suggested that high strontium was associated with decreased lipid levels. In conclusion, high strontium in water may exert a negative effect on protein synthesis, and further study on the dose-response relationship is necessary.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jia Wang
- Department of Medical English, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqun Qiu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yao Tan
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yujing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiaohua Luo
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Weiqun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
2
|
Gerzen OP, Potoskueva IK, Tzybina AE, Myachina TA, Nikitina LV. Cardiac Myosin and Thin Filament as Targets for Lead and Cadmium Divalent Cations. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1273-1282. [PMID: 39218024 DOI: 10.1134/s0006297924070095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
Lead and cadmium are heavy metals widely distributed in the environment and contribute significantly to cardiovascular morbidity and mortality. Using Leadmium Green dye, we have shown that lead and cadmium enter cardiomyocytes, distributing throughout the cell. Using an in vitro motility assay, we have shown that sliding velocity of actin and native thin filaments over myosin decreases with increasing concentrations of Pb2+ and Cd2+. Significantly lower concentrations of Pb2+ and Cd2+ (0.6 mM) were required to stop sliding of thin filaments over myosin compared to the stopping actin sliding over the same myosin (1.1-1.6 mM). Lower concentration of Cd2+ (1.1 mM) needed to stop actin sliding over myosin compared to the Pb2++Cd2+ combination (1.3 mM) and lead alone (1.6 mM). There were no differences found in the effects of lead and cadmium cations on relative force developed by myosin heads or number of actin filaments bound to myosin. Sliding velocity of actin over myosin in the left atrium, right and left ventricles changed equally when exposed to the same dose of the same metal. Thus, we have demonstrated for the first time that Pb2+ and Cd2+ can directly affect myosin and thin filament function, with Cd2+ exerting a more toxic influence on myosin function compared to Pb2+.
Collapse
Affiliation(s)
- Oksana P Gerzen
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620078, Russia.
| | - Iulia K Potoskueva
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620078, Russia
| | - Alena E Tzybina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620078, Russia
| | - Tatiana A Myachina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620078, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620078, Russia
| |
Collapse
|
3
|
Klaczek CE, Saari GN, Veilleux HD, Mielewczyk DA, Goss GG, Glover CN. Acute waterborne strontium exposure to rainbow trout: Tissue accumulation, ionoregulatory effects, and the modifying influence of waterborne calcium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106125. [PMID: 35180453 DOI: 10.1016/j.aquatox.2022.106125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/26/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Flowback and produced water (FPW) is an end-product of the hydraulic fracturing method of oil and gas extraction that is highly enriched in alkaline earth metals such as strontium (Sr). While Sr concentrations in FPW can exceed toxic thresholds for fish, the accompanying high concentrations of calcium (Ca) in FPW may ameliorate any toxicity. In this study, Sr bioaccumulation and molecular, biochemical, and physiological changes in ionoregulatory endpoints were investigated in rainbow trout (Oncorhynchus mykiss). Exposures were conducted over a 96-h period at Sr concentrations ranging from 1.7 to 1948 µM, with effects at the highest Sr exposure concentration also separately examined in waters of varying Ca concentration (10 to 958 µM). Plasma and gill Sr burdens increased as a function of increasing waterborne Sr, and accumulation increased further as water Ca concentrations were lowered. Despite this, there was no consistent, dose-dependent effect of Sr on plasma or gill Ca concentrations, although impacts on plasma and branchial sodium (Na) concentrations were observed. Waterborne Sr significantly inhibited branchial Ca2+-ATPase activity, albeit only at the highest tested Sr concentration (1948 µM). In exposure treatments where Sr was highly elevated and water Ca was reduced, the hepatic gene expression of Ca signaling receptors β-2 adrenergic receptor (Adrb2) and inositol-1,4,5-triphosphate receptor-2 (Itpr2) were inhibited, highlighting novel potential pathways of Sr toxicity in rainbow trout. Overall, these data indicate that water Ca has a strong effect on Sr bioavailability, but over an acute exposure period there is limited evidence for an effect of Sr on Ca homeostasis. Although Sr is elevated in effluents associated with the oil and gas industry, the co-occurrence of high Ca concentrations might protect freshwater fish against acute effects related to Sr exposure.
Collapse
Affiliation(s)
- Chantelle E Klaczek
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin N Saari
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Upper Midwest Environmental Science Center, United States Geological Survey, La Crosse, WI, United States
| | - Heather D Veilleux
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Diane A Mielewczyk
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chris N Glover
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Vologzhannikova AA, Shevelyova MP, Kazakov AS, Sokolov AS, Borisova NI, Permyakov EA, Kircheva N, Nikolova V, Dudev T, Permyakov SE. Strontium Binding to α-Parvalbumin, a Canonical Calcium-Binding Protein of the "EF-Hand" Family. Biomolecules 2021; 11:biom11081158. [PMID: 34439824 PMCID: PMC8392015 DOI: 10.3390/biom11081158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023] Open
Abstract
Strontium salts are used for treatment of osteoporosis and bone cancer, but their impact on calcium-mediated physiological processes remains obscure. To explore Sr2+ interference with Ca2+ binding to proteins of the EF-hand family, we studied Sr2+/Ca2+ interaction with a canonical EF-hand protein, α-parvalbumin (α-PA). Evaluation of the equilibrium metal association constants for the active Ca2+ binding sites of recombinant human α-PA (‘CD’ and ‘EF’ sites) from fluorimetric titration experiments and isothermal titration calorimetry data gave 4 × 109 M−1 and 4 × 109 M−1 for Ca2+, and 2 × 107 M−1 and 2 × 106 M−1 for Sr2+. Inactivation of the EF site by homologous substitution of the Ca2+-coordinating Glu in position 12 of the EF-loop by Gln decreased Ca2+/Sr2+ affinity of the protein by an order of magnitude, whereas the analogous inactivation of the CD site induced much deeper suppression of the Ca2+/Sr2+ affinity. These results suggest that Sr2+ and Ca2+ bind to CD/EF sites of α-PA and the Ca2+/Sr2+ binding are sequential processes with the CD site being occupied first. Spectrofluorimetric Sr2+ titration of the Ca2+-loaded α-PA revealed presence of secondary Sr2+ binding site(s) with an apparent equilibrium association constant of 4 × 105 M−1. Fourier-transform infrared spectroscopy data evidence that Ca2+/Sr2+-loaded forms of α-PA exhibit similar states of their COO− groups. Near-UV circular dichroism (CD) data show that Ca2+/Sr2+ binding to α-PA induce similar changes in symmetry of microenvironment of its Phe residues. Far-UV CD experiments reveal that Ca2+/Sr2+ binding are accompanied by nearly identical changes in secondary structure of α-PA. Meanwhile, scanning calorimetry measurements show markedly lower Sr2+-induced increase in stability of tertiary structure of α-PA, compared to the Ca2+-induced effect. Theoretical modeling using Density Functional Theory computations with Polarizable Continuum Model calculations confirms that Ca2+-binding sites of α-PA are well protected against exchange of Ca2+ for Sr2+ regardless of coordination number of Sr2+, solvent exposure or rigidity of sites. The latter appears to be a key determinant of the Ca2+/Sr2+ selectivity. Overall, despite lowered affinity of α-PA to Sr2+, the latter competes with Ca2+ for the same EF-hands and induces similar structural rearrangements. The presence of a secondary Sr2+ binding site(s) could be a factor contributing to Sr2+ impact on the functional activity of proteins.
