1
|
Simonsen B, Rübsam H, Kolte MV, Larsen MM, Krönauer C, Gysel K, Laursen M, Feng F, Kaya G, Oldroyd GED, Stougaard J, Fort S, Radutoiu S, Andersen KR. The Medicago truncatula LYR4 intracellular domain serves as a scaffold in immunity signaling independent of its phosphorylation activity. THE NEW PHYTOLOGIST 2025; 246:1423-1431. [PMID: 40065491 PMCID: PMC12018781 DOI: 10.1111/nph.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/21/2025] [Indexed: 04/25/2025]
Affiliation(s)
- Bine Simonsen
- Department of Molecular Biology and GeneticsAarhus University8000Aarhus CDenmark
| | - Henriette Rübsam
- Department of Molecular Biology and GeneticsAarhus University8000Aarhus CDenmark
| | - Marie Vogel Kolte
- Department of Molecular Biology and GeneticsAarhus University8000Aarhus CDenmark
| | - Maria Meisner Larsen
- Department of Molecular Biology and GeneticsAarhus University8000Aarhus CDenmark
| | - Christina Krönauer
- Department of Molecular Biology and GeneticsAarhus University8000Aarhus CDenmark
| | - Kira Gysel
- Department of Molecular Biology and GeneticsAarhus University8000Aarhus CDenmark
| | - Mette Laursen
- Department of Molecular Biology and GeneticsAarhus University8000Aarhus CDenmark
| | - Feng Feng
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Gülendam Kaya
- Department of Molecular Biology and GeneticsAarhus University8000Aarhus CDenmark
| | - Giles E. D. Oldroyd
- Department of Plant Sciences, Crop Science CenterUniversity of CambridgeCambridgeCB3 0LEUK
| | - Jens Stougaard
- Department of Molecular Biology and GeneticsAarhus University8000Aarhus CDenmark
| | - Sébastien Fort
- Université Grenoble Alpes, CNRS, CERMAV38000GrenobleFrance
| | - Simona Radutoiu
- Department of Molecular Biology and GeneticsAarhus University8000Aarhus CDenmark
| | | |
Collapse
|
2
|
Zhang W, Bradburn D, Heidebrink G, Liu Y, Jang H, Nussinov R, Kõivomägi M. Distinct Allosteric Networks in CDK4 and CDK6 in the Cell Cycle and in Drug Resistance. J Mol Biol 2025:169121. [PMID: 40174666 DOI: 10.1016/j.jmb.2025.169121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) are key regulators of the G1-S phase transition in the cell cycle. In cancer cells, CDK6 overexpression often outcompetes CDK4 in driving cell cycle progression, contributing to resistance against CDK4/6 inhibitors (CDK4/6i). This suggests distinct functional and conformational differences between these two kinases, despite their striking structural and sequence similarities. Understanding the mechanisms that differentiate CDK4 and CDK6 is crucial, as resistance to CDK4/6i-frequently linked to CDK6 overexpression-remains a significant therapeutic challenge. Notably, CDK6 is often upregulated in CDK4/6i-resistant cancers and rapidly proliferating hematopoietic stem cells, underscoring its unique regulatory roles. We hypothesize that their distinct conformational dynamics explain their differences in phosphorylation of retinoblastoma protein, Rb, inhibitor efficacy, and cell cycle control. This leads us to question how their dissimilar conformational dynamics encode their distinct actions. To elucidate their differential activities, molecular mechanisms, and inhibitor binding, we combine biochemical assays and molecular dynamics (MD) simulations. We discover that CDK4 and CDK6 have distinct allosteric networks connecting the β3-αC loop and the G-loop. CDK6 exhibits stronger coupling and shorter path lengths between these regions, resulting in higher kinase activity upon cyclin binding and impacting inhibitor specificity. We also discover an unrecognized role of the unstructured CDK6 C-terminus, which allosterically connects and stabilizes the R-spine, facilitating slightly higher activity. Our findings bridge the gap between the structural similarity and functional divergence of CDK4 and CDK6, advancing the understanding of kinase regulation in cancer biology.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Devin Bradburn
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gretchen Heidebrink
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Mardo Kõivomägi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Zhang W, Bradburn D, Heidebrink G, Liu Y, Jang H, Nussinov R, Kõivomägi M. Distinct allosteric networks in CDK4 and CDK6 in the cell cycle and in drug resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640857. [PMID: 40093074 PMCID: PMC11908124 DOI: 10.1101/2025.02.28.640857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) are key regulators of the G1-S phase transition in the cell cycle. In cancer cells, CDK6 overexpression often outcompetes CDK4 in driving cell cycle progression, contributing to resistance against CDK4/6 inhibitors (CDK4/6i). This suggests distinct functional and conformational differences between these two kinases, despite their striking structural and sequence similarities. Understanding the mechanisms that differentiate CDK4 and CDK6 is crucial, as resistance to CDK4/6i-frequently linked to CDK6 overexpression-remains a significant therapeutic challenge. Notably, CDK6 is often upregulated in CDK4/6i-resistant cancers and rapidly proliferating hematopoietic stem cells, underscoring its unique regulatory roles. We hypothesize that their distinct conformational dynamics explain their differences in phosphorylation of retinoblastoma protein, Rb, inhibitor efficacy, and cell cycle control. This leads us to question how their dissimilar conformational dynamics encode their distinct actions. To elucidate their differential activities, molecular mechanisms, and inhibitor binding, we combine biochemical assays and molecular dynamics (MD) simulations. We discover that CDK4 and CDK6 have distinct allosteric networks connecting the β3-αC loop and the G-loop. CDK6 exhibits stronger coupling and shorter path lengths between these regions, resulting in higher kinase activity upon cyclin binding and impacting inhibitor specificity. We also discover an unrecognized role of the unstructured CDK6 C-terminus, which allosterically connects and stabilizes the R-spine, facilitating slightly higher activity. Our findings bridge the gap between the structural similarity and functional divergence of CDK4 and CDK6, advancing the understanding of kinase regulation in cancer biology.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Devin Bradburn
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, U.S.A
| | - Gretchen Heidebrink
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, U.S.A
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Hyunbum Jang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
| | - Ruth Nussinov
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mardo Kõivomägi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, U.S.A
| |
Collapse
|
4
|
Liu S, Payne AM, Wang J, Zhu L, Paknejad N, Eng ET, Liu W, Miao Y, Hite RK, Huang XY. Architecture and activation of single-pass transmembrane receptor guanylyl cyclase. Nat Struct Mol Biol 2025; 32:469-478. [PMID: 39543315 DOI: 10.1038/s41594-024-01426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
The heart, in addition to its primary role in blood circulation, functions as an endocrine organ by producing cardiac hormone natriuretic peptides. These hormones regulate blood pressure through the single-pass transmembrane receptor guanylyl cyclase A (GC-A), also known as natriuretic peptide receptor 1. The binding of the peptide hormones to the extracellular domain of the receptor activates the intracellular guanylyl cyclase domain of the receptor to produce the second messenger cyclic guanosine monophosphate. Despite their importance, the detailed architecture and domain interactions within full-length GC-A remain elusive. Here we present cryo-electron microscopy structures, functional analyses and molecular dynamics simulations of full-length human GC-A, in both the absence and the presence of atrial natriuretic peptide. The data reveal the architecture of full-length GC-A, highlighting the spatial arrangement of its various functional domains. This insight is crucial for understanding how different parts of the receptor interact and coordinate during activation. The study elucidates the molecular basis of how extracellular signals are transduced across the membrane to activate the intracellular guanylyl cyclase domain.
Collapse
Affiliation(s)
- Shian Liu
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Alexander M Payne
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Ph.D. Program in Chemical Biology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Jinan Wang
- Computational Medicine Program and Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Navid Paknejad
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edward T Eng
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY, USA
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yinglong Miao
- Computational Medicine Program and Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
5
|
Tsai SJ, Gong Y, Dabbs A, Zahra F, Xu J, Geske A, Caterina MJ, Gould SJ. Enhanced kinase translocation reporters for simultaneous real-time measurement of PKA, ERK, and calcium. J Biol Chem 2025; 301:108183. [PMID: 39814226 PMCID: PMC11871455 DOI: 10.1016/j.jbc.2025.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Kinase translocation reporters (KTRs) are powerful tools for single-cell measurement of time-integrated kinase activity but suffer from restricted dynamic range and limited sensitivity, particularly in neurons. To address these limitations, we developed enhanced KTRs (eKTRs) for PKA and extracellular signal-regulated kinase (ERK) by (i) increasing KTR size, which reduces the confounding effect of KTR diffusion through the nuclear pore and (ii) modulating the strength of the bipartite nuclear localization signal in their kinase sensor domains, to ensure that the relative distribution of the KTR between the nucleus and cytoplasmic is determined by active nuclear import, active nuclear export, and relative activity of their cognate kinase. The resultant sets of ePKA-KTRs and eERK-KTRs display high sensitivity, broad dynamic range, and cell type-specific tuning. Moreover, co-expression of optically separable ePKA-KTRs and eERK-KTRs allowed us to simultaneously monitor the activation and inhibition of PKA and ERK, together with calcium levels, in live cells. These eKTRs responded as expected to direct agonists and inhibitors, and also confirmed that crosstalk between the PKA and ERK pathways is highly unbalanced, with the activation of PKA suppressing ERK activity, while activation of ERK induces PKA activity. Taken together, our findings highlight the importance of KTR size and bipartite nuclear localization signal strength to KTR sensitivity and dynamic range, show that different cell types require different eKTRs, and identify ePKA-KTR1.4 and eERK-KTR1.2 as particularly well-suited for monitoring PKA and ERK in primary sensory neurons.
Collapse
Affiliation(s)
- Shang-Jui Tsai
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Yijing Gong
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Austin Dabbs
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fiddia Zahra
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Junhao Xu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aleksander Geske
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J Caterina
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
6
|
Chatterjee S, Maity A, Bahadur RP. Conformational switches in human RNA binding proteins involved in neurodegeneration. Biochim Biophys Acta Gen Subj 2025; 1869:130760. [PMID: 39798673 DOI: 10.1016/j.bbagen.2025.130760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/03/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Conformational switching in RNA binding proteins (RBPs) is crucial for regulation of RNA processing and transport. Dysregulation or mutations in RBPs and broad RNA processing abnormalities are related to many human diseases including neurodegenerative disorders. Here, we review the role of protein-RNA conformational switches in RBP-RNA complexes. RBP-RNA complexes exhibit wide range of conformational switching depending on the RNA molecule and its ability to induce conformational changes in its partner RBP. We categorize the conformational switches into three groups: rigid body, semi-flexible and full flexible. We also investigate conformational switches in large cellular assemblies including ribosome, spliceosome and RISC complexes. In addition, the role of intrinsic disorder in RBP-RNA conformational switches is discussed. We have also discussed the effect of different disease-causing mutations on conformational switching of proteins associated with neurodegenerative diseases. We believe that this study will enhance our understanding on the role of protein-RNA conformational switches. Furthermore, the availability of a large number of atomic structures of RBP-RNA complexes in near future would facilitate to create a complete repertoire of human RBP-RNA conformational switches.
