1
|
Perez-Chada LM, Elman S, Villa-Ruiz C, Armstrong AW, Gottlieb AB, Merola JF. Psoriatic arthritis: A comprehensive review for the dermatologist part I: Epidemiology, comorbidities, pathogenesis, and diagnosis. J Am Acad Dermatol 2025; 92:969-982. [PMID: 38857765 DOI: 10.1016/j.jaad.2024.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 06/12/2024]
Abstract
Psoriatic arthritis (PsA) is an inflammatory seronegative arthritis strongly associated with psoriasis. Recognition of the clinical features of PsA is critical, as delayed detection and untreated disease may result in irreparable joint damage, impaired physical function, and a significantly reduced quality of life. Dermatologists are poised for the early detection of PsA, as psoriasis predates its development in as many as 80% of patients. In an effort to further acquaint dermatologists with PsA, this review provides a detailed overview, emphasizing its epidemiology, comorbidities, etiopathogenesis, and diagnostic features.
Collapse
Affiliation(s)
- Lourdes M Perez-Chada
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Scott Elman
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Camila Villa-Ruiz
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - April W Armstrong
- Department of Dermatology, University of California, Los Angeles, Los Angeles, California
| | - Alice B Gottlieb
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joseph F Merola
- Department of Dermatology and Department of Medicine, Division of Rheumatology and O'Donnell School of Public Health, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
2
|
Sood A, Tikoo K. Topical delivery of pterostilbene nanoemulgel ameliorates imiquimod-induced psoriasis-like skin inflammation in mice. Nanomedicine (Lond) 2025; 20:791-802. [PMID: 40091821 PMCID: PMC11988208 DOI: 10.1080/17435889.2025.2480047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025] Open
Abstract
AIM This study evaluates the therapeutic potential of Pterostilbene (PTN), a natural stilbenoid, in an imiquimod (IMQ)-induced psoriasis model. Due to PTN's poor solubility and bioavailability, a pterostilbene nano-emulsion gel (PTN-NEG) formulation (0.1% and 0.2% w/w) was developed to enhance its therapeutic efficacy. METHODS Psoriasis was induced in C57BL/6J mice by applying IMQ (62.5 mg/day) on a 5 cm2 shaved dorsal skin area for 7 days. PTN-NEG was topically applied, and its effects on oxidative stress, inflammatory cytokines (IL-17, TNF-α, IL-22), NF-κB pathway activation, and keratinocyte proliferation markers (Ki-67, Bcl-xL) were assessed. The expression of dual-specificity phosphatase-1 (DUSP-1) and its role in modulating mitogen-activated protein kinase (MAPK) signaling were evaluated. Additionally, DNA methyltransferase-1 (DNMT-1) inhibition was examined to explore PTN's epigenetic impact. RESULTS PTN-NEG restored antioxidant balance, reduced pro-inflammatory cytokines, inhibited NF-κB activation, and suppressed keratinocyte proliferation. It unregulated DUSP-1, modulating MAPK signaling and preventing psoriasis progression. PTN-NEG also improved epidermal structure, reduced hyperplasia, and prevented splenomegaly. Notably, PTN inhibited DNMT-1, suggesting a novel epigenetic mechanism for psoriasis. CONCLUSION To our knowledge, this study is the first to demonstrate that PTN-NEG mitigates psoriasis through anti-inflammatory, antioxidant, and epigenetic regulatory mechanisms, highlighting its therapeutic potential in psoriasis management.
Collapse
Affiliation(s)
- Ankita Sood
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, India
| |
Collapse
|
3
|
Mateescu LA, Savu AP, Mutu CC, Vaida CD, Șerban ED, Bucur Ș, Poenaru E, Nicolescu AC, Constantin MM. The Intersection of Psoriasis and Neoplasia: Risk Factors, Therapeutic Approaches, and Management Strategies. Cancers (Basel) 2024; 16:4224. [PMID: 39766123 PMCID: PMC11674284 DOI: 10.3390/cancers16244224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The association between psoriasis and increased cancer risk is gaining recognition as studies reveal shared inflammatory and immune pathways. This review examines the relationship between psoriasis and neoplasia, focusing on cancer risk factors in psoriasis patients, the biological pathways underlying this connection, and the impact of various psoriasis treatments on cancer development. Psoriasis patients have a heightened incidence of certain cancers, such as lymphomas, skin cancers, and urological malignancies, potentially linked to immune dysregulation and chronic inflammation. Immunomodulatory treatments for psoriasis, including conventional systemic therapies and biologics, present varied cancer risks, with others, such as phototherapy, associated with an elevated risk of skin cancers. For oncologic patients with psoriasis, management necessitates a tailored approach, balancing effective psoriasis control with minimizing cancer progression risks. The emergence of IL-17 inhibitors, IL-23 inhibitors, and small-molecule therapies offers promising therapeutic alternatives with favorable safety profiles for these patients. This review underscores the need for interdisciplinary collaboration to optimize care for patients managing both psoriasis and malignancy.
Collapse
Affiliation(s)
- Larisa-Alexandra Mateescu
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
| | - Alexandra-Petruța Savu
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
| | - Costina-Cristiana Mutu
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
| | - Cezara-Diana Vaida
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
| | - Elena-Daniela Șerban
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
| | - Ștefana Bucur
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
| | - Elena Poenaru
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
| | - Alin-Codruț Nicolescu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
- EgoClinic, District 1, 010235 Bucharest, Romania
| | - Maria-Magdalena Constantin
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
| |
Collapse
|
4
|
Singh S, Pradhan D, Puri P, Sharma S, Jain AK. Profiling CARD14 gene expression in Indian Psoriasis patients. Sci Rep 2024; 14:28798. [PMID: 39567556 PMCID: PMC11579362 DOI: 10.1038/s41598-024-78267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
Several Genome Wide linkage Studies on psoriasis performed to gain insight of genetic architecture of the disease. Caspase Recruitment Domain-containing family 14 (CARD14) also known as CARMA2 or BIMP2; cytogenic location: 17q25.3, is a scaffold protein that primarily controls the skin epidermis's nuclear factor kB (NF-kB) signaling pathway activity in skin epidermis, a master gene for inflammation, has been shown to be linked with rare, heritable form of psoriasis. CARD14 is predominantly expressed in keratinocytes and epithelial cells, but also in unidentified dermal cells. For better understanding of molecular processes involved in CARD14 underlying Indian psoriatic patients, we analyzed gene expression of 42 moderates to severe cases of plaque psoriasis and same number of controls using qPCR and its validation through Immunohistochemistry (IHC). This study identifies that the expression of CARD14 in dermal endothelial cells among patients with psoriasis and explores the potential functional consequences associated with an overactive CARD14 gene. Furthermore, the expression data from the western population was consistent with the results of the qPCR validation of the candidate gene. There is a significant correlation between Indian psoriasis vulgaris patients and CARD14 up-regulation, as evidenced by a roughly two-fold shift in lesional tissue expression. This provides insights into the pathways and genes linked to the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- S Singh
- ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - D Pradhan
- Bioinformatics Centralized Core Research Facility-AIIMS, New Delhi, 110029, India
- Bioinformatics Centralized Core Research Facility-AIIMS, New Delhi, 110029, India
| | - P Puri
- Department of Dermatology, VMMC & Safdarjang Hospital, New Delhi, 110029, India
- Dermatology Department, VMMC & Safdarjang Hospital, New Delhi, 110029, India
| | - Shruti Sharma
- ICMR-National Institute of Pathology, New Delhi, 110029, India.
- ICMR-National Institute of Pathology, SriRamachari Bhawan Safdarjang Hospital Campus, New Delhi, 110029, India.
| | - A K Jain
- ICMR-National Institute of Pathology, New Delhi, 110029, India.
| |
Collapse
|
5
|
Feng F, Li R, Tian R, Wu X, Zhang N, Nie Z. The causal relationship between gut microbiota and immune skin diseases: A bidirectional Mendelian randomization. PLoS One 2024; 19:e0298443. [PMID: 38512926 PMCID: PMC10956797 DOI: 10.1371/journal.pone.0298443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/23/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Increasing evidence suggests that alterations in gut microbiota are associated with a variety of skin diseases. However, whether this association reflects a causal relationship remains unknown. We aimed to reveal the causal relationship between gut microbiota and skin diseases, including psoriasis, atopic dermatitis, acne, and lichen planus. METHODS We obtained full genetic association summary data for gut microbiota, psoriasis, atopic dermatitis, acne, and lichen planus from public databases and used three methods, mainly inverse variance weighting, to analyze the causal relationships between gut microbiota and these skin diseases using bidirectional Mendelian randomization, as well as sensitivity and stability analysis of the results using multiple methods. RESULTS The results showed that there were five associated genera in the psoriasis group, seven associated genera were obtained in the atopic dermatitis group, a total of ten associated genera in the acne group, and four associated genera in the lichen planus group. The results corrected for false discovery rate showed that Eubacteriumfissicatenagroup (P = 2.20E-04, OR = 1.24, 95%CI:1.11-1.40) and psoriasis still showed a causal relationship. In contrast, in the reverse Mendelian randomization results, there was no evidence of an association between these skin diseases and gut microbiota. CONCLUSION We demonstrated a causal relationship between gut microbiota and immune skin diseases and provide a new therapeutic perspective for the study of immune diseases: targeted modulation of dysregulation of specific bacterial taxa to prevent and treat psoriasis, atopic dermatitis, acne, and lichen planus.
Collapse
Affiliation(s)
- Fei Feng
- Tianjin Medical University, Tianjin, China
| | - Ruicheng Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Tian
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueyi Wu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nannan Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenhua Nie
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
6
|
Li L, Lu J, Liu J, Wu J, Zhang X, Meng Y, Wu X, Tai Z, Zhu Q, Chen Z. Immune cells in the epithelial immune microenvironment of psoriasis: emerging therapeutic targets. Front Immunol 2024; 14:1340677. [PMID: 38239345 PMCID: PMC10794746 DOI: 10.3389/fimmu.2023.1340677] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Psoriasis is a chronic autoimmune inflammatory disease characterized by erroneous metabolism of keratinocytes. The development of psoriasis is closely related to abnormal activation and disorders of the immune system. Dysregulated skin protective mechanisms can activate inflammatory pathways within the epithelial immune microenvironment (EIME), leading to the development of autoimmune-related and inflammatory skin diseases. In this review, we initially emphasized the pathogenesis of psoriasis, paying particular attention to the interactions between the abnormal activation of immune cells and the production of cytokines in psoriasis. Subsequently, we delved into the significance of the interactions between EIME and immune cells in the emergence of psoriasis. A thorough understanding of these immune processes is crucial to the development of targeted therapies for psoriasis. Finally, we discussed the potential novel targeted therapies aimed at modulating the EIME in psoriasis. This comprehensive examination sheds light on the intricate underlying immune mechanisms and provides insights into potential therapeutic avenues of immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Lisha Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Jiaye Lu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Junchao Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Yu Meng
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Xiying Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Cruz-Correa OF, Pollock RA, Machhar R, Gladman DD. Prediction of Psoriatic Arthritis in Patients With Psoriasis Using DNA Methylation Profiles. Arthritis Rheumatol 2023; 75:2178-2184. [PMID: 37463128 DOI: 10.1002/art.42654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/24/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVE Psoriatic arthritis (PsA) is an immune-mediated inflammatory arthritis, associated with psoriasis, that significantly increases morbidity and mortality risk. We currently lack the means of predicting which patients with psoriasis will develop PsA, and a large number of patients remain undiagnosed. Regulation of gene expression through DNA methylation can potentially trigger and maintain PsA pathophysiological processes. We aimed to identify DNA methylation markers that can predict which patients with psoriasis will develop PsA prior to the onset of musculoskeletal symptoms. METHODS Genome-wide DNA methylation was assessed in blood samples from patients with psoriasis who went on to develop arthritis (converters) and patients with psoriasis who did not (biologic naive, matched for age, sex, psoriasis duration, and duration of follow-up). Methylation differences between converters and nonconverters were identified by a multivariate linear regression model including clinical covariates (age, sex, body mass index, smoking). Predictive performance of methylation markers was assessed by developing support vector machine classification models with and without the addition of clinical variables. RESULTS We identified a set of 36 highly relevant methylation markers (false discovery rate: adjusted P < 0.05 and a minimum change in methylation of 0.05) across 15 genes and several intergenic regions. A classification model relying on these markers identified converters and nonconverters with an area under the receiver operating characteristic curve of 0.9644. CONCLUSION This study shows that DNA methylation patterns at an early stage of psoriatic disease can distinguish between patients who will develop PsA from those who will not during the same follow-up.
