1
|
Park KS, Lässer C, Lötvall J. Extracellular vesicles and the lung: from disease pathogenesis to biomarkers and treatments. Physiol Rev 2025; 105:1733-1821. [PMID: 40125970 DOI: 10.1152/physrev.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Nanosized extracellular vesicles (EVs) are released by all cells to convey cell-to-cell communication. EVs, including exosomes and microvesicles, carry an array of bioactive molecules, such as proteins and RNAs, encapsulated by a membrane lipid bilayer. Epithelial cells, endothelial cells, and various immune cells in the lung contribute to the pool of EVs in the lung microenvironment and carry molecules reflecting their cellular origin. EVs can maintain lung health by regulating immune responses, inducing tissue repair, and maintaining lung homeostasis. They can be detected in lung tissues and biofluids such as bronchoalveolar lavage fluid and blood, offering information about disease processes, and can function as disease biomarkers. Here, we discuss the role of EVs in lung homeostasis and pulmonary diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary fibrosis, and lung injury. The mechanistic involvement of EVs in pathogenesis and their potential as disease biomarkers are discussed. Finally, the pulmonary field benefits from EVs as clinical therapeutics in severe pulmonary inflammatory disease, as EVs from mesenchymal stem cells attenuate severe respiratory inflammation in multiple clinical trials. Further, EVs can be engineered to carry therapeutic molecules for enhanced and broadened therapeutic opportunities, such as the anti-inflammatory molecule CD24. Finally, we discuss the emerging opportunity of using different types of EVs for treating severe respiratory conditions.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
2
|
SU Y, QIAN X, QIN W. [Research advances of liposomes and exosomes in drug delivery and biomarker screening]. Se Pu 2025; 43:472-486. [PMID: 40331611 PMCID: PMC12059997 DOI: 10.3724/sp.j.1123.2024.08012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Indexed: 05/08/2025] Open
Abstract
Vesicles, are categorized as artificial (i.e., liposomes) or natural (i.e., extracellular vesicles (EVs)) and play significant roles in drug-delivery and biomarker-screening applications. Liposomes, as a representative form of artificial vesicle, are spherical lipid structures composed of one or more artificially synthesized phospholipid bilayers. Liposomes are highly biocompatible and bioavailable, very stable, and easily synthesized; hence, they are among the most commonly used and frequently applied nanocarriers in targeted drug-delivery systems (DDS). EVs are natural small membrane-bound vesicles actively secreted by cells and contain a variety of components, including nucleic acids, proteins, and lipids. They also serve as important mediators of intercellular communication. As the smallest EV subtype, with diameters of only 30-100 nm, exosomes contain unique biomolecules that are considered to be the fingerprints of the parent cells. In the pathological state, the content of exosomes will change; consequently, exosomes are potential disease-diagnosis biomarkers. Recent clinical trials have shown that exosomes are ideal nanocarriers in targeted drug-delivery therapies for a variety of diseases. Compared with traditional artificial liposomal carriers, exosomes display unique advantages and provide the DDS field with new possibilities. Liposomes and exosomes are receiving increasing levels of attention in the drug-delivery and biomarker-screening fields. This article introduces techniques for the preparation of liposomes, and the enrichment and separation of exosomes, and delves into research progress on their use in drug-delivery and biomarker-screening applications. Finally, challenges facing the use of liposomes and exosomes in clinical applications are discussed.
Collapse
|
3
|
Pan M, Cao W, Zhai J, Zheng C, Xu Y, Zhang P. mRNA-based vaccines and therapies - a revolutionary approach for conquering fast-spreading infections and other clinical applications: a review. Int J Biol Macromol 2025; 309:143134. [PMID: 40233916 DOI: 10.1016/j.ijbiomac.2025.143134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Since the beginning of the COVID-19 pandemic, the development of messenger RNA (mRNA) vaccines has made significant progress in the pharmaceutical industry. The two COVID-19 mRNA vaccines from Moderna and Pfizer/BioNTech have been approved for marketing and have made significant contributions to preventing the spread of SARS-CoV-2. In addition, mRNA therapy has brought hope to some diseases that do not have specific treatment methods or are difficult to treat, such as the Zika virus and influenza virus infections, as well as the prevention and treatment of tumors. With the rapid development of in vitro transcription (IVT) technology, delivery systems, and adjuvants, mRNA therapy has also been applied to hereditary diseases such as Fabry's disease. This article reviews the recent development of mRNA vaccines for structural modification, treatment and prevention of different diseases; delivery carriers and adjuvants; and routes of administration to promote the clinical application of mRNA therapies.
