1
|
Ray PE, Li J, Das J, Xu L, Yu J, Han Z. Pathogenesis of HIV-associated nephropathy in children and adolescents: taking a hard look 40 years later in the era of gene-environment interactions. Am J Physiol Renal Physiol 2024; 327:F1049-F1066. [PMID: 39323389 PMCID: PMC11687833 DOI: 10.1152/ajprenal.00208.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
HIV-associated nephropathy (HIVAN) is a kidney disease that affects mainly people of African ancestry with a high HIV-1 viral load. New antiretroviral therapies (ART) have been highly efficient in preventing and improving the outcome of HIVAN. However, providing chronic ART to children and adolescents living with HIV (CALWH) remains a significant challenge all over the world. More than 2.5 million CALWH, including those living in Sub-Saharan Africa, continue to be at high risk of developing HIVAN. Much of our understanding of the pathogenesis of HIVAN is based on studies conducted in transgenic mice and adults with HIVAN. However, CALWH may experience different health outcomes, risk factors, and susceptibilities to HIVAN in comparison to adults. This article reviews the progress made over the last 40 years in understanding the pathogenesis of HIVAN in CALWH, focusing on how the HIV virus, alongside genetic and environmental factors, contributes to the development of this disease. The landmark discovery that two risk alleles of the apolipoprotein-1 (APOL1) gene play a critical role in HIVAN has significantly advanced our understanding of the disease's pathogenesis. However, we still need to understand why renal inflammation persists despite ART and determine whether the kidney may harbor HIV reservoirs that need to be eliminated to cure HIV permanently. For these reasons, we emphasize reviewing how HIV-1 infects renal cells, affects their growth and regeneration, and discussing how inflammatory cytokines and APOL1 affect the outcome of childhood HIVAN.
Collapse
Affiliation(s)
- Patricio E Ray
- Department of Pediatrics and Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Jinliang Li
- Children's National Hospital, Washington, District of Columbia, United States
| | - Jharna Das
- Children's National Hospital, Washington, District of Columbia, United States
| | - Lian Xu
- Children's National Hospital, Washington, District of Columbia, United States
| | - Jing Yu
- Department of Pediatrics and Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
2
|
Li N, Wang Y, Wei P, Min Y, Yu M, Zhou G, Yuan G, Sun J, Dai H, Zhou E, He W, Sheng M, Gao K, Zheng M, Sun W, Zhou D, Zhang L. Causal Effects of Specific Gut Microbiota on Chronic Kidney Diseases and Renal Function-A Two-Sample Mendelian Randomization Study. Nutrients 2023; 15:nu15020360. [PMID: 36678231 PMCID: PMC9863044 DOI: 10.3390/nu15020360] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Targeting the gut microbiota may become a new therapeutic to prevent and delay the progression of chronic kidney disease (CKD). Nonetheless, the causal relationship between specific intestinal flora and CKD is still unclear. MATERIALS AND METHOD To identify genetically predicted microbiota, we used summary data from genome-wide association studies on gut microbiota in 18340 participants from 24 cohorts. Furthermore, we genetically predicted the causal relationship between 211 gut microbiotas and six phenotypes (outcomes) (CKD, estimated glomerular filtration rate (eGFR), urine albumin to creatinine ratio (UACR), dialysis, rapid progress to CKD, and rapid decline of eGFR). Four Mendelian randomization (MR) methods, including inverse variance weighted (IVW), MR-Egger, weighted median, and weighted mode were used to investigate the casual relationship between gut microbiotas and various outcomes. The result of IVW was deemed as the primary result. Then, Cochrane's Q test, MR-Egger, and MR-PRESSO Global test were used to detect heterogeneity and pleiotropy. The leave-one method was used for testing the stability of MR results and Bonferroni-corrected was used to test the strength of the causal relationship between exposure and outcome. RESULTS Through the MR analysis of 211 microbiotas and six clinical phenotypes, a total of 36 intestinal microflora were found to be associated with various outcomes. Among them, Class Bacteroidia (=-0.005, 95% CI: -0.001 to -0.008, p = 0.002) has a strong causality with lower eGFR after the Bonferroni-corrected test, whereas phylum Actinobacteria (OR = 1.0009, 95%CI: 1.0003-1.0015, p = 0.0024) has a strong causal relationship with dialysis. The Cochrane's Q test reveals that there is no significant heterogeneity between various single nucleotide polymorphisms. In addition, no significant level of pleiotropy was found according to MR-Egger and MR-PRESSO Global tests. CONCLUSIONS Through the two-sample MR analysis, we identified the specific intestinal flora that has a causal relationship with the incidence and progression of CKD at the level of gene prediction, which may provide helpful biomarkers for early disease diagnosis and potential therapeutic targets for CKD.
Collapse
Affiliation(s)
- Ning Li
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Yi Wang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Ping Wei
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Yu Min
- Department of Biotherapy and National Clinical Research Center, Sichuan University, Chengdu 610041, China
| | - Manshu Yu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Guowei Zhou
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Gui Yuan
- Division of Nephrology, Department of Medicine, University of Connecticut, School of Medicine, Farmington, CT 06030, USA
| | - Jinyi Sun
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Huibo Dai
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Enchao Zhou
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Weiming He
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Meixiao Sheng
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Kun Gao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Min Zheng
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Wei Sun
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut, School of Medicine, Farmington, CT 06030, USA
- Correspondence: (D.Z.); (L.Z.)
| | - Lu Zhang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Correspondence: (D.Z.); (L.Z.)