Collapse
Affiliation(s)
- Omar F Cruz-Correa
- Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Remy A Pollock
- Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Rohan Machhar
- Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Dafna D Gladman
- Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network and University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Song Y, Zhao X, Qu H, Su Y, He R, Chen L, Fang L, Li J, Zou Z, He J, Li Z, Xu Y, Chen X, Cheng H, Xu Y, Wang Q, Lai L. Epigenetic Regulation of IL-23 by E3 Ligase FBXW7 in Dendritic Cells Is Critical for Psoriasis-like Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1701-1713. [PMID: 37843504 DOI: 10.4049/jimmunol.2300023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/11/2023] [Indexed: 10/17/2023]
Abstract
Dendritic cells (DCs), a driver of psoriasis pathogenesis, produce IL-23 and trigger IL-23/IL-17 cytokine axis activation. However, the mechanisms regulating IL-23 induction remain unclear. In the current study, we found that mice with E3 ligase FBXW7 deficiency in DCs show reduced skin inflammation correlated with the reduction of IL-23/IL-17 axis cytokines in the imiquimod-induced psoriasis model. Fbxw7 deficiency results in decreased production of IL-23 in DCs. FBXW7 interacts with the lysine N-methyltransferase suppressor of variegation 39 homolog 2 (SUV39H2), which catalyzes the trimethylation of histone H3 Lys9 (H3K9) during transcription regulation. FBXW7 mediates the ubiquitination and degradation of SUV39H2, thus decreasing H3K9m3 deposition on the Il23a promoter. The Suv39h2 knockout mice displayed exacerbated skin inflammation with the IL-23/IL-17 axis overactivating in the psoriasis model. Taken together, our results indicate that FBXW7 increases IL-23 expression in DCs by degrading SUV39H2, thereby aggravating psoriasis-like inflammation. Inhibition of FBXW7 or the FBXW7/SUV39H2/IL-23 axis may represent a novel therapeutic approach to psoriasis.
Collapse
Affiliation(s)
- Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangtong Zhao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Qu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yixin Su
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Rukun He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Luxia Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lutong Fang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaying Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziqi Zou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia He
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zilong Li
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yaohan Xu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Lihua Lai
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Liu L, Wang W, Si Y, Li X. Genetic insights into the risk of metabolic syndrome and its components on psoriasis: A bidirectional Mendelian randomization. J Dermatol 2023; 50:1392-1400. [PMID: 37528547 DOI: 10.1111/1346-8138.16910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/26/2023] [Accepted: 07/15/2023] [Indexed: 08/03/2023]
Abstract
The role of metabolic syndrome (MetS) on psoriasis has been explored only in observational studies. We conducted this bidirectional Mendelian randomization (MR) to clarify the causal relationship between MetS and its components and psoriasis. The genetic instruments of MetS and its five components (waist circumference [WC], hypertension, fasting blood glucose [FBG], triglycerides [TG], and high-density lipoprotein cholesterol [HDL-C]) were obtained from public genome-wide association studies (GWAS). Outcome datasets for psoriasis were collected from the FinnGen Biobank Analysis Consortium. The main method was inverse variance weighting, complemented by sensitivity approaches to rectify potential pleiotropy. MetS, WC, and hypertension increase the risk of psoriasis (MetS, odd ratios [OR] = 1.17, 95% confidence interval [CI] 1.08-1.27, p = 1.23e-04; WC, OR = 1.65, 95% CI 1.42-1.93, p = 1.06e-10; hypertension, OR = 2.02, 95% CI 1.33-3.07, p = 0.0009). In the reverse analysis, no causal association between psoriasis and MetS and its five components was identified. We provide novel genetic evidence that MetS, WC, and hypertension are risk factors for the development of psoriasis. Early management of MetS and its components may be an effective strategy to decrease the risk of psoriasis.
Collapse
Affiliation(s)
- Liming Liu
- Department of Plastic Surgery, Modern Hospital of Sichuan, Chengdu, Sichuan, China
| | - Wenxiang Wang
- Department of Plastic Surgery, Modern Hospital of Sichuan, Chengdu, Sichuan, China
| | - Yongjie Si
- Department of Plastic Surgery, Modern Hospital of Sichuan, Chengdu, Sichuan, China
| | - Xianhe Li
- Department of Plastic Surgery, Modern Hospital of Sichuan, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Wu X, Ma Y, Wang L, Qin X. A Route for Investigating Psoriasis: From the Perspective of the Pathological Mechanisms and Therapeutic Strategies of Cancer. Int J Mol Sci 2023; 24:14390. [PMID: 37762693 PMCID: PMC10532365 DOI: 10.3390/ijms241814390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Psoriasis is an incurable skin disease that develops in about two-thirds of patients before the age of 40 and requires lifelong treatment; its pathological mechanisms have not been fully elucidated. The core pathological process of psoriasis is epidermal thickening caused by the excessive proliferation of epidermal keratinocytes, which is similar to the key feature of cancer; the malignant proliferation of cancer cells causes tumor enlargement, suggesting that there is a certain degree of commonality between psoriasis and cancer. This article reviews the pathological mechanisms that are common to psoriasis and cancer, including the interaction between cell proliferation and an abnormal immune microenvironment, metabolic reprogramming, and epigenetic reprogramming. In addition, there are common therapeutic agents and drug targets between psoriasis and cancer. Thus, psoriasis and cancer share a common pathological mechanisms-drug targets-therapeutic agents framework. On this basis, it is proposed that investigating psoriasis from a cancer perspective is beneficial to enriching the research strategies related to psoriasis.
Collapse
Affiliation(s)
- Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China; (Y.M.); (L.W.)
| | | | | | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China; (Y.M.); (L.W.)
| |
Collapse
|
11
|
Natoli V, Charras A, Hofmann SR, Northey S, Russ S, Schulze F, McCann L, Abraham S, Hedrich CM. DNA methylation patterns in CD4 + T-cells separate psoriasis patients from healthy controls, and skin psoriasis from psoriatic arthritis. Front Immunol 2023; 14:1245876. [PMID: 37662940 PMCID: PMC10472451 DOI: 10.3389/fimmu.2023.1245876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Background Psoriasis is an autoimmune/inflammatory disorder primarily affecting the skin. Chronic joint inflammation triggers the diagnosis of psoriatic arthritis (PsA) in approximately one-third of psoriasis patients. Although joint disease typically follows the onset of skin psoriasis, in around 15% of cases it is the initial presentation, which can result in diagnostic delays. The pathophysiological mechanisms underlying psoriasis and PsA are not yet fully understood, but there is evidence pointing towards epigenetic dysregulation involving CD4+ and CD8+ T-cells. Objectives The aim of this study was to investigate disease-associated DNA methylation patterns in CD4+ T-cells from psoriasis and PsA patients that may represent potential diagnostic and/or prognostic biomarkers. Methods PBMCs were collected from 12 patients with chronic plaque psoriasis and 8 PsA patients, and 8 healthy controls. CD4+ T-cells were separated through FACS sorting, and DNA methylation profiling was performed (Illumina EPIC850K arrays). Bioinformatic analyses, including gene ontology (GO) and KEGG pathway analysis, were performed using R. To identify genes under the control of interferon (IFN), the Interferome database was consulted, and DNA Methylation Scores were calculated. Results Numbers and proportions of CD4+ T-cell subsets (naïve, central memory, effector memory, CD45RA re-expressing effector memory cells) did not vary between controls, skin psoriasis and PsA patients. 883 differentially methylated positions (DMPs) affecting 548 genes were identified between controls and "all" psoriasis patients. Principal component and partial least-squares discriminant analysis separated controls from skin psoriasis and PsA patients. GO analysis considering promoter DMPs delivered hypermethylation of genes involved in "regulation of wound healing, spreading of epidermal cells", "negative regulation of cell-substrate junction organization" and "negative regulation of focal adhesion assembly". Comparing controls and "all" psoriasis, a majority of DMPs mapped to IFN-related genes (69.2%). Notably, DNA methylation profiles also distinguished skin psoriasis from PsA patients (2,949 DMPs/1,084 genes) through genes affecting "cAMP-dependent protein kinase inhibitor activity" and "cAMP-dependent protein kinase regulator activity". Treatment with cytokine inhibitors (IL-17/TNF) corrected DNA methylation patterns of IL-17/TNF-associated genes, and methylation scores correlated with skin disease activity scores (PASI). Conclusion DNA methylation profiles in CD4+ T-cells discriminate between skin psoriasis and PsA. DNA methylation signatures may be applied for quantification of disease activity and patient stratification towards individualized treatment.
Collapse
Affiliation(s)
- Valentina Natoli
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Università degli Studi di Genova, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-infantili (DINOGMI), Genoa, Italy
| | - Amandine Charras
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sigrun R. Hofmann
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sarah Northey
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Susanne Russ
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Felix Schulze
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Liza McCann
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool, United Kingdom
| | - Susanne Abraham
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christian M. Hedrich
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|
12
|
Phenotypic heterogeneity in psoriatic arthritis: towards tissue pathology-based therapy. Nat Rev Rheumatol 2023; 19:153-165. [PMID: 36596924 DOI: 10.1038/s41584-022-00874-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 01/04/2023]
Abstract
Psoriatic arthritis (PsA) is a heterogeneous disease involving multiple potential tissue domains. Most outcome measures used so far in randomized clinical trials do not sufficiently reflect this domain heterogeneity. The concept that pathogenetic mechanisms might vary across tissues within a single disease, underpinning such phenotype diversity, could explain tissue-distinct levels of response to different therapies. In this Review, we discuss the tissue, cellular and molecular mechanisms that drive clinical heterogeneity in PsA phenotypes, and detail existing tissue-based research, including data generated using sophisticated interrogative technologies with single-cell precision. Finally, we discuss how these elements support the need for tissue-based therapy in PsA in the context of existing and new therapeutic modes of action, and the implications for future PsA trial outcomes and design.