Collapse
Affiliation(s)
- Mingyue Pan
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Weiling Cao
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Yingying Xu
- Department of Pharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China.
| |
Collapse
|
4
|
Wang X, Li A, Wang A, He M, Zeng Y, Li D, Rong R, Liu J. Exosome-Based Vaccines: Pioneering New Frontiers in Combating Infectious Diseases and Cancer. SMALL METHODS 2025:e2402222. [PMID: 40195907 DOI: 10.1002/smtd.202402222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Exosomes, small extracellular vesicles with lipid bilayer membranes, play a crucial role in cellular communication and can transfer diverse biological cargo, including proteins, lipids, and nucleic acids, from donor to recipient cells. Exosomes possess diverse immunological properties, such as antigen delivery and immune activation, along with excellent drug delivery capabilities, making them promising candidates for vaccine development. For different diseases, exosome-based vaccines can be designed as therapeutic or prophylactic vaccines by leveraging cellular immunity or humoral immunity. With the emergence of precision medicine, exosome-based personalized vaccines demonstrate exceptional therapeutic potential. This review systematically introduces the sources, biogenesis mechanisms, and components of exosomes and describes their regulatory roles in the immune system. Subsequently, the preparation, administration, and personalized therapy of exosome-based vaccines are discussed. Finally, the applications and clinical trials of exosome-based vaccines in the fields of anti-infection and anti-tumor therapies are particularly highlighted, with an analysis of the potential challenges in future vaccine development.
Collapse
Affiliation(s)
- Xuejun Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Aixue Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ailing Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanye Zeng
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiyong Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| |
Collapse
|
5
|
Pan X, Zhang YWQ, Dai C, Zhang J, Zhang M, Chen X. Applications of mRNA Delivery in Cancer Immunotherapy. Int J Nanomedicine 2025; 20:3339-3361. [PMID: 40125430 PMCID: PMC11928443 DOI: 10.2147/ijn.s500520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/08/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer treatment is continually advancing, with immunotherapy gaining prominence as a standard modality that has markedly improved the management of various malignancies. Despite these advancements, the efficacy of immunotherapy remains variable, with certain cancers exhibiting limited response and patient outcomes differing considerably. Thus, enhancing the effectiveness of immunotherapy is imperative. A promising avenue is mRNA delivery, employing carriers such as liposomes, peptide nanoparticles, inorganic nanoparticles, and exosomes to introduce mRNA cargos encoding tumor antigens, immune-stimulatory, or immune-modulatory molecules into the tumor immune microenvironment (TIME). This method aims to activate the immune system to target and eradicate tumor cells. In this review, we introduce the characteristics and limitations of these carriers and summarize the application and mechanisms of currently prevalent cargos in mRNA-based tumor treatment. Additionally, given the significant clinical application of immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR)-based cell therapies in solid tumors (including melanoma, non-small-cell lung cancer, head and neck squamous cell carcinoma, triple-negative breast cancer, gastric cancer) and leukemia, which have become first-line treatments, we highlight and discuss recent progress in combining mRNA delivery with ICIs, CAR-T, CAR-NK, and CAR-macrophage therapies. This combination enhances the targeting capabilities and efficacy of ICIs and CAR-cell-based therapies, while also mitigating the long-term off-target toxicities associated with conventional methods. Finally, we analyze the limitations of current mRNA delivery systems, such as nuclease-induced mRNA instability, immunogenicity risks, complex carrier production, and knowledge gaps concerning dosing and safety. Addressing these challenges is crucial for unlocking the potential of mRNA in cancer immunotherapy. Overall, exploring mRNA delivery enriches our comprehension of cancer immunotherapy and holds promise for developing personalized and effective treatment strategies, potentially enhancing the immune responses of cancer patients and extending their survival time.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yang-Wen-Qing Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Caixia Dai
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Junyu Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Minghe Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| |
Collapse
|
6
|