Collapse
Affiliation(s)
- Alisa A. Vologzhannikova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (A.A.V.); (M.P.S.); (A.S.K.); (A.S.S.); (N.I.B.); (E.A.P.)
| | - Marina P. Shevelyova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (A.A.V.); (M.P.S.); (A.S.K.); (A.S.S.); (N.I.B.); (E.A.P.)
| | - Alexey S. Kazakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (A.A.V.); (M.P.S.); (A.S.K.); (A.S.S.); (N.I.B.); (E.A.P.)
| | - Andrey S. Sokolov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (A.A.V.); (M.P.S.); (A.S.K.); (A.S.S.); (N.I.B.); (E.A.P.)
| | - Nadezhda I. Borisova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (A.A.V.); (M.P.S.); (A.S.K.); (A.S.S.); (N.I.B.); (E.A.P.)
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (A.A.V.); (M.P.S.); (A.S.K.); (A.S.S.); (N.I.B.); (E.A.P.)
| | - Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (V.N.); (T.D.)
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (V.N.); (T.D.)
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (A.A.V.); (M.P.S.); (A.S.K.); (A.S.S.); (N.I.B.); (E.A.P.)
- Correspondence: ; Tel.: +7-(4967)-143-7741
| |
Collapse
|
5
|
Cadmium-induced hypertension is associated with renal myosin light chain phosphatase inhibition via increased T697 phosphorylation and p44 mitogen-activated protein kinase levels. Hypertens Res 2021; 44:941-954. [PMID: 33972751 DOI: 10.1038/s41440-021-00662-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/29/2020] [Accepted: 02/17/2021] [Indexed: 02/03/2023]
Abstract
Dietary intake of the heavy metal cadmium (Cd2+) is implicated in hypertension, but potassium supplementation reportedly mitigates hypertension. This study aims to elucidate the hypertensive mechanism of Cd2+. Vascular reactivity and protein expression were assessed in Cd2+-exposed rats for 8 weeks to determine the calcium-handling effect of Cd2+ and the possible signaling pathways and mechanisms involved. Cd2+ induced hypertension in vivo by significantly (p < 0.001) elevating systolic blood pressure (160 ± 2 and 155 ± 1 vs 120 ± 1 mm Hg), diastolic blood pressure (119 ± 2 and 110 ± 1 vs 81 ± 1 mm Hg), and mean arterial pressure (133 ± 2 and 125 ± 1 vs 94 ± 1 mm Hg) (SBP, DBP, and MAP, respectively), while potassium supplementation protected against elevation of these parameters. The mechanism involved augmentation of the phosphorylation of renal myosin light chain phosphatase targeting subunit 1 (MYPT1) at threonine 697 (T697) (2.58 ± 0.36 vs 1 ± 0) and the expression of p44 mitogen-activated protein kinase (MAPK) (1.78 ± 0.20 vs 1 ± 0). While acetylcholine (ACh)-induced relaxation was unaffected, 5 mg/kg b.w. Cd2+ significantly (p < 0.001) attenuated phenylephrine (Phe)-induced contraction of the aorta, and 2.5 mg/kg b.w. Cd2+ significantly (p < 0.05) augmented sodium nitroprusside (SNP)-induced relaxation of the aorta. These results support the vital role of the kidney in regulating blood pressure changes after Cd2+ exposure, which may be a key drug target for hypertension management. Given the differential response to Cd2+, it is apparent that its hypertensive effects could be mediated by myosin light chain phosphatase (MLCP) inhibition via phosphorylation of renal MYPT1-T697 and p44 MAPK. Further investigation of small arteries and the Rho-kinase/MYPT1 interaction is recommended.
Collapse
|
6
|
Peris-Díaz MD, Richtera L, Zitka O, Krężel A, Adam V. A chemometric-assisted voltammetric analysis of free and Zn(II)-loaded metallothionein-3 states. Bioelectrochemistry 2020; 134:107501. [PMID: 32229323 DOI: 10.1016/j.bioelechem.2020.107501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
We focused on the application of mass spectrometry and electrochemical methods combined with a chemometric analysis for the characterization of partially metallothionein-3 species. The results showed decreased Cat1 and Cat2 signals for the Zn(II)-loaded MT3 species with respect to the metal-free protein, which might be explained by the arrangement of tetrahedral metal-thiolate coordination environments and the formation of metal clusters. Moreover, there was a decrease in the Cat1 and Cat2 signals, and a plateau was reached with 4-5 Zn(II) ions that corresponded to the formation of the C-terminal α-domain. Regarding the Zn7-xMT3 complexes, we observed three different electrochemical behaviours for the Zn1-2MT3, Zn3-6MT3 and Zn7MT3 species. The difference for Zn1-2MT3 might be explained by the formation of independent ZnS4 cores in this stage that differ with respect to the formation of ZnxCysy clusters with an increased Zn(II) loading. The binding of the third Zn(II) ion to MT3 resulted in high sample heterogeneity due the co-existence of Zn3-6MT3. Finally, the Zn7MT3 protein showed a third type of behaviour. The fact that there were no free Cys residues might explain this phenomenon. Thus, this research identifies the major proteins responsible for zinc buffering in the cell.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic.
