1
|
Ding H, Shi X, Ma J, Cao C, Liu Y, Lu J, Bai L, Li X, Li H. Integrative transcriptomic analysis reveals Cd72 as a novel pro-inflammatory factor in microglia following experimental ischemic stroke. Exp Neurol 2024; 382:114974. [PMID: 39326825 DOI: 10.1016/j.expneurol.2024.114974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/07/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Ischemic stroke remains a leading cause of global mortality and disability, with neuroinflammation playing a critical role in determining patient outcomes. Microglia, the brain's resident immune cells, can both exacerbate neuroinflammation and neuronal damage by releasing neurotoxic mediators and engaging in excessive phagocytosis, while also aiding recovery through the production of anti-inflammatory cytokines and debris clearance. However, the molecular mechanisms governing microglial activation and polarization after ischemic stroke are not well elucidated. In this study, we combined integrative transcriptomic analyses with experimental validation in a murine model of middle cerebral artery occlusion/reperfusion (MCAO/R) to explore microglial heterogeneity and identify key regulatory factors in ischemic stroke. Bioinformatics analysis identified Cd72 as a novel pro-inflammatory modulator within ischemia-associated microglial phenotypes. We observed significant upregulation of Cd72 in microglia following MCAO/R, and selective knockdown of Cd72 using CX3CR1Cre/ERT2 mice and Cre recombinase-dependent adeno-associated virus reduced MCAO/R-induced infarct volume, neuronal apoptosis, and neurological deficits. Furthermore, Cd72 expression in microglia was positively correlated with pro-inflammatory pathways and cytokines, including TNF-α, IL-1β, and IL-6. Knockdown of Cd72 significantly reduced these pro-inflammatory factors, highlighting its potential as a therapeutic target for mitigating inflammation in ischemic stroke. In conclusion, this study identifies Cd72 as a critical pro-inflammatory regulator in microglia following ischemic stroke, with its knockdown effectively reducing neuroinflammation and associated brain injury, highlighting Cd72 as a promising therapeutic target.
Collapse
Affiliation(s)
- Haojie Ding
- Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xuan Shi
- Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Junwei Ma
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chang Cao
- Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Yangyang Liu
- Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Jinxin Lu
- Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Lei Bai
- Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xiang Li
- Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Haiying Li
- Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
2
|
Tian L, Wang Y, Zhang Z, Feng X, Xiao F, Zong M. CD72, a new immune checkpoint molecule, is a novel prognostic biomarker for kidney renal clear cell carcinoma. Eur J Med Res 2023; 28:531. [PMID: 37980541 PMCID: PMC10656955 DOI: 10.1186/s40001-023-01487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND The incidence and mortality of clear cell carcinoma of the kidney increases yearly. There are limited screening methods and advances in treating kidney renal clear cell carcinoma (KIRC). It is important to find new biomarkers to screen, diagnose and predict the prognosis of KIRC. Some studies have shown that CD72 influences the development and progression of colorectal cancer, nasopharyngeal cancer, and acute lymphoid leukemia. However, there is a lack of research on the role of CD72 in the pathogenesis of KIRC. This study aimed to determine whether CD72 is associated with the prognosis and immune infiltration of KIRC, providing an essential molecular basis for the early non-invasive diagnosis and immunotherapy of KIRC. METHODS Using TCGA, GTE, GEO, and ImmPort databases, we obtained the differentially expressed mRNA (DEmRNA) associated with the prognosis and immunity of KIRC patients. We used the Kruskal-Wallis test to identify clinicopathological parameters associated with target gene expression. We performed univariate and multivariate COX regression analyses to determine the effect of target gene expression and clinicopathological parameters on survival. We analyzed the target genes' relevant functions and signaling pathways through enrichment analysis. Finally, the correlation of target genes with tumor immune infiltration was explored by ssGSEA and Spearman correlation analysis. RESULTS The results revealed that patients with KIRC with higher expression of CD72 have a poorer prognosis. CD72 was associated with the Pathologic T stage, Pathologic stage, Pathologic M stage, Pathologic N stage, Histologic grade in KIRC patients, Laterality, and OS event. It was an independent predictor of the overall survival of KIRC patients. Functional enrichment analysis showed that CD72 was significantly enriched in oncogenic and immune-related pathways. According to ssGSEA and Spearman correlation analysis, CD72 expression was significantly associated with tumor immune cells and immune checkpoints. CONCLUSION Our study suggests that CD72 is associated with tumor immunity and may be a biomarker relevant to the diagnosis and prognosis of KIRC patients.