Riazanski V, Purvina L, Cavinato L, Sui Z, Sun L, Nelson DJ. Functional interaction of hybrid extracellular vesicle-liposome nanoparticles with target cells: absence of toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642711. [PMID: 40161690 PMCID: PMC11952422 DOI: 10.1101/2025.03.11.642711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Drug delivery platforms, complex lipid nanoparticles (LNPs) and extracellular vesicles (EVs) have both faced a number of key challenges ranging from organ specificity to loading capacity and stability. A key challenge in EV biology as well as LNP design remains vesicle to cell interaction and the creation of a polar permeability pathway necessary for cargo exchange. Membrane to membrane recognition and intercalation are tantamount to delivery and integral to function of both EVs and LNPs, both complex and single component. We reasoned that the overlapping advantages of both nanoparticles centered on compositional lipids. EVs are encapsulations using biological membrane lipids and expressed proteins and have a larger carrier capacity. LNPs are composed of synthetic lipids differing in charge and amount mimicking those present in biological membranes and include a synthetic lipid of choice that carries a charge, designed to enhance biological membrane disruption and subsequent cargo off-loading. Our goal was to design hybrid EVs (HEVs) that combined both elements. We manufactured positively charged liposomes (Lip) carrying mRNA coding for fluorescent proteins to load isolated EVs in order to create a combinatorial delivery platform. Using knowledge from LNP-based mRNA vaccine delivery, we have formulated and characterized HEVs. Future therapeutic strategies could involve isolating EVs from patients, hybridizing them with synthetic lipids loaded with desired payloads, and reintroducing them to the patient. This approach is particularly relevant for enhancing the function of pulmonary innate immunity in diseases like cystic fibrosis, chronic granulomatous disease, and pulmonary fibrosis. By conducting both in-vitro and in-vivo assays, we demonstrate that HEVs exhibit comparable transfection efficacy to LNPs composed of complex synthetic lipids, while significantly reducing cytotoxicity. This highlights their potential as safer and more efficient delivery vehicles.
Collapse
|
7
|
Li L, Wang F, Zhu D, Hu S, Cheng K, Li Z. Engineering exosomes and exosome-like nanovesicles for improving tissue targeting and retention. FUNDAMENTAL RESEARCH 2025; 5:851-867. [PMID: 40242543 PMCID: PMC11997600 DOI: 10.1016/j.fmre.2024.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2025] Open
Abstract
Exosomes are natural nano-size particles secreted by human cells, containing numerous bioactive cargos. Serving as crucial mediators of intercellular communication, exosomes are involved in many physiological and pathological processes, such as inflammation, tissue injury, cardiovascular diseases, tumorigenesis and tumor development. Exosomes have exhibited promising results in the diagnosis and treatment of cancer, cardiovascular diseases and others. They are a rapidly growing class of drug delivery vehicles with many advantages over conventional synthetic carriers. Exosomes used in therapeutic applications encounter several challenges, such as the lack of tissue targeting capabilities and short residence time. In this review, we discuss recent advances in exosome engineering to improve tissue targeting and describe the current types of engineered exosome-like nanovesicles, and summarize their preclinical applications in the treatment of diseases. Further, we also highlight the latest engineering strategies developed to extend exosomes retention time in vivo and exosome-like nanovesicles.
Collapse
Affiliation(s)
- Lanya Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangdong 510515, China
| | - Fei Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangdong 510515, China
| | - Dashuai Zhu
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | - Shiqi Hu
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | - Zhenhua Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangdong 510515, China
| |
Collapse
|
8
|
Athira AP, Sreekanth S, Chandran A, Lahon A. Dual Role of Extracellular Vesicles as Orchestrators of Emerging and Reemerging Virus Infections. Cell Biochem Biophys 2025; 83:159-175. [PMID: 39225901 DOI: 10.1007/s12013-024-01495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Current decade witnessed the emergence and re-emergence of many viruses, which affected public health significantly. Viruses mainly utilize host cell machinery to promote its growth, and spread of these diseases. Numerous factors influence virus-host cell interactions, of which extracellular vesicles play an important role, where they transfer information both locally and distally by enclosing viral and host-derived proteins and RNAs as their cargo. Thus, they play a dual role in mediating virus infections by promoting virus dissemination and evoking immune responses in host organisms. Moreover, it acts as a double-edged sword during these infections. Advances in extracellular vesicles regulating emerging and reemerging virus infections, particularly in the context of SARS-CoV-2, Dengue, Ebola, Zika, Chikungunya, West Nile, and Japanese Encephalitis viruses are discussed in this review.