| |
Collapse
|
7
|
Wettmarshausen J, Goh V, Huang KT, Arduino DM, Tripathi U, Leimpek A, Cheng Y, Pittis AA, Gabaldón T, Mokranjac D, Hajnóczky G, Perocchi F. MICU1 Confers Protection from MCU-Dependent Manganese Toxicity. Cell Rep 2019; 25:1425-1435.e7. [PMID: 30403999 DOI: 10.1016/j.celrep.2018.10.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/09/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
The mitochondrial calcium uniporter is a highly selective ion channel composed of species- and tissue-specific subunits. However, the functional role of each component still remains unclear. Here, we establish a synthetic biology approach to dissect the interdependence between the pore-forming subunit MCU and the calcium-sensing regulator MICU1. Correlated evolutionary patterns across 247 eukaryotes indicate that their co-occurrence may have conferred a positive fitness advantage. We find that, while the heterologous reconstitution of MCU and EMRE in vivo in yeast enhances manganese stress, this is prevented by co-expression of MICU1. Accordingly, MICU1 deletion sensitizes human cells to manganese-dependent cell death by disinhibiting MCU-mediated manganese uptake. As a result, manganese overload increases oxidative stress, which can be effectively prevented by NAC treatment. Our study identifies a critical contribution of MICU1 to the uniporter selectivity, with important implications for patients with MICU1 deficiency, as well as neurological disorders arising upon chronic manganese exposure.
Collapse
Affiliation(s)
- Jennifer Wettmarshausen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Biochemistry, Gene Center Munich, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Valerie Goh
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Biochemistry, Gene Center Munich, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Kai-Ting Huang
- Department of Pathology, Anatomy, and Cell Biology, MitoCare Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniela M Arduino
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Biochemistry, Gene Center Munich, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Utkarsh Tripathi
- Department of Biochemistry, Gene Center Munich, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Anja Leimpek
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Biochemistry, Gene Center Munich, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Yiming Cheng
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Biochemistry, Gene Center Munich, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Alexandros A Pittis
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain; Departament of Ciències Experimentals I de La Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain; Departament of Ciències Experimentals I de La Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Dejana Mokranjac
- Biomedical Center Munich - Physiological Chemistry, Ludwig-Maximilians Universität München, 82152 Martinsried, Germany
| | - György Hajnóczky
- Department of Pathology, Anatomy, and Cell Biology, MitoCare Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Fabiana Perocchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Biochemistry, Gene Center Munich, Ludwig-Maximilians Universität München, 81377 Munich, Germany; Munich Cluster for Systems Neurology, 81377 Munich, Germany.
| |
Collapse
|
8
|
Rocha A, Trujillo KA. Neurotoxicity of low-level lead exposure: History, mechanisms of action, and behavioral effects in humans and preclinical models. Neurotoxicology 2019; 73:58-80. [PMID: 30836127 PMCID: PMC7462347 DOI: 10.1016/j.neuro.2019.02.021] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022]
Abstract
Lead is a neurotoxin that produces long-term, perhaps irreversible, effects on health and well-being. This article summarizes clinical and preclinical studies that have employed a variety of research techniques to examine the neurotoxic effects of low levels of lead exposure. A historical perspective is presented, followed by an overview of studies that examined behavioral and cognitive outcomes. In addition, a short summary of potential mechanisms of action is provided with a focus on calcium-dependent processes. The current level of concern, or reference level, set by the CDC is 5 μg/dL of lead in blood and a revision to 3.5 μg/dL has been suggested. However, levels of lead below 3 μg/dL have been shown to produce diminished cognitive function and maladaptive behavior in humans and animal models. Because much of the research has focused on higher concentrations of lead, work on low concentrations is needed to better understand the neurobehavioral effects and mechanisms of action of this neurotoxic metal.
Collapse
MESH Headings
- Adolescent
- Adolescent Behavior/drug effects
- Adolescent Development/drug effects
- Adult
- Age Factors
- Aged
- Animals
- Brain/drug effects
- Brain/growth & development
- Child
- Child Behavior/drug effects
- Child Development/drug effects
- Child, Preschool
- Cognition/drug effects
- Dose-Response Relationship, Drug
- History, 20th Century
- History, 21st Century
- Humans
- Lead Poisoning, Nervous System, Adult/history
- Lead Poisoning, Nervous System, Adult/physiopathology
- Lead Poisoning, Nervous System, Adult/psychology
- Lead Poisoning, Nervous System, Childhood/history
- Lead Poisoning, Nervous System, Childhood/physiopathology
- Lead Poisoning, Nervous System, Childhood/psychology
- Mice
- Middle Aged
- Rats
- Risk Assessment
- Risk Factors
- Toxicity Tests
- Young Adult
Collapse
Affiliation(s)
- Angelica Rocha
- California State University San Marcos, San Marcos, CA 92069, USA.
| | - Keith A Trujillo
- California State University San Marcos, San Marcos, CA 92069, USA
| |
Collapse
|
9
|
Xia X, Liang G, Zheng X, Wang F, Zhang J, Xue S, Hua C, Song G, Bai X, Guo L. Characterization of calmodulin in the clam Anodonta woodiana: differential expressions in response to environmental Ca2+ and Cd2+. TURKISH JOURNAL OF BIOCHEMISTRY 2018. [DOI: 10.1515/tjb-2017-0168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Aims
To explore effect of Ca2+ and Cd2+ on the calmodulin (CaM), one complete cDNA sequence (AwCaM1) was cloned and characterized from the freshwater mussel Anodonta woodiana and its expressions were analyzed.
