1
|
Tutino M, Yu NYL, Hatzikotoulas K, Park YC, Kreitmaier P, Katsoula G, Berner R, Casteels K, Elding Larsson H, Kordonouri O, Ołtarzewski M, Szypowska A, Ott R, Weiss A, Winkler C, Zapardiel-Gonzalo J, Petrera A, Hauck SM, Bonifacio E, Ziegler AG, Zeggini E. Genetics of circulating proteins in newborn babies at high risk of type 1 diabetes. Nat Commun 2025; 16:3750. [PMID: 40263317 PMCID: PMC12015297 DOI: 10.1038/s41467-025-58972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
Type 1 diabetes is a chronic, autoimmune disease characterized by the destruction of insulin-producing β-cells in the pancreas. Early detection can facilitate timely intervention, potentially delaying or preventing disease onset. Circulating proteins reflect dysregulated biological processes and offer insights into early disease mechanisms. Here, we construct a genome-wide pQTL map of 1985 proteins in 695 newborn babies (median age 2 days) at increased genetic risk of developing Type 1 diabetes. We identify 535 pQTLs (352 cis-pQTLs, 183 trans-pQTLs), 62 of which characteristic of newborns. We show colocalization of pQTLs for CTRB1, APOBR, IL7R, CPA1, and PNLIPRP1 with Type 1 diabetes GWAS signals, and Mendelian randomization causally implicates each of these five proteins in the aetiology of Type 1 diabetes. Our study illustrates the utility of newborn molecular profiles for discovering potential drug targets for childhood diseases of significant concern.
Collapse
Affiliation(s)
- Mauro Tutino
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Nancy Yiu-Lin Yu
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Young-Chan Park
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Peter Kreitmaier
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich, TUM School of Medicine and Health, Graduate School of Experimental Medicine, Munich, Germany
- Technical University of Munich and Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675, Munich, Germany
| | - Georgia Katsoula
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich, TUM School of Medicine and Health, Graduate School of Experimental Medicine, Munich, Germany
- Technical University of Munich and Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675, Munich, Germany
| | - Reinhard Berner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kristina Casteels
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Helena Elding Larsson
- Unit for Pediatric Endocrinology, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Paediatrics, Skane University Hospital, Malmö/Lund, Lund, Sweden
| | - Olga Kordonouri
- Kinder- und Jugendkrankenhaus AUF DER BULT, Hannover, Germany
| | - Mariusz Ołtarzewski
- Department of Screening and Metabolic Diagnostics, Institute of Mother and Child, Warsaw, Poland
| | - Agnieszka Szypowska
- Department of Paediatric Diabetology and Paediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Raffael Ott
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Andreas Weiss
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Munich, Munich, Germany
| | - Jose Zapardiel-Gonzalo
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Agnese Petrera
- Metabolomics and Proteomics Core, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Munich, Munich, Germany
- Forschergruppe Diabetes, School of Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
- Technical University of Munich and Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675, Munich, Germany.
| |
Collapse
|
2
|
Zeng Z, Mao H, Lei Q, He Y. IL-7 in autoimmune diseases: mechanisms and therapeutic potential. Front Immunol 2025; 16:1545760. [PMID: 40313966 PMCID: PMC12043607 DOI: 10.3389/fimmu.2025.1545760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/14/2025] [Indexed: 05/03/2025] Open
Abstract
Interleukin-7 (IL-7) is a pleiotropic cytokine that plays a crucial role in the development, homeostasis, and function of the immune system. Growing evidence has demonstrated that IL-7 is involved in the pathogenesis of various autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and multiple sclerosis (MS). This review aims to summarize the current understanding of the role of IL-7 in autoimmune diseases, focusing on its mechanisms of action, implications for disease progression, and potential therapeutic applications. Produced by stromal cells, IL-7 binds to IL-7 receptor (IL-7R) on diverse immune cells. It is crucial for T cell development, survival, and proliferation. In autoimmune diseases, it activates and expands autoreactive T cells and influences B cell function, potentially leading to autoantibody production. The review further delves into the role of IL-7 in different autoimmune diseases. In RA, elevated IL-7/IL-7R promotes memory T cell survival, cytokine production, and influences B cells and monocytes to contribute to inflammation and joint damage. In SLE, elevated soluble form of IL-7R is associated with disease activity, promoting the survival of autoreactive T cells and enhancing the production of pro-inflammatory cytokines. In MS, genetic variations in the IL-7R gene are linked to disease susceptibility, and IL-7 impacts the survival and differentiation of T cell subsets involved in multiple sclerosis pathogenesis. For T1D, IL-7 affects the function of immune cells that attack pancreatic β cells. Given its central role in autoimmune processes, targeting the IL-7/IL-7R axis holds great therapeutic potential. By modulating IL-7 signaling, it may be possible to restore immune tolerance, reduce the activation of autoreactive immune cells, and alleviate disease symptoms. Understanding the complex mechanisms of IL-7 in autoimmune diseases is essential for the development of effective and targeted therapies.
Collapse
Affiliation(s)
| | | | | | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Kim JY, Mayatepek E, Seyfarth J, Jacobsen M. High common-γ cytokine receptor levels promote expression of Interleukin-2/Interleukin-7 receptor α-chains with implications on T-cell differentiation and function. Immunology 2024; 173:93-105. [PMID: 38778445 DOI: 10.1111/imm.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Cytokines of the common-γ receptor chain (γc) family are crucial for T-cell differentiation and dysregulation of γc cytokine pathways is involved in the pathogenesis of autoimmune diseases. There is increasing evidence that the availability of the γc receptor (CD132) for the associated receptor chains has implications for T-cell functions. Here we studied the influence of differential γc expression on the expression of the IL-2Rα (CD25), the IL-7Rα (CD127) and the differentiation of activated naïve T cells. We fine-tuned the regulation of γc expression in human primary naïve T cells by lentiviral transduction using small hairpin (sh)RNAs and γc cDNA. Differential γc levels were then analysed for effects on T-cell phenotype and function after activation. Differential γc expression markedly affected IL-2Rα and IL-7Rα expression on activated naïve T cells. High γc expression (γc-high) induced significantly higher expression of IL-2Rα and re-expression of IL-7Rα after activation. Inhibition of γc caused lower IL-2Rα/IL-7Rα expression and impaired proliferation of activated naïve T cells. In contrast, γc-high T cells secreted significantly higher concentrations of effector cytokines (i.e., IFN-γ, IL-6) and showed higher cytokine-receptor induced STAT5 phosphorylation during initial stages as well as persistently higher pSTAT1 and pSTAT3 levels after activation. Finally, accelerated transition towards a CD45RO expressing effector/memory phenotype was seen especially for CD4+ γc-high naïve T cells. These results suggested that high expression of γc promotes expression of IL-2Rα and IL-7Rα on activated naïve T cells with significant effects on differentiation and effector cytokine expression.
Collapse
Affiliation(s)
- Ju-Young Kim
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Julia Seyfarth
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
4
|
Santos AJM, van Unen V, Lin Z, Chirieleison SM, Ha N, Batish A, Chan JE, Cedano J, Zhang ET, Mu Q, Guh-Siesel A, Tomaske M, Colburg D, Varma S, Choi SS, Christophersen A, Baghdasaryan A, Yost KE, Karlsson K, Ha A, Li J, Dai H, Sellers ZM, Chang HY, Dunn JCY, Zhang BM, Mellins ED, Sollid LM, Fernandez-Becker NQ, Davis MM, Kuo CJ. A human autoimmune organoid model reveals IL-7 function in coeliac disease. Nature 2024; 632:401-410. [PMID: 39048815 PMCID: PMC11747932 DOI: 10.1038/s41586-024-07716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
In vitro models of autoimmunity are constrained by an inability to culture affected epithelium alongside the complex tissue-resident immune microenvironment. Coeliac disease (CeD) is an autoimmune disease in which dietary gluten-derived peptides bind to the major histocompatibility complex (MHC) class II human leukocyte antigen molecules (HLA)-DQ2 or HLA-DQ8 to initiate immune-mediated duodenal mucosal injury1-4. Here, we generated air-liquid interface (ALI) duodenal organoids from intact fragments of endoscopic biopsies that preserve epithelium alongside native mesenchyme and tissue-resident immune cells as a unit without requiring reconstitution. The immune diversity of ALI organoids spanned T cells, B and plasma cells, natural killer (NK) cells and myeloid cells, with extensive T-cell and B-cell receptor repertoires. HLA-DQ2.5-restricted gluten peptides selectively instigated epithelial destruction in HLA-DQ2.5-expressing organoids derived from CeD patients, and this was antagonized by blocking MHC-II or NKG2C/D. Gluten epitopes stimulated a CeD organoid immune network response in lymphoid and myeloid subsets alongside anti-transglutaminase 2 (TG2) autoantibody production. Functional studies in CeD organoids revealed that interleukin-7 (IL-7) is a gluten-inducible pathogenic modulator that regulates CD8+ T-cell NKG2C/D expression and is necessary and sufficient for epithelial destruction. Furthermore, endogenous IL-7 was markedly upregulated in patient biopsies from active CeD compared with remission disease from gluten-free diets, predominantly in lamina propria mesenchyme. By preserving the epithelium alongside diverse immune populations, this human in vitro CeD model recapitulates gluten-dependent pathology, enables mechanistic investigation and establishes a proof of principle for the organoid modelling of autoimmunity.
Collapse
MESH Headings
- Humans
- Autoantibodies/immunology
- Autoimmunity
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Biopsy
- Celiac Disease/immunology
- Celiac Disease/pathology
- Celiac Disease/metabolism
- Duodenum/immunology
- Duodenum/pathology
- Duodenum/metabolism
- Epitopes/immunology
- Glutens/immunology
- Glutens/metabolism
- GTP-Binding Proteins/metabolism
- GTP-Binding Proteins/immunology
- HLA-DQ Antigens/immunology
- HLA-DQ Antigens/metabolism
- Interleukin-7/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Killer Cells, Natural/immunology
- Models, Biological
- Myeloid Cells/immunology
- Organoids/immunology
- Organoids/metabolism
- Organoids/pathology
- Protein Glutamine gamma Glutamyltransferase 2/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- António J M Santos
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vincent van Unen
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhongqi Lin
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven M Chirieleison
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nhi Ha
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Arpit Batish
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua E Chan
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose Cedano
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Elisa T Zhang
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Qinghui Mu
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Guh-Siesel
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Madeline Tomaske
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Deana Colburg
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shannon S Choi
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Asbjørn Christophersen
- K. G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Ani Baghdasaryan
- Department of Chemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kasper Karlsson
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Ha
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongjie Dai
- Department of Chemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Zachary M Sellers
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James C Y Dunn
- Department of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Bing M Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ludvig M Sollid
- K. G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Nielsen Q Fernandez-Becker
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Shohdy K, Pillai M, Abbas K, Allison J, Waddell T, Darlington E, Mohammad S, Hood S, Atkinson S, Simpson K, Morgan D, Nathan P, Kilgour E, Dive C, Thistlethwaite F. Immune biomarker evaluation of sequential tyrosine kinase inhibitor and nivolumab monotherapies in renal cell carcinoma: the phase I TRIBE trial. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 22:100712. [PMID: 38694705 PMCID: PMC11059457 DOI: 10.1016/j.iotech.2024.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Background Predictive biomarkers for immune checkpoint blockade in the second-line treatment of metastatic renal cell carcinoma (mRCC) are lacking. Materials and methods Patients with histologically confirmed RCC who started nivolumab after at least 4 months of tyrosine kinase inhibitors (TKIs) were recruited for this study. Serial tissue and blood samples were collected for immune biomarker evaluation. The primary endpoint was to determine the association of specific T-cell subsets with clinical outcomes tested using Wilcoxon rank sum for clinical benefit rate (CBR) and log-rank test for progression-free survival (PFS). Results Twenty patients were included in this trial with a median age of 64 years and followed-up for a median of 12 months. The median PFS for patients who received TKI was 13.8 months, while for those subsequently treated with nivolumab following TKI therapy, the median PFS was 2.6 months. CBR of nivolumab was 20% with two partial responses. Functionally active programmed cell death protein 1+ CD4+ T cells were enriched in non-responders (q = 0.003) and associated with worse PFS on nivolumab (P = 0.04). Responders showed a significant reduction in the effector CD4+T-cell (TEF) fraction compared to non-responders at 3 months on nivolumab (0.40 versus 0.80, P = 0.0005). CD127+CD4+ T cells were enriched in patients who developed immune-related adverse effects (q = 0.003). Using in-house validated multiplex immunohistochemistry for six markers, we measured tumour-associated immune cell densities in tissue samples. Responders to nivolumab showed a significantly higher mean of immune cell densities in tissue samples compared to non-responders (346 versus 87 cells/mm2, P = 0.04). Conclusions In this small study, analysis of tissue-based and peripheral blood immune cell subsets predicted clinical outcomes of nivolumab. Further studies are warranted with larger populations to validate these observations.