Collapse
Affiliation(s)
- A P Athira
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Smrithi Sreekanth
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Ananthu Chandran
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Anismrita Lahon
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
9
|
Zhu W, Dong C, Wei L, Kim JK, Wang BZ. Inverted HA-EV immunization elicits stalk-specific influenza immunity and cross-protection in mice. Mol Ther 2025; 33:485-498. [PMID: 39741410 PMCID: PMC11852689 DOI: 10.1016/j.ymthe.2024.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Enhancing protective immunity in the respiratory tract is crucial to combat influenza infection and transmission. Developing mucosal universal influenza vaccines requires effective delivery platforms to overcome the respiratory mucosal barrier and stimulate appropriate innate immune reactions, thereby bridging adaptive immune responses with minimal necessary inflammation. Meanwhile, the vaccine platforms must be biocompatible. This study employed cell-derived extracellular vesicles (EVs) as a mucosal universal influenza vaccine platform. By conjugating influenza hemagglutinin (HA) onto EV surfaces through HA-receptor interaction, we achieved an upside-down (inverted) influenza HA configuration that exposed the conserved HA stalk region while partially hiding the globular head domain. Intranasal immunization with the resulting EVs induced robust HA stalk- and virus-specific serum antibody and mucosal immune responses in mice, protecting against heterologous virus infection. Notably, EVs derived from the lung epithelial cell line A549 induced superior cross-reactive antibodies and enhanced protection upon intranasal immunization. EVs conjugating multivalent HA elicited broadly cross-reactive antibody and cellular responses against different influenza strains. Our results demonstrated that EVs conjugating multiple inverted HAs represented an effective strategy for developing a mucosal universal influenza vaccine.
Collapse
Affiliation(s)
- Wandi Zhu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Joo Kyung Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
10
|
Xu L, Shao Z, Fang X, Xin Z, Zhao S, Zhang H, Zhang Y, Zheng W, Yu X, Zhang Z, Sun L. Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery. EXPLORATION (BEIJING, CHINA) 2025; 5:20230165. [PMID: 40040830 PMCID: PMC11875455 DOI: 10.1002/exp.20230165] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 03/06/2025]
Abstract
Immune-mediated inflammatory diseases (IMIDs) impose an immeasurable burden on individuals and society. While the conventional use of immunosuppressants and disease-modifying drugs has provided partial relief and control, their inevitable side effects and limited efficacy cast a shadow over finding a cure. Promising nucleic acid drugs have shown the potential to exert precise effects at the molecular level, with different classes of nucleic acids having regulatory functions through varying mechanisms. For the better delivery of nucleic acids, safe and effective viral vectors and non-viral delivery systems (including liposomes, polymers, etc.) have been intensively explored. Herein, after describing a range of nucleic acid categories and vectors, we focus on the application of therapeutic nucleic acid delivery in various IMIDs, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, multiple sclerosis, asthma, ankylosing spondylitis, systemic lupus erythematosus, and uveitis. Molecules implicated in inflammation and immune dysregulation are abnormally expressed in a series of IMIDs, and their meticulous modulation through nucleic acid therapy results in varying degrees of remission and improvement of these diseases. By synthesizing findings centered on specific molecular targets, this review delivers a systematic elucidation and perspective towards advancing and utilization of nucleic acid therapeutics for managing IMIDs.
Collapse
Affiliation(s)
- Lingxiao Xu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zhenxuan Shao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Xia Fang
- Department of Plastic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zengfeng Xin
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Shenzhi Zhao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Yu Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Wenbiao Zheng
- Department of OrthopedicsTaizhou Municipal HospitalTaizhouChina
| | - Xiaohua Yu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zengjie Zhang
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Lingling Sun
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
11
|
Fu Q, Zhao X, Hu J, Jiao Y, Yan Y, Pan X, Wang X, Jiao F. mRNA vaccines in the context of cancer treatment: from concept to application. J Transl Med 2025; 23:12. [PMID: 39762875 PMCID: PMC11702060 DOI: 10.1186/s12967-024-06033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Immuno-oncology has witnessed remarkable advancements in the past decade, revolutionizing the landscape of cancer therapeutics in an encouraging manner. Among the diverse immunotherapy strategies, mRNA vaccines have ushered in a new era for the therapeutic management of malignant diseases, primarily due to their impressive impact on the COVID-19 pandemic. In this comprehensive review, we offer a systematic overview of mRNA vaccines, focusing on the optimization of structural design, the crucial role of delivery materials, and the administration route. Additionally, we summarize preclinical studies and clinical trials to provide valuable insights into the current status of mRNA vaccines in cancer treatment. Furthermore, we delve into a systematic discussion on the significant challenges facing the current development of mRNA tumor vaccines. These challenges encompass both intrinsic and external factors that are closely intertwined with the successful application of this innovative approach. To pave the way for a more promising future in cancer treatments, a deeper understanding of immunological mechanisms, an increasing number of high-quality clinical trials, and a well-established manufacturing platform are crucial. Collaborative efforts between scientists, clinicians, and industry engineers are essential to achieving these goals.