Collapse
Affiliation(s)
- Lv Tian
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- School of Nursing, Jilin University, Changchun, China
| | - Yiming Wang
- School of Nursing, Jilin University, Changchun, China
| | - Zhiyuan Zhang
- School of Nursing, Jilin University, Changchun, China
| | - Xuechao Feng
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Fengjun Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Minru Zong
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
- School of Nursing, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Matrone C, Ferretti G. Semaphorin 3A influences neuronal processes that are altered in patients with autism spectrum disorder: Potential diagnostic and therapeutic implications. Neurosci Biobehav Rev 2023; 153:105338. [PMID: 37524141 DOI: 10.1016/j.neubiorev.2023.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Autism spectrum disorder (ASD) is a pervasive disorder that most frequently manifests in early childhood and lasts for their entire lifespan. Several behavioural traits characterise the phenotype of patients with ASD, including difficulties in reciprocal social communication as well as compulsive/repetitive stereotyped verbal and non-verbal behaviours. Although multiple hypotheses have been proposed to explain the aetiology of ASD and many resources have been used to improve our understanding of ASD, several aspects remain largely unexplored. Class 3 semaphorins (SEMA3) are secreted proteins involved in the organisation of structural and functional connectivity in the brain that regulate synaptic and dendritic development. Alterations in brain connectivity and aberrant neuronal development have been described in some patients with ASD. Mutations and polymorphisms in SEMA3A and alterations in its receptors and signalling have been associated with some neurological disorders such as schizophrenia and epilepsy, which are comorbidities in ASD, but also with ASD itself. In addition, SEMA3A is a key regulator of the immune response and neuroinflammatory processes, which have been found to be dysregulated in mothers of children who develop ASD and in affected patients. In this review, we highlight neurodevelopmental-related processes in which SEMA3A is involved, which are altered in ASD, and provide a viewpoint emphasising the development of strategies targeting changes in the SEMA3A signal to identify patterns of anomalies distinctive of ASD or to predict the prognosis of affected patients.
Collapse
Affiliation(s)
- Carmela Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.
| | - Gabriella Ferretti
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
4
|
Fard D, Giraudo E, Tamagnone L. Mind the (guidance) signals! Translational relevance of semaphorins, plexins, and neuropilins in pancreatic cancer. Trends Mol Med 2023; 29:817-829. [PMID: 37598000 DOI: 10.1016/j.molmed.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
Pancreatic cancer is a major cause of demise worldwide. Although key associated genetic changes have been discovered, disease progression is sustained by pathogenic mechanisms that are poorly understood at the molecular level. In particular, the tissue microenvironment of pancreatic adenocarcinoma (PDAC) is usually characterized by high stromal content, scarce recruitment of immune cells, and the presence of neuronal fibers. Semaphorins and their receptors, plexins and neuropilins, comprise a wide family of regulatory signals that control neurons, endothelial and immune cells, embryo development, and normal tissue homeostasis, as well as the microenvironment of human tumors. We focus on the role of these molecular signals in pancreatic cancer progression, as revealed by experimental research and clinical studies, including novel approaches for cancer treatment.