Collapse
Affiliation(s)
- K.S. Shohdy
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - M. Pillai
- The Christie NHS Foundation Trust, Manchester, UK
| | - K.S. Abbas
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - J. Allison
- The Christie NHS Foundation Trust, Manchester, UK
| | - T. Waddell
- The Christie NHS Foundation Trust, Manchester, UK
| | | | - S. Mohammad
- Cancer Biomarker Centre, Cancer Research UK Manchester Institute, Manchester, UK
| | - S. Hood
- Cancer Biomarker Centre, Cancer Research UK Manchester Institute, Manchester, UK
| | - S. Atkinson
- Cancer Biomarker Centre, Cancer Research UK Manchester Institute, Manchester, UK
| | - K. Simpson
- Cancer Biomarker Centre, Cancer Research UK Manchester Institute, Manchester, UK
| | - D. Morgan
- Cancer Biomarker Centre, Cancer Research UK Manchester Institute, Manchester, UK
| | - P. Nathan
- Mount Vernon Cancer Centre - East and North Herts NHS Trust, Northwood, Middlesex, UK
| | - E. Kilgour
- Cancer Biomarker Centre, Cancer Research UK Manchester Institute, Manchester, UK
| | - C. Dive
- Cancer Biomarker Centre, Cancer Research UK Manchester Institute, Manchester, UK
| | - F. Thistlethwaite
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Borysewicz-Sańczyk H, Wawrusiewicz-Kurylonek N, Gościk J, Sawicka B, Bossowski F, Corica D, Aversa T, Waśniewska M, Bossowski A. Prevalence of Selected Polymorphisms of Il7R, CD226, CAPSL, and CLEC16A Genes in Children and Adolescents with Autoimmune Thyroid Diseases. Int J Mol Sci 2024; 25:4028. [PMID: 38612837 PMCID: PMC11012896 DOI: 10.3390/ijms25074028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Hashimoto's thyroiditis (HT) and Graves' disease (GD) are common autoimmune endocrine disorders in children. Studies indicate that apart from environmental factors, genetic background significantly contributes to the development of these diseases. This study aimed to assess the prevalence of selected single-nucleotide polymorphisms (SNPs) of Il7R, CD226, CAPSL, and CLEC16A genes in children with autoimmune thyroid diseases. We analyzed SNPs at the locus rs3194051, rs6897932 of IL7R, rs763361 of CD226, rs1010601 of CAPSL, and rs725613 of CLEC16A gene in 56 HT patients, 124 GD patients, and 156 healthy children. We observed significant differences in alleles IL7R (rs6897932) between HT males and the control group (C > T, p = 0.028) and between all GD patients and healthy children (C > T, p = 0.035) as well as GD females and controls (C > T, p = 0.018). Moreover, the C/T genotype was less frequent in GD patients at rs6897932 locus and in HT males at rs1010601 locus. The presence of the T allele in the IL7R (rs6897932) locus appears to have a protective effect against HT in males and GD in all children. Similarly, the presence of the T allele in the CAPSL locus (rs1010601) seems to reduce the risk of HT development in all patients.
Collapse
Affiliation(s)
- Hanna Borysewicz-Sańczyk
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Divisions, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland; (B.S.); (F.B.)
| | - Natalia Wawrusiewicz-Kurylonek
- Department of Clinical Genetics, Medical University of Bialystok, J. Waszyngtona 13, 15-089 Bialystok, Poland;
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Joanna Gościk
- Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland;
| | - Beata Sawicka
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Divisions, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland; (B.S.); (F.B.)
| | - Filip Bossowski
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Divisions, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland; (B.S.); (F.B.)
| | - Domenico Corica
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria Cap, 98125 Messina, Italy; (D.C.); (T.A.); (M.W.)
| | - Tommaso Aversa
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria Cap, 98125 Messina, Italy; (D.C.); (T.A.); (M.W.)
| | - Małgorzata Waśniewska
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria Cap, 98125 Messina, Italy; (D.C.); (T.A.); (M.W.)
| | - Artur Bossowski
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Divisions, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland; (B.S.); (F.B.)
| |
Collapse
|
7
|
Luo F, Zhang Y, Wang P. Tofacitinib for the treatment of severe rare skin diseases: a narrative review. Eur J Clin Pharmacol 2024; 80:481-492. [PMID: 38231227 DOI: 10.1007/s00228-024-03621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
PURPOSE Autoimmune bullous diseases, connective tissue diseases, and vasculitis represent a group of severe rare skin diseases. While glucocorticoids and immunosuppressive agents serve as standard treatments for these diseases, their efficacy is limited due to adverse side effects, indicating the need for alternative approaches. Biologics have been used in the management of some rare skin diseases. However, the use of biologics is associated with concerns, such as infection risk and high costs, prompting the quest for efficacious and cost-effective alternatives. This study discusses the safety issues associated with tofacitinib and its potential in treating rare skin diseases. METHODS This narrative review focuses on the pharmacodynamic properties of tofacitinib and its impact on the JAK/STAT pathway. In addition, we present a comprehensive discussion of the effects and mechanism of action of tofacitinib for each severe rare skin disease. RESULTS This role of tofacitinib in treating severe rare skin diseases has been discussed, shedding light on its promising prospects as a treatment modality. Few reports of serious adverse events are available in patients treated with tofacitinib. CONCLUSION We explored the mechanism of action, efficacy, and safety considerations of tofacitinib and found that it can be used as a treatment option for rare skin diseases. However, multicenter clinical studies are needed to confirm the efficacy and safety of JAK inhibitors.
Collapse
Affiliation(s)
- Fenglin Luo
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310000, China
| | - Yuanyuan Zhang
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310000, China
| | - Ping Wang
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310000, China.
| |
Collapse
|
8
|
Derakhshan Nazari MH, Shahrokh S, Ghanbari-Maman L, Maleknia S, Ghorbaninejad M, Meyfour A. Prediction of anti-TNF therapy failure in ulcerative colitis patients by ensemble machine learning: A prospective study. Heliyon 2023; 9:e21154. [PMID: 37928018 PMCID: PMC10623293 DOI: 10.1016/j.heliyon.2023.e21154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Nowadays, anti-TNF therapy remarkably improves the medical management of ulcerative colitis (UC), but approximately 40 % of patients do not respond to this treatment. In this study, we used 79 anti-TNF-naive patients with moderate-to-severe UC from four cohorts to discover alternative therapeutic targets and develop a personalized medicine approach that can diagnose UC non-responders (UCN) prior to receiving anti-TNF therapy. To this end, two microarray data series were integrated to create a discovery cohort with 35 UC samples. A comprehensive gene expression and functional analysis was performed and identified 313 significantly altered genes, among which IL6 and INHBA were highlighted as overexpressed genes in the baseline mucosal biopsies of UCN, whose cooperation may lead to a decrease in the Tregs population. Besides, screening the abundances of immune cell subpopulations showed neutrophils' accumulation increasing the inflammation. Furthermore, the correlation of KRAS signaling activation with unresponsiveness to anti-TNF mAb was observed using network analysis. Using 50x repeated 10-fold cross-validation LASSO feature selection and a stack ensemble machine learning algorithm, a five-mRNA prognostic panel including IL13RA2, HCAR3, CSF3, INHBA, and MMP1 was introduced that could predict the response of UC patients to anti-TNF antibodies with an average accuracy of 95.3 %. The predictive capacity of the introduced biomarker panel was also validated in two independent cohorts (44 UC patients). Moreover, we presented a distinct immune cell landscape and gene signature for UCN to anti-TNF drugs and further studies should be considered to make this predictive biomarker panel and therapeutic targets applicable in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Hossein Derakhshan Nazari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Research Center for Gastroenterology and Liver Diseases, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Ghanbari-Maman
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Computer Science, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Choung RS, Petralia F, Torres J, Ungaro RC, Porter C, Sato T, Telesco S, Strauss RS, Plevy S, Princen F, Riddle MS, Murray JA, Colombel JF. Preclinical Serological Signatures are Associated With Complicated Crohn's Disease Phenotype at Diagnosis. Clin Gastroenterol Hepatol 2023; 21:2928-2937.e12. [PMID: 36787834 PMCID: PMC10421963 DOI: 10.1016/j.cgh.2023.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND At diagnosis, up to one-third of patients with Crohn's disease (CD) have a complicated phenotype with stricturing (B2) or penetrating (B3) behavior or require early surgery. We evaluated protein biomarkers and antimicrobial antibodies in serum archived years before CD diagnosis to assess whether complicated diagnoses were associated with a specific serological signature. METHODS Prediagnosis serum was obtained from 201 patients with CD and 201 healthy controls. Samples were evaluated with a comprehensive panel of 1129 proteomic markers (SomaLogic) and antimicrobial antibodies. CD diagnosis and complications were defined by the International Classification of Diseases-Ninth Revision and Current Procedural Terminology codes. Cox regression models were utilized to assess the association between markers and the subsequent risk of being diagnosed with complicated CD. In addition, biological pathway and network analyses were performed. RESULTS Forty-seven CD subjects (24%) had a B2 (n = 36) or B3 (n = 9) phenotype or CD-related surgery (n = 2) at diagnosis. Subjects presenting with complicated CD at diagnosis had higher levels of antimicrobial antibodies six years before diagnosis as compared with those diagnosed with noncomplicated CD. Twenty-two protein biomarkers (reflecting inflammatory, fibrosis, and tissue protection markers) were found to be associated with complicated CD. Pathway analysis of the altered protein biomarkers identified higher activation of the innate immune system and complement or coagulation cascades up to six years before diagnosis in complicated CD. CONCLUSIONS Proteins and antimicrobial antibodies associated with dysregulated innate immunity, excessive adaptive response to microbial antigens, and fibrosis precede and predict a complicated phenotype at the time of diagnosis in CD patients.
Collapse
Affiliation(s)
- Rok Seon Choung
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Francesca Petralia
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joana Torres
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Ryan C Ungaro
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chad Porter
- Naval Medical Research Center, Silver Spring, Maryland
| | | | | | | | - Scott Plevy
- Protagonist Therapeutics, Newark, California
| | - Fred Princen
- Prometheus Laboratories Inc, San Diego, California
| | - Mark S Riddle
- Naval Medical Research Center, Silver Spring, Maryland; Department of Internal Medicine, University of Nevada, Reno, School of Medicine, Reno, Nevada
| | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| | - Jean Frederic Colombel
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
10
|
Allais BS, Fay CJ, Kim DY, Semenov YR, LeBoeuf NR. Cutaneous immune-related adverse events from immune checkpoint inhibitor therapy: Moving beyond "maculopapular rash". Immunol Rev 2023; 318:22-36. [PMID: 37583051 DOI: 10.1111/imr.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 08/17/2023]
Abstract
Uncoupling toxicity from therapeutic effect lies at the foundation of the current state of the field of cutaneous immune-related adverse events to immune checkpoint inhibitor therapy. This will be achieved through understanding the drivers of toxicity, tumor response, and resistance via large, well-powered population-level studies, institutional cohort data, and cellular-level data. Increasing diagnostic specificity through the application of consensus disease definitions has the power to improve clinical care and each approach to research. Cutaneous immune-related adverse events are associated with increased survival, and their treatment must invoke the maintenance of a delicate balance between immunosuppression, anti-tumor effect of immune checkpoint inhibitor therapy, and quality of life. The multidisciplinary care of cancer patients with adverse events is critical to optimizing clinical and translational research outcomes and, as such, dermatologists are vital to moving the study of cutaneous adverse events forward.