Collapse
Affiliation(s)
- Sonali Chatterjee
- Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Atanu Maity
- Bioinformatics Centre, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Bioinformatics Centre, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
7
|
Claywell JE, Fu Y, Sibley LD. Phospho-relay feedback loops control egress vs. intracellular development in Toxoplasma gondii. Cell Rep 2025; 44:115260. [PMID: 39903669 PMCID: PMC11922314 DOI: 10.1016/j.celrep.2025.115260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/27/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
The intracellular parasite Toxoplasma gondii alternates between a motile invasive and a quiescent intracellular replicative form, yet how these transitions are regulated is unknown. A positive feedback loop involving protein kinase G (PKG) and calcium-dependent PKs (CDPKs) controls motility, invasion, and egress by Toxoplasma gondii, while PKA isoform c1 (PKAc1) counteracts this pathway. Shortly after invasion, PKAc1 is activated by cyclic AMP (cAMP) produced by adenylate cyclases, leading to the suppression of the PKG/CDPK pathway. PKAc1 further activates phosphodiesterase 2, which selectively consumes cAMP, thus forming a negative feedback loop, causing transient activation of PKAc1. Perturbation of cyclic GMP (cGMP) vs. calcium demonstrates that PKAc1 acts on targets between guanylate cyclase and calcium release. The combined activation of PKG/CDPKs and inhibition by PKAc1, controlled by a transient negative feedback loop, ensures that the parasite is responsive to environmental signals needed to activate motility while also ensuring periods of long-term stable intracellular growth.
Collapse
Affiliation(s)
- Ja E Claywell
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Liu XL, Duan Z, Yu M, Liu X. Epigenetic control of circadian clocks by environmental signals. Trends Cell Biol 2024; 34:992-1006. [PMID: 38423855 DOI: 10.1016/j.tcb.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Circadian clocks have evolved to enable organisms to respond to daily environmental changes. Maintaining a robust circadian rhythm under various perturbations and stresses is essential for the fitness of an organism. In the core circadian oscillator conserved in eukaryotes (from fungi to mammals), a negative feedback loop based on both transcription and translation drives circadian rhythms. The expression of circadian clock genes depends both on the binding of transcription activators at the promoter and on the chromatin state of the clock genes, and epigenetic modifications of chromatin are crucial for transcriptional regulation of circadian clock genes. Herein we review current knowledge of epigenetic regulation of circadian clock mechanisms and discuss how environmental cues can control clock gene expression by affecting chromatin states.
Collapse
Affiliation(s)
- Xiao-Lan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeyu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Muqun Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Raisinghani N, Alshahrani M, Gupta G, Tian H, Xiao S, Tao P, Verkhivker G. Probing Functional Allosteric States and Conformational Ensembles of the Allosteric Protein Kinase States and Mutants: Atomistic Modeling and Comparative Analysis of AlphaFold2, OmegaFold, and AlphaFlow Approaches and Adaptations. J Phys Chem B 2024; 128:11088-11107. [PMID: 39485490 PMCID: PMC12103074 DOI: 10.1021/acs.jpcb.4c04985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
This study reports a comprehensive analysis and comparison of several AlphaFold2 adaptations and OmegaFold and AlphaFlow approaches in predicting distinct allosteric states, conformational ensembles, and mutation-induced structural effects for a panel of state-switching allosteric ABL mutants. The results revealed that the proposed AlphaFold2 adaptation with randomized alanine sequence scanning can generate functionally relevant allosteric states and conformational ensembles of the ABL kinase that qualitatively capture a unique pattern of population shifts between the active and inactive states in the allosteric ABL mutants. Consistent with the NMR experiments, the proposed AlphaFold2 adaptation predicted that G269E/M309L/T408Y mutant could induce population changes and sample a significant fraction of the fully inactive I2 form which is a low-populated, high-energy state for the wild-type ABL protein. We also demonstrated that other ABL mutants G269E/M309L/T334I and M309L/L320I/T334I that introduce a single activating T334I mutation can reverse equilibrium and populate exclusively the active ABL form. While the precise quantitative predictions of the relative populations of the active and various hidden inactive states in the ABL mutants remain challenging, our results provide evidence that AlphaFold2 adaptation with randomized alanine sequence scanning can adequately detect a spectrum of the allosteric ABL states and capture the equilibrium redistributions between structurally distinct functional ABL conformations. We further validated the robustness of the proposed AlphaFold2 adaptation for predicting the unique inactive architecture of the BSK8 kinase and structural differences between ligand-unbound apo and ATP-bound forms of BSK8. The results of this comparative study suggested that AlpahFold2, OmegaFold, and AlphaFlow approaches may be driven by structural memorization of existing protein folds and are strongly biased toward predictions of the thermodynamically stable ground states of the protein kinases, highlighting limitations and challenges of AI-based methodologies in detecting alternative functional conformations, accurate characterization of physically significant conformational ensembles, and prediction of mutation-induced allosteric structural changes.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Hao Tian
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Fiedorczuk K, Iordanov I, Mihályi C, Szollosi A, Csanády L, Chen J. The structures of protein kinase A in complex with CFTR: Mechanisms of phosphorylation and noncatalytic activation. Proc Natl Acad Sci U S A 2024; 121:e2409049121. [PMID: 39495916 PMCID: PMC11573500 DOI: 10.1073/pnas.2409049121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
Protein kinase A (PKA) is a key regulator of cellular functions by selectively phosphorylating numerous substrates, including ion channels, enzymes, and transcription factors. It has long served as a model system for understanding the eukaryotic kinases. Using cryoelectron microscopy, we present complex structures of the PKA catalytic subunit (PKA-C) bound to a full-length protein substrate, the cystic fibrosis transmembrane conductance regulator (CFTR)-an ion channel vital to human health. CFTR gating requires phosphorylation of its regulatory (R) domain. Unphosphorylated CFTR engages PKA-C at two locations, establishing two "catalytic stations" near to, but not directly involving, the R domain. This configuration, coupled with the conformational flexibility of the R domain, permits transient interactions of the eleven spatially separated phosphorylation sites. Furthermore, we determined two structures of the open-pore CFTR stabilized by PKA-C, providing a molecular basis to understand how PKA-C stimulates CFTR currents even in the absence of phosphorylation.
Collapse
Affiliation(s)
- Karol Fiedorczuk
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
| | - Iordan Iordanov
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Csaba Mihályi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Andras Szollosi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
- HHMI, Chevy Chase, MD 20815
| |
Collapse
|
11
|
Steiner WP, Iverson N, Venkatakrishnan V, Wu J, Stepniewski TM, Michaelson Z, Bröckel JW, Zhu JF, Bruystens J, Lee A, Nelson I, Bertinetti D, Arveseth CD, Tan G, Spaltenstein P, Xu J, Hüttenhain R, Kay M, Herberg FW, Selent J, Anand GS, Dunbrack RL, Taylor SS, Myers BR. A Structural Mechanism for Noncanonical GPCR Signal Transduction in the Hedgehog Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621410. [PMID: 39554190 PMCID: PMC11565934 DOI: 10.1101/2024.10.31.621410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The Hedgehog (Hh) signaling pathway is fundamental to embryogenesis, tissue homeostasis, and cancer. Hh signals are transduced via an unusual mechanism: upon agonist-induced phosphorylation, the noncanonical G protein-coupled receptor SMOOTHENED (SMO) binds the catalytic subunit of protein kinase A (PKA-C) and physically blocks its enzymatic activity. By combining computational structural approaches with biochemical and functional studies, we show that SMO mimics strategies prevalent in canonical GPCR and PKA signaling complexes, despite little sequence or secondary structural homology. An intrinsically disordered region of SMO binds the PKA-C active site, resembling the PKA regulatory subunit (PKA-R) / PKA-C holoenzyme, while the SMO transmembrane domain binds a conserved PKA-C interaction hub, similar to other GPCR-effector complexes. In contrast with prevailing GPCR signal transduction models, phosphorylation of SMO promotes intramolecular electrostatic interactions that stabilize key structural elements within the SMO cytoplasmic domain, thereby remodeling it into a PKA-inhibiting conformation. Our work provides a structural mechanism for a central step in the Hh cascade and defines a paradigm for disordered GPCR domains to transmit signals intracellularly.
Collapse
Affiliation(s)
- William P. Steiner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Nathan Iverson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | | | - Jian Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) – Pompeu Fabra University (UPF), Dr Aiguader 88, Barcelona, Spain
- InterAx Biotech AG, Villigen, Switzerland
| | - Zachary Michaelson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Jan W. Bröckel
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Ju-Fen Zhu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Jessica Bruystens
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Annabel Lee
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Isaac Nelson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Daniela Bertinetti
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Corvin D. Arveseth
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Gerald Tan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Kay
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Friedrich W. Herberg
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) – Pompeu Fabra University (UPF), Dr Aiguader 88, Barcelona, Spain
| | - Ganesh S. Anand
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Roland L. Dunbrack
- Institute for Cancer Research. Fox Chase Cancer Center. Philadelphia PA, USA
| | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin R. Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
12
|
Tsai SJ, Gong Y, Dabbs A, Zahra F, Xu J, Geske A, Caterina MJ, Gould SJ. Enhanced kinase translocation reporters for simultaneous real-time measurement of PKA, ERK, and Ca 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.30.615856. [PMID: 39411162 PMCID: PMC11475874 DOI: 10.1101/2024.09.30.615856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Kinase translocation reporters (KTRs) are powerful tools for single-cell measurement of time-integrated kinase activity but suffer from restricted dynamic range and limited sensitivity, particularly in neurons. To address these limitations, we developed enhanced KTRs (eKTRs) for protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) that display high sensitivity, rapid response kinetics, broad dynamic range, cell type-specific tuning, and an ability to detect PKA and ERK activity in primary sensory neurons. Moreover, co-expression of optically separable eKTRs for PKA and ERK revealed the kinetics of expected and unexpected crosstalk between PKA, ERK, protein kinase C, and calcium signaling pathways, demonstrating the utility of eKTRs for live cell monitoring of diverse and interacting signaling pathways. These results open the door to improved live-cell and in vivo measurements of key signaling pathways in neurons, while at the same time demonstrating the importance of KTR size and NLS strength to KTR dynamics.