| |
Collapse
|
3
|
González-García P, Díaz-Casado ME, Hidalgo-Gutiérrez A, Jiménez-Sánchez L, Bakkali M, Barriocanal-Casado E, Escames G, Chiozzi RZ, Völlmy F, Zaal EA, Berkers CR, Heck AJR, López LC. The Q-junction and the inflammatory response are critical pathological and therapeutic factors in CoQ deficiency. Redox Biol 2022; 55:102403. [PMID: 35863266 PMCID: PMC9301574 DOI: 10.1016/j.redox.2022.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022] Open
Abstract
Defects in Coenzyme Q (CoQ) metabolism have been associated with primary mitochondrial disorders, neurodegenerative diseases and metabolic conditions. The consequences of CoQ deficiency have not been fully addressed, and effective treatment remains challenging. Here, we use mice with primary CoQ deficiency (Coq9R239X), and we demonstrate that CoQ deficiency profoundly alters the Q-junction, leading to extensive changes in the mitochondrial proteome and metabolism in the kidneys and, to a lesser extent, in the brain. CoQ deficiency also induces reactive gliosis, which mediates a neuroinflammatory response, both of which lead to an encephalopathic phenotype. Importantly, treatment with either vanillic acid (VA) or β-resorcylic acid (β-RA), two analogs of the natural precursor for CoQ biosynthesis, partially restores CoQ metabolism, particularly in the kidneys, and induces profound normalization of the mitochondrial proteome and metabolism, ultimately leading to reductions in gliosis, neuroinflammation and spongiosis and, consequently, reversing the phenotype. Together, these results provide key mechanistic insights into defects in CoQ metabolism and identify potential disease biomarkers. Furthermore, our findings clearly indicate that the use of analogs of the CoQ biosynthetic precursor is a promising alternative therapy for primary CoQ deficiency and has potential for use in the treatment of more common neurodegenerative and metabolic diseases that are associated with secondary CoQ deficiency.
Collapse
Affiliation(s)
- Pilar González-García
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016, Granada, Spain
| | - María Elena Díaz-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016, Granada, Spain
| | - Agustín Hidalgo-Gutiérrez
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016, Granada, Spain
| | | | - Mohammed Bakkali
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Eliana Barriocanal-Casado
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, 18016, Granada, Spain
| | - Germaine Escames
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016, Granada, Spain
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH, Utrecht, Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Franziska Völlmy
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH, Utrecht, Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Esther A Zaal
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD, Utrecht, the Netherlands
| | - Celia R Berkers
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD, Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH, Utrecht, Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Luis C López
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016, Granada, Spain.
| |
Collapse
|
4
|
Feng Z, Wang T, Dong S, Jiang H, Zhang J, Raza HK, Lei G. Association between gut dysbiosis and chronic kidney disease: a narrative review of the literature. J Int Med Res 2021; 49:3000605211053276. [PMID: 34704483 PMCID: PMC8554569 DOI: 10.1177/03000605211053276] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chronic kidney disease (CKD) is a serious non-communicable disease that poses a significant burden on healthcare and society. It is essential to devise new strategies to better treat patients with CKD. Research has illustrated that gut dysbiosis, describing an abnormal intestinal ecology, is closely associated with CKD. In this narrative review, we summarized the evidence of their mutual relationship and discussed the potential treatment options to correct gut dysbiosis in patients with CKD. Gut dysbiosis significantly increases the risk of CKD, especially in the older population. Gut dysbiosis also plays a role in CKD complications, such as hypertension, cardiovascular events, and cognitive dysfunction. The relationship between gut dysbiosis and CKD is bidirectional, and CKD itself can lead to changes in gut microecology. The usual therapies for CKD can also increase the incidence of gut dysbiosis. Meanwhile, probiotics and antibiotics are generally used to correct gut dysbiosis. Further studies are required to elaborate the association between gut dysbiosis and CKD, and more treatment options should be explored to prevent CKD in patients with gut dysbiosis.
Collapse
Affiliation(s)
- Zhe Feng
- Department of Nephrology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Ting Wang
- Department of Nephrology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Sheng Dong
- Department of Nephrology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Hongli Jiang
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | - Genping Lei
- Department of Nephrology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China.,Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Chang GR, Liu HY, Yang WC, Wang CM, Wu CF, Lin JW, Lin WL, Wang YC, Lin TC, Liao HJ, Hou PH, Chan CH, Lin CF. Clozapine Worsens Glucose Intolerance, Nonalcoholic Fatty Liver Disease, Kidney Damage, and Retinal Injury and Increases Renal Reactive Oxygen Species Production and Chromium Loss in Obese Mice. Int J Mol Sci 2021; 22:ijms22136680. [PMID: 34206460 PMCID: PMC8268139 DOI: 10.3390/ijms22136680] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
Clozapine is widely employed in the treatment of schizophrenia. Compared with that of atypical first-generation antipsychotics, atypical second-generation antipsychotics such as clozapine have less severe side effects and may positively affect obesity and blood glucose level. However, no systematic study of clozapine’s adverse metabolic effects—such as changes in kidney and liver function, body weight, glucose and triglyceride levels, and retinopathy—was conducted. This research investigated how clozapine affects weight, the bodily distribution of chromium, liver damage, fatty liver scores, glucose homeostasis, renal impairment, and retinopathy in mice fed a high fat diet (HFD). We discovered that obese mice treated with clozapine gained more weight and had greater kidney, liver, and retroperitoneal and epididymal fat pad masses; higher daily food efficiency; higher serum or hepatic triglyceride, aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen, and creatinine levels; and higher hepatic lipid regulation marker expression than did the HFD-fed control mice. Furthermore, the clozapine group mice exhibited insulin resistance, poorer insulin sensitivity, greater glucose intolerance, and less Akt phosphorylation; their GLUT4 expression was lower, they had renal damage, more reactive oxygen species, and IL-1 expression, and, finally, their levels of antioxidative enzymes (superoxide dismutase, glutathione peroxidase, and catalase) were lower. Moreover, clozapine reduced the thickness of retinal cell layers and increased iNOS and NF-κB expression; a net negative chromium balance occurred because more chromium was excreted through urine, and this influenced chromium mobilization, which did not help overcome the hyperglycemia. Our clozapine group had considerably higher fatty liver scores, which was supported by the findings of lowered adiponectin protein levels and increased FASN protein, PNPLA3 protein, FABP4 mRNA, and SREBP1 mRNA levels. We conclude that clozapine can worsen nonalcoholic fatty liver disease, diabetes, and kidney and retinal injury. Therefore, long-term administration of clozapine warrants higher attention.