Collapse
Affiliation(s)
- Blair S Allais
- Inova Schar Cancer Institute, Melanoma and Skin Cancer Center, Fairfax, Virginia, USA
| | - Christopher J Fay
- The Center for Cutaneous Oncology, Department of Dermatology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Daniel Y Kim
- Harvard-MIT Health Sciences and Technology Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Yevgeniy R Semenov
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nicole R LeBoeuf
- The Center for Cutaneous Oncology, Department of Dermatology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Gusev A. Germline mechanisms of immunotherapy toxicities in the era of genome-wide association studies. Immunol Rev 2023; 318:138-156. [PMID: 37515388 PMCID: PMC11472697 DOI: 10.1111/imr.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Cancer immunotherapy has revolutionized the treatment of advanced cancers and is quickly becoming an option for early-stage disease. By reactivating the host immune system, immunotherapy harnesses patients' innate defenses to eradicate the tumor. By putatively similar mechanisms, immunotherapy can also substantially increase the risk of toxicities or immune-related adverse events (irAEs). Severe irAEs can lead to hospitalization, treatment discontinuation, lifelong immune complications, or even death. Many irAEs present with similar symptoms to heritable autoimmune diseases, suggesting that germline genetics may contribute to their onset. Recently, genome-wide association studies (GWAS) of irAEs have identified common germline associations and putative mechanisms, lending support to this hypothesis. A wide range of well-established GWAS methods can potentially be harnessed to understand the etiology of irAEs specifically and immunotherapy outcomes broadly. This review summarizes current findings regarding germline effects on immunotherapy outcomes and discusses opportunities and challenges for leveraging germline genetics to understand, predict, and treat irAEs.
Collapse
Affiliation(s)
- Alexander Gusev
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics, Brigham & Women's Hospital, Boston, Massachusetts, USA
- The Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Genkel V, Dolgushin I, Savochkina A, Nikushkina K, Baturina I, Minasova A, Sumerkina V, Pykhova L, Kupriyanov S, Kuznetsova A, Shaposhnik I. Innate and Adaptive Immunity-Related Markers as Predictors of the Short-Term Progression of Subclinical Atherosclerosis in Middle-Aged Patients. Int J Mol Sci 2023; 24:12205. [PMID: 37569579 PMCID: PMC10419170 DOI: 10.3390/ijms241512205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Assessment of inflammation is a promising approach to monitoring the progression of asymptomatic atherosclerosis. The aim of the present study was to investigate the predictive value of innate and adaptive immunity-related markers, in relation to the short-term progression of subclinical atherosclerosis. The study included 183 patients aged 40-64 years who underwent duplex scanning of the carotid and lower limb arteries at two visits with an interval of 12-24 months between examinations. Phenotyping of circulating lymphocytes and monocytes subpopulations were performed through flow cytometry. An increase in the number of circulating TLR4-positive intermediate monocytes (>447.0-467.0 cells/μL) was an independent predictor of the short-term progression of lower limb artery atherosclerosis (p < 0.0001) and polyvascular atherosclerosis (p = 0.003). The assessment of TLR4-positive monocytes significantly improved the prognostic model for the progression of lower limb arterial atherosclerosis (C-index 0.728 (0.642-0.815) versus 0.637 (0.539-0.735); p = 0.038). An increase in the number of circulating TLR4-positive intermediate monocytes was an independent predictor of the short-term progression of lower limb artery and polyvascular atherosclerosis. Their inclusion into models containing conventional risk factors significantly improved their prognostic effectiveness regarding lower limb artery atherosclerosis progression.
Collapse
Affiliation(s)
- Vadim Genkel
- Federal State Budgetary Educational Institution of Higher Education “South-Ural State Medical University” of the Ministry of Healthcare of the Russian Federation, 454092 Chelyabinsk, Russia; (I.D.); (A.S.); (K.N.); (I.B.); (A.M.); (V.S.); (L.P.); (S.K.); (A.K.); (I.S.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Damiati LA, Denetiu I, Bahlas S, Damiati S, Pushparaj PN. Immunoprofiling of cytokines, chemokines, and growth factors in female patients with systemic lupus erythematosus- a pilot study. BMC Immunol 2023; 24:13. [PMID: 37370001 DOI: 10.1186/s12865-023-00551-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease affecting different organ systems. This study aimed to determine the concentrations of 30 different human cytokines, chemokines, and growth factors in human plasma to understand the role of these markers in the pathogenicity of SLE using Luminex Multiple Analyte Profiling (xMAP) technology. Plasma samples were obtained from patients with SLE (n = 28), osteoarthritis (OA) (n = 9), and healthy individuals (n = 12) were obtained. High levels of TNF, IL-6, IFN-γ, INF-α, IL-4, IL-5, IL-13, IL-8, IP-10, MIG, MCP-1, MIP-1β, GM-CSF, G-CSF, EGF, VEGF, IL-12, IL-1RA, and IL-10 was detected in SLE patients compared with the OA and healthy control groups. xMAP analysis has been used to address the differential regulation of clinical heterogeneity and immunological phenotypes in SLE patients. In addition, complete disease phenotyping information along with cytokine immune profiles would be useful for developing personalized treatments for patients with SLE.
Collapse
Affiliation(s)
- Laila A Damiati
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
- Lab of Hematology, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Iuliana Denetiu
- Lab of Hematology, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami Bahlas
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samar Damiati
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| |
Collapse
|
14
|
Hou W, Zhang L, Chen J, Gu Y, Lv X, Zhang X, Li J, Liu H, Gao R. Expression Improvement of Recombinant Plasmids of the Interleukin-7 Gene in Chitosan-Derived Nanoparticles and Their Elevation of Mice Immunity. BIOLOGY 2023; 12:biology12050667. [PMID: 37237481 DOI: 10.3390/biology12050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
To investigate a safe and effective approach for enhancing the in vivo expression of recombinant genes and improving the systemic immunity of animals against infectious diseases, we employed the interleukin-7 (IL-7) gene from Tibetan pigs to construct a recombinant eukaryotic plasmid (VRTPIL-7). We first examined VRTPIL-7's bioactivity on porcine lymphocytes in vitro and then encapsulated it with polyethylenimine (PEI), chitosan copolymer (CS), PEG-modified galactosylated chitosan (CS-PEG-GAL) and methoxy poly (ethylene glycol) (PEG) and PEI-modified CS (CS-PEG-PEI) nanoparticles using the ionotropic gelation technique. Next, we intramuscularly or intraperitoneally injected mice with various nanoparticles containing VRTPIL-7 to evaluate their immunoregulatory effects in vivo. We observed a significant increase in neutralizing antibodies and specific IgG levels in response to the rabies vaccine in the treated mice compared to the controls. Treated mice also exhibited increased leukocytes, CD8+ and CD4+ T lymphocytes, and elevated mRNA levels of toll-like receptors (TLR1/4/6/9), IL-1, IL-2, IL-4, IL-6, IL-7, IL-23, and transforming growth factor-beta (TGF-β). Notably, the recombinant IL-7 gene encapsulated in CS-PEG-PEI induced the highest levels of immunoglobulins, CD4+ and CD8+ T cells, TLRs, and cytokines in the mice's blood, suggesting that chitosan-PEG-PEI may be a promising carrier for in vivo IL-7 gene expression and enhanced innate and adaptive immunity for the prevention of animal diseases.
Collapse
Affiliation(s)
- Wenli Hou
- Key Laboratory for Bioresource and Eco-Environment of the Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Linhan Zhang
- Key Laboratory for Bioresource and Eco-Environment of the Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Jianlin Chen
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Yiren Gu
- Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Xuebin Lv
- Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Xiuyue Zhang
- Key Laboratory for Bioresource and Eco-Environment of the Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Jiangling Li
- Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Hui Liu
- R&D Center, Chengdu Kanghua Biological Products Co., Ltd., Chengdu 610100, China
| | - Rong Gao
- Key Laboratory for Bioresource and Eco-Environment of the Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
15
|
Robert C, Vagner S, Mariette X. Using genetics to predict toxicity of cancer immunotherapy. Nat Med 2022; 28:2471-2472. [PMID: 36526721 DOI: 10.1038/s41591-022-02096-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Caroline Robert
- Department of Oncologic Medicine, Gustave Roussy, Villejuif, France. .,INSERM U981, Gustave Roussy and Université Paris-Saclay, Villejuif, France.
| | - Stéphan Vagner
- Institut Curie, Université Paris-Saclay, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France
| | - Xavier Mariette
- Department of Rheumatology, Université Paris-Saclay, INSERM UMR1184, Hôpital Bicêtre, FHU CARE (Cancer and Autoimmunity Relationships), Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| |
Collapse
|
16
|
Groha S, Alaiwi SA, Xu W, Naranbhai V, Nassar AH, Bakouny Z, El Zarif T, Saliby RM, Wan G, Rajeh A, Adib E, Nuzzo PV, Schmidt AL, Labaki C, Ricciuti B, Alessi JV, Braun DA, Shukla SA, Keenan TE, Van Allen E, Awad MM, Manos M, Rahma O, Zubiri L, Villani AC, Fairfax B, Hammer C, Khan Z, Reynolds K, Semenov Y, Schrag D, Kehl KL, Freedman ML, Choueiri TK, Gusev A. Germline variants associated with toxicity to immune checkpoint blockade. Nat Med 2022; 28:2584-2591. [PMID: 36526723 PMCID: PMC10958775 DOI: 10.1038/s41591-022-02094-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have yielded remarkable responses but often lead to immune-related adverse events (irAEs). Although germline causes for irAEs have been hypothesized, no individual variant associated with developing irAEs has been identified. We carried out a genome-wide association study of 1,751 patients on ICIs across 12 cancer types. We investigated two irAE phenotypes: (1) high-grade (3-5) and (2) all-grade events. We identified 3 genome-wide significant associations (P < 5 × 10-8) in the discovery cohort associated with all-grade irAEs: rs16906115 near IL7 (combined P = 3.6 × 10-11; hazard ratio (HR) = 2.1); rs75824728 near IL22RA1 (combined P = 3.5 × 10-8; HR = 1.8); and rs113861051 on 4p15 (combined P = 1.2 × 10-8, HR = 2.0); rs16906115 was replicated in 3 independent studies. The association near IL7 colocalized with the gain of a new cryptic exon for IL7, a critical regulator of lymphocyte homeostasis. Patients carrying the IL7 germline variant exhibited significantly increased lymphocyte stability after ICI initiation, which was itself predictive of downstream irAEs and improved survival.
Collapse
Affiliation(s)
- Stefan Groha
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sarah Abou Alaiwi
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Wenxin Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Vivek Naranbhai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Amin H Nassar
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziad Bakouny
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Talal El Zarif
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Renee Maria Saliby
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Guihong Wan
- Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| | - Ahmad Rajeh
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| | - Elio Adib
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Pier V Nuzzo
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genoa, Genoa, Italy
| | - Andrew L Schmidt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chris Labaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joao Victor Alessi
- Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genoa, Genoa, Italy
| | - David A Braun
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Sachet A Shukla
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tanya E Keenan
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Eliezer Van Allen
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mark M Awad
- Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genoa, Genoa, Italy
| | - Michael Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Osama Rahma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Alexandra-Chloe Villani
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Zia Khan
- Genentech, South San Francisco, CA, USA
| | - Kerry Reynolds
- Harvard Medical School, Boston, MA, USA
- Division of Medical Oncology, Bartlett, Massachusetts General Hospital, Boston, MA, USA
| | - Yevgeniy Semenov
- Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| | - Deborah Schrag
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kenneth L Kehl
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew L Freedman
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Toni K Choueiri
- Harvard Medical School, Boston, MA, USA
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexander Gusev
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Harvard & MIT, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
17
|
Crescioli C. Vitamin D, exercise, and immune health in athletes: A narrative review. Front Immunol 2022; 13:954994. [PMID: 36211340 PMCID: PMC9539769 DOI: 10.3389/fimmu.2022.954994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Vitamin D exerts important extra-skeletal effects, exhibiting an exquisite immune regulatory ability, affecting both innate and adaptive immune responses through the modulation of immunocyte function and signaling. Remarkably, the immune function of working skeletal muscle, which is fully recognized to behave as a secretory organ with immune capacity, is under the tight control of vitamin D as well. Vitamin D status, meaning hormone sufficiency or insufficiency, can push toward strengthening/stabilization or decline of immune surveillance, with important consequences for health. This aspect is particularly relevant when considering the athletic population: while exercising is, nowadays, the recommended approach to maintain health and counteract inflammatory processes, “too much” exercise, often experienced by athletes, can increase inflammation, decrease immune surveillance, and expose them to a higher risk of diseases. When overexercise intersects with hypovitaminosis D, the overall effects on the immune system might converge into immune depression and higher vulnerability to diseases. This paper aims to provide an overview of how vitamin D shapes human immune responses, acting on the immune system and skeletal muscle cells; some aspects of exercise-related immune modifications are addressed, focusing on athletes. The crossroad where vitamin D and exercise meet can profile whole-body immune response and health.