Collapse
Affiliation(s)
- Shang-Jui Tsai
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Yijing Gong
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Austin Dabbs
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Fiddia Zahra
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Junhao Xu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Aleksander Geske
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Michael J. Caterina
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Stephen J. Gould
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
13
|
Raisinghani N, Alshahrani M, Gupta G, Verkhivker G. Predicting Mutation-Induced Allosteric Changes in Structures and Conformational Ensembles of the ABL Kinase Using AlphaFold2 Adaptations with Alanine Sequence Scanning. Int J Mol Sci 2024; 25:10082. [PMID: 39337567 PMCID: PMC11432724 DOI: 10.3390/ijms251810082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Despite the success of AlphaFold2 approaches in predicting single protein structures, these methods showed intrinsic limitations in predicting multiple functional conformations of allosteric proteins and have been challenged to accurately capture the effects of single point mutations that induced significant structural changes. We examined several implementations of AlphaFold2 methods to predict conformational ensembles for state-switching mutants of the ABL kinase. The results revealed that a combination of randomized alanine sequence masking with shallow multiple sequence alignment subsampling can significantly expand the conformational diversity of the predicted structural ensembles and capture shifts in populations of the active and inactive ABL states. Consistent with the NMR experiments, the predicted conformational ensembles for M309L/L320I and M309L/H415P ABL mutants that perturb the regulatory spine networks featured the increased population of the fully closed inactive state. The proposed adaptation of AlphaFold can reproduce the experimentally observed mutation-induced redistributions in the relative populations of the active and inactive ABL states and capture the effects of regulatory mutations on allosteric structural rearrangements of the kinase domain. The ensemble-based network analysis complemented AlphaFold predictions by revealing allosteric hotspots that correspond to state-switching mutational sites which may explain the global effect of regulatory mutations on structural changes between the ABL states. This study suggested that attention-based learning of long-range dependencies between sequence positions in homologous folds and deciphering patterns of allosteric interactions may further augment the predictive abilities of AlphaFold methods for modeling of alternative protein sates, conformational ensembles and mutation-induced structural transformations.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
14
|
Verma J, Vashisth H. Molecular basis for differential recognition of an allosteric inhibitor by receptor tyrosine kinases. Proteins 2024; 92:905-922. [PMID: 38506327 PMCID: PMC11222054 DOI: 10.1002/prot.26685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Understanding kinase-inhibitor selectivity continues to be a major objective in kinase drug discovery. We probe the molecular basis of selectivity of an allosteric inhibitor (MSC1609119A-1) of the insulin-like growth factor-I receptor kinase (IGF1RK), which has been shown to be ineffective for the homologous insulin receptor kinase (IRK). Specifically, we investigated the structural and energetic basis of the allosteric binding of this inhibitor to each kinase by combining molecular modeling, molecular dynamics (MD) simulations, and thermodynamic calculations. We predict the inhibitor conformation in the binding pocket of IRK and highlight that the charged residues in the histidine-arginine-aspartic acid (HRD) and aspartic acid-phenylalanine-glycine (DFG) motifs and the nonpolar residues in the binding pocket govern inhibitor interactions in the allosteric pocket of each kinase. We suggest that the conformational changes in the IGF1RK residues M1054 and M1079, movement of the ⍺C-helix, and the conformational stabilization of the DFG motif favor the selectivity of the inhibitor toward IGF1RK. Our thermodynamic calculations reveal that the observed selectivity can be rationalized through differences observed in the electrostatic interaction energy of the inhibitor in each inhibitor/kinase complex and the hydrogen bonding interactions of the inhibitor with the residue V1063 in IGF1RK that are not attained with the corresponding residue V1060 in IRK. Overall, our study provides a rationale for the molecular basis of recognition of this allosteric inhibitor by IGF1RK and IRK, which is potentially useful in developing novel inhibitors with improved affinity and selectivity.
Collapse
Affiliation(s)
- Jyoti Verma
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH 03824
| | - Harish Vashisth
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH 03824
- Department of Chemistry, University of New Hampshire, Durham, NH 03824
- Integrated Applied Mathematics Program, University of New Hampshire, Durham, NH 03824
- Molecular and Cellular Biotechnology Program, University of New Hampshire, Durham, NH 03824
| |
Collapse
|
15
|
Kugler V, Schwaighofer S, Feichtner A, Enzler F, Fleischmann J, Strich S, Schwarz S, Wilson R, Tschaikner P, Troppmair J, Sexl V, Meier P, Kaserer T, Stefan E. Impact of protein and small molecule interactions on kinase conformations. eLife 2024; 13:RP94755. [PMID: 39088265 PMCID: PMC11293870 DOI: 10.7554/elife.94755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Protein kinases act as central molecular switches in the control of cellular functions. Alterations in the regulation and function of protein kinases may provoke diseases including cancer. In this study we investigate the conformational states of such disease-associated kinases using the high sensitivity of the kinase conformation (KinCon) reporter system. We first track BRAF kinase activity conformational changes upon melanoma drug binding. Second, we also use the KinCon reporter technology to examine the impact of regulatory protein interactions on LKB1 kinase tumor suppressor functions. Third, we explore the conformational dynamics of RIP kinases in response to TNF pathway activation and small molecule interactions. Finally, we show that CDK4/6 interactions with regulatory proteins alter conformations which remain unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the KinCon technology helps to identify cellular factors that impact drug efficacies. The understanding of the structural dynamics of full-length protein kinases when interacting with small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic strategies.
Collapse
Affiliation(s)
- Valentina Kugler
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Selina Schwaighofer
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Andreas Feichtner
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Florian Enzler
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of InnsbruckInnsbruckAustria
| | - Jakob Fleischmann
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Sophie Strich
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Sarah Schwarz
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Rebecca Wilson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Philipp Tschaikner
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
- KinCon biolabs GmbHInnsbruckAustria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of InnsbruckInnsbruckAustria
| | | | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
| | - Eduard Stefan
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
- KinCon biolabs GmbHInnsbruckAustria
| |
Collapse
|
16
|
Gross LZF, Winkel AF, Galceran F, Schulze JO, Fröhner W, Cämmerer S, Zeuzem S, Engel M, Leroux AE, Biondi RM. Molecular insights into the regulatory landscape of PKC-related kinase-2 (PRK2/PKN2) using targeted small compounds. J Biol Chem 2024; 300:107550. [PMID: 39002682 PMCID: PMC11357854 DOI: 10.1016/j.jbc.2024.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024] Open
Abstract
The PKC-related kinases (PRKs, also termed PKNs) are important in cell migration, cancer, hepatitis C infection, and nutrient sensing. They belong to a group of protein kinases called AGC kinases that share common features like a C-terminal extension to the catalytic domain comprising a hydrophobic motif. PRKs are regulated by N-terminal domains, a pseudosubstrate sequence, Rho-binding domains, and a C2 domain involved in inhibition and dimerization, while Rho and lipids are activators. We investigated the allosteric regulation of PRK2 and its interaction with its upstream kinase PDK1 using a chemical biology approach. We confirmed the phosphoinositide-dependent protein kinase 1 (PDK1)-interacting fragment (PIF)-mediated docking interaction of PRK2 with PDK1 and showed that this interaction can be modulated allosterically. We showed that the polypeptide PIFtide and a small compound binding to the PIF-pocket of PRK2 were allosteric activators, by displacing the pseudosubstrate PKL region from the active site. In addition, a small compound binding to the PIF-pocket allosterically inhibited the catalytic activity of PRK2. Together, we confirmed the docking interaction and allostery between PRK2 and PDK1 and described an allosteric communication between the PIF-pocket and the active site of PRK2, both modulating the conformation of the ATP-binding site and the pseudosubstrate PKL-binding site. Our study highlights the allosteric modulation of the activity and the conformation of PRK2 in addition to the existence of at least two different complexes between PRK2 and its upstream kinase PDK1. Finally, the study highlights the potential for developing allosteric drugs to modulate PRK2 kinase conformations and catalytic activity.
Collapse
Affiliation(s)
| | - Angelika F Winkel
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | | | - Jörg O Schulze
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Wolfgang Fröhner
- Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | - Simon Cämmerer
- Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | | | - Ricardo M Biondi
- IBioBA-CONICET-MPSP, Buenos Aires, Argentina; Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany.
| |
Collapse
|
17
|
Herrington NB, Li YC, Stein D, Pandey G, Schlessinger A. A comprehensive exploration of the druggable conformational space of protein kinases using AI-predicted structures. PLoS Comput Biol 2024; 20:e1012302. [PMID: 39046952 PMCID: PMC11268620 DOI: 10.1371/journal.pcbi.1012302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Protein kinase function and interactions with drugs are controlled in part by the movement of the DFG and ɑC-Helix motifs that are related to the catalytic activity of the kinase. Small molecule ligands elicit therapeutic effects with distinct selectivity profiles and residence times that often depend on the active or inactive kinase conformation(s) they bind. Modern AI-based structural modeling methods have the potential to expand upon the limited availability of experimentally determined kinase structures in inactive states. Here, we first explored the conformational space of kinases in the PDB and models generated by AlphaFold2 (AF2) and ESMFold, two prominent AI-based protein structure prediction methods. Our investigation of AF2's ability to explore the conformational diversity of the kinome at various multiple sequence alignment (MSA) depths showed a bias within the predicted structures of kinases in DFG-in conformations, particularly those controlled by the DFG motif, based on their overabundance in the PDB. We demonstrate that predicting kinase structures using AF2 at lower MSA depths explored these alternative conformations more extensively, including identifying previously unobserved conformations for 398 kinases. Ligand enrichment analyses for 23 kinases showed that, on average, docked models distinguished between active molecules and decoys better than random (average AUC (avgAUC) of 64.58), but select models perform well (e.g., avgAUCs for PTK2 and JAK2 were 79.28 and 80.16, respectively). Further analysis explained the ligand enrichment discrepancy between low- and high-performing kinase models as binding site occlusions that would preclude docking. The overall results of our analyses suggested that, although AF2 explored previously uncharted regions of the kinase conformational space and select models exhibited enrichment scores suitable for rational drug discovery, rigorous refinement of AF2 models is likely still necessary for drug discovery campaigns.
Collapse
Affiliation(s)
- Noah B. Herrington
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yan Chak Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - David Stein
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
18
|
Raisinghani N, Alshahrani M, Gupta G, Tian H, Xiao S, Tao P, Verkhivker GM. Integration of a Randomized Sequence Scanning Approach in AlphaFold2 and Local Frustration Profiling of Conformational States Enable Interpretable Atomistic Characterization of Conformational Ensembles and Detection of Hidden Allosteric States in the ABL1 Protein Kinase. J Chem Theory Comput 2024; 20:5317-5336. [PMID: 38865109 PMCID: PMC12100677 DOI: 10.1021/acs.jctc.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Despite the success of AlphaFold methods in predicting single protein structures, these methods showed intrinsic limitations in the characterization of multiple functional conformations of allosteric proteins. The recent NMR-based structural determination of the unbound ABL kinase in the active state and discovery of the inactive low-populated functional conformations that are unique for ABL kinase present an ideal challenge for the AlphaFold2 approaches. In the current study, we employ several adaptations of the AlphaFold2 methodology to predict protein conformational ensembles and allosteric states of the ABL kinase including randomized alanine sequence scanning combined with the multiple sequence alignment subsampling proposed in this study. We show that the proposed new AlphaFold2 adaptation combined with local frustration profiling of conformational states enables accurate prediction of the protein kinase structures and conformational ensembles, also offering a robust approach for interpretable characterization of the AlphaFold2 predictions and detection of hidden allosteric states. We found that the large high frustration residue clusters are uniquely characteristic of the low-populated, fully inactive ABL form and can define energetically frustrated cracking sites of conformational transitions, presenting difficult targets for AlphaFold2. The results of this study uncovered previously unappreciated fundamental connections between local frustration profiles of the functional allosteric states and the ability of AlphaFold2 methods to predict protein structural ensembles of the active and inactive states. This study showed that integration of the randomized sequence scanning adaptation of AlphaFold2 with a robust landscape-based analysis allows for interpretable atomistic predictions and characterization of protein conformational ensembles, providing a physical basis for the successes and limitations of current AlphaFold2 methods in detecting functional allosteric states that play a significant role in protein kinase regulation.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Hao Tian
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Gennady M Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
19
|
Ednacot EMQ, Nabhani A, Dinh DM, Morehouse BR. Pharmacological potential of cyclic nucleotide signaling in immunity. Pharmacol Ther 2024; 258:108653. [PMID: 38679204 DOI: 10.1016/j.pharmthera.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/16/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Cyclic nucleotides are important signaling molecules that play many critical physiological roles including controlling cell fate and development, regulation of metabolic processes, and responding to changes in the environment. Cyclic nucleotides are also pivotal regulators in immune signaling, orchestrating intricate processes that maintain homeostasis and defend against pathogenic threats. This review provides a comprehensive examination of the pharmacological potential of cyclic nucleotide signaling pathways within the realm of immunity. Beginning with an overview of the fundamental roles of cAMP and cGMP as ubiquitous second messengers, this review delves into the complexities of their involvement in immune responses. Special attention is given to the challenges associated with modulating these signaling pathways for therapeutic purposes, emphasizing the necessity for achieving cell-type specificity to avert unintended consequences. A major focus of the review is on the recent paradigm-shifting discoveries regarding specialized cyclic nucleotide signals in the innate immune system, notably the cGAS-STING pathway. The significance of cyclic dinucleotides, exemplified by 2'3'-cGAMP, in controlling immune responses against pathogens and cancer, is explored. The evolutionarily conserved nature of cyclic dinucleotides as antiviral agents, spanning across diverse organisms, underscores their potential as targets for innovative immunotherapies. Findings from the last several years have revealed a striking diversity of novel bacterial cyclic nucleotide second messengers which are involved in antiviral responses. Knowledge of the existence and precise identity of these molecules coupled with accurate descriptions of their associated immune defense pathways will be essential to the future development of novel antibacterial therapeutic strategies. The insights presented herein may help researchers navigate the evolving landscape of immunopharmacology as it pertains to cyclic nucleotides and point toward new avenues or lines of thinking about development of therapeutics against the pathways they regulate.