Collapse
Affiliation(s)
- Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Xiaoming Zhao
- Center of Physical Examination, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Yang Jiao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Xuchen Pan
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Xin Wang
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China.
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| |
Collapse
|
12
|
Wang Y, Xiong J, Ouyang K, Ling M, Luo J, Sun J, Xi Q, Chen T, Zhang Y. Extracellular vesicles: From large-scale production and engineering to clinical applications. J Tissue Eng 2025; 16:20417314251319474. [PMID: 40322740 PMCID: PMC12048759 DOI: 10.1177/20417314251319474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 05/08/2025] Open
Abstract
Extracellular vesicles (EVs) have emerged as a promising strategy for treating a wide spectrum of pathologies, as they can deliver their cargo to recipient cells and regulate the signaling pathway of these cells to modulate their fate. Despite the great potential of EVs in clinical applications, their low yield and the challenges of cargo loading remain significant obstacles, hindering their transition from experimental research to clinical practice. Therefore, promoting EV release and enhancing EV cargo-loading are promising fields with substantial research potential and broad application prospects. In this review, we summarize the clinical applications of EVs, the methods and technologies for their large-scale production, engineering, and modification, as well as the challenges that must be addressed during their development. We also discuss the future perspectives of this exciting field of research to facilitate its transformation from bench to clinical reality.
Collapse
Affiliation(s)
- Yuxuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiali Xiong
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Kun Ouyang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mingwang Ling
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junyi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiajie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Dai Z, Cai R, Zeng H, Zhu H, Dou Y, Sun S. Exosome may be the next generation of promising cell-free vaccines. Hum Vaccin Immunother 2024; 20:2345940. [PMID: 38714324 PMCID: PMC11086043 DOI: 10.1080/21645515.2024.2345940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/09/2024] Open
Abstract
Traditional vaccines have limits against some persistent infections and pathogens. The development of novel vaccine technologies is particularly critical for the future. Exosomes play an important role in physiological and pathological processes. Exosomes present many advantages, such as inherent capacity being biocompatible, non-toxic, which make them a more desirable candidate for vaccines. However, research on exosomes are in their infancy and the barriers of low yield, low purity, and weak targeting of exosomes limit their applications in vaccines. Accordingly, further exploration is necessary to improve these problems and subsequently facilitate the functional studies of exosomes. In this study, we reviewed the origin, classification, functions, modifications, separation and purification, and characterization methods of exosomes. Meanwhile, we focused on the role and mechanism of exosomes for cancer and COVID-19 vaccines.
Collapse
Affiliation(s)
- Zelan Dai
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Ruiru Cai
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Hong Zeng
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Hailian Zhu
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Youwei Dou
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
14
|
Dara M, Dianatpour M, Azarpira N, Tanideh N, Tanideh R. Integrating CRISPR technology with exosomes: Revolutionizing gene delivery systems. Biochem Biophys Res Commun 2024; 740:151002. [PMID: 39566123 DOI: 10.1016/j.bbrc.2024.151002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) serves as an adaptive immune system in bacteria and archaea, offering a defense mechanism against invading genetic elements such as viruses (bacteriophages) and plasmids. Today, CRISPR has evolved into a powerful gene-editing technology that enables highly specific and rapid modifications of DNA within a genome. It has a broad range of applications across various fields, including medicine, agriculture, and fundamental research. One of the significant challenges facing this technology is the efficient transfer of CRISPR constructs into target cells for gene editing. There are several methods to deliver this system into target cells, which can be classified as viral and non-viral methods. Each of these approaches has its own advantages and disadvantages. Recently, the use of extracellular vesicles for delivery has garnered particular attention. Exosomes are nano-sized extracellular vesicles that have emerged as promising carriers for drug delivery due to their unique properties. These naturally occurring vesicles, typically ranging from 30 to 150 nm in diameter, facilitate intercellular communication by transferring bioactive molecules such as proteins, lipids, and nucleic acids between cells. Exosome therapy has surfaced as a promising strategy in regenerative medicine, utilizing small extracellular vesicles to deliver therapeutic molecules to target cells. One of the emerging options for transferring the CRISPR system is exosomes. The integration of these two advanced technologies holds significant potential for developing efficient and targeted gene editing and advancing precision medicine. In contemporary medicine, there is an increasing focus on personalized and targeted treatments that cater to the distinct genetic and molecular profiles of individual patients. The synergy of CRISPR technology and exosome therapy presents a remarkable opportunity to develop highly targeted and effective therapeutic strategies customized to individual patient requirements. This review article examines the potential of incorporating CRISPR technology within exosomes for precision therapeutic applications.