Collapse
|
18
|
Mai HL, Deshayes S, Nguyen TVH, Dehame V, Chéné AL, Brouard S, Blanquart C. IL-7 is expressed in malignant mesothelioma and has a prognostic value. Mol Oncol 2022; 16:3606-3619. [PMID: 36054746 PMCID: PMC9580880 DOI: 10.1002/1878-0261.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer mainly related to asbestos exposure. Despite recent therapeutic advances, notably immunotherapies, the benefit remains limited and restricted to a small percentage of patients. Thus, a better understanding of the disease is needed to identify new therapeutic strategies. Recently, interleukin 7 receptor (IL‐7R) has been described as being expressed by MPM cells and associated with poorer patient survival. Thus, the aim of this work was to study the IL‐7R/IL‐7 pathway in MPM using patient samples. We found that, although more than 40% of MPM cells expressed IL‐7R, IL‐7 had no effect on their intracellular signaling. Accordingly, the addition of IL‐7 to the culture medium did not affect MPM cell growth. Using The Cancer Genome Atlas (TCGA) database, we showed that high IL7 gene expression in MPM tumors was associated with a higher overall patient survival and an induction of genes involved in the immune response. In pleural effusions (PEs), we found that IL‐7 concentration was not a good diagnostic biomarker. However, we observed that high IL‐7 levels in PEs were associated with shorter survival of MPM patients, but not of lung cancer patients. The prognostic value of IL‐7 was also conserved when only patients with epithelioid mesothelioma, the most common histological type of MPM, were analyzed. Taken together, our study suggests that, although the IL‐7R/IL‐7 signaling pathway is not functional in MPM cells, IL‐7 expression in PEs may have prognostic value in MPM patients.
Collapse
Affiliation(s)
- Hoa-Le Mai
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Sophie Deshayes
- Labex IGO, Immunology Graft Oncology, Nantes, France.,Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
| | - Thi-Van-Ha Nguyen
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Virginie Dehame
- Labex IGO, Immunology Graft Oncology, Nantes, France.,Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
| | - Anne-Laure Chéné
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France.,Service de pneumologie, L'institut du thorax, Hôpital Guillaume et René Laennec, CHU Nantes, Nantes, France
| | - Sophie Brouard
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Christophe Blanquart
- Labex IGO, Immunology Graft Oncology, Nantes, France.,Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
| |
Collapse
|
19
|
Mansour R, Bsat YE, Fadel A, El-Orfali Y, Noun D, Tarek N, Kabbara N, Abboud M, Massaad MJ. Diagnosis and Treatment of a Patient With Severe Combined Immunodeficiency Due to a Novel Homozygous Mutation in the IL-7Rα Chain. Front Immunol 2022; 13:867837. [PMID: 35418989 PMCID: PMC8996178 DOI: 10.3389/fimmu.2022.867837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
The interleukin-7 receptor (IL-7R) is expressed on lymphoid cells and plays an important role in the development, homeostasis, survival, and proliferation of T cells. Bi-allelic mutations in the IL-7Rα chain abolish T cell development and function resulting in severe combined immunodeficiency disease. In this manuscript, we investigate a 1 year-old patient born to consanguineous parents, who suffered from autoimmune hemolytic anemia since birth associated with recurrent severe infections. Flow cytometric analysis of the patient’s peripheral blood demonstrated elevated numbers of B and NK cells, decreased numbers of T cells, defective thymic output, a predominance of memory T cells, and absent T cell proliferation. Next Generation Sequencing identified a novel homozygous pathogenic mutation in IL7RA (c.379G>A) that resulted in aberrant IL7RA RNA splicing and absent IL-7Rα expression. The patient was successfully transplanted using her HLA-matched relative as donor. One year after transplant, the patient is clinically stable with normal reconstitution of donor T cells that express IL-7Rα, a significant increase in the percentages of recent thymic emigrant and peripheral T cells, normalization of naïve and memory T cells, and restoration of her T cell’s proliferative response. Therefore, using genetic and functional approaches, we identified a novel deleterious mutation in IL-7Rα that results in T-B+NK+ phenotype, and report successful hematopoietic stem cell transplantation of the patient. This represents the first bedside-to-bench-and-back case entirely performed on a patient with severe combined immunodeficiency at the American University of Beirut Medical Center.
Collapse
Affiliation(s)
- Rana Mansour
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yasmin El Bsat
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Anthony Fadel
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Youmna El-Orfali
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Dolly Noun
- Division of Pediatric Hematology Oncology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Children's Cancer Center of Lebanon, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nidale Tarek
- Division of Pediatric Hematology Oncology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Children's Cancer Center of Lebanon, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nabil Kabbara
- Division of Pediatric Hematology Oncology, Rafic Hariri University Hospital, Beirut, Lebanon.,Division of Pediatric Hematology Oncology, Centre Hospitalier du Nord, Zgharta, Lebanon
| | - Miguel Abboud
- Division of Pediatric Hematology Oncology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Children's Cancer Center of Lebanon, American University of Beirut Medical Center, Beirut, Lebanon
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Research Center of Excellence in Immunity and Infections, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
20
|
Serum cytokine and chemokine profiles in patients with immune-mediated necrotizing myopathy. J Neuroimmunol 2022; 365:577833. [DOI: 10.1016/j.jneuroim.2022.577833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022]
|
21
|
Interleukin-7 and soluble Interleukin-7 receptor levels in type 1 diabetes – Impact of IL7RA polymorphisms, HLA risk genotypes and clinical features. Clin Immunol 2022; 235:108928. [DOI: 10.1016/j.clim.2022.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/09/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022]
|
22
|
Zhuang Q, Li H, Peng B, Liu Y, Zhang Y, Cai H, Liu S, Ming Y. Single-Cell Transcriptomic Analysis of Peripheral Blood Reveals a Novel B-Cell Subset in Renal Allograft Recipients With Accommodation. Front Pharmacol 2021; 12:706580. [PMID: 34658852 PMCID: PMC8514638 DOI: 10.3389/fphar.2021.706580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/13/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Kidney transplantation (KTx) is a preeminent treatment for end-stage renal disease (ESRD). After the application of immunosuppressants (IS), renal allograft recipients could reach a state called accommodation which means they are neither rejected nor infected. This study aimed to describe the details of this immune accommodation and reveal a novel mechanism of IS on immune cell subpopulations. Methods: We analyzed multiple cell subgroups and their gene expression of peripheral T, B, myeloid, and NK cells from renal allograft recipients with accommodation and healthy control (HC) by single-cell transcriptomics sequencing (scRNA-seq) and flow cytometry. Results: A total of 8,272 cells were isolated and sequenced from three individuals, including 2,758 cells from HC, 2,550 cells from ESRD patient, and 2,964 cells from KTx patient, as well as 396 immune response–related genes were detected during sequencing. 5 T-cell, 4 NK-cell, 5 myeloid, and 4 B-cell clusters were defined. Among them, a B-cell subset (CD19+IGLC3lowIGKChighTCL1A-CD127+) of renal transplant recipients with accommodation was significantly lower than that of HC and verified by flow cytometry, and this B-cell subset showed an activated potential because of its high expression of CD127. Furthermore, we found that IL32 might be the key cytokine to induce the differentiation of this B-cell cluster. Conclusion: We found a novel B-cell subset (CD19+IGLC3lowIGKChighTCL1A-CD127+) which was inhibited and decreased in renal allograft recipients with accommodation. This study might reveal the effect of commonly used IS in clinical practice on B-cell subsets and related mechanism.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Hao Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bo Peng
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Yang Liu
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Haozheng Cai
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shu Liu
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Yingzi Ming
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| |
Collapse
|
23
|
Hehenkamp P, Hoffmann M, Kummer S, Reinauer C, Döing C, Förtsch K, Enczmann J, Balz V, Mayatepek E, Meissner T, Jacobsen M, Seyfarth J. Interleukin-7-dependent nonclassical monocytes and CD40 expression are affected in children with type 1 diabetes. Eur J Immunol 2021; 51:3214-3227. [PMID: 34625948 DOI: 10.1002/eji.202149229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/13/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022]
Abstract
The important role of IL-7 in the generation of self-reactive T-cells in autoimmune diseases is well established. Recent studies on autoimmunity-associated genetic polymorphisms indicated that differential IL-7 receptor (IL-7R) expression of monocytes may play a role in the underlying pathogenesis. The relevance of IL-7-mediated monocyte functions in type 1 diabetes remains elusive. In the present study, we characterized monocyte phenotype and IL-7-mediated effects in children with type 1 diabetes and healthy controls with multicolor flow cytometry and t-distributed Stochastic Neighbor-Embedded (t-SNE)-analyses. IL-7R expression of monocytes rapidly increased in vitro and was boosted through LPS. In the presence of IL-7, we detected lower monocyte IL-7R expression in type 1 diabetes patients as compared to healthy controls. This difference was most evident for the subset of nonclassical monocytes, which increased after IL-7 stimulation. t-SNE analyses revealed IL-7-dependent differences in monocyte subset distribution and expression of activation and maturation markers (i.e., HLA-DR, CD80, CD86, CD40). Notably, monocyte CD40 expression increased considerably by IL-7 and CD40/IL-7R co-expression differed between patients and controls. This study shows the unique effects of IL-7 on monocyte phenotype and functions. Lower IL-7R expression on IL-7-induced CD40high monocytes and impaired IL-7 response characterize monocytes from patients with type 1 diabetes.
Collapse
Affiliation(s)
- Paul Hehenkamp
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Maximilian Hoffmann
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Sebastian Kummer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Christina Reinauer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Carsten Döing
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Katharina Förtsch
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Jürgen Enczmann
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital, Duesseldorf, Germany
| | - Vera Balz
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital, Duesseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Julia Seyfarth
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
24
|
Doshi G, Thakkar A. Deciphering Role of Cytokines for Therapeutic Strategies Against Rheumatoid Arthritis. Curr Drug Targets 2021; 22:803-815. [PMID: 33109042 DOI: 10.2174/1389450121666201027124625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/22/2020] [Accepted: 09/11/2020] [Indexed: 11/22/2022]
Abstract
Rheumatoid Arthritis (RA) is a systemic, chronic, autoimmune, inflammatory disorder that affects both large and small synovial joints in a symmetric pattern. RA initiates as painful inflammation of the joints leading to stiffness of joint, joint destruction and further worsens the condition causing permanent irreversible damage to the joints, making them physically disabled. Across the globe, there are around 1.2 million cases of RA reported. Inspite of various available therapeutic and pharmacological agents against RA, none of the treatments assure complete cure. Understanding the in depth-role of cytokines and interleukins in the disease pathogenesis of RA could help in exploiting them for developing novel therapeutic strategies against RA. This review provides insights into the pathogenesis of RA and gives a brief overview of cytokines, which play an important role in the progression of the disease. We have also discussed the possible role of interleukins in the context of RA, which could help future researchers to explore them for identifying new therapeutic agents.