Collapse
Affiliation(s)
- Eirene Marie Q Ednacot
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Ali Nabhani
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - David M Dinh
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Benjamin R Morehouse
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
20
|
Zhang W, Liu Y, Jang H, Nussinov R. CDK2 and CDK4: Cell Cycle Functions Evolve Distinct, Catalysis-Competent Conformations, Offering Drug Targets. JACS AU 2024; 4:1911-1927. [PMID: 38818077 PMCID: PMC11134382 DOI: 10.1021/jacsau.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Cyclin-dependent kinases (CDKs), particularly CDK4 and CDK2, are crucial for cell cycle progression from the Gap 1 (G1) to the Synthesis (S) phase by phosphorylating targets such as the Retinoblastoma Protein (Rb). CDK4, paired with cyclin-D, operates in the long G1 phase, while CDK2 with cyclin-E, manages the brief G1-to-S transition, enabling DNA replication. Aberrant CDK signaling leads to uncontrolled cell proliferation, which is a hallmark of cancer. Exactly how they accomplish their catalytic phosphorylation actions with distinct efficiencies poses the fundamental, albeit overlooked question. Here we combined available experimental data and modeling of the active complexes to establish their conformational functional landscapes to explain how the two cyclin/CDK complexes differentially populate their catalytically competent states for cell cycle progression. Our premise is that CDK catalytic efficiencies could be more important for cell cycle progression than the cyclin-CDK biochemical binding specificity and that efficiency is likely the prime determinant of cell cycle progression. We observe that CDK4 is more dynamic than CDK2 in the ATP binding site, the regulatory spine, and the interaction with its cyclin partner. The N-terminus of cyclin-D acts as an allosteric regulator of the activation loop and the ATP-binding site in CDK4. Integrated with a suite of experimental data, we suggest that the CDK4 complex is less capable of remaining in the active catalytically competent conformation, and may have a lower catalytic efficiency than CDK2, befitting their cell cycle time scales, and point to critical residues and motifs that drive their differences. Our mechanistic landscape may apply broadly to kinases, and we propose two drug design strategies: (i) allosteric Inhibition by conformational stabilization for targeting allosteric CDK4 regulation by cyclin-D, and (ii) dynamic entropy-optimized targeting which leverages the dynamic, entropic aspects of CDK4 to optimize drug binding efficacy.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
21
|
Raisinghani N, Alshahrani M, Gupta G, Tian H, Xiao S, Tao P, Verkhivker G. Prediction of Conformational Ensembles and Structural Effects of State-Switching Allosteric Mutants in the Protein Kinases Using Comparative Analysis of AlphaFold2 Adaptations with Sequence Masking and Shallow Subsampling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594786. [PMID: 38798650 PMCID: PMC11118581 DOI: 10.1101/2024.05.17.594786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite the success of AlphaFold2 approaches in predicting single protein structures, these methods showed intrinsic limitations in predicting multiple functional conformations of allosteric proteins and have been challenged to accurately capture of the effects of single point mutations that induced significant structural changes. We systematically examined several implementations of AlphaFold2 methods to predict conformational ensembles for state-switching mutants of the ABL kinase. The results revealed that a combination of randomized alanine sequence masking with shallow multiple sequence alignment subsampling can significantly expand the conformational diversity of the predicted structural ensembles and capture shifts in populations of the active and inactive ABL states. Consistent with the NMR experiments, the predicted conformational ensembles for M309L/L320I and M309L/H415P ABL mutants that perturb the regulatory spine networks featured the increased population of the fully closed inactive state. On the other hand, the predicted conformational ensembles for the G269E/M309L/T334I and M309L/L320I/T334I triple ABL mutants that share activating T334I gate-keeper substitution are dominated by the active ABL form. The proposed adaptation of AlphaFold can reproduce the experimentally observed mutation-induced redistributions in the relative populations of the active and inactive ABL states and capture the effects of regulatory mutations on allosteric structural rearrangements of the kinase domain. The ensemble-based network analysis complemented AlphaFold predictions by revealing allosteric mediating centers that often directly correspond to state-switching mutational sites or reside in their immediate local structural proximity, which may explain the global effect of regulatory mutations on structural changes between the ABL states. This study suggested that attention-based learning of long-range dependencies between sequence positions in homologous folds and deciphering patterns of allosteric interactions may further augment the predictive abilities of AlphaFold methods for modeling of alternative protein sates, conformational ensembles and mutation-induced structural transformations.
Collapse
|
22
|
Roskoski R. Combination immune checkpoint and targeted protein kinase inhibitors for the treatment of renal cell carcinomas. Pharmacol Res 2024; 203:107181. [PMID: 38614375 DOI: 10.1016/j.phrs.2024.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Kidney cancers comprise about 3% of all new malignancies in the United States. Renal cell carcinomas (RCCs) are the most common type of renal malignancy making up about 85% of kidney cancer cases. Signs and symptoms of renal cell carcinomas can result from local tumor growth, paraneoplastic syndromes, or distant metastases. The classic triad of presentation with flank pain, hematuria, and a palpable abdominal mass occurs in fewer than 10% of patients. Most diagnoses result from incidental imaging findings (ultrasonography or abdominal CT imaging) performed for another reason. Localized disease is treated by partial nephrectomy, total nephrectomy, or ablation (tumor destruction with heat or cold). When the tumors have metastasized, systemic therapy with protein-tyrosine kinase antagonists including sorafenib, sunitinib, pazopanib, and tivozanib that target vascular endothelial, platelet-derived, fibroblast, hepatocyte, and stem cell factor growth factor receptors (VEGFR, PDGFR, FGFR, MET, and Kit) were prescribed after 2005. The monoclonal antibody immune checkpoint inhibitor nivolumab (targeting programed cell death protein 1, PD1) was approved for the treatment of RCCs in 2015. It is usually used now in combination with ipilimumab (targeting CTLA-4) or cabozantinib (a multikinase blocker). Other combination therapies include pembrolizumab (targeting PD1) and axitinib (a VEGFR and PDGFR blocker) or lenvatinib (a multikinase inhibitor). Since the KEYNOTE-426 clinical trial, the use of immune checkpoint inhibitors in combination with protein-tyrosine kinase inhibitors is now the standard of care for most patients with metastatic renal cell carcinomas and monotherapies are used only in those individuals who cannot receive or tolerate immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
23
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 PMCID: PMC10966358 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and BiotechnologyIndian Institute of TechnologyNew DelhiIndia
- Present address:
508/Block 3, Kirti Apartments, Mayur Vihar Phase 1 ExtensionDelhiIndia
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
24
|
Ober VT, Githure GB, Volpato Santos Y, Becker S, Moya Munoz G, Basquin J, Schwede F, Lorentzen E, Boshart M. Purine nucleosides replace cAMP in allosteric regulation of PKA in trypanosomatid pathogens. eLife 2024; 12:RP91040. [PMID: 38517938 PMCID: PMC10959531 DOI: 10.7554/elife.91040] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Cyclic nucleotide binding domains (CNB) confer allosteric regulation by cAMP or cGMP to many signaling proteins, including PKA and PKG. PKA of phylogenetically distant Trypanosoma is the first exception as it is cyclic nucleotide-independent and responsive to nucleoside analogues (Bachmaier et al., 2019). Here, we show that natural nucleosides inosine, guanosine and adenosine are nanomolar affinity CNB ligands and activators of PKA orthologs of the important tropical pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. The sequence and structural determinants of binding affinity, -specificity and kinase activation of PKAR were established by structure-activity relationship (SAR) analysis, co-crystal structures and mutagenesis. Substitution of two to three amino acids in the binding sites is sufficient for conversion of CNB domains from nucleoside to cyclic nucleotide specificity. In addition, a trypanosomatid-specific C-terminal helix (αD) is required for high affinity binding to CNB-B. The αD helix functions as a lid of the binding site that shields ligands from solvent. Selectivity of guanosine for CNB-B and of adenosine for CNB-A results in synergistic kinase activation at low nanomolar concentration. PKA pulldown from rapid lysis establishes guanosine as the predominant ligand in vivo in T. brucei bloodstream forms, whereas guanosine and adenosine seem to synergize in the procyclic developmental stage in the insect vector. We discuss the versatile use of CNB domains in evolution and recruitment of PKA for novel nucleoside-mediated signaling.
Collapse
Affiliation(s)
- Veronica Teresa Ober
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | | | - Yuri Volpato Santos
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | - Sidney Becker
- Max Planck Institute of Molecular PhysiologyDortmundGermany
- TU Dortmund, Department of Chemistry and Chemical BiologyDortmundGermany
| | - Gabriel Moya Munoz
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | | | - Frank Schwede
- BIOLOG Life Science Institute GmbH & Co KGBremenGermany
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Michael Boshart
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| |
Collapse
|
25
|
Galello F, Bermúdez-Moretti M, Martínez MCO, Rossi S, Portela P. The cAMP-PKA signalling crosstalks with CWI and HOG-MAPK pathways in yeast cell response to osmotic and thermal stress. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:90-105. [PMID: 38495453 PMCID: PMC10941952 DOI: 10.15698/mic2024.03.818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
The yeast Saccharomyces cerevisiae is widely used in food and non-food industries. During industrial fermentation yeast strains are exposed to fluctuations in oxygen concentration, osmotic pressure, pH, ethanol concentration, nutrient availability and temperature. Fermentation performance depends on the ability of the yeast strains to adapt to these changes. Suboptimal conditions trigger responses to the external stimuli to allow homeostasis to be maintained. Stress-specific signalling pathways are activated to coordinate changes in transcription, translation, protein function, and metabolic fluxes while a transient arrest of growth and cell cycle progression occur. cAMP-PKA, HOG-MAPK and CWI signalling pathways are turned on during stress response. Comprehension of the mechanisms involved in the responses and in the adaptation to these stresses during fermentation is key to improving this industrial process. The scope of this review is to outline the advancement of knowledge about the cAMP-PKA signalling and the crosstalk of this pathway with the CWI and HOG-MAPK cascades in response to the environmental challenges heat and hyperosmotic stress.