Collapse
|
13
|
The p300/CBP Inhibitor A485 Normalizes Psoriatic Fibroblast Gene Expression In Vitro and Reduces Psoriasis-Like Skin Inflammation In Vivo. J Invest Dermatol 2023; 143:431-443.e19. [PMID: 36174717 DOI: 10.1016/j.jid.2022.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease that often recurs at the same locations, indicating potential epigenetic changes in lesional skin cells. In this study, we discovered that fibroblasts isolated from psoriatic skin lesions retain an abnormal phenotype even after several passages in culture. Transcriptomic profiling revealed the upregulation of several genes, including the extra domain A splice variant of fibronectin and ITGA4 in psoriatic fibroblasts. A phenotypic library screening of small-molecule epigenetic modifier drugs revealed that selective CBP/p300 inhibitors were able to rescue the psoriatic fibroblast phenotype, reducing the expression levels of extra domain A splice variant of fibronectin and ITGA4. In the imiquimod-induced mouse model of psoriasis-like skin inflammation, systemic treatment with A485, a potent CBP/p300 blocker, significantly reduced skin inflammation, immune cell recruitment, and inflammatory cytokine production. Our findings indicate that epigenetic reprogramming might represent a new approach for the treatment and/or prevention of relapses of psoriasis.
Collapse
|
14
|
Xu R, Li X, Huang X, Lin Z, Xiong Y, Chen X, Chu C, Han J, Wang F. Translation-Dependent Skin Hyperplasia Is Promoted by Type 1/17 Inflammation in Psoriasis. J Dermatol Sci 2023; 110:10-18. [PMID: 37024314 DOI: 10.1016/j.jdermsci.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 02/21/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Psoriasis vulgaris (PV) is a chronic skin inflammatory disease and characterized by aberrant epidermal hyperplasia. The molecule eukaryotic initiation factor (eIF) 4E controls translation initiation of certain protein synthesis and determines cell cycle or differentiation fate. OBJECTIVE To determine the role of eIF4E in keratinocytes abnormal differentiation in the context of psoriasis. METHODS The expression of eIF4E in psoriatic skin lesions and normal skin from human subjects was examined by western blot and immunohistochemistry. In a murine model of psoriasis-like dermatitis that is induced by topical imiquimod, 4EGI-1 was used to inhibit eIF4E activities. To measure murine skin eIF4E and keratinocytes differentiation, immunofluorescence and western blot assays were conducted. Normal human epidermal keratinocytes (NHEK) were isolated, cultured, and stimulated with cytokines including TNF-α, IFN-γ, and IL-17A, respectively. Immunofluorescence and western blot were performed to test eIF4E and effect of 4EGI-1 in a co-culture system. RESULTS Compared with healthy controls, skin lesions from patients with PV exhibited a higher expression of eIF4E, which was positively correlated with the epidermal thickness. This expression pattern of eIF4E was replicated by the imiquimod-induced murine model. Skin hyperplasia and eIF4E activities in the murine model were attenuated by the administration of 4EGI-1. Both IFN-γ and IL-17A, rather than TNF-α, are sufficient to induce NHEK abnormal differentiation. This effect can be disrupted by 4EGI-1. CONCLUSION eIF4E plays a crucial role in keratinocytes abnormal differentiation driven by type 1/17 inflammation in the context of psoriasis. The initiation of abnormal translation provides an alternative treatment target for psoriasis.
Collapse
|
15
|
Nazri JM, Oikonomopoulou K, de Araujo ED, Kraskouskaya D, Gunning PT, Chandran V. Histone deacetylase inhibitors as a potential new treatment for psoriatic disease and other inflammatory conditions. Crit Rev Clin Lab Sci 2023; 60:300-320. [PMID: 36846924 DOI: 10.1080/10408363.2023.2177251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Collectively known as psoriatic disease, psoriasis and psoriatic arthritis (PsA) are immune-mediated inflammatory diseases in which patients present with cutaneous and musculoskeletal inflammation. Affecting roughly 2-3% of the world's total population, there remains unmet therapeutic needs in both psoriasis and PsA despite the availability of current immunomodulatory treatments. As a result, patients with psoriatic disease often experience reduced quality of life. Recently, a class of small molecules, commonly investigated as anti-cancer agents, called histone deacetylase (HDAC) inhibitors, have been proposed as a new promising anti-inflammatory treatment for immune- and inflammatory-related diseases. In inflammatory diseases, current evidence is derived from studies on diseases like rheumatoid arthritis (RA) and systematic lupus erythematosus (SLE), and while there are some reports studying psoriasis, data on PsA patients are not yet available. In this review, we provide a brief overview of psoriatic disease, psoriasis, and PsA, as well as HDACs, and discuss the rationale behind the potential use of HDAC inhibitors in the management of persistent inflammation to suggest its possible use in psoriatic disease.
Collapse
Affiliation(s)
- Jehan Mohammad Nazri
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Canada
| | - Dziyana Kraskouskaya
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada
| | - Vinod Chandran
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Schroeder Arthritis Institute, University Health Network, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Medicine, Memorial University, St. John's, Canada
| |
Collapse
|
16
|
Parab S, Doshi G. The Experimental Animal Models in Psoriasis Research: A Comprehensive Review. Int Immunopharmacol 2023; 117:109897. [PMID: 36822099 DOI: 10.1016/j.intimp.2023.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
Psoriasis is an autoimmune, chronic, inflammatory skin condition mediated by T cells. It differs from other inflammatory conditions by causing significant alterations in epidermal cell proliferation and differentiation that are both complicated and prominent. The lack of an appropriate animal model has significantly hindered studies into the pathogenic mechanisms of psoriasis since animals other than humans typically do not exhibit the complex phenotypic features of human psoriasis. A variety of methods, including spontaneous mutations, drug-induced mutations, genetically engineered animals, xenotransplantation models, and immunological reconstitution approaches, have all been employed to study specific characteristics in the pathogenesis of psoriasis. Although some of these approaches have been used for more than 50 years and far more models have been introduced recently, they have surprisingly not yet undergone detailed validation. Despite their limitations, these models have shown a connection between keratinocyte hyperplasia, vascular hyperplasia, and a cell-mediated immune response in the skin. The xenotransplantation of diseased or unaffected human skin onto immune-compromised recipients has also significantly aided psoriasis research. This technique has been used in a variety of ways to investigate the function of T lymphocytes and other cells, including preclinical therapeutic studies. The design of pertinent in vivo and in vitro psoriasis models is currently of utmost concern and a crucial step toward its cure. This article outlines the general approach in the development of psoriasis-related animal models, aspects of some specific models, along with their strengths and limitations.
Collapse
Affiliation(s)
- Siddhi Parab
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
17
|
Beranek M, Borsky P, Fiala Z, Andrys C, Hamakova K, Chmelarova M, Kovarikova H, Karas A, Kremlacek J, Palicka V, Borska L. Telomere length, oxidative and epigenetic changes in blood DNA of patients with exacerbated psoriasis vulgaris. An Bras Dermatol 2023; 98:68-74. [PMID: 36319514 PMCID: PMC9837651 DOI: 10.1016/j.abd.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The pathogenesis of psoriasis vulgaris involves changes in DNA molecules, genomic instability, telomere attrition, and epigenetic alterations among them. These changes are also considered important mechanisms of aging in cells and tissues. OBJECTIVE This study dealt with oxidation damage, telomere length and methylation status in DNA originating from peripheral blood of 41 psoriatic patients and 30 healthy controls. METHODS Oxidative damage of serum DNA/RNA was determined immunochemically. Real-time PCR was used for the analysis of the telomere length. ELISA technique determined levels of 5-methylcytosine in blood cells' DNA. RESULTS Oxidative damage of serum DNA/RNA was higher in patients than in controls (median, 3758 vs. 2286pg/mL, p<0.001). A higher length of telomeres per chromosome was found in patients whole-cell DNA than in controls (3.57 vs. 3.04 kilobases, p=0.011). A negative correlation of the length of telomeres with an age of the control subjects was revealed (Spearman's rho=-0.420, p=0.028). Insignificantly different levels of 5-methylcytosine in patients and controls were observed (33.20 vs. 23.35%, p=0.234). No influences of sex, smoking, BMI, PASI score, and metabolic syndrome on the methylation status were found. STUDY LIMITATIONS i) A relatively small number of the participants, particularly for reliable subgroup analyses, ii) the Caucasian origin of the participants possibly influencing the results of the parameters determined, and iii) Telomerase activity was not directly measured in serum or blood cells. CONCLUSION The study demonstrated increased levels of oxidized DNA/RNA molecules in the serum of patients with exacerbated psoriasis vulgaris. The results were minimally influenced by sex, the presence of metabolic syndrome, or cigarette smoking. In the psoriatic blood cells' DNA, the authors observed longer telomeres compared to healthy controls, particularly in females. Insignificantly higher global DNA methylation in psoriasis cases compared to the controls indicated marginal clinical importance of this epigenetic test performed in the blood cells' DNA.
Collapse
Affiliation(s)
- Martin Beranek
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic,Department of Biochemical Sciences, Faculty of Pharmacy, Hradec Kralove, Charles University, Czech Republic,Corresponding author.
| | - Pavel Borsky
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Kvetoslava Hamakova
- Clinic of Dermatology and Venereology, University Hospital Hradec Kralove, Czech Republic
| | - Marcela Chmelarova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic
| | - Helena Kovarikova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic
| | - Adam Karas
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Jan Kremlacek
- Department of Medical Biophysics, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic
| | - Lenka Borska
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| |
Collapse
|
18
|
Liu C, Wang X, Yang S, Cao S. Research Progress of m 6A RNA Methylation in Skin Diseases. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3091204. [PMID: 37124930 PMCID: PMC10132905 DOI: 10.1155/2023/3091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 05/02/2023]
Abstract
N6-Methyladenosine (m6A) is the most common mRNA modification in eukaryotes and is a dynamically reversible posttranscriptional modification. The enzymes involved in m6A modification mainly include methyltransferases (writers), demethylases (erasers), and methylated readers (Readers). m6A modification is mainly catalyzed by m6A methyltransferase and removed by m6A demethylase. The modified RNA can be specifically recognized and bound by m6A recognition protein. This protein complex then mediates RNA splicing, maturation, nucleation, degradation, and translation. m6A also alters gene expression and regulates cellular processes such as self-renewal, differentiation, invasion, and apoptosis. An increasing body of evidence indicates that the m6A methylation modification process is closely related to the occurrence of various skin diseases. In this review, we discuss the role of m6A methylation in skin development and skin diseases including psoriasis, melanoma, and cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
- Chang Liu
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Shuanglin Cao
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
19
|
He Y, Kim J, Tacconi C, Moody J, Dieterich LC, Anzengruber F, Maul JT, Gousopoulos E, Restivo G, Levesque MP, Lindenblatt N, Shin JW, Hon CC, Detmar M. Mediators of Capillary-to-Venule Conversion in the Chronic Inflammatory Skin Disease Psoriasis. J Invest Dermatol 2022; 142:3313-3326.e13. [PMID: 35777499 DOI: 10.1016/j.jid.2022.05.1089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 01/05/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperplasia and hyperkeratosis, immune cell infiltration and vascular remodeling. Despite the emerging recognition of vascular normalization as a potential strategy for managing psoriasis, an in-depth delineation of the remodeled dermal vasculature has been missing. In this study, we exploited 5' single-cell RNA sequencing to investigate the transcriptomic alterations in different subpopulations of blood vascular and lymphatic endothelial cells directly isolated from psoriatic and healthy human skin. Individual subtypes of endothelial cells underwent specific molecular repatterning associated with cell adhesion and extracellular matrix organization. Blood capillaries, in particular, showed upregulation of the melanoma cell adhesion molecule as well as its binding partners and adopted postcapillary venule‒like characteristics during chronic inflammation that are more permissive to leukocyte transmigration. We also identified psoriasis-specific interactions between cis-regulatory enhancers and promoters for each endothelial cell subtype, revealing the dysregulated gene regulatory networks in psoriasis. Together, our results provide more insights into the specific transcriptional responses and epigenetic signatures of endothelial cells lining different vessel compartments in chronic skin inflammation.