Collapse
Affiliation(s)
- Gaurav Doshi
- Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, Maharashtra, India
| | - Ami Thakkar
- M.Pharm Research Scholar, Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, Maharashtra, India
| |
Collapse
|
25
|
Dai Z, Wang EHC, Petukhova L, Chang Y, Lee EY, Christiano AM. Blockade of IL-7 signaling suppresses inflammatory responses and reverses alopecia areata in C3H/HeJ mice. SCIENCE ADVANCES 2021; 7:eabd1866. [PMID: 33811067 PMCID: PMC11060042 DOI: 10.1126/sciadv.abd1866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
The interleukin-7 (IL-7) signaling pathway plays an important role in regulation of T cell function and survival. We detected overexpression of IL-7 in lesional skin from both humans and C3H/HeJ mice with alopecia areata (AA), a T cell-mediated autoimmune disease of the hair follicle. We found that exogenous IL-7 accelerated the onset of AA by augmenting the expansion of alopecic T cells. Conversely, blockade of IL-7 stopped the progression of AA and reversed early AA in C3H/HeJ mice. Mechanistically, we observed that IL-7Rα blockade substantially reduced the total number of most T cell subsets, but relative sparing of regulatory T cells (Tregs). We postulated that short-term anti-IL-7Rα treatment in combination with a low dose of Treg-tropic cytokines might improve therapeutic efficacy in AA. We demonstrated that short-term IL-7Rα blockade in combination with low doses of Treg-tropic cytokines enhanced therapeutic effects in the treatment of AA, and invite further clinical investigation.
Collapse
Affiliation(s)
- Zhenpeng Dai
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Eddy Hsi Chun Wang
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Lynn Petukhova
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yuqian Chang
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Eunice Yoojin Lee
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Angela M Christiano
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
26
|
Biologic therapy in Sjögren's syndrome. Clin Rheumatol 2020; 40:2143-2154. [PMID: 33106929 DOI: 10.1007/s10067-020-05429-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 01/19/2023]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease with complex and diverse clinical manifestations. It is characterized by lymphocyte infiltration of exocrine glands such as the salivary gland and lacrimal gland leading to insufficient secretion of the gland, manifested as dry mouth and dry eyes. In addition, it can involve extraglandular organs and cause systemic damage. The pathogenesis of SS is still unclear. At present, symptomatic treatment is the mainstay and there is a lack of effective therapy. With the development of molecular pathways underlying the pathogenesis of SS, more and more novel biological agents are used to treat SS. We summarized and analyzed the existing evidences on the efficacy of biological treatment of SS and their targets. Analysis of the efficacy of biological therapy and improvement of treatment strategies can help to give full play to its therapeutic advantages.
Collapse
|
27
|
Al-Eitan L, Al Qudah M, Al Qawasmeh M. Candidate gene association analysis of multiple sclerosis in the Jordanian Arab population: A case-control study. Gene 2020; 758:144959. [PMID: 32683075 DOI: 10.1016/j.gene.2020.144959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 01/21/2023]
Abstract
Multiple sclerosis (MS) is a clinically heterogeneous multifactorial disorder which is one of the most prevalent neurological disorders of females and young people. Both genetic and environmental factors are playing an important role in the pathophysiology of MS. The main objective of this study is to identify the relationship between numbers of genetic variants within different candidate genes (IL7R, LAG3, and CD40) and the risk of developing MS in the Jordanian Arab population. This case-control study consists of 218 MS patients chosen from neurology clinics at different hospitals in Jordan and ethnically matched 227 healthy controls. Genomic DNA was extracted from blood samples. Genotyping of the candidate gene polymorphisms was conducted using the Sequenom MassARRAY system. Statistical analysis was performed to identify the genetic association of the studied SNPs with MS. Twenty-one variants were studied, three of them were found to be associated with MS (rs6897932 (P-value = 0.01) and rs13188960 (P-value = 0.005) within IL7R gene and LAG3 rs2365095, (P-value = 0.03) within LAG3 gene). Moreover, no significant association was found between MS and the genetic polymorphisms of the CD40 gene. After correction for multiple comparisons, only rs13188960 SNP remained significantly with MS. This is the first study of the genetic association with MS in the Jordanian Arab population to provided evidence of the genetic association of IL7R (rs6897932, rs13188960) and LAG3 (rs2365095) gene polymorphisms with MS. These findings may contribute to our understanding of MS and optimize the therapy protocol for individuals.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan; Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Malak Al Qudah
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Majdi Al Qawasmeh
- Department of Neuroscience, Division of Neurology, Faculty of Medicine, Jordan University of Science and Technology, 22110, Jordan
| |
Collapse
|
28
|
Marković I, Savvides SN. Modulation of Signaling Mediated by TSLP and IL-7 in Inflammation, Autoimmune Diseases, and Cancer. Front Immunol 2020; 11:1557. [PMID: 32849527 PMCID: PMC7396566 DOI: 10.3389/fimmu.2020.01557] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Thymic Stromal Lymphopoietin (TSLP) and Interleukin-7 (IL-7) are widely studied cytokines within distinct branches of immunology. On one hand, TSLP is crucially important for mediating type 2 immunity at barrier surfaces and has been linked to widespread allergic and inflammatory diseases of the airways, skin, and gut. On the other hand, IL-7 operates at the foundations of T-cell and innate lymphoid cell (ILC) development and homeostasis and has been associated with cancer. Yet, TSLP and IL-7 are united by key commonalities in their structure and the structural basis of the receptor assemblies they mediate to initiate cellular signaling, in particular their cross-utilization of IL-7Rα. As therapeutic targeting of TSLP and IL-7 via diverse approaches is reaching advanced stages and in light of the plethora of mechanistic and structural data on receptor signaling mediated by the two cytokines, the time is ripe to provide integrated views of such knowledge. Here, we first discuss the major pathophysiological roles of TSLP and IL-7 in autoimmune diseases, inflammation and cancer. Subsequently, we curate structural and mechanistic knowledge about receptor assemblies mediated by the two cytokines. Finally, we review therapeutic avenues targeting TSLP and IL-7 signaling. We envision that such integrated view of the mechanism, structure, and modulation of signaling assemblies mediated by TSLP and IL-7 will enhance and fine-tune the development of more effective and selective approaches to further interrogate the role of TSLP and IL-7 in physiology and disease.
Collapse
Affiliation(s)
- Iva Marković
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Savvas N Savvides
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Skogman BH, Lager M, Brudin L, Jenmalm MC, Tjernberg I, Henningsson AJ. Cytokines and chemokines in cerebrospinal fluid in relation to diagnosis, clinical presentation and recovery in children being evaluated for Lyme neuroborreliosis. Ticks Tick Borne Dis 2020; 11:101390. [DOI: 10.1016/j.ttbdis.2020.101390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/06/2019] [Accepted: 01/26/2020] [Indexed: 01/14/2023]
|
30
|
Interleukin 7 regulates switch transcription in developing B cells. Cell Mol Immunol 2020; 18:776-778. [PMID: 32300210 DOI: 10.1038/s41423-020-0430-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 11/09/2022] Open
|
31
|
AL-Eitan L, Al Qudah M, Al Qawasmeh M. Association of Multiple Sclerosis Phenotypes with Single Nucleotide Polymorphisms of IL7R, LAG3, and CD40 Genes in a Jordanian Population: A Genotype-Phenotype Study. Biomolecules 2020; 10:biom10030356. [PMID: 32111053 PMCID: PMC7175123 DOI: 10.3390/biom10030356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
It is thought that genetic variations play a vital role in the Multiple Sclerosis (MS) etiology. However, the role of genetic factors that influence the clinical features of MS remains unclear. We investigated the correlation between 21 single nucleotide polymorphisms within three genes (IL7R, LAG3, and CD40) and MS clinical characteristics in the Jordanian population. Blood samples and clinical phenotypic data were collected from 218 Arab Jordanian MS patients, vitamin D was measured, genomic DNA was extracted, and genotyping of the candidate genes’ polymorphisms were analyzed using the Sequenom MassARRAY® system. The association of these single nucleotide polymorphisms (SNPs) with MS was performed using a Chi-square, Fisher exact test, and one-way ANOVA. We found a significant association between vitamin D deficiency and three SNPs of the IL7R gene, namely rs987107 (P-value = 0.047), rs3194051 (P-value = 0.03), and rs1494571 (P-value = 0.036), in addition to two SNPs of CD40, namely rs1883832 and rs6074022 (P-value = 0.049 for both). rs3194051 of the IL7R gene (P-value = 0.003) and rs1922452 of the LAG3 gene (P-value = 0.028) were strongly associated with comorbidity. The number of relapses before drug onset was found to be correlated with IL7R SNPs rs969128 (P-value = 0.04) and rs1494555 (P-value = 0.027), whereas the expanded disability status scale (EDSS) was associated with rs1494555 polymorphism of IL7R gene (P-value = 0.026). Current findings indicate important correlations between certain SNPs and the risk of various phenotypes of multiple sclerosis in the Jordanian community. Therefore, this will not only contribute to the understanding of MS, but will also assist with the development of personalized treatment procedures.
Collapse
Affiliation(s)
- Laith AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
- Correspondence: ; Tel.: +962-2-720-1000 (ext. 23464); Fax: +962-2-720-1071
| | - Malak Al Qudah
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Majdi Al Qawasmeh
- Department of Neuroscience, Division of Neurology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| |
Collapse
|
32
|
IL7RA genetic variants differentially affect IL-7Rα expression and alternative splicing: a role in autoimmune and infectious diseases? Genes Immun 2020; 21:83-90. [PMID: 31929513 DOI: 10.1038/s41435-019-0091-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/02/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
Interleukin-7 receptor α chain (IL-7Rα) single nucleotide polymorphisms (SNPs) are associated with susceptibility to immunopathologies like autoimmune and inflammatory diseases. The current hypothesis about underlying mechanisms is based on the regulation of IL-7 availability for self-reactive T cells by influencing the generation of a soluble (s)IL-7Rα variant. This assumption was mainly predicated on the well-defined IL7RA SNP rs6897932, which affects alternative splicing and causes aberrant generation of the sIL-7Rα variant with potential effects on the IL-7 serum reservoir. However, more recent studies shed light on novel functions of autoimmunity risk-associated IL7RA SNPs and characterized the largely neglected effect of rs6897932 on membrane (m)IL-7Rα expression. These findings as well as a described role of impaired mIL-7Rα expression and IL7RA SNP influence on chronic infectious diseases necessitates the reevaluation of previous findings on the role of IL7RA SNPs in immunopathology.
Collapse
|
33
|
Mai HL, Nguyen TVH, Branchereau J, Poirier N, Renaudin K, Mary C, Belarif L, Minault D, Hervouet J, Le Bas-Berdardet S, Soulillou JP, Vanhove B, Blancho G, Brouard S. Interleukin-7 receptor blockade by an anti-CD127 monoclonal antibody in nonhuman primate kidney transplantation. Am J Transplant 2020; 20:101-111. [PMID: 31344323 DOI: 10.1111/ajt.15543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/28/2019] [Accepted: 07/19/2019] [Indexed: 01/25/2023]
Abstract
IL-7 is an important cytokine for T cell lymphopoiesis. Blockade of the IL-7 signaling pathway has been shown to induce long-term graft survival or graft tolerance in murine transplant models through inhibiting T cell homeostasis and favoring immunoregulation. In this study, we assessed for the first time the effects of a blocking anti-human cluster of differentiation 127 (CD127) mAb administered in combination with low-dose tacrolimus or thymoglobulin in a life-sustaining kidney allograft model in baboons. Contrary to our expectation, the addition of an anti-CD127 mAb to the treatment protocols did not prolong graft survival compared to low-dose tacrolimus alone or thymoglobulin alone. Anti-CD127 mAb administration led to full CD127 receptor occupancy during the follow-up period. However, all treated animals lost their kidney graft between 1 week and 2 weeks after transplantation. Unlike in rodents, in nonhuman primates, anti-CD127 mAb treatment does not decrease the absolute numbers of lymphocyte and lymphocyte subsets and does not effectively inhibit postdepletional T cell proliferation and homeostasis, suggesting that IL-7 is not a limiting factor for T cell homeostasis in primates.