Collapse
Affiliation(s)
- Damon Fard
- Università Cattolica del Sacro Cuore, Department of Life Sciences and Public Health, Rome, Italy
| | - Enrico Giraudo
- Department of Science and Drug Technology, University of Turin, Turin, Italy; Candiolo Cancer Institute, FPO IRCCS, Candiolo, Turin, Italy
| | - Luca Tamagnone
- Università Cattolica del Sacro Cuore, Department of Life Sciences and Public Health, Rome, Italy; Fondazione Policlinico Gemelli, IRCCS, Rome, Italy.
| |
Collapse
|
5
|
Thomas R, Yang X. Semaphorins in immune cell function, inflammatory and infectious diseases. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100060. [PMID: 37645659 PMCID: PMC10461194 DOI: 10.1016/j.crimmu.2023.100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 08/31/2023] Open
Abstract
The Semaphorin family is a group of proteins studied broadly for their functions in nervous systems. They consist of eight subfamilies ubiquitously expressed in vertebrates, invertebrates, and viruses and exist in membrane-bound or secreted forms. Emerging evidence indicates the relevance of semaphorins outside the nervous system, including angiogenesis, cardiogenesis, osteoclastogenesis, tumour progression, and, more recently, the immune system. This review provides a broad overview of current knowledge on the role of semaphorins in the immune system, particularly its involvement in inflammatory and infectious diseases, including chlamydial infections.
Collapse
Affiliation(s)
- Rony Thomas
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
Eiza N, Kessler O, Sabag A, Neufeld G, Jones EY, Vadasz Z. Truncated-semaphorin3A is a potential regulatory molecule to restore immune homeostasis in immune-mediated diseases. Front Pharmacol 2023; 13:1085892. [PMID: 36703747 PMCID: PMC9871560 DOI: 10.3389/fphar.2022.1085892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Regulatory molecules have recently been recognized for their beneficial effects in the treatment of immune-mediated diseases, rather than using cytotoxic immune-suppressing drugs, which are associated with many unwanted side effects. Semaphorin3A (sema3A), a unique regulatory master of the immune system, was shown to be decreased in the serum of systemic lupus erythematosus (SLE) patients, in association with disease severity. Later, we were able to show its extremely beneficial effect in treating lupus nephritis in the NZB/W mice model. The mechanisms by which sema3A maintains its regulatory effect is by binding the regulatory receptor CD72 on B cells, thereby reducing the threshold of BCR signaling on B cells and reducing the production of pro-inflammatory cytokines. The aim of this study was to generate a stable sema3A molecule, easy to produce with a higher binding capacity to CD72 receptor rather than to Neuropilin-1 (NRP-1) receptor, which is expressed in many cell types. Using the crystallographic structure of parental sema3A, we synthesized a new secreted (shorter) sema3A derivative, which we called truncated sema3A (T-sema3A). The new molecule lacked the NRP-1 binding domain (the C-terminal site) and has an artificial dimerization site at position 257 (serine residue was exchanged with a cysteine residue). To facilitate the purification of this molecule we added Histidine epitope tag in frame upstream to a stop codon. This construct was transfected using a viral vector to 293HEK cells to generate cells stably expressing T-sema3A. T-sema3A is shown to be with a higher binding ability to CD72 than to NRP-1 as demonstrated by a homemade ELISA. In addition, T-sema3A was shown to be a regulatory agent which can induce the expression of IL-10 and TGF-β and reduce the secretion of pro-inflammatory cytokines such as IL-6, IFN-γ, and IL-17A from human T and B-lymphocytes. Keeping this in mind, T-sema3A is highly effective in maintaining immune homeostasis, therefore, becoming a potential agent in restoring the regulatory status of the immune system in immune-mediated diseases.
Collapse
Affiliation(s)
- Nasren Eiza
- The Proteomic Unit, Bnai Zion Medical Center, Haifa, Israel
- Cancer research center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ofra Kessler
- Cancer research center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Adi Sabag
- The Proteomic Unit, Bnai Zion Medical Center, Haifa, Israel
| | - Gera Neufeld
- Cancer research center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - E. Yvonne Jones
- The Division of Structural Biology (STRUBI), Nuffield Department of Clinical Medicine, Oxford, United Kingdom
| | - Zahava Vadasz
- The Proteomic Unit, Bnai Zion Medical Center, Haifa, Israel
| |
Collapse
|