Collapse
Affiliation(s)
- Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Romina Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Fonteles CSR, Enterria-Rosales J, Lin Y, Steele JW, Villarreal-Leal RA, Xiao J, Idowu DI, Burgelin B, Wlodarczyk BJ, Finnell RH, Corradetti B. Amniotic fluid-derived stem cells: potential factories of natural and mimetic strategies for congenital malformations. Stem Cell Res Ther 2024; 15:466. [PMID: 39639397 PMCID: PMC11622670 DOI: 10.1186/s13287-024-04082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) derived from gestational tissues offer a promising avenue for prenatal intervention in congenital malformations although their application is hampered by concerns related to cellular plasticity and the need for invasive, high-risk surgical procedures. Here, we present naturally occurring exosomes (EXOs) isolated from amniotic fluid-derived MSCs (AF-MSCs) and their mimetic analogs (MIMs) as viable, reproducible, and stable alternatives. These nanovesicles present a minimally invasive therapeutic option, addressing the limitations of MSC-based treatments while retaining therapeutic efficacy. METHODS MIMs were generated from AF-MSCs by combining sequential filtration steps through filter membranes with different porosity and size exclusion chromatography columns. A physicochemical, structural, and molecular comparison was conducted with exosomes (EXOs) released from the same batch of cells. Additionally, their distribution patterns in female mice were evaluated following in vivo administration, along with an assessment of their safety profile throughout gestation in a mouse strain predisposed to neural tube defects (NTDs). The possibility to exploit both formulations as mRNA-therapeutics was explored by evaluating cell uptake in two different cell types(fibroblasts, and macrophages) and mRNA functionality overtime in an in vitro experimental setting as well as in an ex vivo, whole embryo culture using pregnant C57BL6 dams. RESULTS Molecular and physiochemical characterization showed no differences between EXOs and MIMs, with MIMs determining a threefold greater yield. Biodistribution patterns following intraperitoneal administration were comparable between the two particle types, with the uterus being among targeted organs. No toxic effects were observed in the dams during gestation, nor were there any malformations or significant differences in the number of viable versus dead fetuses detected. MIMs delivered a more intense and prolonged expression of mRNA encoding for green fluorescent protein in macrophages and fibroblasts. An ex-vivo whole embryo culture demonstrated that MIMs mainly accumulate at the level of the yolk sac, while EXOs reach the embryo. CONCLUSIONS The present data confirms the potential application of EXOs and MIMs as suitable tools for prevention and treatment of NTDs and proposes MIMs as prospective vehicles to prevent congenital malformations caused by in utero exposure to drugs.