Collapse
Affiliation(s)
- Hoa Le Mai
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Thi Van Ha Nguyen
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Julien Branchereau
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Service d'Urologie, CHU Nantes, France
| | | | - Karine Renaudin
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Service d'Anatomie et Cytologie Pathologiques, CHU Nantes, France
| | | | | | - David Minault
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Jeremy Hervouet
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Stéphanie Le Bas-Berdardet
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | | | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
34
|
Mavragani CP, Moutsopoulos HM. Sjögren's syndrome: Old and new therapeutic targets. J Autoimmun 2019; 110:102364. [PMID: 31831255 DOI: 10.1016/j.jaut.2019.102364] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/09/2023]
Abstract
Sjögren's syndrome (SS) is a prototype autoimmune disease characterized by oral and ocular mucosal dryness following chronic inflammation of salivary and lachrymal glands, respectively. Profound B cell hyperactivity along with systemic manifestations including fatigue, musculoskeletal complaints, features related to hepatic, pulmonary, renal and nervous system involvement, as well as lymphoma development can be also present. Despite that activation of both innate and adaptive immune pathways has been long well documented in SS pathogenesis, systemic immunosuppression in SS, in contrast to other autoimmune diseases, has been largely inefficacious. Biological agents previously implemented in successful therapeutic outcomes in rheumatoid arthritis (RA), such as anti-TNF agents, anakinra, tocilizumab and rituximab failed to reach primary outcomes in randomized double-blind controlled trials in the context of SS. Abatacept and belimumab, already licensed for the treatment of RA and lupus respectively, as well combination regimens of both rituximab and belimumab hold some promise in alleviation of SS-specific complaints, but data from large controlled trials are awaited. Recent advances in dissecting the molecular pathways underlying SS pathogenesis led to an expanding number of novel biological compounds directed towards type I interferon system, antigen presentation, costimulatory pathways, B and T cell activation, as well as germinal center formation. While targeting of cathepsin-S (Petesicatib), inducible costimulator of T cells ligand (prezalumab), and lymphotoxin beta receptor (baminercept) failed to fulfil the primary outcome measures, preliminary results from two randomized placebo controlled trials on CD40 blockade (Iscalimab) and B-cell activating factor receptor (Ianalumab) inhibition resulted in significant reduction of SS disease activity, with a favorable so far safety profile. Results from administration of other kinase inhibitors, a transmembrane activator and calcium-modulator and cytophilin ligand interactor TACI fusion protein (RC18), as well as low dose recombinant interleukin-2 to expand T-regulatory cells are currently awaited.
Collapse
Affiliation(s)
- Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | | |
Collapse
|
35
|
Campos LW, Pissinato LG, Yunes JA. Deleterious and Oncogenic Mutations in the IL7RA. Cancers (Basel) 2019; 11:cancers11121952. [PMID: 31817502 PMCID: PMC6966522 DOI: 10.3390/cancers11121952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 12/27/2022] Open
Abstract
Interleukin 7 (IL-7) is a critical cytokine that plays a fundamental role in B- and T-cell development and in acute lymphoblastic leukemia (ALL). Its receptor (IL7R) is a transmembrane heterodimer formed by the IL7Rα and the IL2Rγ chain (γc). The IL7R signals through the JAK/STAT pathway. Loss-of-function mutations and some polymorphisms of the IL7Rα were associated to immunodeficiency and inflammatory diseases, respectively. Gain-of-function mutations were described in T-cell ALL and in high risk precursor B-cell ALL. Most confirmed loss-of-function mutations occur in the extracellular part of the IL7Rα while oncogenic mutations are exclusively found in the extracellular juxtamembrane (EJM) or transmembrane regions. Oncogenic mutations promote either IL7Rα/IL7Rα homodimerization and constitutive signaling, or increased affinity to γc or IL-7. This work presents a review on IL7Rα polymorphisms/mutations and attempts to present a classification based on their structural consequences and resulting biological activity.
Collapse
Affiliation(s)
- Lívia Weijenborg Campos
- Centro Infantil Boldrini, Campinas, SP 13083-210, Brazil; (L.W.C.); (L.G.P.)
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, SP 13083-210, Brazil
| | - Leonardo Granato Pissinato
- Centro Infantil Boldrini, Campinas, SP 13083-210, Brazil; (L.W.C.); (L.G.P.)
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, SP 13083-210, Brazil
| | - José Andrés Yunes
- Centro Infantil Boldrini, Campinas, SP 13083-210, Brazil; (L.W.C.); (L.G.P.)
- Medical Genetics Department, Faculty of Medical Sciences, State University of Campinas, Campinas, SP 13083-894, Brazil
- Correspondence: ; Tel.: +55-19-37875070; Fax: +55-19-3289-3571
| |
Collapse
|
36
|
Eckman EA, Pacheco-Quinto J, Herdt AR, Halperin JJ. Neuroimmunomodulators in Neuroborreliosis and Lyme Encephalopathy. Clin Infect Dis 2019; 67:80-88. [PMID: 29340592 DOI: 10.1093/cid/ciy019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
Background Lyme encephalopathy, characterized by nonspecific neurobehavioral symptoms including mild cognitive difficulties, may occur in patients with systemic Lyme disease and is often mistakenly attributed to central nervous system (CNS) infection. Identical symptoms occur in many inflammatory states, possibly reflecting the effect of systemic immune mediators on the CNS. Methods Multiplex immunoassays were used to measure serum and cerebrospinal fluid (CSF) cytokines in patients with or without Lyme disease to determine if there are specific markers of active CNS infection (neuroborreliosis), or systemic inflammatory mediators associated with neurobehavioral syndromes. Results CSF CXCL13 levels were elevated dramatically in confirmed neuroborreliosis (n = 8), less so in possible neuroborreliosis (n = 11) and other neuroinflammatory conditions (n = 44). Patients with Lyme (n = 63) or non-Lyme (n = 8) encephalopathy had normal CSF findings, but had elevated serum levels of interleukins 7, 17A, and 17F, thymic stromal lymphopoietin and macrophage inflammatory protein-α. Conclusions CSF CXCL13 is a sensitive and specific marker of neuroborreliosis in individuals with Borrelia-specific intrathecal antibody production. However, it does not distinguish individuals strongly suspected of having neuroborreliosis, but lacking confirmatory intrathecal antibodies, from those with other neuroinflammatory conditions. Patients with mild cognitive symptoms occurring during acute Lyme disease, and/or after appropriate treatment, have normal CSF but elevated serum levels of T-helper 17 markers and T-cell growth factors, which are also elevated in patients without Lyme disease but with similar symptoms. In the absence of CSF abnormalities, neurobehavioral symptoms appear to be associated with systemic inflammation, not CNS infection or inflammation, and are not specific to Lyme disease.
Collapse
Affiliation(s)
- Elizabeth A Eckman
- Atlantic Health System, Morristown.,Biomedical Research Institute of New Jersey, Cedar Knolls
| | | | - Aimee R Herdt
- Biomedical Research Institute of New Jersey, Cedar Knolls
| | - John J Halperin
- Department of Neurosciences, Overlook Medical Center, Atlantic Health System, Summit, New Jersey
| |
Collapse
|
37
|
Skarlis C, Marketos N, Mavragani CP. Biologics in Sjögren's syndrome. Pharmacol Res 2019; 147:104389. [DOI: 10.1016/j.phrs.2019.104389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
|
38
|
Vranova M, Friess MC, Haghayegh Jahromi N, Collado-Diaz V, Vallone A, Hagedorn O, Jadhav M, Willrodt AH, Polomska A, Leroux JC, Proulx ST, Halin C. Opposing roles of endothelial and leukocyte-expressed IL-7Rα in the regulation of psoriasis-like skin inflammation. Sci Rep 2019; 9:11714. [PMID: 31406267 PMCID: PMC6691132 DOI: 10.1038/s41598-019-48046-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
The interleukin 7 receptor alpha chain (IL-7Rα) is predominately expressed by lymphocytes, and activation by its ligand IL-7 supports the development and maintenance of T cells and boosts T-cell mediated immunity. We recently reported that lymphatic endothelial cells (LECs) in dermal lymphatics also express IL-7 and its receptor chains (IL-7Rα and CD132) and that IL-7 supports lymphatic drainage. This suggested that activation of IL-7Rα signaling in lymphatics could exert inflammation-resolving activity, by promoting the clearance of excess tissue fluid. Here we investigated how the potentially opposing effects of IL-7Rα signaling in immune cells and in the lymphatic vasculature would affect the development and progression of psoriasis-like skin inflammation. We found that during acute and chronic skin inflammation mice with an endothelial-specific deletion of IL-7Rα (IL-7RαΔEC mice) developed more edema compared to control mice, as a consequence of impaired lymphatic drainage. However, systemic treatment of wild-type mice with IL-7 exacerbated edema and immune cell infiltration in spite of increasing lymphatic drainage, whereas treatment with IL-7Rα blocking antibody ameliorated inflammatory symptoms. These data identify IL-7Rα signaling as a new pathway in psoriasis-like skin inflammation and show that its pro-inflammatory effects on the immune compartment override its anti-inflammatory, drainage-enhancing effects on the endothelium.
Collapse
Affiliation(s)
- Martina Vranova
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Mona C Friess
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | - Angela Vallone
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Olivia Hagedorn
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Maria Jadhav
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Anna Polomska
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Steven T Proulx
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
39
|
Jacobi FJ, Wild K, Smits M, Zoldan K, Csernalabics B, Flecken T, Lang J, Ehrenmann P, Emmerich F, Hofmann M, Thimme R, Neumann-Haefelin C, Boettler T. OX40 stimulation and PD-L1 blockade synergistically augment HBV-specific CD4 T cells in patients with HBeAg-negative infection. J Hepatol 2019; 70:1103-1113. [PMID: 30826436 DOI: 10.1016/j.jhep.2019.02.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Current antiviral therapies lack the potential to eliminate persistent hepatitis B virus (HBV) infection. HBV-specific T cells are crucial for HBV control and have recently been shown to be protective in patients following discontinuation of antiviral therapy. Thus, T cell-based approaches may greatly improve the therapeutic landscape of HBV infection. We aimed to augment HBV-specific CD4 T cells from chronically infected patients by targeting different immunological pathways. METHODS Expression of various co-stimulatory and inhibitory receptors on HBV- and influenza-specific CD4 T cells was analyzed directly ex vivo by MHC class II-tetramers. Patients infected with HBV genotype D were screened for CD4 T cell responses by IFN-γ ELISpot and intracellular cytokine staining following stimulation with overlapping peptides (OLPs) spanning the HBV-polyprotein. Stimulation with recombinant IL-7, an agonistic OX40-antibody or blockade of PD-L1 was performed in antigen-specific in vitro cultures. Cytokine secretion and expression of transcription factors were analyzed by flow cytometry. Responses targeting influenza, Epstein-Barr virus and tetanus toxoid served as controls. RESULTS Tetramer-staining revealed that the IL-7 receptor-alpha (CD127), OX40 and PD-1 constitute possible therapeutic targets as they were all strongly expressed on HBV-specific CD4 T cells ex vivo. The HBV-specific CD4 T cell responses identified by OLP screening targeted predominantly the HBV-polymerase and core proteins. Combined OX40 stimulation and PD-L1 blockade significantly augmented IFN-γ and IL-21 producing HBV-specific CD4 T cells in vitro, suggesting active T helper type 1 cell and follicular T helper cell programs. Indeed, transcription factors T-bet and Bcl6 were strongly expressed in cytokine-producing cells. CONCLUSIONS Combined OX40 stimulation and PD-L1 blockade augmented secretion of the helper T cell signature cytokines IFN-γ and IL-21, suggesting that immunotherapeutic approaches can improve HBV-specific CD4 T cell responses. LAY SUMMARY CD4 T cells are important in controlling viral infections but are impaired in the context of chronic hepatitis B virus (HBV) infection. Therapeutic approaches to cure chronic HBV infection are highly likely to require an immune-stimulatory component. This study demonstrates that HBV-specific CD4 T cells can be functionally augmented by combined stimulation of the co-stimulatory molecule OX40 and blockade of the inhibitory PD-1 pathway.