Collapse
Affiliation(s)
- Yuliang He
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Jihye Kim
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland; Department of Biosciences, University of Milan, Milan, Italy
| | - Jonathan Moody
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Lothar C Dieterich
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Florian Anzengruber
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland; Faculty of Medicine, University of Zürich, Zürich, Switzerland; Department of Internal Medicine - Dermatology, Cantonal Hospital Graubünden, Chur, Switzerland
| | - Julia-Tatjana Maul
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland; Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | | - Gaetana Restivo
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | | | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital, Zürich, Switzerland
| | - Jay W Shin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Chung-Chau Hon
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Michael Detmar
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.
| |
Collapse
|
20
|
Colombo D, Frassi M, Pagano Mariano G, Fusaro E, Lomater C, Del Medico P, Iannone F, Foti R, Limonta M, Marchesoni A, Raffeiner B, Viapiana O, Grassi W, Grembiale RD, Guggino G, Mazzone A, Tirri E, Perricone R, Sarzi Puttini PC, De Vita S, Conti F, Ori A, Simoni L, Fiocchi M, Orsenigo R, Zagni E, Frassi M, Caminiti M, Fusaro E, Lomater C, Del Medico P, Iannone F, Foti R, Limonta M, Marchesoni A, Raffeiner B, Viapiana O, Grassi W, Grembiale RD, Guggino G, Mazzone A, Tirri E, Perricone R, Puttini PCS, De Vita S, Conti F. Real-world evidence of biologic treatments in psoriatic arthritis in Italy: results of the CHRONOS (EffeCtiveness of biologic treatments for psoriatic artHRitis in Italy: an ObservatioNal lOngitudinal Study of real-life clinical practice) observational longitudinal study. BMC Rheumatol 2022; 6:57. [PMID: 36089612 PMCID: PMC9464489 DOI: 10.1186/s41927-022-00284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Biologics have demonstrated efficacy in PsA in randomized clinical trials. More evidence is needed on their effectiveness under real clinical practice conditions. The aim of the present work is to provide real-world evidence of the effectiveness of biologics for PsA in the daily clinical practice. Methods CHRONOS was a multicenter, non-interventional, cohort study conducted in 20 Italian hospital rheumatology clinics. Results 399 patients were eligible (56.9% females, mean (SD) age: 52.4 (11.6) years). The mean (SD) duration of PsA and psoriasis was 7.2 (6.9) and 15.3 (12.2) years, respectively. The mean (SD) duration of the biologic treatment under analysis was 18.6 (6.5) months. The most frequently prescribed biologic was secukinumab (40.4%), followed by adalimumab (17.8%) and etanercept (16.5%). The proportion of overall responders according to EULAR DAS28 criteria was 71.8% (95% CI: 66.7–76.8%) out of 308 patients at 6 months and 68.0% (95% CI: 62.7–73.3%) out of 297 patients at 1 year. Overall, ACR20/50/70 responses at 6 months were 41.2% (80/194), 29.4% (57/194), 17.1% (34/199) and at 1-year were 34.9% (66/189), 26.7% (51/191), 18.4% (36/196), respectively. Secondary outcome measures improved rapidly already at 6 months: mean (SD) PASI, available for 87 patients, decreased from 3.2 (5.1) to 0.6 (1.3), the proportion of patients with dactylitis from 23.6% (35/148) to 3.5% (5/142) and those with enthesitis from 33.3% (49/147) to 9.0% (12/133). Conclusions The CHRONOS study provides real-world evidence of the effectiveness of biologics in PsA in the Italian rheumatological practice, confirming the efficacy reported in RCTs across various outcome measures. Supplementary Information The online version contains supplementary material available at 10.1186/s41927-022-00284-w.
Collapse
|
21
|
Li Y, Guo J, Cao Z, Wu J. Causal Association Between Inflammatory Bowel Disease and Psoriasis: A Two-Sample Bidirectional Mendelian Randomization Study. Front Immunol 2022; 13:916645. [PMID: 35757704 PMCID: PMC9226443 DOI: 10.3389/fimmu.2022.916645] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
Background Previous observational studies have found an association between inflammatory bowel disease (IBD) and psoriasis. Using the mendelian randomization (MR) approach, we aim to determine whether there was a causal association between IBD and psoriasis. Methods We performed a two-sample MR with the genetic instruments identified for IBD and its main subtypes, Crohn’s disease (CD) and ulcerative colitis (UC), from a genome-wide association study (GWAS) involving 25,042 cases with an IBD diagnosis and 34,915 controls. Summarized data for psoriasis were obtained from different GWAS studies which included 4510 cases and 212,242 controls without psoriasis. Causal estimates are presented as odds ratios (ORs) with 95% confidence intervals (CIs). Results The overall outcome of MR analysis was to demonstrate that genetic predisposition to IBD was associated with an increased risk of psoriasis (OR: 1.1271; 95% CI: 1.0708 to 1.1864). Psoriatic arthritis (PsA) had a significant association with total IBD (OR: 1.1202; 95% CI: 1.0491 to 1.1961). Casual relationship was also identified for CD-psoriasis (OR: 1.1552; 95% CI: 1.0955 to 1.2182) and CD-PsA (OR: 1.1407; 95% CI: 1.0535 to 1.2350). The bidirectional analysis did not demonstrate that a genetic predisposition to psoriasis was associated with total IBD, although psoriasis showed association with CD (OR: 1.2224; 95% CI: 1.1710 to 1.2760) but not with UC. A genetic predisposition to PsA had a borderline association with IBD (OR: 1.0716; 95% CI: 1.0292 to 1.1157) and a suggestive association with CD (OR: 1.0667; 95% CI: 1.0194 to 1.1162). Conclusion There appears to be a causal relationship between IBD and psoriasis, especially for PsA, but for psoriasis and IBD, only total psoriasis and PsA were associated with CD. Understanding that specific types of psoriasis and IBD constitute mutual risk factors facilitates the clinical management of two diseases.
Collapse
Affiliation(s)
- Yajia Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziqin Cao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jianhuang Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Liu S, Yuan X, Su H, Liu F, Zhuang Z, Chen Y. ZNF384: A Potential Therapeutic Target for Psoriasis and Alzheimer’s Disease Through Inflammation and Metabolism. Front Immunol 2022; 13:892368. [PMID: 35669784 PMCID: PMC9163351 DOI: 10.3389/fimmu.2022.892368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Psoriasis is an immune-related skin disease notable for its chronic inflammation of the entire system. Alzheimer’s disease (AD) is more prevalent in psoriasis than in the general population. Immune-mediated pathophysiologic processes may link these two diseases, but the mechanism is still unclear. This article aimed to explore potential molecular mechanisms in psoriasis and AD. Methods Gene expression profiling data of psoriasis and AD were acquired in the Gene Expression Omnibus (GEO) database. Gene Set Enrichment Analysis (GSEA) and single-sample GSEA (ssGSEA) were first applied in two datasets. Differentially expressed genes (DEGs) of two diseases were identified, and common DEGs were selected. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed to explore common biological pathways. Signature transcription factors (STFs) were identified and their diagnostic values was calculated by receiver operating characteristic (ROC) curve analysis in the exploration cohort and verified in the validation cohort. The expression levels of STFs were further investigated in the validation cohort and the GTEx Portal Database. Additionally, four kinds of interaction analysis were performed: correlation analysis among STFs, gene-gene, chemical-protein, and protein-ligand interaction analyses. In the end, we predicted the transcription factor that potentially regulates STFs. Results Biosynthesis and metabolic pathways were enriched in GSEA analysis. In ssGSEA analysis, most immunoreaction gene lists exhibited differential enrichment in psoriasis cases, whereas three receptor-related gene lists did in AD. The KEGG analysis of common DEGs redetermined inflammatory and metabolic pathways essential in both diseases. 5 STFs (PPARG, ZFPM2, ZNF415, HLX, and ANHX) were screened from common DEGs. The ROC analysis indicated that all STFs have diagnostic values in two diseases, especially ZFPM2. The correlation analysis, gene-gene, chemical-protein, and protein-ligand interaction analyses suggested that STFs interplay and involve inflammation and aberrant metabolism. Eventually, ZNF384 was the predicted transcription factor regulating PPARG, ZNF415, HLX, and ANHX. Conclusions The STFs (PPARG, ZFPM2, ZNF415, HLX, and ANHX) may increase the morbidity rate of AD in psoriasis by initiating a positive feedback loop of excessive inflammation and metabolic disorders. ZNF384 is a potential therapeutic target for psoriasis and AD by regulating PPARG, ZNF415, HLX, and ANHX.
Collapse
|
23
|
Kutwin M, Migdalska-Sęk M, Brzeziańska-Lasota E, Zelga P, Woźniacka A. An Analysis of IL-10, IL-17A, IL-17RA, IL-23A and IL-23R Expression and Their Correlation with Clinical Course in Patients with Psoriasis. J Clin Med 2021; 10:5834. [PMID: 34945130 PMCID: PMC8704681 DOI: 10.3390/jcm10245834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Being one of the most common dermatological inflammatory disorders, psoriasis is a frequent subject of research. It is considered to be a T cell-dependent immune disease whose pathogenesis is influenced by cytokines, such as IL-10, IL-17A, IL-17RA, IL-23A and IL-23R. The present study examines whether the expression of selected genes is correlated with the clinical course of psoriasis, assessed by the PASI, BSA and DLQI scales. Skin biopsies and blood from 60 patients with psoriasis and 24 healthy controls were obtained for RNA isolation. These were subjected to RT-PCR for IL-10, IL-17A, IL-17RA, IL-23A and IL-23R genes. The results were presented as an RQ value. IL-17A and IL-23R expression levels were higher in psoriatic skin compared to controls, while IL-10 expression was lower. A positive correlation was also found between RQ for IL-23A and PASI index. Psoriatic skin is characterised by elevated expression of IL-17A and IL-23R and decreased expression of IL-10. This indicates that the selected cytokines may be one of the factors involved in the pathogenesis and pathomechanism of psoriasis, but more studies need to be made before we can elucidate the exact reason for the unbalance in cytokine expression levels.
Collapse
Affiliation(s)
- Magdalena Kutwin
- Department of Dermatology and Venereology, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Monika Migdalska-Sęk
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland; (M.M.-S.); (E.B.-L.)