Collapse
Affiliation(s)
- Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (C.-M.W.); (C.-F.W.); (T.-C.L.); (H.-J.L.)
| | - Hsien-Yueh Liu
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
| | - Wei-Cheng Yang
- School of Veterinary Medicine, National Taiwan University, 4 Section, 1 Roosevelt Road, Taipei 100046, Taiwan;
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (C.-M.W.); (C.-F.W.); (T.-C.L.); (H.-J.L.)
| | - Ching-Fen Wu
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (C.-M.W.); (C.-F.W.); (T.-C.L.); (H.-J.L.)
| | - Jen-Wei Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
| | - Wei-Li Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
- General Education Center, Chaoyang University of Technology, 168 Jifeng Eastern Road, Taichung 413310, Taiwan
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital, 222 Fuxin Road, Wufeng District, Taichung 413505, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng District, Taichung 413305, Taiwan
- Division of Cardiovascular Medicine, China Medical University Hospital, 2 Yude Road, North District, Taichung 404332, Taiwan
- College of Medicine, China Medical University, 91 Hsueh-Shih Road, North District, Taichung 404333, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (C.-M.W.); (C.-F.W.); (T.-C.L.); (H.-J.L.)
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (C.-M.W.); (C.-F.W.); (T.-C.L.); (H.-J.L.)
| | - Po-Hsun Hou
- Department of Psychiatry, Taichung Veterans General Hospital, 4 Section, 1650 Taiwan Boulevard, Taichung 407219, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, 2 Section, 155 Linong Street, Beitou District, Taipei 112304, Taiwan
- Correspondence: (P.-H.H.); (C.-H.C.); (C.-F.L.); Tel.: +886-4-23592525 (P.-H.H.); +886-975-617071 (C.-H.C.); +886-8-7703202 (C.-F.L.)
| | - Chee-Hong Chan
- Division of Nephrology, Chang Bing Show Chwan Memorial Hospital, 6 Lugong Road, Lukang Township, Changhua 505029, Taiwan
- Correspondence: (P.-H.H.); (C.-H.C.); (C.-F.L.); Tel.: +886-4-23592525 (P.-H.H.); +886-975-617071 (C.-H.C.); +886-8-7703202 (C.-F.L.)
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan
- Correspondence: (P.-H.H.); (C.-H.C.); (C.-F.L.); Tel.: +886-4-23592525 (P.-H.H.); +886-975-617071 (C.-H.C.); +886-8-7703202 (C.-F.L.)
| |
Collapse
|
6
|
Gastrin, via activation of PPARα, protects the kidney against hypertensive injury. Clin Sci (Lond) 2021; 135:409-427. [PMID: 33458737 DOI: 10.1042/cs20201340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Hypertensive nephropathy (HN) is a common cause of end-stage renal disease with renal fibrosis; chronic kidney disease is associated with elevated serum gastrin. However, the relationship between gastrin and renal fibrosis in HN is still unknown. We, now, report that mice with angiotensin II (Ang II)-induced HN had increased renal cholecystokinin receptor B (CCKBR) expression. Knockout of CCKBR in mice aggravated, while long-term subcutaneous infusion of gastrin ameliorated the renal injury and interstitial fibrosis in HN and unilateral ureteral obstruction (UUO). The protective effects of gastrin on renal fibrosis can be independent of its regulation of blood pressure, because in UUO, gastrin decreased renal fibrosis without affecting blood pressure. Gastrin treatment decreased Ang II-induced renal tubule cell apoptosis, reversed Ang II-mediated inhibition of macrophage efferocytosis, and reduced renal inflammation. A screening of the regulatory factors of efferocytosis showed involvement of peroxisome proliferator-activated receptor α (PPAR-α). Knockdown of PPAR-α by shRNA blocked the anti-fibrotic effect of gastrin in vitro in mouse renal proximal tubule cells and macrophages. Immunofluorescence microscopy, Western blotting, luciferase reporter, and Cut&tag-qPCR analyses showed that CCKBR may be a transcription factor of PPAR-α, because gastrin treatment induced CCKBR translocation from cytosol to nucleus, binding to the PPAR-α promoter region, and increasing PPAR-α gene transcription. In conclusion, gastrin protects against HN by normalizing blood pressure, decreasing renal tubule cell apoptosis, and increasing macrophage efferocytosis. Gastrin-mediated CCKBR nuclear translocation may make it act as a transcription factor of PPAR-α, which is a novel signaling pathway. Gastrin may be a new potential drug for HN therapy.