Collapse
Affiliation(s)
- Felix Johannes Jacobi
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Katharina Wild
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Faculty of Chemistry and Pharmacy, University of Freiburg, Germany
| | - Maike Smits
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany
| | - Katharina Zoldan
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Benedikt Csernalabics
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Tobias Flecken
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Julia Lang
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Philipp Ehrenmann
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Florian Emmerich
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Tobias Boettler
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
40
|
IL7 receptor signaling in T cells: A mathematical modeling perspective. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1447. [DOI: 10.1002/wsbm.1447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 01/14/2019] [Accepted: 02/01/2019] [Indexed: 01/05/2023]
|
41
|
Schreiber M, Weigelt M, Karasinsky A, Anastassiadis K, Schallenberg S, Petzold C, Bonifacio E, Kretschmer K, Hommel A. Inducible IL-7 Hyperexpression Influences Lymphocyte Homeostasis and Function and Increases Allograft Rejection. Front Immunol 2019; 10:742. [PMID: 31024566 PMCID: PMC6467976 DOI: 10.3389/fimmu.2019.00742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
The IL-7/IL-7R pathway is essential for lymphocyte development and disturbances in the pathway can lead to immune deficiency or T cell mediated destruction. Here, the effect of transient hyperexpression of IL-7 was investigated on immune regulation and allograft rejection under immunosuppression. An experimental in vivo immunosuppressive mouse model of IL-7 hyperexpression was developed using transgenic mice (C57BL/6 background) carrying a tetracycline inducible IL-7 expression cassette, which allowed the temporally controlled induction of IL-7 hyperexpression by Dexamethasone and Doxycycline treatment. Upon induction of IL-7, the B220+ c-kit+ Pro/Pre-B I compartment in the bone marrow increased as compared to control mice in a serum IL-7 concentration-correlated manner. IL-7 hyperexpression also preferentially increased the population size of memory CD8+ T cells in secondary lymphoid organs, and reduced the proportion of CD4+Foxp3+ T regulatory cells. Of relevance to disease, conventional CD4+ T cells from an IL-7-rich milieu escaped T regulatory cell-mediated suppression in vitro and in a model of autoimmune diabetes in vivo. These findings were validated using an IL-7/anti-IL7 complex treatment mouse model to create an IL-7 rich environment. To study the effect of IL-7 on islet graft survival in a mismatched allograft model, BALB/c mice were rendered diabetic by streptozotocin und transplanted with IL-7-inducible or control islets from C57BL/6 mice. As expected, Dexamethasone and Doxycycline treatment prolonged graft median survival as compared to the untreated control group in this transplantation mouse model. However, upon induction of local IL-7 hyperexpression in the transplanted islets, graft survival time was decreased and this was accompanied by an increased CD4+ and CD8+ T cell infiltration in the islets. Altogether, the findings show that transient elevations of IL-7 can impair immune regulation and lead to graft loss also under immune suppression.
Collapse
Affiliation(s)
- Maria Schreiber
- Preclinical Approaches to Stem Cell Therapy/Diabetes, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.,Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Marc Weigelt
- Preclinical Approaches to Stem Cell Therapy/Diabetes, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.,TU Dresden Faculty of Medicine, Paul Langerhans Institute Dresden, University Clinic Carl Gustav Carus, Helmholtz Centre Munich, Dresden, Germany
| | - Anne Karasinsky
- Preclinical Approaches to Stem Cell Therapy/Diabetes, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | - Sonja Schallenberg
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Cathleen Petzold
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Ezio Bonifacio
- Preclinical Approaches to Stem Cell Therapy/Diabetes, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.,TU Dresden Faculty of Medicine, Paul Langerhans Institute Dresden, University Clinic Carl Gustav Carus, Helmholtz Centre Munich, Dresden, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.,TU Dresden Faculty of Medicine, Paul Langerhans Institute Dresden, University Clinic Carl Gustav Carus, Helmholtz Centre Munich, Dresden, Germany
| | - Angela Hommel
- Preclinical Approaches to Stem Cell Therapy/Diabetes, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.,TU Dresden Faculty of Medicine, Paul Langerhans Institute Dresden, University Clinic Carl Gustav Carus, Helmholtz Centre Munich, Dresden, Germany
| |
Collapse
|
42
|
Belarif L, Danger R, Kermarrec L, Nerrière-Daguin V, Pengam S, Durand T, Mary C, Kerdreux E, Gauttier V, Kucik A, Thepenier V, Martin JC, Chang C, Rahman A, Guen NSL, Braudeau C, Abidi A, David G, Malard F, Takoudju C, Martinet B, Gérard N, Neveu I, Neunlist M, Coron E, MacDonald TT, Desreumaux P, Mai HL, Le Bas-Bernardet S, Mosnier JF, Merad M, Josien R, Brouard S, Soulillou JP, Blancho G, Bourreille A, Naveilhan P, Vanhove B, Poirier N. IL-7 receptor influences anti-TNF responsiveness and T cell gut homing in inflammatory bowel disease. J Clin Invest 2019; 129:1910-1925. [PMID: 30939120 DOI: 10.1172/jci121668] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
It remains unknown what causes inflammatory bowel disease (IBD), including signaling networks perpetuating chronic gastrointestinal inflammation in Crohn's disease (CD) and ulcerative colitis (UC), in humans. According to an analysis of up to 500 patients with IBD and 100 controls, we report that key transcripts of the IL-7 receptor (IL-7R) pathway are accumulated in inflamed colon tissues of severe CD and UC patients not responding to either immunosuppressive/corticosteroid, anti-TNF, or anti-α4β7 therapies. High expression of both IL7R and IL-7R signaling signature in the colon before treatment is strongly associated with nonresponsiveness to anti-TNF therapy. While in mice IL-7 is known to play a role in systemic inflammation, we found that in humans IL-7 also controlled α4β7 integrin expression and imprinted gut-homing specificity on T cells. IL-7R blockade reduced human T cell homing to the gut and colonic inflammation in vivo in humanized mouse models, and altered effector T cells in colon explants from UC patients grown ex vivo. Our findings show that failure of current treatments for CD and UC is strongly associated with an overexpressed IL-7R signaling pathway and point to IL-7R as a relevant therapeutic target and potential biomarker to fill an unmet need in clinical IBD detection and treatment.
Collapse
Affiliation(s)
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Laetitia Kermarrec
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France
| | - Véronique Nerrière-Daguin
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | | | - Tony Durand
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France
| | | | | | | | - Aneta Kucik
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | | | - Jerome C Martin
- Precision Immunology Institute.,Tisch Cancer Institute.,Department of Oncological Sciences
| | - Christie Chang
- Precision Immunology Institute.,Tisch Cancer Institute.,Department of Oncological Sciences
| | - Adeeb Rahman
- Precision Immunology Institute.,Charles Bronfman Institute for Personalized Medicine, and.,Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nina Salabert-Le Guen
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,CHU Nantes, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes-Atlantique (CIMNA), Nantes, France.,LabEx Immunograft Oncology (IGO), Nantes, France.,Université de Nantes, Faculté de Médecine, Nantes, France
| | - Cécile Braudeau
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,CHU Nantes, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes-Atlantique (CIMNA), Nantes, France.,LabEx Immunograft Oncology (IGO), Nantes, France
| | - Ahmed Abidi
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Université de Tunis El Manar, Laboratoire de génétique, immunologie et pathologies humaines, Faculté des sciences de Tunis, Tunis, Tunisia
| | - Grégoire David
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France
| | - Florent Malard
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Celine Takoudju
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France
| | - Bernard Martinet
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Nathalie Gérard
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Isabelle Neveu
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | - Michel Neunlist
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | - Emmanuel Coron
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | - Thomas T MacDonald
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Pierre Desreumaux
- Hepato-Gastroenterology Department, Claude Huriez Hospital, University of Lille 2, Lille, France
| | - Hoa-Le Mai
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Stephanie Le Bas-Bernardet
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Jean-François Mosnier
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,CHU Nantes, Service d'Anatomie et Cytologie Pathologiques, Nantes, France
| | - Miriam Merad
- Precision Immunology Institute.,Tisch Cancer Institute.,Department of Oncological Sciences.,Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Régis Josien
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France.,CHU Nantes, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes-Atlantique (CIMNA), Nantes, France.,Université de Nantes, Faculté de Médecine, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Arnaud Bourreille
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | - Philippe Naveilhan
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | | | | |
Collapse
|
43
|
Vazquez-Mateo C, Collins J, Goldberg SJ, Lawson M, Hernandez-Escalante J, Dooms H. Combining anti-IL-7Rα antibodies with autoantigen-specific immunotherapy enhances non-specific cytokine production but fails to prevent Type 1 Diabetes. PLoS One 2019; 14:e0214379. [PMID: 30908554 PMCID: PMC6433345 DOI: 10.1371/journal.pone.0214379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/12/2019] [Indexed: 01/09/2023] Open
Abstract
Autoantigen-specific methods to prevent and treat Type 1 Diabetes (T1D) carry high hopes to permanently cure this disease, but have largely failed in clinical trials. One suggested approach to increase the efficacy of islet antigen-specific vaccination is to combine it with a modulator of the T cell response, with the goal of reducing effector differentiation and promoting regulatory T cells (Tregs). Here we asked if addition of antibodies that block the IL-7/IL-7Rα pathway altered the T cell response to islet antigen vaccination and prevented T1D in non-obese diabetic (NOD) mice. Anti-IL-7Rα monoclonal antibodies (mAbs) reduced the numbers of islet antigen-specific T cells generated after vaccination with islet peptides and alum. However, addition of anti-IL-7Rα antibodies to peptide/alum vaccination unexpectedly increased non-specific IFN-γ, IL-2 and IL-10 cytokine production and did not result in improved prevention of T1D onset. In a second approach, we used a conjugate vaccine to deliver islet autoantigens, using Keyhole Limpet Hemocyanin (KLH) as a carrier. Islet antigen-KLH vaccination led to a significant expansion of antigen-specific Tregs and delayed diabetes onset in NOD mice. These outcomes were not further improved by addition of anti-IL-7Rα antibodies. To the contrary, blocking IL-7Rα during vaccination led to non-specific cytokine production and reduced the efficacy of a KLH-conjugated vaccine to prevent T1D. Our study thus revealed that adding anti-IL-7Rα antibodies during autoantigen immunization did not improve the efficacy of such vaccinations to prevent T1D, despite altering some aspects of the T cell response in a potentially advantageous way. Further refinement of this approach will be required to separate the beneficial from the adverse effects of anti-IL-7Rα antibodies to treat autoimmune disease.