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland; (M.M.-S.); (E.B.-L.)
| | - Piotr Zelga
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Anna Woźniacka
- Department of Dermatology and Venereology, Medical University of Lodz, 90-647 Lodz, Poland;
| |
Collapse
|
24
|
Colombo D, Bianchi L, Fabbrocini G, Corrao S, Offidani A, Stingeni L, Costanzo A, Pellacani G, Peris K, Bardazzi F, Argenziano G, Ruffolo S, Dapavo P, Carrera C, Fargnoli MC, Parodi A, Romanelli M, Malagoli P, Talamonti M, Megna M, Raspanti M, Paolinelli M, Hansel K, Narcisi A, Conti A, De Simone C, Chessa MA, De Rosa A, Provenzano E, Ortoncelli M, Moltrasio C, Fidanza R, Burlando M, Tonini A, Gaiani FM, Simoni L, Ori A, Fiocchi M, Zagni E. Real-world evidence of biologic treatments in moderate-severe psoriasis in Italy: Results of the CANOVA (EffeCtiveness of biologic treAtmeNts for plaque psOriasis in Italy: An obserVAtional longitudinal study of real-life clinical practice) study. Dermatol Ther 2021; 35:e15166. [PMID: 34676662 DOI: 10.1111/dth.15166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022]
Abstract
EffeCtiveness of biologic treAtmeNts for plaque psOriasis in Italy: An obserVAtional (CANOVA) study was aimed at providing real-world evidence of the effectiveness of biologics in Italian patients with moderate-severe psoriasis. It was an observational, retro-prospective cohort study conducted in 17 Italian dermatology clinics. Adult patients with moderate-severe plaque psoriasis, who started a biologic treatment between 24 weeks and 24 months before enrolment, were included. With a follow-up visit at 6 months after enrolment, each patient had at least 12 months of observation. The primary objective was to describe the clinical response rates (PASI 75) after 16/24/52 weeks from biologic treatment start. Secondary outcomes were sustained response, quality of life, and treatment satisfaction. Of the 669 eligible patients (64% males), 52% were naïve to biologics, though a mean duration of psoriasis since first diagnosis of 18.6 years (SD 13.2). The most frequently prescribed biologics were secukinumab (41%), ustekinumab (25%), TNF-inhibitors (22%) and ixekizumab (12%). PASI 75 was achieved by 86% of patients (95% CI: 82%-89%) at 16 weeks, 90% (87%-93%) at 24 weeks, and 91% (89%-94%) at 52 weeks. Patients achieving PASI 90 and PASI 100 at 52 weeks were 75% (71%-79%) and 53% (49%-57%), respectively. Sustained PASI 75 response after 1 year from treatment start was achieved by 78% (74%-82%) of patients. Mean DLQI total score was 2.3 (SD 3.9) at enrollment and decreased at the final visit to 1.8 (3.6). A high level of treatment satisfaction was expressed by patients over the study period. This large real-world study confirms in the clinical practice the good effectiveness and acceptability of biologics in psoriasis patients.
Collapse
Affiliation(s)
| | - Luca Bianchi
- Dermatology, Policlinico Tor Vergata, Rome, Italy
| | | | | | | | - Luca Stingeni
- Dermatology Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Ketty Peris
- Dermatology, Fondazione Policlinico Universitario A. Gemelli-IRCCS e Università Cattolica, Rome, Italy
| | | | | | - Silvana Ruffolo
- Dermatology, A.O. Cosenza Ospedale SS Annunziata, Cosenza, Italy
| | - Paolo Dapavo
- Dermatology, A.O.U. Città della Salute e della Scienza PO Molinette, Turin, Italy
| | - Carlo Carrera
- Dermatology, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Concetta Fargnoli
- Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Aurora Parodi
- Dermatology, Clinica Dermatologica DiSSal Università di Genova/Ospedale-Policlinico San Martino IRCCS, Genoa, Italy
| | - Marco Romanelli
- Dermatology, A.O.U. Pisana Ospedale Santa Chiara, Pisa, Italy
| | | | | | | | | | | | - Katharina Hansel
- Dermatology Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Clara De Simone
- Dermatology, Fondazione Policlinico Universitario A. Gemelli-IRCCS e Università Cattolica, Rome, Italy
| | | | - Alina De Rosa
- Dermatology Unit, University of Campania, Naples, Italy
| | | | - Michela Ortoncelli
- Dermatology, A.O.U. Città della Salute e della Scienza PO Molinette, Turin, Italy
| | - Chiara Moltrasio
- Dermatology, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rosaria Fidanza
- Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Martina Burlando
- Dermatology, Clinica Dermatologica DiSSal Università di Genova/Ospedale-Policlinico San Martino IRCCS, Genoa, Italy
| | - Annalisa Tonini
- Dermatology, A.O.U. Pisana Ospedale Santa Chiara, Pisa, Italy
| | | | - Lucia Simoni
- Clinical Data Management and Statistics, MediNeos Observational Research, Modena, Italy
| | - Alessandra Ori
- Clinical Operations, MediNeos Observational Research, Modena, Italy
| | | | | |
Collapse
|
25
|
The Role of Epigenetic Factors in Psoriasis. Int J Mol Sci 2021; 22:ijms22179294. [PMID: 34502197 PMCID: PMC8431057 DOI: 10.3390/ijms22179294] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Psoriasis is a chronic, systemic, immune-mediated disease with an incidence of approximately 2%. The pathogenesis of the disease is complex and not yet fully understood. Genetic factors play a significant role in the pathogenesis of the disease. In predisposed individuals, multiple trigger factors may contribute to disease onset and exacerbations of symptoms. Environmental factors (stress, infections, certain medications, nicotinism, alcohol, obesity) play a significant role in the pathogenesis of psoriasis. In addition, epigenetic mechanisms are considered result in modulation of individual gene expression and an increased likelihood of the disease. Studies highlight the significant role of epigenetic factors in the etiology and pathogenesis of psoriasis. Epigenetic mechanisms in psoriasis include DNA methylation, histone modifications and non-coding RNAs. Epigenetic mechanisms induce gene expression changes under the influence of chemical modifications of DNA and histones, which alter chromatin structure and activate transcription factors of selected genes, thus leading to translation of new mRNA without affecting the DNA sequence. Epigenetic factors can regulate gene expression at the transcriptional (via histone modification, DNA methylation) and posttranscriptional levels (via microRNAs and long non-coding RNAs). This study aims to present and discuss the different epigenetic mechanisms in psoriasis based on a review of the available literature.
Collapse
|
26
|
He J, He H, Qi Y, Yang J, Zhi L, Jia Y. Application of epigenetics in dermatological research and skin management. J Cosmet Dermatol 2021; 21:1920-1930. [PMID: 34357681 DOI: 10.1111/jocd.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Epigenetics has recently evolved from a collection of diverse phenomena to a defined and far-reaching field of study. Epigenetic modifications of the genome, such as DNA methylation and histone modifications, have been reported to play a role in some skin diseases or cancer. AIMS The purpose of this article was to review the development of epigenetic in recent decades and their applications in dermatological research. METHODS An extensive literature search was conducted on epigenetic modifications since the first research on epigenetic. RESULTS This article summarizes the concept and development of epigenetics, as well as the process and principle of epigenetic modifications such as DNA methylation, histone modification, and non-coding RNA. Their application in some skin diseases and cosmetic research and development is also summarized. CONCLUSIONS This information will help to understand the mechanisms of epigenetics and some non-coding RNA, the discovery of the related drugs, and provide new insights for skin health management and cosmetic research and development.
Collapse
Affiliation(s)
- Jianbiao He
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,College of Chemistry and Materials Engineering, Key Laboratory of Cosmetic of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Huaming He
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,College of Chemistry and Materials Engineering, Key Laboratory of Cosmetic of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Yufeng Qi
- Shandong Huawutang Biological Technology Co, Ltd, Shandong, China
| | - Jie Yang
- Shandong Huawutang Biological Technology Co, Ltd, Shandong, China
| | - Leilei Zhi
- Shandong Huawutang Biological Technology Co, Ltd, Shandong, China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,College of Chemistry and Materials Engineering, Key Laboratory of Cosmetic of China National Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
27
|
Borsky P, Chmelarova M, Fiala Z, Hamakova K, Palicka V, Krejsek J, Andrys C, Kremlacek J, Rehacek V, Beranek M, Malkova A, Svadlakova T, Holmannova D, Borska L. Aging in psoriasis vulgaris: female patients are epigenetically older than healthy controls. Immun Ageing 2021; 18:10. [PMID: 33658053 PMCID: PMC7927262 DOI: 10.1186/s12979-021-00220-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/10/2021] [Indexed: 12/26/2022]
Abstract
Background Psoriasis vulgaris is a skin autoimmune disease. Psoriatic patients have significantly lowered life expectancy and suffer from various comorbidities. The main goal of the study was to determine whether psoriatic patients experience accelerated aging. As accelerated aging might be the reason for the higher prevalence of comorbidities at lower chronological ages, we also wanted to investigate the relationship between aging and selected parameters of frequent psoriatic comorbidities - endocan, vascular endothelial growth factor and interleukin-17. Samples were obtained from 28 patients and 42 healthy controls. Epigenetic age measurement was based on the Horvath clock. The levels of endocan, vascular endothelial growth factor and interleukin-17 were analyzed using standardized ELISA methods. Results The difference between the epigenetic age and the chronological age of each individual subject did not increase with the increasing chronological age of patients. We cannot conclude that psoriasis causes accelerated aging. However, the epigenetic and chronological age difference was significantly higher in female patients than in female controls, and the difference was correlated with endocan (r = 0.867, p = 0.0012) and vascular endothelial growth factor (r = 0.633, p = 0.0365) only in female patients. Conclusions The findings suggest a possible presence of pathophysiological processes that occur only in female psoriatic patients. These processes make psoriatic females biologically older and might lead to an increased risk of comorbidity occurrence. This study also supports the idea that autoimmune diseases cause accelerated aging, which should be further explored in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-021-00220-5.
Collapse
Affiliation(s)
- Pavel Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 50038, Hradec Kralove, Czech Republic.
| | - Marcela Chmelarova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 50038, Hradec Kralove, Czech Republic
| | - Kvetoslava Hamakova
- Clinic of Dermatology and Venereology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jan Kremlacek
- Institute of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Vit Rehacek
- Transfusion Center, University Hospital, 500 03, Hradec Kralove, Czech Republic
| | - Martin Beranek
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Andrea Malkova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 50038, Hradec Kralove, Czech Republic
| | - Tereza Svadlakova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 50038, Hradec Kralove, Czech Republic.,Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Drahomira Holmannova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 50038, Hradec Kralove, Czech Republic
| | - Lenka Borska
- Institute of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
28
|
Reolid A, Muñoz-Aceituno E, Abad-Santos F, Ovejero-Benito MC, Daudén E. Epigenetics in Non-tumor Immune-Mediated Skin Diseases. Mol Diagn Ther 2021; 25:137-161. [PMID: 33646564 DOI: 10.1007/s40291-020-00507-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/08/2023]
Abstract
Epigenetics is the study of the mechanisms that regulate gene expression without modifying DNA sequences. Knowledge of and evidence about how epigenetics plays a causative role in the pathogenesis of many skin diseases is increasing. Since the epigenetic changes present in tumor diseases have been thoroughly reviewed, we believe that knowledge of the new epigenetic findings in non-tumor immune-mediated dermatological diseases should be of interest to the general dermatologist. Hence, the purpose of this review is to summarize the recent literature on epigenetics in most non-tumor dermatological pathologies, focusing on psoriasis. Hyper- and hypomethylation of DNA methyltransferases and methyl-DNA binding domain proteins are the most common and studied methylation mechanisms. The acetylation and methylation of histones H3 and H4 are the most frequent and well-characterized histone modifications and may be associated with disease severity parameters and serve as therapeutic response markers. Many specific microRNAs dysregulated in non-tumor dermatological disease have been reviewed. Deepening the study of how epigenetic mechanisms influence non-tumor immune-mediated dermatological diseases might help us better understand the role of interactions between the environment and the genome in the physiopathogenesis of these diseases.