Collapse
Affiliation(s)
- Fiorella Galello
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Mariana Bermúdez-Moretti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - María Clara Ortolá Martínez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| |
Collapse
|
26
|
Welsh CL, Madan LK. Allostery in Protein Tyrosine Phosphatases is Enabled by Divergent Dynamics. J Chem Inf Model 2024; 64:1331-1346. [PMID: 38346324 PMCID: PMC11144062 DOI: 10.1021/acs.jcim.3c01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Dynamics-driven allostery provides important insights into the working mechanics of proteins, especially enzymes. In this study, we employ this paradigm to answer a basic question: in enzyme superfamilies, where the catalytic mechanism, active sites, and protein fold are conserved, what accounts for the difference in the catalytic prowess of the individual members? We show that when subtle changes in sequence do not translate to changes in structure, they do translate to changes in dynamics. We use sequentially diverse PTP1B, TbPTP1, and YopH as representatives of the conserved protein tyrosine phosphatase (PTP) superfamily. Using amino acid network analysis of group behavior (community analysis) and influential node dominance on networks (eigenvector centrality), we explain the dynamic basis of the catalytic variations seen between the three proteins. Importantly, we explain how a dynamics-based blueprint makes PTP1B amenable to allosteric control and how the same is abstracted in TbPTP1 and YopH.
Collapse
Affiliation(s)
- Colin L. Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC-29425, USA
| | - Lalima K. Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC-29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC-29425, USA
| |
Collapse
|
27
|
Raisinghani N, Alshahrani M, Gupta G, Tian H, Xiao S, Tao P, Verkhivker G. Interpretable Atomistic Prediction and Functional Analysis of Conformational Ensembles and Allosteric States in Protein Kinases Using AlphaFold2 Adaptation with Randomized Sequence Scanning and Local Frustration Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580591. [PMID: 38496487 PMCID: PMC10942451 DOI: 10.1101/2024.02.15.580591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The groundbreaking achievements of AlphaFold2 (AF2) approaches in protein structure modeling marked a transformative era in structural biology. Despite the success of AF2 tools in predicting single protein structures, these methods showed intrinsic limitations in predicting multiple functional conformations of allosteric proteins and fold-switching systems. The recent NMR-based structural determination of the unbound ABL kinase in the active state and two inactive low-populated functional conformations that are unique for ABL kinase presents an ideal challenge for AF2 approaches. In the current study we employ several implementations of AF2 methods to predict protein conformational ensembles and allosteric states of the ABL kinase including (a) multiple sequence alignments (MSA) subsampling approach; (b) SPEACH_AF approach in which alanine scanning is performed on generated MSAs; and (c) introduced in this study randomized full sequence mutational scanning for manipulation of sequence variations combined with the MSA subsampling. We show that the proposed AF2 adaptation combined with local frustration mapping of conformational states enable accurate prediction of the ABL active and intermediate structures and conformational ensembles, also offering a robust approach for interpretable characterization of the AF2 predictions and limitations in detecting hidden allosteric states. We found that the large high frustration residue clusters are uniquely characteristic of the low-populated, fully inactive ABL form and can define energetically frustrated cracking sites of conformational transitions, presenting difficult targets for AF2 methods. This study uncovered previously unappreciated, fundamental connections between distinct patterns of local frustration in functional kinase states and AF2 successes/limitations in detecting low-populated frustrated conformations, providing a better understanding of benefits and limitations of current AF2-based adaptations in modeling of conformational ensembles.
Collapse
|
28
|
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol Res 2024; 200:107059. [PMID: 38216005 DOI: 10.1016/j.phrs.2024.107059] [Citation(s) in RCA: 130] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Owing to the dysregulation of protein kinase activity in many diseases including cancer, this enzyme family has become one of the most important drug targets in the 21st century. There are 80 FDA-approved therapeutic agents that target about two dozen different protein kinases and seven of these drugs were approved in 2023. Of the approved drugs, thirteen target protein-serine/threonine protein kinases, four are directed against dual specificity protein kinases (MEK1/2), twenty block nonreceptor protein-tyrosine kinases, and 43 inhibit receptor protein-tyrosine kinases. The data indicate that 69 of these drugs are prescribed for the treatment of neoplasms. Six drugs (abrocitinib, baricitinib, deucravacitinib, ritlecitinib, tofacitinib, upadacitinib) are used for the treatment of inflammatory diseases (atopic dermatitis, rheumatoid arthritis, psoriasis, alopecia areata, and ulcerative colitis). Of the 80 approved drugs, nearly two dozen are used in the treatment of multiple diseases. The following seven drugs received FDA approval in 2023: capivasertib (HER2-positive breast cancer), fruquintinib (metastatic colorectal cancer), momelotinib (myelofibrosis), pirtobrutinib (mantle cell lymphoma, chronic lymphocytic leukemia, small lymphocytic lymphoma), quizartinib (Flt3-mutant acute myelogenous leukemia), repotrectinib (ROS1-positive lung cancer), and ritlecitinib (alopecia areata). All of the FDA-approved drugs are orally effective with the exception of netarsudil, temsirolimus, and trilaciclib. This review summarizes the physicochemical properties of all 80 FDA-approved small molecule protein kinase inhibitors including the molecular weight, number of hydrogen bond donors/acceptors, polar surface area, potency, solubility, lipophilic efficiency, and ligand efficiency.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
29
|
Pizzoni A, Zhang X, Altschuler DL. From membrane to nucleus: A three-wave hypothesis of cAMP signaling. J Biol Chem 2024; 300:105497. [PMID: 38016514 PMCID: PMC10788541 DOI: 10.1016/j.jbc.2023.105497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
For many decades, our understanding of G protein-coupled receptor (GPCR) activity and cyclic AMP (cAMP) signaling was limited exclusively to the plasma membrane. However, a growing body of evidence has challenged this view by introducing the concept of endocytosis-dependent GPCR signaling. This emerging paradigm emphasizes not only the sustained production of cAMP but also its precise subcellular localization, thus transforming our understanding of the spatiotemporal organization of this process. Starting from this alternative point of view, our recent work sheds light on the role of an endocytosis-dependent calcium release from the endoplasmic reticulum in the control of nuclear cAMP levels. This is achieved through the activation of local soluble adenylyl cyclase, which in turn regulates the activation of local protein kinase A (PKA) and downstream transcriptional events. In this review, we explore the dynamic evolution of research on cyclic AMP signaling, including the findings that led us to formulate the novel three-wave hypothesis. We delve into how we abandoned the paradigm of cAMP generation limited to the plasma membrane and the changing perspectives on the rate-limiting step in nuclear PKA activation.
Collapse
Affiliation(s)
- Alejandro Pizzoni
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel L Altschuler
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
30
|
Welsh CL, Conklin AE, Madan LK. Crystal Structures Reveal Hidden Domain Mechanics in Protein Kinase A (PKA). BIOLOGY 2023; 12:1370. [PMID: 37997969 PMCID: PMC10669547 DOI: 10.3390/biology12111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
Cyclic-AMP-dependent protein kinase A (PKA) is a critical enzyme involved in various signaling pathways that plays a crucial role in regulating cellular processes including metabolism, gene transcription, cell proliferation, and differentiation. In this study, the mechanisms of allostery in PKA were investigated by analyzing the vast repertoire of crystal structures available in the RCSB database. From existing structures of murine and human PKA, we elucidated the conformational ensembles and protein dynamics that are altered in a ligand-dependent manner. Distance metrics to analyze conformations of the G-loop were proposed to delineate different states of PKA and were compared to existing structural metrics. Furthermore, ligand-dependent flexibility was investigated through normalized B'-factors to better understand the inherent dynamics in PKA. The presented study provides a contemporary approach to traditional methods in engaging the use of crystal structures for understanding protein dynamics. Importantly, our studies provide a deeper understanding into the conformational ensemble of PKA as the enzyme progresses through its catalytic cycle. These studies provide insights into kinase regulation that can be applied to both PKA individually and protein kinases as a class.
Collapse
Affiliation(s)
- Colin L. Welsh
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Abigail E. Conklin
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lalima K. Madan
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
31
|
Herrington NB, Stein D, Li YC, Pandey G, Schlessinger A. Exploring the Druggable Conformational Space of Protein Kinases Using AI-Generated Structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555779. [PMID: 37693436 PMCID: PMC10491245 DOI: 10.1101/2023.08.31.555779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Protein kinase function and interactions with drugs are controlled in part by the movement of the DFG and ɑC-Helix motifs, which enable kinases to adopt various conformational states. Small molecule ligands elicit therapeutic effects with distinct selectivity profiles and residence times that often depend on the kinase conformation(s) they bind. However, the limited availability of experimentally determined structural data for kinases in inactive states restricts drug discovery efforts for this major protein family. Modern AI-based structural modeling methods hold potential for exploring the previously experimentally uncharted druggable conformational space for kinases. Here, we first evaluated the currently explored conformational space of kinases in the PDB and models generated by AlphaFold2 (AF2) (1) and ESMFold (2), two prominent AI-based structure prediction methods. We then investigated AF2's ability to predict kinase structures in different conformations at various multiple sequence alignment (MSA) depths, based on this parameter's ability to explore conformational diversity. Our results showed a bias within the PDB and predicted structural models generated by AF2 and ESMFold toward structures of kinases in the active state over alternative conformations, particularly those conformations controlled by the DFG motif. Finally, we demonstrate that predicting kinase structures using AF2 at lower MSA depths allows the exploration of the space of these alternative conformations, including identifying previously unobserved conformations for 398 kinases. The results of our analysis of structural modeling by AF2 create a new avenue for the pursuit of new therapeutic agents against a notoriously difficult-to-target family of proteins. Significance Statement Greater abundance of kinase structural data in inactive conformations, currently lacking in structural databases, would improve our understanding of how protein kinases function and expand drug discovery and development for this family of therapeutic targets. Modern approaches utilizing artificial intelligence and machine learning have potential for efficiently capturing novel protein conformations. We provide evidence for a bias within AlphaFold2 and ESMFold to predict structures of kinases in their active states, similar to their overrepresentation in the PDB. We show that lowering the AlphaFold2 algorithm's multiple sequence alignment depth can help explore kinase conformational space more broadly. It can also enable the prediction of hundreds of kinase structures in novel conformations, many of whose models are likely viable for drug discovery.
Collapse
|
32
|
Yates LA, Zhang X. Phosphoregulation of the checkpoint kinase Mec1 ATR. DNA Repair (Amst) 2023; 129:103543. [PMID: 37480741 DOI: 10.1016/j.dnarep.2023.103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Yeast Mec1, and its mammalian ortholog, Ataxia-Telangiectasia and Rad3-related, are giant protein kinases central to replication stress and double strand DNA break repair. Mec1ATR, in complex with Ddc2ATRIP, is a 'sensor' of single stranded DNA, and phosphorylates numerous cell cycle and DNA repair factors to enforce cell cycle arrest and facilitate repair. Over the last several years, new techniques - particularly in structural biology - have provided molecular mechanisms for Mec1ATR function. It is becoming increasingly clear how post-translational modification of Mec1ATR and its interaction partners modulates the DNA damage checkpoint. In this review, we summarise the most recent work unravelling Mec1ATR function in the DNA damage checkpoint and provide a molecular context for its regulation by phosphorylation.