Collapse
Affiliation(s)
- Cristina Vazquez-Mateo
- Arthritis Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Justin Collins
- Arthritis Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sarah J. Goldberg
- Arthritis Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Maxx Lawson
- Arthritis Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jaileene Hernandez-Escalante
- Arthritis Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Hans Dooms
- Arthritis Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
44
|
Lundtoft C, Seyfarth J, Oberstrass S, Rosenbauer J, Baechle C, Roden M, Holl RW, Mayatepek E, Kummer S, Meissner T, Jacobsen M. Autoimmunity risk- and protection-associated IL7RA genetic variants differentially affect soluble and membrane IL-7Rα expression. J Autoimmun 2019; 97:40-47. [DOI: 10.1016/j.jaut.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/01/2023]
|
45
|
Ellis J, van Maurik A, Fortunato L, Gisbert S, Chen K, Schwartz A, McHugh S, Want A, Santos Franco S, Oliveira JJ, Price J, Coles A, Brown K, Su D, Craigen JL, Yang J, Brett S, Davis B, Cheriyan J, Kousin-Ezewu O, Gray F, Thompson PW, Fernando D. Anti-IL-7 receptor α monoclonal antibody (GSK2618960) in healthy subjects - a randomized, double-blind, placebo-controlled study. Br J Clin Pharmacol 2018; 85:304-315. [PMID: 30161291 PMCID: PMC6339973 DOI: 10.1111/bcp.13748] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/23/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
Aim Interleukin (IL)‐7 signalling modulates T cell activity and is implicated in numerous autoimmune diseases. The present study investigated the safety, pharmacokinetics, target engagement, pharmacodynamics and immunogenicity of GSK2618960, an IL‐7 receptor‐α subunit (CD127) monoclonal antibody. Methods A double‐blind (sponsor‐unblind) study of a single intravenous infusion of either GSK2618960 (0.6 mg kg–1 or 2.0 mg kg–1) or placebo was carried out in 18 healthy subjects over 24 weeks. Results GSK2618960 was well tolerated; there were no serious or significant adverse events. The observed half‐life was 5 (±1) days (2.0 mg kg–1), with nonlinear pharmacokinetics. Full receptor occupancy (>95%) was observed until day 8 (0.6 mg kg–1) and day 22 (2.0 mg kg–1). Maximal inhibition of IL‐7‐mediated signal transducer and activator of transcription 5 (STAT5) phosphorylation was observed in 5/6 subjects until day 22 (2.0 mg kg–1). Mean circulating IL‐7 and soluble receptor (CD127) levels were increased above baseline during days 2 and 15 (0.6 mg kg–1) and days 2 and 22 (2.0 mg kg–1). No meaningful changes were observed in absolute numbers or proportions of immune cell populations or inflammatory cytokine profiles (IL‐6, tumour necrosis factor‐α, interferon‐γ, IL‐2). Persistent antidrug antibodies (ADAs) were detected in 5/6 subjects administered a dose of 0.6 mg kg–1 (neutralizing in 2/6) and in 6/6 subjects administered 2.0 mg kg–1 (neutralizing in 5/6). Conclusion GSK2618960 was well tolerated and blocked IL‐7 receptor signalling upon full target engagement. Although there was no discernible impact on peripheral T cell subsets in healthy subjects, GSK2618960 may effectively modulate the autoinflammatory activity of pathogenic T cells in diseased tissue. A relatively short half‐life is likely the result of target‐mediated rather than ADA‐mediated clearance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Simon McHugh
- GlaxoSmithKline R&D, Addenbrooke's Centre for Clinical Investigation, Cambridge, UK
| | - Andrew Want
- GlaxoSmithKline R&D, Addenbrooke's Centre for Clinical Investigation, Cambridge, UK
| | - Sara Santos Franco
- GlaxoSmithKline R&D, Addenbrooke's Centre for Clinical Investigation, Cambridge, UK
| | | | - Jeffrey Price
- GlaxoSmithKline R&D, Addenbrooke's Centre for Clinical Investigation, Cambridge, UK
| | | | - Kim Brown
- GlaxoSmithKline, Stevenage, Herts, UK
| | - Donggang Su
- GlaxoSmithKline, Shanghai, China.,Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Jenny L Craigen
- GlaxoSmithKline, Stevenage, Herts, UK.,Crescendo Biologics, Cambridge, UK
| | - Jiansong Yang
- GlaxoSmithKline, Shanghai, China.,Mosim Co. Ltd, Shanghai, China
| | | | - Bill Davis
- GlaxoSmithKline R&D, Addenbrooke's Centre for Clinical Investigation, Cambridge, UK
| | - Joseph Cheriyan
- GlaxoSmithKline R&D, Addenbrooke's Centre for Clinical Investigation, Cambridge, UK.,Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| | - Onajite Kousin-Ezewu
- GlaxoSmithKline R&D, Addenbrooke's Centre for Clinical Investigation, Cambridge, UK.,Clinical Neurosciences, University of Cambridge, UK
| | | | - Paul W Thompson
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | - Disala Fernando
- GlaxoSmithKline R&D, Addenbrooke's Centre for Clinical Investigation, Cambridge, UK
| |
Collapse
|
46
|
Belarif L, Mary C, Jacquemont L, Mai HL, Danger R, Hervouet J, Minault D, Thepenier V, Nerrière-Daguin V, Nguyen E, Pengam S, Largy E, Delobel A, Martinet B, Le Bas-Bernardet S, Brouard S, Soulillou JP, Degauque N, Blancho G, Vanhove B, Poirier N. IL-7 receptor blockade blunts antigen-specific memory T cell responses and chronic inflammation in primates. Nat Commun 2018; 9:4483. [PMID: 30367166 PMCID: PMC6203796 DOI: 10.1038/s41467-018-06804-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Abstract
Targeting the expansion of pathogenic memory immune cells is a promising therapeutic strategy to prevent chronic autoimmune attacks. Here we investigate the therapeutic efficacy and mechanism of new anti-human IL-7Rα monoclonal antibodies (mAb) in non-human primates and show that, depending on the target epitope, a single injection of antagonistic anti-IL-7Rα mAbs induces a long-term control of skin inflammation despite repeated antigen challenges in presensitized monkeys. No modification in T cell numbers, phenotype, function or metabolism is observed in the peripheral blood or in response to polyclonal stimulation ex vivo. However, long-term in vivo hyporesponsiveness is associated with a significant decrease in the frequency of antigen-specific T cells producing IFN-γ upon antigen restimulation ex vivo. These findings indicate that chronic antigen-specific memory T cell responses can be controlled by anti-IL-7Rα mAbs, promoting and maintaining remission in T-cell mediated chronic inflammatory diseases.
Collapse
Affiliation(s)
- Lyssia Belarif
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,OSE Immunotherapeutics, Nantes, 44200, France
| | - Caroline Mary
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,OSE Immunotherapeutics, Nantes, 44200, France
| | - Lola Jacquemont
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - Hoa Le Mai
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - Jeremy Hervouet
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - David Minault
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - Virginie Thepenier
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,OSE Immunotherapeutics, Nantes, 44200, France
| | - Veronique Nerrière-Daguin
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - Elisabeth Nguyen
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - Sabrina Pengam
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,OSE Immunotherapeutics, Nantes, 44200, France
| | - Eric Largy
- Quality Assistance, Thuin, 6536, Belgium.,ARNA laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR5320, IECB, Bordeaux, 33076, France
| | | | - Bernard Martinet
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - Stéphanie Le Bas-Bernardet
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, 44093, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, 44093, France
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - Nicolas Degauque
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, 44093, France
| | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, 44093, France
| | - Bernard Vanhove
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,OSE Immunotherapeutics, Nantes, 44200, France
| | - Nicolas Poirier
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France. .,OSE Immunotherapeutics, Nantes, 44200, France.
| |
Collapse
|
47
|
Tavakolpour S. Tofacitinib as the potent treatment for refractory pemphigus: A possible alternative treatment for pemphigus. Dermatol Ther 2018; 31:e12696. [DOI: 10.1111/dth.12696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 03/24/2018] [Accepted: 07/16/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Soheil Tavakolpour
- Genomic Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
48
|
Brill L, Lavon I, Vaknin-Dembinsky A. Reduced expression of the IL7Ra signaling pathway in Neuromyelitis optica. J Neuroimmunol 2018; 324:81-89. [PMID: 30248528 DOI: 10.1016/j.jneuroim.2018.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/19/2018] [Accepted: 08/19/2018] [Indexed: 12/13/2022]
Abstract
Neuromyelitis optica (NMO) is a chronic inflammatory demyelinating autoimmune disease of the central nervous system that most commonly affects the optic nerves and spinal cord. To characterize the immunological pathways involved in NMO, whole blood RNA expression array was performed using Nanostring nCounter technology. Two major clusters of genes were found associated with NMO: T cell-associated genes and the TNF/NF-kB signaling pathway. Analysis of the genes within the first cluster confirmed significantly reduced expression of IL7Ra (CD127) in the peripheral blood of NMO patients vs that in healthy controls. IL7Ra upstream transcription factors and its downstream survival signaling pathway were also markedly reduced. In line with the essential role of IL7Ra in T cell maturation and survival, a significantly lower number of naïve T cells, and reduced T cell survival signaling mediated by increased BID (BH3-interacting domain death agonist) expression and increased apoptosis was observed. Cumulatively, these findings indicate that the IL7Ra signaling pathway may play a role in the autoimmune process in NMO.
Collapse
Affiliation(s)
- Livnat Brill
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Israel
| | - Iris Lavon
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Israel; Leslie and Michael Center for Neuro-oncology, Hadassah-Medical Center, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Israel.
| |
Collapse
|
49
|
Seyfarth J, Lundtoft C, Förtsch K, Ahlert H, Rosenbauer J, Baechle C, Roden M, Holl RW, Mayatepek E, Kummer S, Meissner T, Jacobsen M. Interleukin-7 receptor α-chain haplotypes differentially affect soluble IL-7 receptor and IL-7 serum concentrations in children with type 1 diabetes. Pediatr Diabetes 2018; 19:955-962. [PMID: 29484785 DOI: 10.1111/pedi.12665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/18/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Interleukin-7 receptor α-chain (IL7RA) haplotypes are associated with susceptibility for development of autoimmune diseases, including type 1 diabetes (T1D). A protective IL7RA haplotype which causes lower soluble IL-7R (sIL-7R) serum levels is hypothesized to restrict IL-7-availability for self-reactive T cells. Functional mechanisms affected by a risk-associated IL7RA haplotype are unknown. METHODS We investigated the influence of IL7RA haplotypes (tagged by rs6897932T for the protective or by rs1494555G for the risk haplotype) on sIL-7R and IL-7 serum concentrations as well as disease manifestation of children with T1D (n = 259). Possible effects of differential IL-7 serum concentrations on IL-7-mediated in vitro T cell functions (i.e. IL-7R regulation and cytokine expression) were measured in a second study group of children with T1D (n = 42). RESULTS We detected lower sIL-7R serum concentrations in children with T1D carrying protective or risk haplotypes as compared to reference haplotypes. sIL-7R levels were lowest in T1D children with the protective haplotype and lower IL-7 serum levels were exclusively detected in this study group. We found no evidence for dependency between IL-7 and sIL-7R serum concentrations and no association with T1D manifestation. Neither IL-7 nor sIL-7R serum levels were associated with mIL-7R regulation or IL-7-promoted T cell cytokine expression. CONCLUSIONS Children with T1D carrying autoimmunity risk- or protection-associated IL7RA haplotypes had both lower sIL-7R serum concentrations as compared to the reference haplotype, but only T1D children with the protective haplotype had lower IL-7 serum levels. Our results suggest additional functional mechanisms of autoimmunity-associated IL7RA variants independent from sIL-7R mediated regulation of IL-7 availability for T cells.
Collapse
Affiliation(s)
- Julia Seyfarth
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Christian Lundtoft
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Duesseldorf, Germany
| | - Katharina Förtsch
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Duesseldorf, Germany
| | - Heinz Ahlert
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Duesseldorf, Germany
| | - Joachim Rosenbauer
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Christina Baechle
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Reinhard W Holl
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Duesseldorf, Germany
| | - Sebastian Kummer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Duesseldorf, Germany
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Duesseldorf, Germany
| |
Collapse
|
50
|
Ellestad KK, Thangavelu G, Haile Y, Lin J, Boon L, Anderson CC. Prior to Peripheral Tolerance, Newly Generated CD4 T Cells Maintain Dangerous Autoimmune Potential: Fas- and Perforin-Independent Autoimmunity Controlled by Programmed Death-1. Front Immunol 2018; 9:12. [PMID: 29416537 PMCID: PMC5787554 DOI: 10.3389/fimmu.2018.00012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022] Open
Abstract
Lymphopenia can result from various factors, including viral infections, clinical interventions, or as a normal property of the fetal/neonatal period. T cells in a lymphopenic environment undergo lymphopenia-induced proliferation (LIP) to fill the available “niche” as defined by peptide–MHC and homeostatic cytokine resources. We recently reported systemic autoimmunity following reconstitution of the lymphoid compartment of Rag1−/− mice with PD-1−/− hematopoietic stem cells or by transfer of thymocytes, but not splenocytes, suggesting that programmed death-1 (PD-1) plays a crucial role in controlling recent thymic emigrants (RTE) and preventing autoimmunity upon their LIP. However, it is unclear whether RTE residing within the periphery of a lymphoreplete host maintain enhanced autoimmune generating potential or if this property only manifests if RTE experience a lymphopenic periphery immediately after export from the thymus. Furthermore, it is unclear which of a variety of T cell effector mechanisms generate pathology when control of RTE by PD-1 is lacking. Herein, we determined that PD-1 is upregulated on CD4 T cells undergoing the natural LIP characteristic of the neonatal period. Newly generated T cells lacking PD-1 maintained an enhanced autoimmune potential even after residence in a lymphoreplete periphery, emphasizing the importance of PD-1 in the establishment of peripheral tolerance. Neither Fas nor perforin-dependent killing mechanisms were required for autoimmunity, while host MHC-II expression was critical, suggesting that LIP-driven autoimmunity in the absence of PD-1 may primarily result from a CD4 T cell-mediated systemic cytokinemia, a feature potentially shared by other autoimmune or inflammatory syndromes associated with immune reconstitution and LIP.
Collapse
Affiliation(s)
- Kristofor K Ellestad
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Govindarajan Thangavelu
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Yohannes Haile
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Jiaxin Lin
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Colin C Anderson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|