Collapse
|
7
|
Risperidone Exacerbates Glucose Intolerance, Nonalcoholic Fatty Liver Disease, and Renal Impairment in Obese Mice. Int J Mol Sci 2021; 22:ijms22010409. [PMID: 33401717 PMCID: PMC7795724 DOI: 10.3390/ijms22010409] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022] Open
Abstract
Risperidone, a second-generation antipsychotic drug used for schizophrenia treatment with less-severe side effects, has recently been applied in major depressive disorder treatment. The mechanism underlying risperidone-associated metabolic disturbances and liver and renal adverse effects warrants further exploration. This research explores how risperidone influences weight, glucose homeostasis, fatty liver scores, liver damage, and renal impairment in high-fat diet (HFD)-administered C57BL6/J mice. Compared with HFD control mice, risperidone-treated obese mice exhibited increases in body, liver, kidney, and retroperitoneal and epididymal fat pad weights, daily food efficiency, serum triglyceride, blood urea nitrogen, creatinine, hepatic triglyceride, and aspartate aminotransferase, and alanine aminotransferase levels, and hepatic fatty acid regulation marker expression. They also exhibited increased insulin resistance and glucose intolerance but decreased serum insulin levels, Akt phosphorylation, and glucose transporter 4 expression. Moreover, their fatty liver score and liver damage demonstrated considerable increases, corresponding to increases in sterol regulatory element-binding protein 1 mRNA, fatty acid-binding protein 4 mRNA, and patatin-like phospholipid domain containing protein 3 expression. Finally, these mice demonstrated renal impairment, associated with decreases in glutathione peroxidase, superoxide dismutase, and catalase levels. In conclusion, long-term administration of risperidone may exacerbate diabetes syndrome, nonalcoholic fatty liver disease, and kidney injury.
Collapse
|
8
|
Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol 2020; 19:77-94. [PMID: 32968241 DOI: 10.1038/s41579-020-0438-4] [Citation(s) in RCA: 753] [Impact Index Per Article: 150.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
The gut microbiota contributes to host physiology through the production of a myriad of metabolites. These metabolites exert their effects within the host as signalling molecules and substrates for metabolic reactions. Although the study of host-microbiota interactions remains challenging due to the high degree of crosstalk both within and between kingdoms, metabolite-focused research has identified multiple actionable microbial targets that are relevant for host health. Metabolites, as the functional output of combined host and microorganism interactions, provide a snapshot in time of an extraordinarily complex multi-organism system. Although substantial work remains towards understanding host-microbiota interactions and the underlying mechanisms, we review the current state of knowledge for each of the major classes of microbial metabolites with emphasis on clinical and translational research implications. We provide an overview of methodologies available for measurement of microbial metabolites, and in addition to discussion of key challenges, we provide a potential framework for integration of discovery-based metabolite studies with mechanistic work. Finally, we highlight examples in the literature where this approach has led to substantial progress in understanding host-microbiota interactions.
Collapse
|
9
|
Zheng L, Chen S, Wang F, Huang S, Liu X, Yang X, Zhou H, Zhao GP, Luo M, Li S, Chen J. Distinct Responses of Gut Microbiota to Jian-Pi-Yi-Shen Decoction Are Associated With Improved Clinical Outcomes in 5/6 Nephrectomized Rats. Front Pharmacol 2020; 11:604. [PMID: 32435197 PMCID: PMC7219274 DOI: 10.3389/fphar.2020.00604] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Gut dysbiosis contributes to the development and progression of chronic kidney disease (CKD) and its complications. However, the effect of drugs on the gut microbiota of CKD patients and its influence on treatment outcomes remains to be explored. Here, we assessed whether the response of gut microbiota to the traditional Chinese medicine Jian-Pi-Yi-Shen (JPYS) decoction differed from that to piperazine ferulate (PF), a kidney-targeted drug, by 16S rDNA sequencing, and whether the difference could be linked with drug-specific clinical outcomes. We showed that both JPYS and PF improved renal function, but only JPYS was able to restore the blood reticulocyte counting and serum calcium level in CKD rats. We also found that weighted UniFrac beta-diversity of the gut microbiome of the JPYS treated rats was significantly different from that of PF. Microbiome markers of drug-specific response were identified and subjected to correlation network analysis, together with clinical parameters and KEGG pathways. Among the microbiome markers of CKD, Corynebacterium was found to form a network hub that was closely correlated with the JPYS responder Enterococcus, suggesting a potential indirect impact of JPYS on Corynebacterium via interspecies interactions. We also identified two network hubs of the PF responder Blautia and the JPYS-only marker Coprococcus, which were connected with many genera and clinical parameters. They might serve as keystone taxa driving the response of gut microbiota to the drugs and influence host outcomes. Moreover, the JPYS-only marker Clostridium_XIVb was found to be connected to many pathways that are associated with CKD progression and might account for the improved outcomes in the JPYS treated rats. At last, the identified keystone markers of drug response were validated by qPCR for their differential abundance between CKD and the two drugs. Taken together, our study revealed that the responses of gut microbiota to JPYS were distinct from that to PF, and pinpointed drug-specific keystone microbiome markers closely correlated to clinical parameters, which could serve as candidate microbiome targets for further studies on their roles in medicating the drug efficacy of TCM in CKD.
Collapse
Affiliation(s)
- Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shuo Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Fochang Wang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shiying Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xilan Yang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Haokui Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Guo-Ping Zhao
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Mingjing Luo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Shunmin Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
10
|
Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 2019; 14:442-456. [PMID: 29760448 DOI: 10.1038/s41581-018-0018-2] [Citation(s) in RCA: 482] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Crosstalk between the gut microbiota and the host has attracted considerable attention owing to its involvement in diverse diseases. Chronic kidney disease (CKD) is commonly associated with hypertension and is characterized by immune dysregulation, metabolic disorder and sympathetic activation, which are all linked to gut dysbiosis and altered host-microbiota crosstalk. In this Review, we discuss the complex interplay between the brain, the gut, the microbiota and the kidney in CKD and hypertension and explain our brain-gut-kidney axis hypothesis for the pathogenesis of these diseases. Consideration of the role of the brain-gut-kidney axis in the maintenance of normal homeostasis and of dysregulation of this axis in CKD and hypertension could lead to the identification of novel therapeutic targets. In addition, the discovery of unique microbial communities and their associated metabolites and the elucidation of brain-gut-kidney signalling are likely to fill fundamental knowledge gaps leading to innovative research, clinical trials and treatments for CKD and hypertension.