Collapse
Affiliation(s)
- Luke A Yates
- Section of Structural, Department of Infectious Disease, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, UK; DNA processing machines laboratory, Francis Crick Institute, London NW1 1AT, UK.
| | - Xiaodong Zhang
- Section of Structural, Department of Infectious Disease, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, UK; DNA processing machines laboratory, Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
33
|
Soudah N, Baskin A, Smorodinsky-Atias K, Beenstock J, Ganon Y, Hayouka R, Aboraya M, Livnah O, Ilouz R, Engelberg D. A conserved arginine within the αC-helix of Erk1/2 is a latch of autoactivation and of oncogenic capabilities. J Biol Chem 2023; 299:105072. [PMID: 37474104 PMCID: PMC10458722 DOI: 10.1016/j.jbc.2023.105072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
Eukaryotic protein kinases (EPKs) adopt an active conformation following phosphorylation of a particular activation loop residue. Most EPKs spontaneously autophosphorylate this residue. While structure-function relationships of the active conformation are essentially understood, those of the "prone-to-autophosphorylate" conformation are unclear. Here, we propose that a site within the αC-helix of EPKs, occupied by Arg in the mitogen-activated protein kinase (MAPK) Erk1/2 (Arg84/65), impacts spontaneous autophosphorylation. MAPKs lack spontaneous autoactivation, but we found that converting Arg84/65 of Erk1/2 to various residues enables spontaneous autophosphorylation. Furthermore, Erk1 molecules mutated in Arg84 are oncogenic. Arg84/65 thus obstructs the adoption of the "prone-to-autophosphorylate" conformation. All MAPKs harbor an Arg that is equivalent to Arg84/65 of Erks, whereas Arg is rarely found at the equivalent position in other EPKs. We observed that Arg84/65 of Erk1/2 interacts with the DFG motif, suggesting that autophosphorylation may be inhibited by the Arg84/65-DFG interactions. Erk1/2s mutated in Arg84/65 autophosphorylate not only the TEY motif, known as critical for catalysis, but also on Thr207/188. Our MS/MS analysis revealed that a large proportion of the Erk2R65H population is phosphorylated on Thr188 or on Tyr185 + Thr188, and a small fraction is phosphorylated on the TEY motif. No molecules phosphorylated on Thr183 + Thr188 were detected. Thus, phosphorylation of Thr183 and Thr188 is mutually exclusive suggesting that not only TEY-phosphorylated molecules are active but perhaps also those phosphorylated on Tyr185 + Thr188. The effect of mutating Arg84/65 may mimic a physiological scenario in which allosteric effectors cause Erk1/2 activation by autophosphorylation.
Collapse
Affiliation(s)
- Nadine Soudah
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexey Baskin
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karin Smorodinsky-Atias
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Jonah Beenstock
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yifat Ganon
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruchama Hayouka
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mohammed Aboraya
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Oded Livnah
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel; The Wolfson Centre for Applied Structural Biology, Jerusalem, Israel
| | - Ronit Ilouz
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - David Engelberg
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
34
|
Anderson B, Rosston P, Ong HW, Hossain MA, Davis-Gilbert ZW, Drewry DH. How many kinases are druggable? A review of our current understanding. Biochem J 2023; 480:1331-1363. [PMID: 37642371 PMCID: PMC10586788 DOI: 10.1042/bcj20220217] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
There are over 500 human kinases ranging from very well-studied to almost completely ignored. Kinases are tractable and implicated in many diseases, making them ideal targets for medicinal chemistry campaigns, but is it possible to discover a drug for each individual kinase? For every human kinase, we gathered data on their citation count, availability of chemical probes, approved and investigational drugs, PDB structures, and biochemical and cellular assays. Analysis of these factors highlights which kinase groups have a wealth of information available, and which groups still have room for progress. The data suggest a disproportionate focus on the more well characterized kinases while much of the kinome remains comparatively understudied. It is noteworthy that tool compounds for understudied kinases have already been developed, and there is still untapped potential for further development in this chemical space. Finally, this review discusses many of the different strategies employed to generate selectivity between kinases. Given the large volume of information available and the progress made over the past 20 years when it comes to drugging kinases, we believe it is possible to develop a tool compound for every human kinase. We hope this review will prove to be both a useful resource as well as inspire the discovery of a tool for every kinase.
Collapse
Affiliation(s)
- Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Zachary W. Davis-Gilbert
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| |
Collapse
|
35
|
Delva-Wiley J, Ekhator ES, Adams LL, Patwardhan S, Dong M, Newman RH. Redox Modification of PKA-Cα Differentially Affects Its Substrate Selection. Life (Basel) 2023; 13:1811. [PMID: 37763215 PMCID: PMC10532679 DOI: 10.3390/life13091811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The cyclic AMP-dependent protein kinase (PKA) plays an essential role in the regulation of many important cellular processes and is dysregulated in several pervasive diseases, including diabetes, cardiovascular disease, and various neurodegenerative disorders. Previous studies suggest that the alpha isoform of the catalytic subunit of PKA (PKA-Cα) is oxidized on C199, both in vitro and in situ. However, the molecular consequences of these modifications on PKA-Cα's substrate selection remain largely unexplored. C199 is located on the P + 1 loop within PKA-Cα's active site, suggesting that redox modification may affect its kinase activity. Given the proximity of C199 to the substrate binding pocket, we hypothesized that oxidation could differentially alter PKA-Cα's activity toward its substrates. To this end, we examined the effects of diamide- and H2O2-dependent oxidation on PKA-Cα's activity toward select peptide and protein substrates using a combination of biochemical (i.e., trans-phosphorylation assays and steady-state kinetics analysis) and biophysical (i.e., surface plasmon resonance and fluorescence polarization assays) strategies. These studies suggest that redox modification of PKA-Cα differentially affects its activity toward different substrates. For instance, we found that diamide-mediated oxidation caused a marked decrease in PKA-Cα's activity toward some substrates (e.g., Kemptide and CREBtide) while having little effect on others (e.g., Crosstide). In contrast, H2O2-dependent oxidation of PKA-Cα led to an increase in its activity toward each of the substrates at relatively low H2O2 concentrations, with differential effects at higher peroxide concentrations. Together, these studies offer novel insights into crosstalk between redox- and phosphorylation-dependent signaling pathways mediated by PKA. Likewise, since C199 is highly conserved among AGC kinase family members, they also lay the foundation for future studies designed to elucidate the role of redox-dependent modification of kinase substrate selection in physiological and pathological states.
Collapse
Affiliation(s)
- Jeannette Delva-Wiley
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA; (J.D.-W.); (E.S.E.); (L.L.A.); (S.P.)
| | - Ese S. Ekhator
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA; (J.D.-W.); (E.S.E.); (L.L.A.); (S.P.)
| | - Laquaundra L. Adams
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA; (J.D.-W.); (E.S.E.); (L.L.A.); (S.P.)
| | - Supriya Patwardhan
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA; (J.D.-W.); (E.S.E.); (L.L.A.); (S.P.)
| | - Ming Dong
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28403, USA;
| | - Robert H. Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA; (J.D.-W.); (E.S.E.); (L.L.A.); (S.P.)
| |
Collapse
|
36
|
Metcalfe RD, Martinez Fiesco JA, Bonet-Ponce L, Kluss JH, Cookson MR, Zhang P. Structure and regulation of full-length human leucine-rich repeat kinase 1. Nat Commun 2023; 14:4797. [PMID: 37558661 PMCID: PMC10412621 DOI: 10.1038/s41467-023-40532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
The human leucine-rich repeat kinases (LRRKs), LRRK1 and LRRK2 are large and unusually complex multi-domain kinases, which regulate fundamental cellular processes and have been implicated in human disease. Structures of LRRK2 have recently been determined, but the structure and molecular mechanisms regulating the activity of the LRRK1 as well as differences in the regulation of LRRK1 and LRRK2 remain unclear. Here, we report a cryo-EM structure of the LRRK1 monomer and a lower-resolution cryo-EM map of the LRRK1 dimer. The monomer structure, in which the kinase is in an inactive conformation, reveals key interdomain interfaces that control kinase activity as we validate experimentally. Both the LRRK1 monomer and dimer are structurally distinct compared to LRRK2. Overall, our results provide structural insights into the activation of the human LRRKs, which advance our understanding of their physiological and pathological roles.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Juliana A Martinez Fiesco
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Luis Bonet-Ponce
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jillian H Kluss
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ping Zhang
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
37
|
Roskoski R. Small molecule protein kinase inhibitors approved by regulatory agencies outside of the United States. Pharmacol Res 2023; 194:106847. [PMID: 37454916 DOI: 10.1016/j.phrs.2023.106847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Owing to genetic alterations and overexpression, the dysregulation of protein kinases plays a significant role in the pathogenesis of many autoimmune and neoplastic disorders and protein kinase antagonists have become an important drug target. Although the efficacy of imatinib in the treatment of chronic myelogenous leukemia in the United States in 2001 was the main driver of protein kinase inhibitor drug discovery, this was preceded by the approval of fasudil (a ROCK antagonist) in Japan in 1995 for the treatment of cerebral vasospasm. There are 21 small molecule protein kinase inhibitors that are approved in China, Japan, Europe, and South Korea that are not approved in the United Sates and 75 FDA-approved inhibitors in the United States. Of the 21 agents, eleven target receptor protein-tyrosine kinases, eight inhibit nonreceptor protein-tyrosine kinases, and two block protein-serine/threonine kinases. All 21 drugs are orally bioavailable or topically effective. Of the non-FDA approved drugs, sixteen are prescribed for the treatment of neoplastic diseases, three are directed toward inflammatory disorders, one is used for glaucoma, and fasudil is used in the management of vasospasm. The leading targets of kinase inhibitors approved by both international regulatory agencies and by the FDA are members of the EGFR family, the VEGFR family, and the JAK family. One-third of the 21 internationally approved drugs are not compliant with Lipinski's rule of five for orally bioavailable drugs. The rule of five relies on four parameters including molecular weight, number of hydrogen bond donors and acceptors, and the Log of the partition coefficient.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791-8717, United States.
| |
Collapse
|
38
|
Welsh CL, Madan LK. Allostery in Protein Tyrosine Phosphatases is Enabled by Divergent Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.23.550226. [PMID: 37547015 PMCID: PMC10402003 DOI: 10.1101/2023.07.23.550226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Dynamics-driven allostery provides important insights into the working mechanics of proteins, especially enzymes. In this study we employ this paradigm to answer a basic question: in enzyme superfamilies where the catalytic mechanism, active sites and protein fold are conserved, what accounts for the difference in the catalytic prowess of the individual members? We show that when subtle changes in sequence do not translate to changes in structure, they do translate to changes in dynamics. We use sequentially diverse PTP1B, TbPTP1, and YopH as the representatives of the conserved Protein Tyrosine Phosphatase (PTP) superfamily. Using amino acid network analysis of group behavior (community analysis) and influential node dominance on networks (eigenvector centrality), we explain the dynamic basis of catalytic variations seen between the three proteins. Importantly, we explain how a dynamics-based blueprint makes PTP1B amenable to allosteric control and how the same is abstracted in TbPTP1 and YopH.