Materials and methods
The AwCaM1 was cloned from the A. woodiana using the rapid amplification of cDNA ends methods and its expression was determined by real-time PCR.
Results
In the hepatopancreas, AwCaM1 expression was up-regulated with a time and dose dependent pattern in the Ca2+ treated groups (0.01, 0.02, 0.04 and 0.08 mg/L) during experiment observed, and increased more than 56.15% (p<0.05) compared with that of control group. AwCaM1 mRNA level increased more 65.04% (p<0.05) in the Cd2+ treated groups (8 and 16 mg/L). In the gill, AwCaM1 expression increased more than 79.41% (p<0.05) compared with that of control group in all the Ca2+ treated groups, and more than 88.23% (p<0.05) in all the Cd2+ treated groups.
Conclusion
These results indicated that up-regulations of AwCaM1 expression in bivalve A. woodiana are associated with Ca2+ absorb and environmental adaption derived from Ca2+ and Cd2+ treatment.
Collapse
|
10
|
Raymond O, Henderson W, Brothers PJ, Plieger PG. Electrospray Ionisation Mass Spectrometric (ESI MS) Screening and Characterisation of Beryllium Complexes with Potentially Encapsulating Aminopolycarboxylate and Related Ligands. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701435] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Onyekachi Raymond
- Chemistry, School of Science; University of Waikato; Private Bag 3105 Hamilton New Zealand
| | - William Henderson
- Chemistry, School of Science; University of Waikato; Private Bag 3105 Hamilton New Zealand
| | | | - Paul G. Plieger
- Institute of Fundamental Sciences; Massey University; Private Bag 11222 4410 Palmerston North New Zealand
| |
Collapse
|
11
|
Gorkhali R, Huang K, Kirberger M, Yang JJ. Defining potential roles of Pb(2+) in neurotoxicity from a calciomics approach. Metallomics 2017; 8:563-78. [PMID: 27108875 DOI: 10.1039/c6mt00038j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal ions play crucial roles in numerous biological processes, facilitating biochemical reactions by binding to various proteins. An increasing body of evidence suggests that neurotoxicity associated with exposure to nonessential metals (e.g., Pb(2+)) involves disruption of synaptic activity, and these observed effects are associated with the ability of Pb(2+) to interfere with Zn(2+) and Ca(2+)-dependent functions. However, the molecular mechanism behind Pb(2+) toxicity remains a topic of debate. In this review, we first discuss potential neuronal Ca(2+) binding protein (CaBP) targets for Pb(2+) such as calmodulin (CaM), synaptotagmin, neuronal calcium sensor-1 (NCS-1), N-methyl-d-aspartate receptor (NMDAR) and family C of G-protein coupled receptors (cGPCRs), and their involvement in Ca(2+)-signalling pathways. We then compare metal binding properties between Ca(2+) and Pb(2+) to understand the structural implications of Pb(2+) binding to CaBPs. Statistical and biophysical studies (e.g., NMR and fluorescence spectroscopy) of Pb(2+) binding are discussed to investigate the molecular mechanism behind Pb(2+) toxicity. These studies identify an opportunistic, allosteric binding of Pb(2+) to CaM, which is distinct from ionic displacement. Together, these data suggest three potential modes of Pb(2+) activity related to molecular and/or neural toxicity: (i) Pb(2+) can occupy Ca(2+)-binding sites, inhibiting the activity of the protein by structural modulation, (ii) Pb(2+) can mimic Ca(2+) in the binding sites, falsely activating the protein and perturbing downstream activities, or (iii) Pb(2+) can bind outside of the Ca(2+)-binding sites, resulting in the allosteric modulation of the protein activity. Moreover, the data further suggest that even low concentrations of Pb(2+) can interfere at multiple points within the neuronal Ca(2+) signalling pathways to cause neurotoxicity.
Collapse
Affiliation(s)
- Rakshya Gorkhali
- Department of Chemistry, Center for Diagnostics and Therapeutics, and Drug Design and Biotechnology, Georgia State University, Atlanta, GA 3030, USA.
| | - Kenneth Huang
- Department of Chemistry, Center for Diagnostics and Therapeutics, and Drug Design and Biotechnology, Georgia State University, Atlanta, GA 3030, USA.
| | - Michael Kirberger
- Department of Chemistry and Physics, Clayton State University, Morrow, GA 30260, USA.
| | - Jenny J Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, and Drug Design and Biotechnology, Georgia State University, Atlanta, GA 3030, USA.