Collapse
Affiliation(s)
- Alejandra Reolid
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Diego de León, 62, 28006, Madrid, Spain.
| | - E Muñoz-Aceituno
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Diego de León, 62, 28006, Madrid, Spain
| | - F Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - M C Ovejero-Benito
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - E Daudén
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| |
Collapse
|
29
|
Wang YN, Jin HZ. Transcriptome-Wide m 6A Methylation in Skin Lesions From Patients With Psoriasis Vulgaris. Front Cell Dev Biol 2020; 8:591629. [PMID: 33251217 PMCID: PMC7674922 DOI: 10.3389/fcell.2020.591629] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
N6-methyladenosine (m6A) methylation, as the most prevalent internal RNA modification, has been revealed to play critical roles in various biological functions. In this study, we performed m6A transcriptome-wide profiling in three kinds of skin tissue: involved psoriatic skin (PP), uninvolved psoriatic skin (PN), and healthy control skin samples (NN). The findings revealed that transcripts of PP contained the fewest m6A peaks and lowest m6A peak density. The greatest differences of m6A methylation were observed in the PP vs. NN and PP vs. PN comparisons. Intriguingly, in these comparisons, hypermethylated m6A was mainly enriched within the CDSs and 3′UTRs, while hypomethylated m6A was not only enriched within CDSs and 3′UTRs, but also within 5′UTRs. GO and KEGG pathway analyses indicated that hypermethylated transcripts in PP were particularly associated with response-associated terms, cytokine production, and olfactory transduction. Meanwhile, hypomethylated transcripts in PP were mainly associated with development-related processes and the Wnt signaling pathway. In addition, we discovered that 19.3–48.4% of the differentially expressed transcripts in psoriasis vulgaris were modified by m6A, and that transcripts with lower expression were more preferentially modified by m6A. Moreover, upregulation of gene expression was often accompanied by upregulation of m6A methylation, suggesting a regulatory role of m6A in psoriasis vulgaris gene expression.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong-Zhong Jin
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Nwanaji-Enwerem JC, Nwanaji-Enwerem U, Baccarelli AA, Williams RF, Colicino E. Anti-tumor necrosis factor drug responses and skin-blood DNA methylation age: Relationships in moderate-to-severe psoriasis. Exp Dermatol 2020; 30:1197-1203. [PMID: 33015854 DOI: 10.1111/exd.14207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022]
Abstract
Studies have examined the utility of DNA methylation as a biomarker of psoriasis treatment responses, but investigations of treatment responses with Skin-Blood DNA methylation age (SkinBloodAge)-a methylation-based measure of health designed using skin tissues-are lacking. Using a HumanMethylation450 BeadChip blood DNA methylation data set from 70 white patients who presented with moderate-to-severe plaque psoriasis and were treated with anti-tumor necrosis factor (TNF) agents in Madrid, Spain, we examined the cross-sectional relationships of SkinBloodAge with anti-TNF treatment responses. Partial responders had a 7.2-year higher mean SkinBloodAge than excellent responders (P = .03). In linear regression models adjusted for chronological age, sex and anti-TNF agents - on average - partial responders had a 2.65-year higher SkinBloodAge than excellent responders (95%CI: 0.44, 4.86, P = .02). This relationship was attenuated in a sensitivity analysis adjusting for white blood cells including known T-cell mediators of psoriasis pathophysiology (β = 1.91-years, 95%CI: -0.50, 4.32, P = .12). Overall, our study suggests that partial responders to anti-TNF therapy have higher SkinBloodAges when compared to excellent responders. Although these findings still need to be confirmed more broadly, they further suggest that SkinBloodAge may be a useful treatment response biomarker that can be incorporated with other blood tests before anti-TNF therapy initiation in moderate-to-severe psoriasis patients.
Collapse
Affiliation(s)
- Jamaji C Nwanaji-Enwerem
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, MD/PhD Program, Harvard Medical School, Boston, MA, USA
| | | | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Ramone F Williams
- Division of Dermatology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
31
|
EZH2-dependent epigenetic modulation of histone H3 lysine-27 contributes to psoriasis by promoting keratinocyte proliferation. Cell Death Dis 2020; 11:826. [PMID: 33011750 PMCID: PMC7532974 DOI: 10.1038/s41419-020-03028-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022]
Abstract
Psoriasis is characterized by keratinocyte hyperproliferation. While significant progress has been made in understanding the molecular mechanism regulating the proliferation of keratinocytes, little is known about the epigenetic factors that control this process. EZH2 and EZH2 mediated trimethylation of histone H3 lysine 27 (H3K27me3) was previously shown ectopically expressed in carcinoma and mediated proliferation, thereby we sought to clarify the role of EZH2–H3K27me3 in the proliferation of psoriatic keratinocyte. Interestingly, we found that EZH2 and H3K27me3 were both overexpressed in the epidermis of psoriatic lesional skin compared to normal skin. In vitro, the expression of EZH2 and H3K27me3 was stimulated in human keratinocytes treated with mixture of psoriasis-related cytokines pool (TNF-α, IFN-γ, IL-17A, and IL-22). Knockdown of EZH2 significantly reduced keratinocyte proliferative activity. Results from mRNA microarray analysis suggested that Kallikrein-8 (KLK8) might be the target gene of EZH2 in psoriatic keratinocytes. Overexpression or knockdown KLK8 could partially reverse the abnormal proliferation of keratinocytes caused by knockdown or overexpression of EZH2. In vivo, the inhibitor of EZH2, GSK126 could ameliorate the imiquimod-induced psoriasiform lesion. These results suggest that EZH2 might be a therapeutic target for the treatment of psoriasis.
Collapse
|
32
|
Aydin B, Arga KY, Karadag AS. Omics-Driven Biomarkers of Psoriasis: Recent Insights, Current Challenges, and Future Prospects. Clin Cosmet Investig Dermatol 2020; 13:611-625. [PMID: 32922059 PMCID: PMC7456337 DOI: 10.2147/ccid.s227896] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022]
Abstract
Advances in omics technologies have made it possible to unravel biomarkers from different biological levels. Intensive studies have been carried out to uncover the dysregulations in psoriasis and to identify molecular signatures associated with the pathogenesis of psoriasis. In this review, we presented an overview of the current status of the omics-driven biomarker research and emphasized the transcriptomic, epigenomic, proteomic, metabolomic, and glycomic signatures proposed as psoriasis biomarkers. Furthermore, insights on the limitations and future directions of the current biomarker discovery strategies were discussed, which will continue to comprehend broader visions of psoriasis research, diagnosis, and therapy especially in the context of personalized medicine.
Collapse
Affiliation(s)
- Busra Aydin
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ayse Serap Karadag
- Department of Dermatology, Istanbul Medeniyet University, School of Medicine, Goztepe Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
33
|
Pathogenesis of psoriasis in the "omic" era. Part II. Genetic, genomic and epigenetic changes in psoriasis. Postepy Dermatol Alergol 2020; 37:283-298. [PMID: 32774210 PMCID: PMC7394158 DOI: 10.5114/ada.2020.96243] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022] Open
Abstract
Psoriasis is a multifactorial disease in which genetic, environmental and epigenetic factors regulating gene expression play a key role. In the “genomic era”, genome-wide association studies together with target genotyping platforms performed in different ethnic populations have found more than 50 genetic susceptible markers associated with the risk of psoriasis which have been identified so far. Up till now, the strongest association with the risk of the disease has been proved for HLA-C*06 gene. The majority of other psoriasis risk SNPs are situated near the genes encoding molecules involved in adaptive and innate immunity, and skin barrier function. Many contemporary studies indicate that the epigenetic changes: histone modification, promoter methylations, long non-coding and micro-RNA hyperexpression are considered as factors contributing to psoriasis pathogenesis as they regulate abnormal keratinocyte differentiation and proliferation, aberrant keratinocytes – inflammatory cells communication, neoangiogenesis and chronic inflammation. The circulating miRNAs detected in the blood may become specific markers in the diagnosis, prognosis and response to the treatment of the disease. The inhibition of expression in selected miRNAs may be a new promising therapy option for patients with psoriasis.
Collapse
|
34
|
Schön MP, Manzke V, Erpenbeck L. Animal models of psoriasis-highlights and drawbacks. J Allergy Clin Immunol 2020; 147:439-455. [PMID: 32560971 DOI: 10.1016/j.jaci.2020.04.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022]
Abstract
Research into the pathophysiology of psoriasis remains challenging, because this disease does not occur naturally in laboratory animals. However, specific aspects of its complex immune-pathology can be illuminated through transgenic, knockout, xenotransplantation, immunological reconstitution, drug-induced, or spontaneous mutation models in rodents. Although some of these approaches have already been pursued for more than 5 decades and even more models have been described in recent times, they have surprisingly not yet been systematically validated. As a consequence, researchers regularly examine specific aspects that only partially reflect the complex overall picture of the human disease. Nonetheless, animal models are of great utility to investigate inflammatory mediators, the communication between cells of the innate and the adaptive immune systems, the role of resident cells as well as new therapies. Of note, various manipulations in experimental animals resulted in rather similar phenotypes. These were called "psoriasiform", "psoriasis-like" or even "psoriasis" usually on the basis of some similarities with the human disorder. Xenotransplantation of human skin onto immunocompromised animals can overcome this limitation only in part. In this review, we elucidate approaches for the generation of animal models of psoriasis and assess their strengths and limitations with a certain focus on more recently developed models.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany; Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Göttingen, Germany.
| | - Veit Manzke
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
35
|
Epigenetic factors involved in the pathophysiology of inflammatory skin diseases. J Allergy Clin Immunol 2020; 145:1049-1060. [DOI: 10.1016/j.jaci.2019.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
|
36
|
Thatikonda S, Pooladanda V, Sigalapalli DK, Godugu C. Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation. Cell Death Dis 2020; 11:21. [PMID: 31924750 PMCID: PMC6954241 DOI: 10.1038/s41419-019-2212-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022]
Abstract
Psoriasis is an autoimmune skin disease, where chronic immune responses due to exaggerated cytokine signaling, abnormal differentiation, and evasion of keratinocytes apoptosis plays a crucial role in mediating abnormal keratinocytes hyperproliferation. From the therapeutic perspective, the molecules with strong anti-proliferative and anti-inflammatory properties could have tremendous relevance. In this study, we demonstrated that piperlongumine (PPL) treatment effectively abrogated the hyperproliferation and differentiation of keratinocytes by inducing ROS-mediated late apoptosis with loss of mitochondrial membrane potential. Besides, the arrest of cell cycle was found at Sub-G1 phase as a result of DNA fragmentation. Molecularly, inhibition of STAT3 and Akt signaling was observed with a decrease in proliferative markers such as PCNA, ki67, and Cyclin D1 along with anti-apoptotic Bcl-2 protein expression. Keratin 17 is a critical regulator of keratinocyte differentiation, and it was found to be downregulated with PPL significantly. Furthermore, prominent anti-inflammatory effects were observed by inhibition of lipopolysaccharide (LPS)/Imiquimod (IMQ)-induced p65 NF-κB signaling cascade and strongly inhibited the production of cytokine storm involved in psoriasis-like skin inflammation, thus led to the restoration of normal epidermal architecture with reduction of epidermal hyperplasia and splenomegaly. In addition, PPL epigenetically inhibited histone-modifying enzymes, which include histone deacetylases (HDACs) of class I (HDAC1-4) and class II (HDAC6) evaluated by immunoblotting and HDAC enzyme assay kit. In addition, our results show that PPL effectively inhibits the nuclear translocation of p65 and a histone modulator HDAC3, thus sequestered in the cytoplasm of macrophages. Furthermore, PPL effectively enhanced the protein-protein interactions of HDAC3 and p65 with IκBα, which was disrupted by LPS stimulation and were evaluated by Co-IP and molecular modeling. Collectively, our findings indicate that piperlongumine may serve as an anti-proliferative and anti-inflammatory agent and could serve as a potential therapeutic option in treating psoriasis.