Collapse
Affiliation(s)
- Tao Yang
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Elaine M Richards
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Abstract
Chronic kidney disease (CKD) represents a leading cause of death in the United States. There is no cure for this disease, with current treatment strategies relying on blood pressure control through blockade of the renin-angiotensin system. Such approaches only delay the development of end-stage kidney disease and can be associated with serious side effects. Recent identification of several novel mechanisms contributing to CKD development - including vascular changes, loss of podocytes and renal epithelial cells, matrix deposition, inflammation and metabolic dysregulation - has revealed new potential therapeutic approaches for CKD. This Review assesses emerging strategies and agents for CKD treatment, highlighting the associated challenges in their clinical development.
Collapse
|
12
|
Park J, Goergen CJ, HogenEsch H, Kim CH. Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell-Mediated Ureteritis and Hydronephrosis. THE JOURNAL OF IMMUNOLOGY 2016; 196:2388-400. [PMID: 26819206 DOI: 10.4049/jimmunol.1502046] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/31/2015] [Indexed: 12/21/2022]
Abstract
Short-chain fatty acids (SCFAs) are major products of gut microbial fermentation and profoundly affect host health and disease. SCFAs generate IL-10(+) regulatory T cells, which may promote immune tolerance. However, SCFAs can also induce Th1 and Th17 cells upon immunological challenges and, therefore, also have the potential to induce inflammatory responses. Because of the seemingly paradoxical SCFA activities in regulating T cells, we investigated, in depth, the impact of elevated SCFA levels on T cells and tissue inflammation in mice. Orally administered SCFAs induced effector (Th1 and Th17) and regulatory T cells in ureter and kidney tissues, and they induced T cell-mediated ureteritis, leading to kidney hydronephrosis (hereafter called acetate-induced renal disease, or C2RD). Kidney hydronephrosis in C2RD was caused by ureteral obstruction, which was, in turn, induced by SCFA-induced inflammation in the ureteropelvic junction and proximal ureter. Oral administration of all major SCFAs, such as acetate, propionate, and butyrate, induced the disease. We found that C2RD development is dependent on mammalian target of rapamycin activation, T cell-derived inflammatory cytokines such as IFN-γ and IL-17, and gut microbiota. Young or male animals were more susceptible than old or female animals, respectively. However, SCFA receptor (GPR41 or GPR43) deficiency did not affect C2RD development. Thus, SCFAs, when systemically administered at levels higher than physiological levels, cause dysregulated T cell responses and tissue inflammation in the renal system. The results provide insights into the immunological and pathological effects of chronically elevated SCFAs.
Collapse
Affiliation(s)
- Jeongho Park
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907; and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Harm HogenEsch
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Chang H Kim
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907; and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
13
|
Torraco A, Peralta S, Iommarini L, Diaz F. Mitochondrial Diseases Part I: mouse models of OXPHOS deficiencies caused by defects in respiratory complex subunits or assembly factors. Mitochondrion 2015; 21:76-91. [PMID: 25660179 DOI: 10.1016/j.mito.2015.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/22/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
Mitochondrial disorders are the most common inborn errors of metabolism affecting the oxidative phosphorylation system (OXPHOS). Because of the poor knowledge of the pathogenic mechanisms, a cure for these disorders is still unavailable and all the treatments currently in use are supportive more than curative. Therefore, in the past decade a great variety of mouse models have been developed to assess the in vivo function of several mitochondrial proteins involved in human diseases. Due to the genetic and physiological similarity to humans, mice represent reliable models to study the pathogenic mechanisms of mitochondrial disorders and are precious to test new therapeutic approaches. Here we summarize the features of several mouse models of mitochondrial diseases directly related to defects in subunits of the OXPHOS complexes or in assembly factors. We discuss how these models recapitulate many human conditions and how they have contributed to the understanding of mitochondrial function in health and disease.
Collapse
Affiliation(s)
- Alessandra Torraco
- Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15-00146 Rome, Italy.
| | - Susana Peralta
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
14
|
Doimo M, Desbats MA, Cerqua C, Cassina M, Trevisson E, Salviati L. Genetics of coenzyme q10 deficiency. Mol Syndromol 2014; 5:156-62. [PMID: 25126048 DOI: 10.1159/000362826] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential component of eukaryotic cells and is involved in crucial biochemical reactions such as the production of ATP in the mitochondrial respiratory chain, the biosynthesis of pyrimidines, and the modulation of apoptosis. CoQ10 requires at least 13 genes for its biosynthesis. Mutations in these genes cause primary CoQ10 deficiency, a clinically and genetically heterogeneous disorder. To date mutations in 8 genes (PDSS1, PDSS2, COQ2, COQ4, COQ6, ADCK3, ADCK4, and COQ9) have been associated with CoQ10 deficiency presenting with a wide variety of clinical manifestations. Onset can be at virtually any age, although pediatric forms are more common. Symptoms include those typical of respiratory chain disorders (encephalomyopathy, ataxia, lactic acidosis, deafness, retinitis pigmentosa, hypertrophic cardiomyopathy), but some (such as steroid-resistant nephrotic syndrome) are peculiar to this condition. The molecular bases of the clinical diversity of this condition are still unknown. It is of critical importance that physicians promptly recognize these disorders because most patients respond to oral administration of CoQ10.