| |
Collapse
|
12
|
Ferreira-Gomes MS, Mangialavori IC, Ontiveros MQ, Rinaldi DE, Martiarena J, Verstraeten SV, Rossi JPFC. Selectivity of plasma membrane calcium ATPase (PMCA)-mediated extrusion of toxic divalent cations in vitro and in cultured cells. Arch Toxicol 2017; 92:273-288. [DOI: 10.1007/s00204-017-2031-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/12/2017] [Indexed: 12/26/2022]
|
13
|
Hooper TN, Inglis R, Lorusso G, Ujma J, Barran PE, Uhrin D, Schnack J, Piligkos S, Evangelisti M, Brechin EK. Structurally Flexible and Solution Stable [Ln4TM8(OH)8(L)8(O2CR)8(MeOH)y](ClO4)4: A Playground for Magnetic Refrigeration. Inorg Chem 2016; 55:10535-10546. [DOI: 10.1021/acs.inorgchem.6b01730] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas N. Hooper
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Ross Inglis
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Giulia Lorusso
- Instituto
de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jakub Ujma
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Perdita E. Barran
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Dusan Uhrin
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Jürgen Schnack
- Universität Bielefeld, Fakultät
für Physik, Postfach
100131, 33501 Bielefeld, Germany
| | - Stergios Piligkos
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Marco Evangelisti
- Instituto
de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Euan K. Brechin
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
14
|
Ha TT, Burwell ST, Goodwin ML, Noeker JA, Heggland SJ. Pleiotropic roles of Ca +2/calmodulin-dependent pathways in regulating cadmium-induced toxicity in human osteoblast-like cell lines. Toxicol Lett 2016; 260:18-27. [PMID: 27558804 DOI: 10.1016/j.toxlet.2016.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/20/2016] [Accepted: 08/20/2016] [Indexed: 11/26/2022]
Abstract
The heavy metal cadmium is a widespread environmental contaminant that has gained public attention due to the global increase in cadmium-containing electronic waste. Human exposure to cadmium is linked to the pathogenesis of osteoporosis. We previously reported cadmium induces apoptosis and decreases alkaline phosphatase mRNA expression via extracellular signal-regulated protein kinase (ERK) activation in Saos-2 bone-forming osteoblasts. This study examines the mechanisms of cadmium-induced osteotoxicity by investigating roles of Ca+2/calmodulin-dependent protein kinase (CAMK) pathways. Saos-2 or MG-63 cells were treated for 24 or 48h with 5μM CdCl2 alone or in combination with calmodulin-dependent phosphodiesterase (PDE) inhibitor CGS-9343β; calmodulin-dependent kinase kinase (CAMKK) inhibitor STO-609; or calmodulin-dependent kinase II (CAMKII) inhibitor KN-93. CGS-9343β protected against cadmium-induced toxicity and attenuated ERK activation; STO-609 enhanced toxicity and exacerbated ERK activation, whereas KN-93 had no detectable effect on cadmium-induced toxicity. Furthermore, CGS-9343β co-treatment attenuated cadmium-induced apoptosis; but CGS-9343β did not recover cadmium-induced decrease in ALP activity. The major findings suggest the calmodulin-dependent PDE pathway facilitates cadmium-induced ERK activation leading to apoptosis, whereas the CAMKK pathway plays a protective role against cadmium-induced osteotoxicity via ERK signaling. This research distinguishes itself by identifying pleiotropic roles for CAMK pathways in mediating cadmium's toxicity in osteoblasts.
Collapse
Affiliation(s)
- Thao T Ha
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID 83605, USA
| | - Shalimar T Burwell
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID 83605, USA
| | - Matthew L Goodwin
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID 83605, USA
| | - Jacob A Noeker
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID 83605, USA
| | - Sara J Heggland
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID 83605, USA.
| |
Collapse
|
15
|
Berezovskaya Y, Porrini M, Nortcliffe C, Barran PE. The use of ion mobility mass spectrometry to assist protein design: a case study on zinc finger fold versus coiled coil interactions. Analyst 2016; 140:2847-56. [PMID: 25734188 DOI: 10.1039/c4an00427b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dramatic conformational change in zinc fingers on binding metal ions for DNA recognition makes their structure-function behaviour an attractive target to mimic in de novo designed peptides. Mass spectrometry, with its high throughput and low sample consumption provides insight into how primary amino acid sequence can encode stable tertiary fold. We present here the use of ion mobility mass spectrometry (IM-MS) coupled with molecular dynamics (MD) simulations as a rapid analytical platform to inform de novo design efforts for peptide-metal and peptide-peptide interactions. A dual peptide-based synthetic system, ZiCop based on a zinc finger peptide motif, and a coiled coil partner peptide Pp, have been investigated. Titration mass spectrometry determines the relative binding affinities of different divalent metal ions as Zn(2+) > Co(2+) ≫ Ca(2+). With collision induced dissociation (CID), we probe complex stability, and establish that peptide-metal interactions are stronger and more 'specific' than those of peptide-peptide complexes, and the anticipated hetero-dimeric complex is more stable than the two homo-dimers. Collision cross-sections (CCS) measurements by IM-MS reveal increased stability with respect to unfolding of the metal-bound peptide over its apo-form, and further, larger collision cross sections for the hetero-dimeric forms suggest that dimeric species formed in the absence of metal are coiled coil like. MD supports these structural assignments, backed up by data from visible light absorbance measurements.
Collapse
|
16
|
Fu C, Zhang J, Zheng Y, Xu H, Yu S. Binding of calmodulin changes the calcineurin regulatory region to a less dynamic conformation. Int J Biol Macromol 2015; 79:235-9. [PMID: 25956027 DOI: 10.1016/j.ijbiomac.2015.04.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/24/2022]
Abstract
Calcineurin (CN) is a Ca(2+)/calmodulin (CaM) activated serine/threonine phosphatase, and its regulatory region (CNRR) plays a critical role in the coupling of Ca(2+) signals to cellular responses. Ca(2+)/CaM binds to the CNRR, resulting in a conformational change that removes an autoinhibitory domain (CN467-486) from the active site of the phosphatase and activates the enzyme. However, almost the entire regulatory region (CN374-521) is not visible in the electron density maps of reported structures. In this study, we produced separate CN fragments corresponding to the CNRR (CNRR381-521, CN residues 381-521) and determined the binding affinity of CNRR381-521 for Ca(2+)/CaM using isothermal titration calorimetry (ITC). The structural change in CNRR381-521 induced by Ca(2+)/CaM binding was also investigated by Fourier transform infrared spectroscopy (FT-IR). The results indicate that Ca(2+)/CaM binding to CNRR381-521 is an exothermic reaction with a dissociation constant of 2.0×10(-6) M. Binding of calmodulin changes the calcineurin regulatory region to a less dynamic conformation.