Collapse
Affiliation(s)
- Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
37
|
Increased presence and differential molecular imprinting of transit amplifying cells in psoriasis. J Mol Med (Berl) 2019; 98:111-122. [PMID: 31832701 DOI: 10.1007/s00109-019-01860-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/07/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023]
Abstract
Psoriasis is a very common chronic inflammatory skin disease characterized by epidermal thickening and scaling resulting from keratinocyte hyperproliferation and impaired differentiation. Pathomechanistic studies in psoriasis are often limited by using whole skin tissue biopsies, neglecting their stratification and cellular diversity. This study aimed at characterizing epidermal alterations in psoriasis at the level of keratinocyte populations. Epidermal cell populations were purified from skin biopsies of psoriasis patients and healthy donors using a novel cell type-specific approach. Molecular characterization of the transit-amplifying cells (TAC), the key players of epidermal renewal, was performed using immunocytofluorescence-technique and integrated multiscale-omics analyses. Already TAC from non-lesional psoriatic skin showed altered methylation and differential expression in 1.7% and 1.0% of all protein-coding genes, respectively. In psoriatic lesions, TAC were strongly expanded showing further increased differentially methylated (10-fold) and expressed (22-fold) genes numbers. Importantly, 17.2% of differentially expressed genes were associated with respective gene methylations. Compared with non-lesional TAC, pathway analyses revealed metabolic alterations as one feature predominantly changed in TAC derived from active psoriatic lesions. Overall, our study showed stage-specific molecular alterations, allows new insights into the pathogenesis, and implies the involvement of epigenetic mechanisms in lesion development in psoriasis. KEY MESSAGES: Transit amplifying cell (TAC) numbers are highly increased in psoriatic lesions Psoriatic TAC show profound molecular alterations & stage-specific identity TAC from unaffected areas already show first signs of molecular alterations Lesional TAC show a preference in metabolic-related alterations.
Collapse
|
38
|
Mervis JS, McGee JS. DNA methylation and inflammatory skin diseases. Arch Dermatol Res 2019; 312:461-466. [PMID: 31696298 DOI: 10.1007/s00403-019-02005-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 08/25/2019] [Accepted: 10/19/2019] [Indexed: 12/29/2022]
Abstract
Epigenetics is the study of heritable changes in gene expression that do not originate from alternations in the DNA sequence. Epigenetic modifications include DNA methylation, histone modification, and gene silencing via the action of microRNAs. Epigenetic dysregulation has been implicated in many disease processes. In the field of dermatology, epigenetic regulation has been extensively explored as a pathologic mechanism in cutaneous T-cell lymphoma (CTCL), which has led to the successful development of epigenetic therapies for CTCL. In recent years, the potential role of epigenetic regulation in the pathogeneses of inflammatory skin diseases has gained greater appreciation. In particular, epigenetic changes in psoriasis and atopic dermatitis have been increasingly studied, with DNA methylation the most rigorously investigated to date. In this review, we provide an overview of DNA methylation in inflammatory skin diseases with an emphasis on psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Joshua S Mervis
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, J-505, Boston, MA, 02118, USA
| | - Jean S McGee
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, J-505, Boston, MA, 02118, USA.
| |
Collapse
|
39
|
Frischknecht L, Vecellio M, Selmi C. The role of epigenetics and immunological imbalance in the etiopathogenesis of psoriasis and psoriatic arthritis. Ther Adv Musculoskelet Dis 2019; 11:1759720X19886505. [PMID: 31723358 PMCID: PMC6836300 DOI: 10.1177/1759720x19886505] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Psoriasis (Ps) and psoriatic arthritis (PsA) represent a clinical and immunopathogenic continuum, called psoriatic disease, cumulatively affecting approximately 3% of the general population. Psoriatic disease is a chronic inflammatory disorder affecting the skin and musculoskeletal system. The immuno-pathogenesis is characterized by an activation of the TNF/IL-23/IL-17 cytokine axis, leading to an immunologic imbalance of T-cells resident in all affected tissues, mainly entheses. In the majority of cases, skin Ps predates rheumatological manifestations. Secondary to the higher incidence and the availability of mouse models, there is stronger data available on skin Ps, and data are, in most cases, relevant also to PsA. In a widely accepted model, environmental trigger factors like infections or trauma are capable of initiating an inflammatory cascade, ultimately creating a sustained state of chronic inflammation in genetically susceptible individuals. Besides well-known genetic susceptibility loci, epigenetic DNA modifications, which are associated with Ps development have been characterized recently and will be discussed in this article. The current evidence is promising in the possibility to provide new therapeutic avenues and fill the unmet need of patients, for whom current treatments either do not allow the disease to be controlled or must be continued for life.
Collapse
Affiliation(s)
- Lukas Frischknecht
- Rheumatology and Clinical Immunology Unit, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Matteo Vecellio
- Rheumatology and Clinical Immunology Unit, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Carlo Selmi
- Rheumatology and Clinical Immunology Unit, Humanitas Clinical and Research Center-IRCCS, via A. Manzoni 56, 20089 Rozzano, Milan, Italy
| |
Collapse
|
40
|
Ovejero-Benito MC, Reolid A, Sánchez-Jiménez P, Saiz-Rodríguez M, Muñoz-Aceituno E, Llamas-Velasco M, Martín-Vilchez S, Cabaleiro T, Román M, Ochoa D, Daudén E, Abad-Santos F. Histone modifications associated with biological drug response in moderate-to-severe psoriasis. Exp Dermatol 2019; 27:1361-1371. [PMID: 30260532 DOI: 10.1111/exd.13790] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/31/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Epigenetic factors play an important role in psoriasis onset and development. Biological drugs are used to treat moderate-to-severe psoriasis patients resistant to conventional systemic drugs. Although they are safe and effective, some patients do not respond to them. Therefore, it is necessary to find biomarkers that could predict response to these therapies. OBJECTIVE To find epigenetic biomarkers that could predict response to biological drugs (ustekinumab, secukinumab, adalimumab, ixekizumab). MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from 39 psoriasis patients treated with biological therapies before and after drug administration and from 42 healthy subjects. Afterwards, histones were extracted from PBMCs. Four histone modifications (H3 and H4 acetylation, H3K4 and H3K27 methylation) were determined by ELISA. Data were analysed by IBM-SPSS v.23. RESULTS AND CONCLUSIONS Psoriasis patients presented reduced levels of acetylated H3 and H4 and increased levels of methylated H3K4 compared to controls. Non-significant changes were observed after treatment administration in any of the histone modifications analysed. Nevertheless, significant changes in methylated H3K27 were found between responders and non-responders to biological drugs at 3 months. As 28% of these patients also presented psoriatic arthritis (PsA), the former analysis was repeated in the subsets of patients with or without PsA. In patients without PsA, significant changes in methylated H3K4 were found between responders and non-responders to biological drugs at 3 and 6 months. Although further studies should confirm these results, these findings suggest that H3K27 and H3K4 methylation may contribute to patients' response to biological drugs in psoriasis.
Collapse
Affiliation(s)
- María C Ovejero-Benito
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Alejandra Reolid
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria del Hospital de La Princesa (IIS-IP), Madrid, Spain
| | - Patricia Sánchez-Jiménez
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Ester Muñoz-Aceituno
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria del Hospital de La Princesa (IIS-IP), Madrid, Spain
| | - Mar Llamas-Velasco
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria del Hospital de La Princesa (IIS-IP), Madrid, Spain
| | - Samuel Martín-Vilchez
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Teresa Cabaleiro
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Esteban Daudén
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria del Hospital de La Princesa (IIS-IP), Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
41
|
Abstract
Biomarker discovery and validation are necessary for improving the prediction of clinical outcomes and patient monitoring. Despite considerable interest in biomarker discovery and development, improvements in the range and quality of biomarkers are still needed. The main challenge is how to integrate preclinical data to obtain a reliable biomarker that can be measured with acceptable costs in routine clinical practice. Epigenetic alterations are already being incorporated as valuable candidates in the biomarker field. Furthermore, their reversible nature offers a promising opportunity to ameliorate disease symptoms by using epigenetic-based therapy. Thus, beyond helping to understand disease biology, clinical epigenetics is being incorporated into patient management in oncology, as well as being explored for clinical applicability for other human pathologies such as neurological and infectious diseases and immune system disorders.
Collapse
|
42
|
Furst DE, Belasco J, Louie JS. Genetic and inflammatory factors associated with psoriatic arthritis: Relevance to diagnosis and management. Clin Immunol 2019; 202:59-75. [DOI: 10.1016/j.clim.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 12/22/2022]
|
43
|
Litman T. Personalized medicine-concepts, technologies, and applications in inflammatory skin diseases. APMIS 2019; 127:386-424. [PMID: 31124204 PMCID: PMC6851586 DOI: 10.1111/apm.12934] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/31/2019] [Indexed: 12/19/2022]
Abstract
The current state, tools, and applications of personalized medicine with special emphasis on inflammatory skin diseases like psoriasis and atopic dermatitis are discussed. Inflammatory pathways are outlined as well as potential targets for monoclonal antibodies and small-molecule inhibitors.
Collapse
Affiliation(s)
- Thomas Litman
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
- Explorative Biology, Skin ResearchLEO Pharma A/SBallerupDenmark
| |
Collapse
|
44
|
Zhao Y, Jhamb D, Shu L, Arneson D, Rajpal DK, Yang X. Multi-omics integration reveals molecular networks and regulators of psoriasis. BMC SYSTEMS BIOLOGY 2019; 13:8. [PMID: 30642337 PMCID: PMC6332659 DOI: 10.1186/s12918-018-0671-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Psoriasis is a complex multi-factorial disease, involving both genetic susceptibilities and environmental triggers. Genome-wide association studies (GWAS) and epigenome-wide association studies (EWAS) have been carried out to identify genetic and epigenetic variants that are associated with psoriasis. However, these loci cannot fully explain the disease pathogenesis. METHODS To achieve a comprehensive mechanistic understanding of psoriasis, we conducted a systems biology study, integrating multi-omics datasets including GWAS, EWAS, tissue-specific transcriptome, expression quantitative trait loci (eQTLs), gene networks, and biological pathways to identify the key genes, processes, and networks that are genetically and epigenetically associated with psoriasis risk. RESULTS This integrative genomics study identified both well-characterized (e.g., the IL17 pathway in both GWAS and EWAS) and novel biological processes (e.g., the branched chain amino acid catabolism process in GWAS and the platelet and coagulation pathway in EWAS) involved in psoriasis. Finally, by utilizing tissue-specific gene regulatory networks, we unraveled the interactions among the psoriasis-associated genes and pathways in a tissue-specific manner and detected potential key regulatory genes in the psoriasis networks. CONCLUSIONS The integration and convergence of multi-omics signals provide deeper and comprehensive insights into the biological mechanisms associated with psoriasis susceptibility.