Collapse
Affiliation(s)
- Mara Doimo
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Maria A Desbats
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Cristina Cerqua
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| |
Collapse
|
15
|
Gasser DL, Winkler CA, Peng M, An P, McKenzie LM, Kirk GD, Shi Y, Xie LX, Marbois BN, Clarke CF, Kopp JB. Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and, independently, with a decreased content of coenzyme Q10. Am J Physiol Renal Physiol 2013; 305:F1228-38. [PMID: 23926186 PMCID: PMC3798722 DOI: 10.1152/ajprenal.00143.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/05/2013] [Indexed: 11/22/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) and collapsing glomerulopathy are common causes of nephrotic syndrome. Variants in >20 genes, including genes critical for mitochondrial function, have been associated with these podocyte diseases. One such gene, PDSS2, is required for synthesis of the decaprenyl tail of coenzyme Q10 (Q10) in humans. The mouse gene Pdss2 is mutated in the kd/kd mouse model of collapsing glomerulopathy. We examined the hypothesis that human PDSS2 polymorphisms are associated with podocyte diseases. We genotyped 377 patients with primary FSGS or collapsing glomerulopathy, together with 900 controls, for 9 single-nucleotide polymorphisms in the PDSS2 gene in a case-control study. Subjects included 247 African American (AA) and 130 European American (EA) patients and 641 AA and 259 EA controls. Among EAs, a pair of proxy SNPs was significantly associated with podocyte disease, and patients homozygous for one PDSS2 haplotype had a strongly increased risk for podocyte disease. By contrast, the distribution of PDSS2 genotypes and haplotypes was similar in AA patients and controls. Thus a PDSS2 haplotype, which has a frequency of 13% in the EA control population and a homozygote frequency of 1.2%, is associated with a significantly increased risk for FSGS and collapsing glomerulopathy in EAs. Lymphoblastoid cell lines from FSGS patients had significantly less Q10 than cell lines from controls; contrary to expectation, this finding was independent of PDSS2 haplotype. These results suggest that FSGS patients have Q10 deficiency and that this deficiency is manifested in patient-derived lymphoblastoid cell lines.
Collapse
Affiliation(s)
- David L Gasser
- Dept. of Genetics, Univ. of Pennsylvania School of Medicine, 415 Curie Blvd., Philadelphia, PA 19104.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Quinzii CM, Garone C, Emmanuele V, Tadesse S, Krishna S, Dorado B, Hirano M. Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient Pdss2 mutant mice. FASEB J 2012; 27:612-21. [PMID: 23150520 DOI: 10.1096/fj.12-209361] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Primary human CoQ(10) deficiencies are clinically heterogeneous diseases caused by mutations in PDSS2 and other genes required for CoQ(10) biosynthesis. Our in vitro studies of PDSS2 mutant fibroblasts, with <20% CoQ(10) of control cells, revealed reduced activity of CoQ(10)-dependent complex II+III and ATP synthesis, without amplification of reactive oxygen species (ROS), markers of oxidative damage, or antioxidant defenses. In contrast, COQ2 and ADCK3 mutant fibroblasts, with 30-50% CoQ(10) of controls, showed milder bioenergetic defects but significantly increased ROS and oxidation of lipids and proteins. We hypothesized that absence of oxidative stress markers and cell death in PDSS2 mutant fibroblasts were due to the extreme severity of CoQ(10) deficiency. Here, we have investigated in vivo effects of Pdss2 deficiency in affected and unaffected organs of CBA/Pdss2(kd/kd) mice at presymptomatic, phenotypic-onset, and end-stages of the disease. Although Pdss2 mutant mice manifest widespread CoQ(9) deficiency and mitochondrial respiratory chain abnormalities, only affected organs show increased ROS production, oxidative stress, mitochondrial DNA depletion, and reduced citrate synthase activity, an index of mitochondrial mass. Our data indicate that kidney-specific loss of mitochondria triggered by oxidative stress may be the cause of renal failure in Pdss2(kd/kd) mice.
Collapse
Affiliation(s)
- Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Emma F, Montini G, Salviati L, Dionisi-Vici C. Renal mitochondrial cytopathies. Int J Nephrol 2011; 2011:609213. [PMID: 21811680 PMCID: PMC3146993 DOI: 10.4061/2011/609213] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/03/2011] [Indexed: 11/20/2022] Open
Abstract
Renal diseases in mitochondrial cytopathies are a group of rare diseases that are characterized by frequent multisystemic involvement and extreme variability of phenotype. Most frequently patients present a tubular defect that is consistent with complete De Toni-Debré-Fanconi syndrome in most severe forms. More rarely, patients present with chronic tubulointerstitial nephritis, cystic renal diseases, or primary glomerular involvement. In recent years, two clearly defined entities, namely 3243 A > G tRNA(LEU) mutations and coenzyme Q10 biosynthesis defects, have been described. The latter group is particularly important because it represents the only treatable renal mitochondrial defect. In this paper, the physiopathologic bases of mitochondrial cytopathies, the diagnostic approaches, and main characteristics of related renal diseases are summarized.
Collapse
Affiliation(s)
- Francesco Emma
- Division of Nephrology and Dialysis, Department of Nephrology and Urology, Bambino Gesù Children's Hospital and Research Institute, piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Giovanni Montini
- Nephrology and Dialysis Unit, Pediatric Department, Azienda Ospedaliera di Bologna, 40138 Bologna, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Pediatrics, University of Padova, 35128 Padova, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases, Department of Pediatric Medicine, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy
| |
Collapse
|
18
|
Falk MJ, Polyak E, Zhang Z, Peng M, King R, Maltzman JS, Okwuego E, Horyn O, Nakamaru-Ogiso E, Ostrovsky J, Xie LX, Chen JY, Marbois B, Nissim I, Clarke CF, Gasser DL. Probucol ameliorates renal and metabolic sequelae of primary CoQ deficiency in Pdss2 mutant mice. EMBO Mol Med 2011; 3:410-27. [PMID: 21567994 PMCID: PMC3394513 DOI: 10.1002/emmm.201100149] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/16/2022] Open
Abstract
Therapy of mitochondrial respiratory chain diseases is complicated by limited understanding of cellular mechanisms that cause the widely variable clinical findings. Here, we show that focal segmental glomerulopathy-like kidney disease in Pdss2 mutant animals with primary coenzyme Q (CoQ) deficiency is significantly ameliorated by oral treatment with probucol (1% w/w). Preventative effects in missense mutant mice are similar whether fed probucol from weaning or for 3 weeks prior to typical nephritis onset. Furthermore, treating symptomatic animals for 2 weeks with probucol significantly reduces albuminuria. Probucol has a more pronounced health benefit than high-dose CoQ10 supplementation and uniquely restores CoQ9 content in mutant kidney. Probucol substantially mitigates transcriptional alterations across many intermediary metabolic domains, including peroxisome proliferator-activated receptor (PPAR) pathway signaling. Probucol's beneficial effects on the renal and metabolic manifestations of Pdss2 disease occur despite modest induction of oxidant stress and appear independent of its hypolipidemic effects. Rather, decreased CoQ9 content and altered PPAR pathway signaling appear, respectively, to orchestrate the glomerular and global metabolic consequences of primary CoQ deficiency, which are both preventable and treatable with oral probucol therapy.