Collapse
Affiliation(s)
- Cuiping Fu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Junting Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Ye Zheng
- Shanghai Pinghe Bilingual School, China
| | - Hongbing Xu
- Department of Clinical Pharmacy, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, China.
| | - Shaoning Yu
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
17
|
Kursula P. Crystallographic snapshots of initial steps in the collapse of the calmodulin central helix. ACTA ACUST UNITED AC 2013; 70:24-30. [PMID: 24419375 DOI: 10.1107/s1399004713024437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/02/2013] [Indexed: 11/10/2022]
Abstract
Calmodulin is one of the most well characterized proteins and a widely used model system for calcium binding and large-scale protein conformational changes. Its long central helix is usually cut in half when a target peptide is bound. Here, two new crystal structures of calmodulin are presented, in which conformations possibly representing the first steps of calmodulin conformational collapse have been trapped. The central helix in the two structures is bent in the middle, causing a significant movement of the N- and C-terminal lobes with respect to one another. In both of the bent structures, a nearby polar side chain is inserted into the helical groove, disrupting backbone hydrogen bonding. The structures give an insight into the details of the factors that may be involved in the distortion of the central helix upon ligand peptide binding.
Collapse
Affiliation(s)
- Petri Kursula
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
18
|
Redweik S, Cianciulli C, Hara M, Xu Y, Wätzig H. Precise, fast and flexible determination of protein interactions by affinity capillary electrophoresis. Part 2: Cations. Electrophoresis 2013; 34:1812-9. [DOI: 10.1002/elps.201300050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/21/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Sabine Redweik
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig; Germany
| | - Claudia Cianciulli
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig; Germany
| | - Masakazu Hara
- Department of Applied Biological Chemistry; Shizuoka University; Shizuoka; Japan
| | | | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig; Germany
| |
Collapse
|
19
|
Pessôa GDS, Pilau EJ, Gozzo FC, Arruda MAZ. Ion mobility spectrometry focusing on speciation analysis of metals/metalloids bound to carbonic anhydrase. Anal Bioanal Chem 2013; 405:7653-60. [PMID: 23722891 DOI: 10.1007/s00216-013-7064-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 11/26/2022]
Abstract
In the present work, traveling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS) was applied to speciation analysis of metalloproteins. The influence of pH on complexation conditions between some metals and bovine carbonic anhydrase was evaluated from pH 6 to 9, as well as the time involved in their complexation (0-24 h). Employing TWIMS-MS, two conformational states of bovine carbonic anhydrase were observed with charge states of +12 and +11; these configurations being evaluated in terms of the folded state of the apo form and this protein (at charge state +11) being linked to barium, lead, copper, and zinc in their divalent forms. Metalloprotein speciation analysis was carried out for copper (Cu(+) and Cu(2+)), lead (Pb(2+) and Pb(4+)), and selenium (Se(4+) and Se(6+)) species complexed with bovine carbonic anhydrase. Mobilities of all complexed species were compared, also considering the apo form of this protein.
Collapse
Affiliation(s)
- Gustavo de Souza Pessôa
- Spectrometry, Sample Preparation and Mechanization Group, GEPAM, Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | | | | | | |
Collapse
|
20
|
Kirberger M, Wong HC, Jiang J, Yang JJ. Metal toxicity and opportunistic binding of Pb(2+) in proteins. J Inorg Biochem 2013; 125:40-9. [PMID: 23692958 DOI: 10.1016/j.jinorgbio.2013.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
Lead toxicity is associated with various human diseases. While Ca(2+) binding proteins such as calmodulin (CaM) are often reported to be molecular targets for Pb(2+)-binding and lead toxicity, the effect of Pb(2+) on the Ca(2+)/CaM regulated biological activities cannot be described by the primary mechanism of ionic displacement (e.g., ionic mimicry). The focus of this study was to investigate the mechanism of lead toxicity through binding differences between Ca(2+) and Pb(2+) for CaM, an essential intracellular trigger protein with two EF-Hand Ca(2+)-binding sites in each of its two domains that regulates many molecular targets via Ca(2+)-induced conformational change. Fluorescence changes in phenylalanine indicated that Pb(2+) binds with 8-fold higher affinity than Ca(2+) in the N-terminal domain. Additionally, NMR chemical shift changes and an unusual biphasic response observed in tyrosine fluorescence associated with C-terminal domain sites EF-III and EF-IV suggest a single higher affinity Pb(2+)-binding site with a 3-fold higher affinity than Ca(2+), coupled with a second site exhibiting affinity nearly equivalent to that of the N-terminal domain sites. Our results further indicate that Pb(2+) displaces Ca(2+) only in the N-terminal domain, with minimal perturbation of the C-terminal domain, however significant structural/dynamic changes are observed in the trans-domain linker region which appear to be due to Pb(2+)-binding outside of the known calcium-binding sites. These data suggest that opportunistic Pb(2+)-binding in Ca(2+)/CaM has a profound impact on the conformation and dynamics of the essential molecular recognition sites of the central helix, and provides insight into the molecular toxicity of non-essential metal ions.
Collapse
Affiliation(s)
- Michael Kirberger
- Department of Chemistry, Center for Diagnostics and Therapeutics and Drug Design and Biotechnology, Georgia State University, Atlanta, GA, 30303, United States
| | | | | | | |
Collapse
|
21
|
Chen SH, Russell WK, Russell DH. Combining chemical labeling, bottom-up and top-down ion-mobility mass spectrometry to identify metal-binding sites of partially metalated metallothionein. Anal Chem 2013; 85:3229-37. [PMID: 23421923 DOI: 10.1021/ac303522h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Metalation and demetalation of human metallothionein-2A (MT) with Cd(2+) is investigated by using chemical labeling and "bottom-up" and "top-down" proteomics approaches. Both metalation and demetalation of MT-2A by Cd(2+) are shown to be domain specific and occur as two distinct processes. Metalation involves sequential addition of Cd(2+) to the α-domain resulting in formation of an intermediate, Cd4MT. Chemical labeling with N-ethylmaleimide (NEM) and tandem mass spectrometry experiments clearly show that the four metal ions are located in the α-domain. In the presence of excess Cd(2+), the Cd4MT intermediate reacts to add Cd(2+) to the β-domain to yield the fully metalated Cd7MT. Demetalation occurs in the reverse order, i.e., Cd(2+) is removed (by EDTA) first from the β-domain followed by Cd(2+) removal from the α-domain. Metalation of human MT-2A is shown to be metal ion specific by comparing relative metal ion binding constants for Cd(2+) and Zn(2+).