Collapse
|
39
|
Weng JH, Trilling CR, Kaila Sharma P, Störmer E, Wu J, Herberg FW, Taylor SS. Novel LRR-ROC Motif That Links the N- and C-terminal Domains in LRRK2 Undergoes an Order-Disorder Transition Upon Activation. J Mol Biol 2023; 435:167999. [PMID: 36764356 DOI: 10.1016/j.jmb.2023.167999] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Mutations in LRRK2, a large multi-domain protein kinase, create risk factors for Parkinson's Disease (PD). LRRK2 has seven well-folded domains that include three N-terminal scaffold domains (NtDs) and four C-terminal domains (CtDs). In full-length inactive LRRK2 there is an additional well-folded motif, the LRR-ROC Linker, that lies between the NtDs and the CtDs. This motif, which is stabilized by hydrophobic residues in the LRR and ROC/COR-A domains, is anchored to the C-Lobe of the kinase domain. The LRR-ROC Linker becomes disordered when the NtDs are unleashed from the CtDs following activation by Rab29 or by various PD mutations. A key residue within the LRR-ROC Linker, W1295, sterically blocks access of substrate proteins. The W1295A mutant blocks cis-autophosphorylation of S1292 and reduces phosphorylation of heterologous Rab substrates. GaMD simulations show that the LRR-Linker motif, P + 1 loop and the inhibitory helix in the DYGψ motif are very stable. Finally, in full-length inactive LRRK2 ATP is bound to the kinase domain and GDP:Mg to the GTPase/ROC domain. The fundamentally different mechanisms for binding nucleotide (G-Loop vs P-Loop) are captured by these GaMD simulations. In this model, where ATP binds with low affinity (μM range) to N-Lobe capping residues, the known auto-phosphorylation sites are located in the space that is sampled by the flexible phosphates thus providing a potential mechanism for cis-autophosphorylation.
Collapse
Affiliation(s)
- Jui-Hung Weng
- Department of Pharmacology, University of California, San Diego, USA
| | | | | | - Eliza Störmer
- Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Jian Wu
- Department of Pharmacology, University of California, San Diego, USA
| | | | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, USA; Department of Chemistry and Biochemistry, University of California, San Diego, USA
| |
Collapse
|
40
|
Madan LK, Welsh CL, Kornev AP, Taylor SS. The "violin model": Looking at community networks for dynamic allostery. J Chem Phys 2023; 158:081001. [PMID: 36859094 PMCID: PMC9957607 DOI: 10.1063/5.0138175] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Allosteric regulation of proteins continues to be an engaging research topic for the scientific community. Models describing allosteric communication have evolved from focusing on conformation-based descriptors of protein structural changes to appreciating the role of internal protein dynamics as a mediator of allostery. Here, we explain a "violin model" for allostery as a contemporary method for approaching the Cooper-Dryden model based on redistribution of protein thermal fluctuations. Based on graph theory, the violin model makes use of community network analysis to functionally cluster correlated protein motions obtained from molecular dynamics simulations. This Review provides the theory and workflow of the methodology and explains the application of violin model to unravel the workings of protein kinase A.
Collapse
Affiliation(s)
- Lalima K. Madan
- Author to whom correspondence should be addressed: and . Telephone: 843.792.4525. Fax: 843.792.0481
| | - Colin L. Welsh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave., Charleston, South Carolina 29425, USA
| | - Alexandr P. Kornev
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, San Diego, California, 92093, USA
| | | |
Collapse
|
41
|
Pizzoni A, Zhang X, Naim N, Altschuler DL. Soluble cyclase-mediated nuclear cAMP synthesis is sufficient for cell proliferation. Proc Natl Acad Sci U S A 2023; 120:e2208749120. [PMID: 36656863 PMCID: PMC9942871 DOI: 10.1073/pnas.2208749120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
cAMP, a key player in many physiological processes, was classically considered to originate solely from the plasma membrane (PM). This view was recently challenged by observations showing that upon internalization GsPCRs can sustain signaling from endosomes and/or the trans-Golgi network (TGN). In this new view, after the first PM-generated cAMP wave, the internalization of GsPCRs and ACs generates a second wave that was strictly associated with nuclear transcriptional events responsible for triggering specific biological responses. Here, we report that the endogenously expressed TSHR, a canonical GsPCR, triggers an internalization-dependent, calcium-mediated nuclear sAC activation that drives PKA activation and CREB phosphorylation. Both pharmacological and genetic sAC inhibition, which did not affect the cytosolic cAMP levels, blunted nuclear cAMP accumulation, PKA activation, and cell proliferation, while an increase in nuclear sAC expression significantly enhanced cell proliferation. Furthermore, using novel nuclear-targeted optogenetic actuators, we show that light-stimulated nuclear cAMP synthesis can mimic the proliferative action of TSH by activating PKA and CREB. Therefore, based on our results, we propose a novel three-wave model in which the "third" wave of cAMP is generated by nuclear sAC. Despite being downstream of events occurring at the PM (first wave) and endosomes/TGN (second wave), the nuclear sAC-generated cAMP (third wave) is sufficient and rate-limiting for thyroid cell proliferation.
Collapse
Affiliation(s)
- Alejandro Pizzoni
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Nyla Naim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Daniel L. Altschuler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| |
Collapse
|
42
|
Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao H, Chen L, Craig PA, Crichlow GV, Dalenberg K, Duarte JM, Dutta S, Fayazi M, Feng Z, Flatt JW, Ganesan S, Ghosh S, Goodsell DS, Green RK, Guranovic V, Henry J, Hudson BP, Khokhriakov I, Lawson CL, Liang Y, Lowe R, Peisach E, Persikova I, Piehl DW, Rose Y, Sali A, Segura J, Sekharan M, Shao C, Vallat B, Voigt M, Webb B, Westbrook JD, Whetstone S, Young JY, Zalevsky A, Zardecki C. RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res 2023; 51:D488-D508. [PMID: 36420884 PMCID: PMC9825554 DOI: 10.1093/nar/gkac1077] [Citation(s) in RCA: 360] [Impact Index Per Article: 180.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), founding member of the Worldwide Protein Data Bank (wwPDB), is the US data center for the open-access PDB archive. As wwPDB-designated Archive Keeper, RCSB PDB is also responsible for PDB data security. Annually, RCSB PDB serves >10 000 depositors of three-dimensional (3D) biostructures working on all permanently inhabited continents. RCSB PDB delivers data from its research-focused RCSB.org web portal to many millions of PDB data consumers based in virtually every United Nations-recognized country, territory, etc. This Database Issue contribution describes upgrades to the research-focused RCSB.org web portal that created a one-stop-shop for open access to ∼200 000 experimentally-determined PDB structures of biological macromolecules alongside >1 000 000 incorporated Computed Structure Models (CSMs) predicted using artificial intelligence/machine learning methods. RCSB.org is a 'living data resource.' Every PDB structure and CSM is integrated weekly with related functional annotations from external biodata resources, providing up-to-date information for the entire corpus of 3D biostructure data freely available from RCSB.org with no usage limitations. Within RCSB.org, PDB structures and the CSMs are clearly identified as to their provenance and reliability. Both are fully searchable, and can be analyzed and visualized using the full complement of RCSB.org web portal capabilities.
Collapse
Affiliation(s)
- Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Charmi Bhikadiya
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Chunxiao Bi
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sebastian Bittrich
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Henry Chao
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Li Chen
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Paul A Craig
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Gregg V Crichlow
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kenneth Dalenberg
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jose M Duarte
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Shuchismita Dutta
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Maryam Fayazi
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zukang Feng
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Justin W Flatt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sai Ganesan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sutapa Ghosh
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David S Goodsell
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rachel Kramer Green
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Vladimir Guranovic
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jeremy Henry
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Brian P Hudson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Igor Khokhriakov
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Catherine L Lawson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yuhe Liang
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Robert Lowe
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ezra Peisach
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Irina Persikova
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Dennis W Piehl
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yana Rose
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrej Sali
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Joan Segura
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Monica Sekharan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Chenghua Shao
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brinda Vallat
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Maria Voigt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ben Webb
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Shamara Whetstone
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jasmine Y Young
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Arthur Zalevsky
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Christine Zardecki
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
43
|
Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacol Res 2023; 187:106552. [PMID: 36403719 DOI: 10.1016/j.phrs.2022.106552] [Citation(s) in RCA: 166] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Owing to the dysregulation of protein kinase activity in many diseases including cancer, this enzyme family has become one of the most important drug targets in the 21st century. There are 72 FDA-approved therapeutic agents that target about two dozen different protein kinases and three of these drugs were approved in 2022. Of the approved drugs, twelve target protein-serine/threonine protein kinases, four are directed against dual specificity protein kinases (MEK1/2), sixteen block nonreceptor protein-tyrosine kinases, and 40 target receptor protein-tyrosine kinases. The data indicate that 62 of these drugs are prescribed for the treatment of neoplasms (57 against solid tumors including breast, lung, and colon, ten against nonsolid tumors such as leukemia, and four against both solid and nonsolid tumors: acalabrutinib, ibrutinib, imatinib, and midostaurin). Four drugs (abrocitinib, baricitinib, tofacitinib, upadacitinib) are used for the treatment of inflammatory diseases (atopic dermatitis, psoriatic arthritis, rheumatoid arthritis, Crohn disease, and ulcerative colitis). Of the 72 approved drugs, eighteen are used in the treatment of multiple diseases. The following three drugs received FDA approval in 2022 for the treatment of these specified diseases: abrocitinib (atopic dermatitis), futibatinib (cholangiocarcinomas), pacritinib (myelofibrosis). All of the FDA-approved drugs are orally effective with the exception of netarsudil, temsirolimus, and trilaciclib. This review summarizes the physicochemical properties of all 72 FDA-approved small molecule protein kinase inhibitors including lipophilic efficiency and ligand efficiency.
Collapse
|
44
|
Krishnan K, Tian H, Tao P, Verkhivker GM. Probing conformational landscapes and mechanisms of allosteric communication in the functional states of the ABL kinase domain using multiscale simulations and network-based mutational profiling of allosteric residue potentials. J Chem Phys 2022; 157:245101. [PMID: 36586979 PMCID: PMC11184971 DOI: 10.1063/5.0133826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
In the current study, multiscale simulation approaches and dynamic network methods are employed to examine the dynamic and energetic details of conformational landscapes and allosteric interactions in the ABL kinase domain that determine the kinase functions. Using a plethora of synergistic computational approaches, we elucidate how conformational transitions between the active and inactive ABL states can employ allosteric regulatory switches to modulate intramolecular communication networks between the ATP site, the substrate binding region, and the allosteric binding pocket. A perturbation-based network approach that implements mutational profiling of allosteric residue propensities and communications in the ABL states is proposed. Consistent with biophysical experiments, the results reveal functionally significant shifts of the allosteric interaction networks in which preferential communication paths between the ATP binding site and substrate regions in the active ABL state become suppressed in the closed inactive ABL form, which in turn features favorable allosteric coupling between the ATP site and the allosteric binding pocket. By integrating the results of atomistic simulations with dimensionality reduction methods and Markov state models, we analyze the mechanistic role of macrostates and characterize kinetic transitions between the ABL conformational states. Using network-based mutational scanning of allosteric residue propensities, this study provides a comprehensive computational analysis of long-range communications in the ABL kinase domain and identifies conserved regulatory hotspots that modulate kinase activity and allosteric crosstalk between the allosteric pocket, ATP binding site, and substrate binding regions.