Collapse
Affiliation(s)
- Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The development of proliferative podocytopathies has been linked to ligation of tumor necrosis factor receptor 2 (TNFR2) expressed on the renal parenchyma; however, the TNFR2-positive cells within the kidney responsible for podocyte injury are unknown. We detected de novo expression of TNFR2 on podocytes before hyperplastic injury in crescentic glomerulonephritis of mice with nephrotoxic nephritis, and in collapsing glomerulopathy of Tg26(HIV/nl) mice, kd/kd mice, and human beings. We further found that serum levels of soluble TNF-α and TNFR2 correlated significantly with renal injury in Tg26(HIV/nl) mice. Thus, we asked whether ligand binding of TNFR2 on podocytes ex vivo precipitates the characteristic proliferative and pro-inflammatory diseased podocyte phenotypes. Soluble TNF-α activated NF-κB and dose-dependently induced podocyte proliferation, marked by the expression of the podocyte G(1) cyclin and NF-κB target gene, cyclin D1. Microarray gene and chemokine protein expression profiling showed a marked pro-inflammatory NF-κB signature, and activated podocytes secreting CCL2- and CCL5-induced macrophage migration in transwell assays. Neutralization of TNFR2 on podocytes with blocking antibodies abrogated NF-κB activation and the induction of cyclin D1 by TNF-α, and identified TNFR2 as the primary receptor that induced IκBα degradation, the initiating event in NF-κB activation. These results suggest that TNFR2 expressed on podocytes and its canonical NF-κB signaling may directly interpose the compound pathogenic responses by podocytes to TNF-α, in the absence of other TNFR2-positive renal cell types in proliferative podocytopathies.
Collapse
|
20
|
Nelson PJ, Bruggeman LA. Collapsing glomerulopathy: beyond serendipity in mouse genetics. Kidney Int 2009; 75:353-5. [PMID: 19180149 DOI: 10.1038/ki.2008.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Clinical correlates suggest that collapsing glomerulopathy results from the pathogenic interaction between patients' intractable genetic susceptibilities and environmental insults. When the environmental insults include a virus that introduces its own pathogenic genes, the interactions become more complex. Chan et al. combine reverse and forward genetic techniques in mice toward understanding this complexity with HIV and identify candidate genetic modifiers of collapsing glomerulopathy.
Collapse
Affiliation(s)
- Peter J Nelson
- Division of Nephrology, Smilow Research Center, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
21
|
Saiki R, Lunceford AL, Shi Y, Marbois B, King R, Pachuski J, Kawamukai M, Gasser DL, Clarke CF. Coenzyme Q10 supplementation rescues renal disease in Pdss2kd/kd mice with mutations in prenyl diphosphate synthase subunit 2. Am J Physiol Renal Physiol 2008; 295:F1535-44. [PMID: 18784258 DOI: 10.1152/ajprenal.90445.2008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Homozygous mice carrying kd (kidney disease) mutations in the gene encoding prenyl diphosphate synthase subunit 2 (Pdss2kd/kd) develop interstitial nephritis and eventually die from end-stage renal disease. The PDSS2 polypeptide in concert with PDSS1 synthesizes the polyisoprenyl tail of coenzyme Q (Q or ubiquinone), a lipid quinone required for mitochondrial respiratory electron transport. We have shown that a deficiency in Q content is evident in Pdss2kd/kd mouse kidney lipid extracts by 40 days of age and thus precedes the onset of proteinuria and kidney disease by several weeks. The presence of the kd (V117M) mutation in PDSS2 does not prevent its association with PDSS1. However, heterologous expression of the kd mutant form of PDSS2 together with PDSS1 in Escherichia coli recapitulates the Q deficiency observed in the Pdss2kd/kd mouse. Dietary supplementation with Q10 provides a dramatic rescue of both proteinuria and interstitial nephritis in the Pdss2kd/kd mutant mice. The results presented suggest that Q may be acting as a potent lipid-soluble antioxidant, rather than by boosting kidney mitochondrial respiration. Such Q10 supplementation may have profound and beneficial effects in treatment of certain forms of focal segmental glomerulosclerosis that mirror the renal disease of the Pdss2kd/kd mouse.
Collapse
Affiliation(s)
- Ryoichi Saiki
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Peng M, Falk MJ, Haase VH, King R, Polyak E, Selak M, Yudkoff M, Hancock WW, Meade R, Saiki R, Lunceford AL, Clarke CF, Gasser DL. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. PLoS Genet 2008; 4:e1000061. [PMID: 18437205 PMCID: PMC2291193 DOI: 10.1371/journal.pgen.1000061] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 03/26/2008] [Indexed: 02/07/2023] Open
Abstract
Coenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2(kd/kd) genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2(kd/kd) mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2(loxP/loxP) knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2(loxP/loxP) knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment.