Collapse
Affiliation(s)
- Shu-Hua Chen
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | | |
Collapse
|
22
|
|
23
|
Masada N, Schaks S, Jackson SE, Sinz A, Cooper DMF. Distinct mechanisms of calmodulin binding and regulation of adenylyl cyclases 1 and 8. Biochemistry 2012; 51:7917-29. [PMID: 22971080 PMCID: PMC3466776 DOI: 10.1021/bi300646y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Calmodulin (CaM), by mediating the stimulation of the activity of two adenylyl cyclases (ACs), plays a key role in integrating the cAMP and Ca(2+) signaling systems. These ACs, AC1 and AC8, by decoding discrete Ca(2+) signals can contribute to fine-tuning intracellular cAMP dynamics, particularly in neurons where they predominate. CaM comprises an α-helical linker separating two globular regions at the N-terminus and the C-terminus that each bind two Ca(2+) ions. These two lobes have differing affinities for Ca(2+), and they can interact with target proteins independently. This study explores previous indications that the two lobes of CaM can regulate AC1 and AC8 differently and thereby yield different responses to cellular transitions in [Ca(2+)](i). We first compared by glutathione S-transferase pull-down assays and offline nanoelectrospray ionization mass spectrometry the interaction of CaM and Ca(2+)-binding deficient mutants of CaM with the internal CaM binding domain (CaMBD) of AC1 and the two terminal CaMBDs of AC8. We then examined the influence of these three CaMBDs on Ca(2+) binding by native and mutated CaM in stopped-flow experiments to quantify their interactions. The three CaMBDs show quite distinct interactions with the two lobes of CaM. These findings establish the critical kinetic differences between the mechanisms of Ca(2+)-CaM activation of AC1 and AC8, which may underpin their different physiological roles.
Collapse
Affiliation(s)
- Nanako Masada
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Swainsbury DJK, Zhou L, Oldroyd GED, Bornemann S. Calcium ion binding properties of Medicago truncatula calcium/calmodulin-dependent protein kinase. Biochemistry 2012; 51:6895-907. [PMID: 22889004 DOI: 10.1021/bi300826m] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A calcium/calmodulin-dependent protein kinase (CCaMK) is essential in the interpretation of calcium oscillations in plant root cells for the establishment of symbiotic relationships with rhizobia and mycorrhizal fungi. Some of its properties have been studied in detail, but its calcium ion binding properties and subsequent conformational change have not. A biophysical approach was taken with constructs comprising either the visinin-like domain of Medicago truncatula CCaMK, which contains EF-hand motifs, or this domain together with the autoinhibitory domain. The visinin-like domain binds three calcium ions, leading to a conformational change involving the exposure of hydrophobic surfaces and a change in tertiary but not net secondary or quaternary structure. The affinity for calcium ions of visinin-like domain EF-hands 1 and 2 (K(d) = 200 ± 50 nM) was appropriate for the interpretation of calcium oscillations (~125-850 nM), while that of EF-hand 3 (K(d) ≤ 20 nM) implied occupancy at basal calcium ion levels. Calcium dissociation rate constants were determined for the visinin-like domain of CCaMK, M. truncatula calmodulin 1, and the complex between these two proteins (the slowest of which was 0.123 ± 0.002 s(-1)), suggesting the corresponding calcium association rate constants were at or near the diffusion-limited rate. In addition, the dissociation of calmodulin from the protein complex was shown to be on the same time scale as the dissociation of calcium ions. These observations suggest that the formation and dissociation of the complex between calmodulin and CCaMK would substantially mirror calcium oscillations, which typically have a 90 s periodicity.
Collapse
Affiliation(s)
- David J K Swainsbury
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
25
|
Mealman TD, Zhou M, Affandi T, Chacón KN, Aranguren ME, Blackburn NJ, Wysocki VH, McEvoy MM. N-terminal region of CusB is sufficient for metal binding and metal transfer with the metallochaperone CusF. Biochemistry 2012; 51:6767-75. [PMID: 22812620 DOI: 10.1021/bi300596a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gram-negative bacteria, such as Escherichia coli, utilize efflux resistance systems in order to expel toxins from their cells. Heavy-metal resistance is mediated by resistance nodulation cell division (RND)-based efflux pumps composed of a tripartite complex that includes an RND-transporter, an outer-membrane factor (OMF), and a membrane fusion protein (MFP) that spans the periplasmic space. MFPs are necessary for complex assembly and have been hypothesized to play an active role in substrate efflux. Crystal structures of MFPs are available, however incomplete, as large portions of the apparently disordered N- and C-termini are unresolved. Such is the case for CusB, the MFP of the E. coli Cu(I)/Ag(I) efflux pump CusCFBA. In this work, we have investigated the structure and function of the N-terminal region of CusB, which includes the metal-binding site and is missing from previously determined crystal structures. Results from mass spectrometry and X-ray absorption spectroscopy show that the isolated N-terminal 61 residues (CusB-NT) bind metal in a 1:1 stoichiometry with a coordination site composed of M21, M36, and M38, consistent with full-length CusB. NMR spectra show that CusB-NT is mostly disordered in the apo state; however, some slight structure is adopted upon metal binding. Much of the intact protein's function is maintained in this fragment as CusB-NT binds metal in vivo and in vitro, and metal is transferred between the metallochaperone CusF and CusB-NT in vitro. Functional analysis in vivo shows that full-length CusB is necessary in an intact polypeptide for full metal resistance, though CusB-NT alone can contribute partial metal resistance. These findings reinforce the theory that the role of CusB is not only to bind metal but also to play an active role in efflux.