Collapse
Affiliation(s)
- Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Dr. East, Los Angeles, CA, 90095, USA
| | - Deepali Jhamb
- Target Sciences, Computational Biology (US) GSK, 1250 South Collegeville Road, Collegeville, PA, 19426, USA
| | - Le Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Dr. East, Los Angeles, CA, 90095, USA
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Dr. East, Los Angeles, CA, 90095, USA
| | - Deepak K Rajpal
- Target Sciences, Computational Biology (US) GSK, 1250 South Collegeville Road, Collegeville, PA, 19426, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Dr. East, Los Angeles, CA, 90095, USA. .,Institute for Quantitative and Computational Biosciences, University of California , 610 Charles E. Young Dr. East, Los Angeles, CA, 90095, USA. .,Molecular Biology Institute, University of California, 610 Charles E. Young Dr. East, Los Angeles, CA, 90095, USA. .,Bioinformatics Interdepartmental Program, University of California, 10 Charles E. Young Dr. East, Los Angeles, CA, 90095, USA.
| |
Collapse
|
45
|
Shen C, Wen L, Ko R, Gao J, Shen X, Zuo X, Sun L, Hsu YH, Zhang X, Cui Y, Wang M, Zhou F. DNA methylation age is not affected in psoriatic skin tissue. Clin Epigenetics 2018; 10:160. [PMID: 30587242 PMCID: PMC6307188 DOI: 10.1186/s13148-018-0584-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
Background Psoriasis (Ps) is a common chronic inflammatory skin disease. The keratinocytes of psoriatic skin defy normal apoptosis and exhibit active cell proliferation. Aberrant DNA methylation (DNAm) has been suggested relevant through regulating the expression of Ps susceptibility genes. However, it is unclear whether the biological age inferred from DNA methylome is affected. Results To address the above issue, we applied a recently developed methylation clock model to our Chinese Han population dataset, which includes DNAm data of 114 involved psoriatic skin tissues (PP) and 41 uninvolved psoriatic skin tissues (PN) from Ps patients, and 62 normal skin tissues (NN) from health controls. We first confirmed the applicability of the clock in PN and NN. We then showed that PP samples have largely unchanged DNAm age, and that no association was observed between available clinical features and DNAm age acceleration. Examination of genome-wide CpGs yielded age-associated CpGs with concordant age-association coefficients among the three groups, which was also supported by an external dataset. We also interestingly observed two clock CpGs differentially methylated between PP and PN. Conclusions Overall, our results suggest no significant alteration in DNAm age in PN and PP. Therefore, the increase in keratinocyte proliferation and alteration in DNAm caused by Ps may not affect the biological age of psoriatic skin tissue. Electronic supplementary material The online version of this article (10.1186/s13148-018-0584-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changbing Shen
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.,Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China.,Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA, 02131, USA.,Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Leilei Wen
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Randy Ko
- Department of Biochemistry, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jing Gao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Xue Shen
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xianbo Zuo
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Liangdan Sun
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yi-Hsiang Hsu
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA, 02131, USA.,Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Xuejun Zhang
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.,Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, Anhui, China.,Institute and Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China. .,Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Meng Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Fusheng Zhou
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
46
|
Bai J, Gao Y, Chen L, Yin Q, Lou F, Wang Z, Xu Z, Zhou H, Li Q, Cai W, Sun Y, Niu L, Wang H, Wei Z, Lu S, Zhou A, Zhang J, Wang H. Identification of a natural inhibitor of methionine adenosyltransferase 2A regulating one-carbon metabolism in keratinocytes. EBioMedicine 2018; 39:575-590. [PMID: 30591370 PMCID: PMC6355826 DOI: 10.1016/j.ebiom.2018.12.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
Background Psoriasis is a common chronic inflammatory skin disease which lacks effective strategies for the treatment. Natural compounds with biological activities are good tools to identify new targets with therapeutic potentials. Acetyl-11-keto-β-boswellic acid (AKBA) is the most bioactive ingredient of boswellic acids, a group of compounds with anti-inflammatory and anti-cancer properties. Target identification of AKBA and metabolomics analysis of psoriasis helped to elucidate the molecular mechanism underlying its effect, and provide new target(s) to treat the disease. Methods To explore the targets and molecular mechanism of AKBA, we performed affinity purification, metabolomics analysis of HaCaT cells treated with AKBA, and epidermis of imiquimod (IMQ) induced mouse model of psoriasis and psoriasis patients. Findings AKBA directly interacts with methionine adenosyltransferase 2A (MAT2A), inhibited its enzyme activity, decreased level of S-adenosylmethionine (SAM) and SAM/SAH ratio, and reprogrammed one‑carbon metabolism in HaCaT cells. Untargeted metabolomics of epidermis showed one‑carbon metabolism was activated in psoriasis patients. Topical use of AKBA improved inflammatory phenotype of IMQ induced psoriasis-like mouse model. Molecular docking and site-directed mutagenesis revealed AKBA bound to an allosteric site at the interface of MAT2A dimer. Interpretation Our study extends the molecular mechanism of AKBA by revealing a new interacting protein MAT2A. And this leads us to find out the dysregulated one‑carbon metabolism in psoriasis, which indicates the therapeutic potential of AKBA in psoriasis. Fund The National Natural Science Foundation, the National Program on Key Basic Research Project, the Shanghai Municipal Commission, the Leading Academic Discipline Project of the Shanghai Municipal Education Commission.
Collapse
Affiliation(s)
- Jing Bai
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Yuanyuan Gao
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Linjiao Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qianqian Yin
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Fangzhou Lou
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Zhikai Wang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Zhenyao Xu
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Hong Zhou
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Qun Li
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Cai
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Yang Sun
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Liman Niu
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Hong Wang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Zhenquan Wei
- Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aiwu Zhou
- Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglin Wang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China.
| |
Collapse
|
47
|
Zhou F, Shen C, Hsu YH, Gao J, Dou J, Ko R, Zheng X, Sun L, Cui Y, Zhang X. DNA methylation-based subclassification of psoriasis in the Chinese Han population. Front Med 2018; 12:717-725. [PMID: 29623515 DOI: 10.1007/s11684-017-0588-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023]
Abstract
Psoriasis (Ps) is an inflammatory skin disease caused by genetic and environmental factors. Previous studies on DNA methylation (DNAm) found genetic markers that are closely associated with Ps, and evidence has shown that DNAm mediates genetic risk in Ps. In this study, Consensus Clustering was used to analyze DNAm data, and 114 Ps patients were divided into three subclassifications. Investigation of the clinical characteristics and copy number variations (CNVs) of DEFB4, IL22, and LCE3C in the three subclassifications revealed no significant differences in gender ratio and in Ps area and severity index (PASI) score. The proportion of late-onset ( ≥ 40 years) Ps patients was significantly higher in type I than in types II and III (P = 0.035). Type III contained the smallest proportion of smokers and the largest proportion of non-smoking Ps patients (P = 0.086). The CNVs of DEFB4 and LCE3C showed no significant differences but the CNV of IL22 significantly differed among the three subclassifications (P = 0.044). This study is the first to profile Ps subclassifications based on DNAm data in the Chinese Han population. These results are useful in the treatment and management of Ps from the molecular and genetic perspectives.
Collapse
Affiliation(s)
- Fusheng Zhou
- Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, China.
- Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, 230032, China.
| | - Changbing Shen
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
- Molecular and Integrative Physiological Sciences, Harvard T.H. CHAN School of Public Health, Boston, MA, 02115, USA
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA, 02131, USA
| | - Yi-Hsiang Hsu
- Molecular and Integrative Physiological Sciences, Harvard T.H. CHAN School of Public Health, Boston, MA, 02115, USA
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA, 02131, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jing Gao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, China
| | - Jinfa Dou
- Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, China
- Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, 230032, China
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Randy Ko
- Department of Biochemistry, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Xiaodong Zheng
- Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, China
- Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, 230032, China
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Liangdan Sun
- Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, China
- Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, 230032, China
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xuejun Zhang
- Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, China.
- Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, 230032, China.
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
48
|
Aggarwal D, Arumalla N, Jethwa H, Abraham S. The use of biomarkers as a tool for novel psoriatic disease drug discovery. Expert Opin Drug Discov 2018; 13:875-887. [PMID: 30124339 DOI: 10.1080/17460441.2018.1508206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Psoriatic disease is a relatively new term which encompasses psoriatic arthritis, psoriasis, and associated comorbidities. In this heterogeneous condition, the study of biomarkers is necessary to direct best therapy. Resulting in significant disability and socioeconomic burden, recent recommendations stress the need for tight control in psoriatic disease. Areas covered: The authors outline recent advances in the understanding of psoriatic disease pathogenesis which has highlighted multiple biomarkers that have been pursued as drug targets with varying degrees of success. Current drugs targeting biomarkers and therapies in development are evaluated. The methods of biomarker discovery through genomics, transcriptomics, proteomics, metabolomics, and study of the microbiome are also discussed. Expert opinion: Targeting biomarkers for therapeutic benefit appears to a promising field with multiple success stories, notably those associated with signaling through T-helper-17 cells. The use of genomics, transcriptomics, proteomics, and more recently metabolomics will help individualize targeted biomarker therapies, assist in monitoring therapeutic success, and ultimately yield novel therapeutic targets. Advances in the development of novel biologic molecules targeting more than one cytokine may offer additional gains in therapeutic response.
Collapse
Affiliation(s)
- Dinesh Aggarwal
- a Department of Infectious Diseases , Chelsea and Westminster Hospital , London , UK
| | | | - Hannah Jethwa
- c Department of Rheumatology , Ealing Hospital , Southall , UK
| | - Sonya Abraham
- d Department of Rheumatology , Hammersmith Hospital , London , UK.,e Department of Rheumatology , Imperial College Healthcare NHS Trust , London , UK
| |
Collapse
|
49
|
Tanaka A, Leung PSC, Gershwin ME. The Genetics and Epigenetics of Primary Biliary Cholangitis. Clin Liver Dis 2018; 22:443-455. [PMID: 30259846 DOI: 10.1016/j.cld.2018.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Both genetic background and environmental factors contribute to primary biliary cholangitis (PBC). Recent innovative technologies, such as genome-wide association studies, identified a remarkable number of susceptible nonhuman leukocyte antigen genes contributing to the development of PBC; however, they are primarily indicators of active immunologic responses commonly involved in autoimmune reactions. Thus, recent studies have focused on epigenetic mechanisms that would link genetic predisposition and environmental triggering factors. In PBC, methylation profiling and altered X chromosome architecture have been intensively explored in conjunction with a striking female predominance. Further, microRNAs have been found to be associated with the etiology of PBC.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, UC Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis 95616, CA
| | - Merrill Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, UC Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis 95616, CA.
| |
Collapse
|
50
|
|