Collapse
Affiliation(s)
| | - Hao Tian
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, USA
| | - Gennady M. Verkhivker
- Author to whom correspondence should be addressed: . Telephone: 714-516-4586. Fax: 714-532-6048
| |
Collapse
|
45
|
Schmitt DL, Mehta S, Zhang J. Study of spatiotemporal regulation of kinase signaling using genetically encodable molecular tools. Curr Opin Chem Biol 2022; 71:102224. [PMID: 36347198 PMCID: PMC10031819 DOI: 10.1016/j.cbpa.2022.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023]
Abstract
Precise spatiotemporal organization and regulation of signal transduction networks are essential for cellular response to internal and external cues. To understand how this biochemical activity architecture impacts cellular function, many genetically encodable tools which regulate kinase activity at a subcellular level have been developed. In this review, we highlight various types of genetically encodable molecular tools, including tools to regulate endogenous kinase activity and biorthogonal techniques to perturb kinase activity. Finally, we emphasize the use of these tools alongside biosensors for kinase activity to measure and perturb kinase activity in real time for a better understanding of the cellular biochemical activity architecture.
Collapse
Affiliation(s)
- Danielle L Schmitt
- Department of Pharmacology, University of California San Diego, USA; Department of Chemistry and Biochemistry, University of California Los Angeles, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, USA; Department of Bioengineering, University of California San Diego, USA; Department of Chemistry and Biochemistry, University of California San Diego, USA.
| |
Collapse
|
46
|
Overhoff M, Tellkamp F, Hess S, Tolve M, Tutas J, Faerfers M, Ickert L, Mohammadi M, De Bruyckere E, Kallergi E, Delle Vedove A, Nikoletopoulou V, Wirth B, Isensee J, Hucho T, Puchkov D, Isbrandt D, Krueger M, Kloppenburg P, Kononenko NL. Autophagy regulates neuronal excitability by controlling cAMP/protein kinase A signaling at the synapse. EMBO J 2022; 41:e110963. [PMID: 36217825 PMCID: PMC9670194 DOI: 10.15252/embj.2022110963] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 01/13/2023] Open
Abstract
Autophagy provides nutrients during starvation and eliminates detrimental cellular components. However, accumulating evidence indicates that autophagy is not merely a housekeeping process. Here, by combining mouse models of neuron-specific ATG5 deficiency in either excitatory or inhibitory neurons with quantitative proteomics, high-content microscopy, and live-imaging approaches, we show that autophagy protein ATG5 functions in neurons to regulate cAMP-dependent protein kinase A (PKA)-mediated phosphorylation of a synapse-confined proteome. This function of ATG5 is independent of bulk turnover of synaptic proteins and requires the targeting of PKA inhibitory R1 subunits to autophagosomes. Neuronal loss of ATG5 causes synaptic accumulation of PKA-R1, which sequesters the PKA catalytic subunit and diminishes cAMP/PKA-dependent phosphorylation of postsynaptic cytoskeletal proteins that mediate AMPAR trafficking. Furthermore, ATG5 deletion in glutamatergic neurons augments AMPAR-dependent excitatory neurotransmission and causes the appearance of spontaneous recurrent seizures in mice. Our findings identify a novel role of autophagy in regulating PKA signaling at glutamatergic synapses and suggest the PKA as a target for restoration of synaptic function in neurodegenerative conditions with autophagy dysfunction.
Collapse
Affiliation(s)
- Melina Overhoff
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Frederik Tellkamp
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Faculty of Mathematics and Natural Sciences, Institute of GeneticsUniversity of CologneCologneGermany
| | - Simon Hess
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Faculty of Mathematics and Natural Sciences, Institute of ZoologyUniversity of CologneCologneGermany
| | - Marianna Tolve
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Janine Tutas
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Marcel Faerfers
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Lotte Ickert
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Milad Mohammadi
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Elodie De Bruyckere
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Emmanouela Kallergi
- Département des Neurosciences FondamentalesUniversity of LausanneLausanneSwitzerland
| | - Andrea Delle Vedove
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | | | - Brunhilde Wirth
- Faculty of Mathematics and Natural Sciences, Institute of GeneticsUniversity of CologneCologneGermany,Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Joerg Isensee
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Tim Hucho
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Dmytro Puchkov
- Leibniz Institute for Molecular Pharmacology (FMP)BerlinGermany
| | - Dirk Isbrandt
- Institute for Molecular and Behavioral Neuroscience, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany,Experimental NeurophysiologyGerman Center for Neurodegenerative DiseasesBonnGermany
| | - Marcus Krueger
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Faculty of Mathematics and Natural Sciences, Institute of GeneticsUniversity of CologneCologneGermany
| | - Peter Kloppenburg
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Faculty of Mathematics and Natural Sciences, Institute of ZoologyUniversity of CologneCologneGermany
| | - Natalia L Kononenko
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| |
Collapse
|
47
|
Burley SK, Berman HM, Duarte JM, Feng Z, Flatt JW, Hudson BP, Lowe R, Peisach E, Piehl DW, Rose Y, Sali A, Sekharan M, Shao C, Vallat B, Voigt M, Westbrook JD, Young JY, Zardecki C. Protein Data Bank: A Comprehensive Review of 3D Structure Holdings and Worldwide Utilization by Researchers, Educators, and Students. Biomolecules 2022; 12:1425. [PMID: 36291635 PMCID: PMC9599165 DOI: 10.3390/biom12101425] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the United States National Science Foundation, National Institutes of Health, and Department of Energy, supports structural biologists and Protein Data Bank (PDB) data users around the world. The RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, serves as the US data center for the global PDB archive housing experimentally-determined three-dimensional (3D) structure data for biological macromolecules. As the wwPDB-designated Archive Keeper, RCSB PDB is also responsible for the security of PDB data and weekly update of the archive. RCSB PDB serves tens of thousands of data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction) annually working on all permanently inhabited continents. RCSB PDB makes PDB data available from its research-focused web portal at no charge and without usage restrictions to many millions of PDB data consumers around the globe. It also provides educators, students, and the general public with an introduction to the PDB and related training materials through its outreach and education-focused web portal. This review article describes growth of the PDB, examines evolution of experimental methods for structure determination viewed through the lens of the PDB archive, and provides a detailed accounting of PDB archival holdings and their utilization by researchers, educators, and students worldwide.
Collapse
Affiliation(s)
- Stephen K. Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Helen M. Berman
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jose M. Duarte
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Zukang Feng
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Justin W. Flatt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brian P. Hudson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Robert Lowe
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ezra Peisach
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Dennis W. Piehl
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yana Rose
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrej Sali
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Monica Sekharan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Chenghua Shao
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brinda Vallat
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Maria Voigt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - John D. Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jasmine Y. Young
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christine Zardecki
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
48
|
Sheetz JB, Lemmon MA. Looking lively: emerging principles of pseudokinase signaling. Trends Biochem Sci 2022; 47:875-891. [PMID: 35585008 PMCID: PMC9464697 DOI: 10.1016/j.tibs.2022.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Progress towards understanding catalytically 'dead' protein kinases - pseudokinases - in biology and disease has hastened over the past decade. An especially lively area for structural biology, pseudokinases appear to be strikingly similar to their kinase relatives, despite lacking key catalytic residues. Distinct active- and inactive-like conformation states, which are crucial for regulating bona fide protein kinases, are conserved in pseudokinases and appear to be essential for function. We discuss recent structural data on conformational transitions and nucleotide binding by pseudokinases, from which some common principles emerge. In both pseudokinases and bona fide kinases, a conformational toggle appears to control the ability to interact with signaling effectors. We also discuss how biasing this conformational toggle may provide opportunities to target pseudokinases pharmacologically in disease.
Collapse
Affiliation(s)
- Joshua B Sheetz
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06505, USA; Yale Cancer Biology Institute, Yale West Campus, West Haven, CT 06516, USA.
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06505, USA; Yale Cancer Biology Institute, Yale West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
49
|
Thorner J. TOR complex 2 is a master regulator of plasma membrane homeostasis. Biochem J 2022; 479:1917-1940. [PMID: 36149412 PMCID: PMC9555796 DOI: 10.1042/bcj20220388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
As first demonstrated in budding yeast (Saccharomyces cerevisiae), all eukaryotic cells contain two, distinct multi-component protein kinase complexes that each harbor the TOR (Target Of Rapamycin) polypeptide as the catalytic subunit. These ensembles, dubbed TORC1 and TORC2, function as universal, centrally important sensors, integrators, and controllers of eukaryotic cell growth and homeostasis. TORC1, activated on the cytosolic surface of the lysosome (or, in yeast, on the cytosolic surface of the vacuole), has emerged as a primary nutrient sensor that promotes cellular biosynthesis and suppresses autophagy. TORC2, located primarily at the plasma membrane, plays a major role in maintaining the proper levels and bilayer distribution of all plasma membrane components (sphingolipids, glycerophospholipids, sterols, and integral membrane proteins). This article surveys what we have learned about signaling via the TORC2 complex, largely through studies conducted in S. cerevisiae. In this yeast, conditions that challenge plasma membrane integrity can, depending on the nature of the stress, stimulate or inhibit TORC2, resulting in, respectively, up-regulation or down-regulation of the phosphorylation and thus the activity of its essential downstream effector the AGC family protein kinase Ypk1. Through the ensuing effect on the efficiency with which Ypk1 phosphorylates multiple substrates that control diverse processes, membrane homeostasis is maintained. Thus, the major focus here is on TORC2, Ypk1, and the multifarious targets of Ypk1 and how the functions of these substrates are regulated by their Ypk1-mediated phosphorylation, with emphasis on recent advances in our understanding of these processes.
Collapse
Affiliation(s)
- Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, U.S.A
| |
Collapse
|
50
|
Breit-McNally C, Laflamme B, Singh RA, Desveaux D, Guttman DS. ZAR1: Guardian of plant kinases. FRONTIERS IN PLANT SCIENCE 2022; 13:981684. [PMID: 36212348 PMCID: PMC9539561 DOI: 10.3389/fpls.2022.981684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/07/2022] [Indexed: 05/25/2023]
Abstract
A key facet of innate immunity in plants entails the recognition of pathogen "effector" virulence proteins by host Nucleotide-Binding Leucine-Rich Repeat Receptors (NLRs). Among characterized NLRs, the broadly conserved ZAR1 NLR is particularly remarkable due to its capacity to recognize at least six distinct families of effectors from at least two bacterial genera. This expanded recognition spectrum is conferred through interactions between ZAR1 and a dynamic network of two families of Receptor-Like Cytoplasmic Kinases (RLCKs): ZED1-Related Kinases (ZRKs) and PBS1-Like Kinases (PBLs). In this review, we survey the history of functional studies on ZAR1, with an emphasis on how the ZAR1-RLCK network functions to trap diverse effectors. We discuss 1) the dynamics of the ZAR1-associated RLCK network; 2) the specificity between ZRKs and PBLs; and 3) the specificity between effectors and the RLCK network. We posit that the shared protein fold of kinases and the switch-like properties of their interactions make them ideal effector sensors, enabling ZAR1 to act as a broad spectrum guardian of host kinases.
Collapse
Affiliation(s)
- Clare Breit-McNally
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Bradley Laflamme
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Racquel A. Singh
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|