Collapse
Affiliation(s)
- Min Peng
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Marni J. Falk
- Department of Pediatrics, Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Volker H. Haase
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Rhonda King
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Erzsebet Polyak
- Department of Pediatrics, Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mary Selak
- Mitochondrial Research Laboratory, Department of Pediatrics, The Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Marc Yudkoff
- Department of Pediatrics, Division of Metabolism, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Wayne W. Hancock
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ray Meade
- Biomedical Imaging Core Facility, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ryoichi Saiki
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Adam L. Lunceford
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - David L. Gasser
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abstract
Collapsing glomerulopathy is a proliferative disease defined by segmental or global wrinkling of the glomerular basement membranes associated with podocyte proliferation. These lesions are particularly poor responders to standard therapies. First described as an idiopathic disorder or following HIV infection, it is now associated with a broad group of diseases and different pathogenetic mechanisms, which participate in podocyte injury and mitogenic stimulation. Because of this etiologic heterogeneity, there is clear need for new therapeutic approaches to target each variant of this entity. Historical background, terminology, morphologic and phenotypic features, and suggested mechanisms are reviewed in this manuscript.
Collapse
Affiliation(s)
- Mamdouh Albaqumi
- King Faisal Specialist Hospital and Research Center, Department of Medicine, Section of Nephrology, Riyadh, Saudi Arabia
| | | |
Collapse
|
24
|
Abstract
In April 2007, an international Colloquium bridging scientific and clinical disciplines was held to discuss the role of cellular and tissue damage in the initiation, development and persistence of autoimmune disease. Five potential etiologic and pathophysiologic processes fundamental to autoimmune disease (i.e. inflammation, infection, apoptosis, environmental exposure and genetics) were the focus of the presentations and integrative discussions at the Colloquium. The information presented on these topics is condensed in this review. Inflammation has close clinico-pathologic associations with autoimmunity, but future analyses will require better definition and metrics of inflammation, particularly for the earliest cellular and molecular components dependent on recruitment of elements of innate immunity. Although infection may be associated with increased levels of autoantibodies, most infections and virtually all vaccinations in humans lack well-established links to autoimmune diseases. Further application of well-designed, long-term epidemiologic and population-based studies is urgently needed to relate antecedent exposures with later occurring stigmata of autoimmunity with a goal of discerning potentially susceptible individuals or subpopulations. Suspect infections requiring closer interrogation include EB virus (SLE and other diseases), HCV (autoimmune hepatitis), beta hemolytic streptococci (rheumatic carditis) and Helicobacter pylori (autoimmune gastritis) among others. And even if a micro-organism was to be incriminated, mechanisms of initiation/perpetuation of autoimmunity continue to challenge investigators. Plausible mechanisms include potentiation and diversion of innate immunity; exposure or spillage of intracellular autoantigens; or provision of autoantigenic mimics. Integrity of apoptosis as a critical safeguard against autoimmunity was discussed in the contexts of over-reactivity causing autoantigens to gain enhanced exposure to the immune system, or under-reactivity producing insufficient elimination of autoreactive clones of lymphocytes. Although environmental agents are widely believed to serve as necessary "triggers" of autoimmune disease in genetically predisposed individuals, only a few such agents (mainly drugs and some nutrients) have been clearly identified and their mechanism of action defined. Finally an essential genetic foundation underlies all these hazards for autoimmunity in the form of risk-associated polymorphisms in immunoregulatory genes. They may be predictive of future or impending disease.
Collapse
Affiliation(s)
- Ian R Mackay
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
25
|
Barisoni L, Diomedi-Camassei F, Santorelli FM, Caridi G, Thomas DB, Emma F, Piemonte F, Ghiggeri GM. Collapsing glomerulopathy associated with inherited mitochondrial injury. Kidney Int 2008; 74:237-43. [PMID: 18235438 DOI: 10.1038/sj.ki.5002767] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Laura Barisoni
- Department of Pathology and Medicine, School of Medicine, New York University, New York, New York 10016, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Baldini C, Giusti L, Bazzichi L, Lucacchini A, Bombardieri S. Proteomic analysis of the saliva: a clue for understanding primary from secondary Sjögren's syndrome? Autoimmun Rev 2007; 7:185-91. [PMID: 18190876 DOI: 10.1016/j.autrev.2007.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The clinical entity of secondary Sjögren's syndrome (SS) is controversial and the relationship with primary SS and other systemic autoimmune diseases is still far from being completely understood. In the last few years, proteomic approaches have been applied with a growing interest in the search for diagnostic biomarkers for many rheumatic diseases and it is possible that, in the near future, proteomic analysis of human saliva could help in distinguishing also primary from secondary SS. This review summarizes the state of the art of proteomic analysis of human saliva in the diagnosis of connective diseases focusing its advantages, limits and future perspectives.
Collapse
Affiliation(s)
- Chiara Baldini
- Department of Internal Medicine, Rheumatology Unit, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | | | | | | | | |
Collapse
|
27
|
Shoenfeld Y, Gershwin ME. Foreword. Ann N Y Acad Sci 2007. [DOI: 10.1196/annals.1422.000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Abstract
Collapsing glomerulopathy (CG) has become an important cause of ESRD. First delineated from other proteinuric glomerular lesions in the 1980s, CG is now recognized as a common, distinct pattern of proliferative parenchymal injury that portends a rapid loss of renal function and poor responses to empiric therapy. Notwithstanding, the rise in disorders that are associated with CG, the identification of the first susceptibility genes for CG, the remarkable increase in murine modeling of CG, and promising preclinical testing of new therapeutic strategies suggest that the outlook for CG as a poorly understood and therapeutically resistant renal disease is set to change in the future. This focused review highlights recent advances in research into the pathogenesis and treatment of CG.
Collapse
Affiliation(s)
- Mamdouh Albaqumi
- Division of Nephrology, NYU School of Medicine, Smilow Research Center, 522 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|