Collapse
Affiliation(s)
- Tiffany D Mealman
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Protein fractionation and detection for metalloproteomics: challenges and approaches. Anal Bioanal Chem 2012; 402:3311-22. [DOI: 10.1007/s00216-012-5743-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 12/17/2022]
|
27
|
Petroutsos D, Busch A, Janßen I, Trompelt K, Bergner SV, Weinl S, Holtkamp M, Karst U, Kudla J, Hippler M. The chloroplast calcium sensor CAS is required for photoacclimation in Chlamydomonas reinhardtii. THE PLANT CELL 2011; 23:2950-63. [PMID: 21856795 PMCID: PMC3180803 DOI: 10.1105/tpc.111.087973] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/12/2011] [Accepted: 08/01/2011] [Indexed: 05/19/2023]
Abstract
The plant-specific calcium binding protein CAS (calcium sensor) has been localized in chloroplast thylakoid membranes of vascular plants and green algae. To elucidate the function of CAS in Chlamydomonas reinhardtii, we generated and analyzed eight independent CAS knockdown C. reinhardtii lines (cas-kd). Upon transfer to high-light (HL) growth conditions, cas-kd lines were unable to properly induce the expression of LHCSR3 protein that is crucial for nonphotochemical quenching. Prolonged exposure to HL revealed a severe light sensitivity of cas-kd lines and caused diminished activity and recovery of photosystem II (PSII). Remarkably, the induction of LHCSR3, the growth of cas-kd lines under HL, and the performance of PSII were fully rescued by increasing the calcium concentration in the growth media. Moreover, perturbing cellular Ca(2+) homeostasis by application of the calmodulin antagonist W7 or the G-protein activator mastoparan impaired the induction of LHCSR3 expression in a concentration-dependent manner. Our findings demonstrate that CAS and Ca(2+) are critically involved in the regulation of the HL response and particularly in the control of LHCSR3 expression.
Collapse
Affiliation(s)
- Dimitris Petroutsos
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Andreas Busch
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Ingrid Janßen
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Kerstin Trompelt
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Sonja Verena Bergner
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Stefan Weinl
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Michael Holtkamp
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Muenster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Muenster, Germany
| | - Jörg Kudla
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
- Address correspondence to
| |
Collapse
|
28
|
|
29
|
Keith-Roach MJ. A review of recent trends in electrospray ionisation-mass spectrometry for the analysis of metal-organic ligand complexes. Anal Chim Acta 2010; 678:140-8. [PMID: 20888445 DOI: 10.1016/j.aca.2010.08.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 12/11/2022]
Abstract
Electrospray ionisation-mass spectrometry (ESI-MS) is used in a wide variety of fields to examine the formation, stoichiometry and speciation of complexes involving metals and organic ligands. This article reviews the literature in this area over the past 5 years, examining trends in ESI-MS use and novel applications that enhance the scope of the technique. ESI-MS can provide direct information on changes in speciation with metal:ligand ratio and pH, identify metal oxidation state directly and allow insight into competitive interactions in ternary systems. However, both the instrumental set-up and artefacts in the electrospraying process can affect the species distribution observed, and changes in solution chemistry can affect the relative ion intensity of species. Therefore, ESI-MS data is at its most powerful when corroborated by data from other experimental techniques, such as pH potentiometry. The challenges in interpreting direct ESI-MS data quantitatively are discussed in detail, with reference to differences in the ion intensities of species, signal suppression and quantifying species distributions. The use of HPLC-ESI-MS is also reviewed, highlighting challenges and applications. Overall, the need for more standard reporting of quality assurance data is discussed, to strengthen the applications of ESI-MS to metal-organic ligand complexes further.
Collapse
Affiliation(s)
- Miranda J Keith-Roach
- Biogeochemistry Research Centre and Consolidated Radioisotope Facility (CORiF), School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
30
|
Pan J, Konermann L. Calcium-Induced Structural Transitions of the Calmodulin−Melittin System Studied by Electrospray Mass Spectrometry: Conformational Subpopulations and Metal-Unsaturated Intermediates. Biochemistry 2010; 49:3477-86. [DOI: 10.1021/bi100261c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jingxi Pan
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
31
|
Deng L, Sun N, Kitova EN, Klassen JS. Direct Quantification of Protein−Metal Ion Affinities by Electrospray Ionization Mass Spectrometry. Anal Chem 2010; 82:2170-4. [DOI: 10.1021/ac902633d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lu Deng
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Nian Sun
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Elena N. Kitova
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - John S. Klassen
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
32
|
Utley B, Angel LA. Effects of transition metal ion identity and π-cation interactions in metal-bis(peptide) complexes containing phenylalanine. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2010; 16:631-643. [PMID: 21173465 DOI: 10.1255/ejms.1102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Electrospray ionization-tandem mass spectrometry was used to study the effects of the metal ion identity and π-cation interactions on the dissociation pathways of metal-bis(peptide) complexes, where the metal is either Mn(2+), Co(2+), Ni(2+), Cu(2+), or Zn(2+); and the peptide is either FGGF, GGGG, GF, or GG, where G is glycine and F is phenylalanine. The [(FGGF)(FGGF-H) + M(2+)](+) and [(GGGG)(GGGG-H) + M(2+)](+) complexes dissociated by losing one FGGF or GGGG, respectively. Relative binding affinities were measured using the crossover points, where the parent and product ions were equal in ion abundance and a normalized-collision energy scale. The results indicate the relative binding affinities for FGGF and GGGG follow the same order with respect to the transition metal ion identity: Cu(2+) < Ni(2+) < Mn(2+) ≈ Zn(2+) < Co(2+), and the π-cation interactions in the FGGF complex have a measureable stabilizing effect. In contrast, the main fragmentation channels of [(GF)(GF-H) + M(2+)]+ and [(GG)(GG-H) + M(2+)](+) are loss of CO(2) and 2CO(2) with the [(GF)(GF-H) + M(2+)](+) complex also exhibiting cinnamic acid ,GF, residual glycine, cinnamate and styrene loss.
Collapse
Affiliation(s)
- Brandon Utley
- Department of Chemistry, Texas A&M University-Commerce, Texas 75429, USA
| | | |
Collapse
|
33
|
Leszczyszyn OI, Blindauer CA. Zinc transfer from the embryo-specific metallothionein EC from wheat: a case study. Phys Chem Chem Phys 2010; 12:13408-18. [DOI: 10.1039/c0cp00680g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|