Collapse
Affiliation(s)
- Cristiane S R Fonteles
- Departamento de Clínica Odontológica. Faculdade de Farmácia, Odontologia E Enfermagem, Universidade Federal Do Ceara. Rua Monsenhor Furtado, S/N-Rodolfo Teófilo, Fortaleza, Brazil
| | - Julia Enterria-Rosales
- Center for Precision Environmental Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Ying Lin
- Center for Precision Environmental Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - John W Steele
- Center for Precision Environmental Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Ramiro A Villarreal-Leal
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- Escuela de Medicina y Ciencias de La Salud, Tecnologico de Monterrey, Monterrey, Mexico
| | - Jing Xiao
- Center for Precision Environmental Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Daniel I Idowu
- Center for Precision Environmental Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Beck Burgelin
- Center for Precision Environmental Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Bogdan J Wlodarczyk
- Center for Precision Environmental Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Richard H Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Departments of Molecular and Human Genetics Molecular & Cellular Biology and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Bruna Corradetti
- Center for Precision Environmental Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
- Department of Medicine, Section Oncology/Hematology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
16
|
Zheng M, Chavda VP, Vaghela DA, Bezbaruah R, Gogoi NR, Patel K, Kulkarni M, Shen B, Singla RK. Plant-derived exosomes in therapeutic nanomedicine, paving the path toward precision medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156087. [PMID: 39388922 DOI: 10.1016/j.phymed.2024.156087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Plant-derived exosomes (PDEs), are nanoscale vesicles secreted by multivesicular bodies, play pivotal roles in critical biological processes, including gene regulation, cell communication, and immune defense against pathogens. Recognized for their potential health-promoting properties, PDEs are emerging as innovative components in functional nutrition, poised to enhance dietary health benefits. PURPOSE To describe the efficacy of PDEs in nanoform and their application as precision therapy in many disorders. STUDY DESIGN The design of this review was carried out in PICO format using randomized clinical trials and research articles based on in vivo and in vitro studies. METHODS All the relevant clinical and research studies conducted on plant-derived nanovesicle application and efficacy were included, as retrieved from PubMed and Cochrane, after using specific search terms. This review was performed to determine PDEs' efficacy as nanomedicine and precision therapy. Sub-group analysis and primary data were included to determine the relationship with PDEs. RESULT PDEs are extracted from plant materials using sophisticated techniques like precipitation, size exclusion, immunoaffinity capture, and ultracentrifugation, encapsulating vital molecules such as lipids, proteins, and predominantly microRNAs. Although their nutritional impact may be minimal in small quantities, the broader application of PDEs in biomedicine, particularly as vehicles for drug delivery, underscores their significance. They offer a promising strategy to improve the bioavailability and efficacy of therapeutic agents carrying nano-bioactive substances that exhibit anti-inflammatory, antioxidant, cardioprotective, and anti-cancer activities. CONCLUSION PDEs enhance the therapeutic potency of plant-derived phytochemicals, supporting their use in disease prevention and therapy. This comprehensive review explores the multifaceted aspects of PDEs, including their isolation methods, biochemical composition, health implications, and potential to advance medical and nutritional interventions.
Collapse
Affiliation(s)
- Min Zheng
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, 610218, China
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M College of Pharmacy, Ahmedabad 380009, Gujrat, India.
| | - Dixa A Vaghela
- Pharmacy section, L.M College of Pharmacy Ahmedabad 380009, Gujrat, India
| | - Rajashri Bezbaruah
- Department of Pharmacology, Dibrugarh University, Dibrugarh 786004, Assam
| | - Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam
| | - Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, LJ University, Ahmedabad 382210, Gujarat, India
| | - Mangesh Kulkarni
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, LJ University, Ahmedabad 382210, Gujarat, India; Department of Pharmaceutics, Gandhinagar Institute of Pharmacy, Gandhinagar University, Moti Bhoyan, Khatraj-Kalol Road 382721, Gujarat, India
| | - Bairong Shen
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rajeev K Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
17
|
Bader J, Brigger F, Leroux JC. Extracellular vesicles versus lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2024; 215:115461. [PMID: 39490384 DOI: 10.1016/j.addr.2024.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Extracellular vesicles (EVs) are increasingly investigated for delivering nucleic acid (NA) therapeutics, leveraging their natural role in transporting NA and protein-based cargo in cell-to-cell signaling. Their synthetic counterparts, lipid nanoparticles (LNPs), have been developed over the past decades as NA carriers, culminating in the approval of several marketed formulations such as patisiran/Onpattro® and the mRNA-1273/BNT162 COVID-19 vaccines. The success of LNPs has sparked efforts to develop innovative technologies to target extrahepatic organs, and to deliver novel therapeutic modalities, such as tools for in vivo gene editing. Fueled by the recent advancements in both fields, this review aims to provide a comprehensive overview of the basic characteristics of EV and LNP-based NA delivery systems, from EV biogenesis to structural properties of LNPs. It addresses the primary challenges encountered in utilizing these nanocarriers from a drug formulation and delivery perspective. Additionally, biodistribution profiles, in vitro and in vivo transfection outcomes, as well as their status in clinical trials are compared. Overall, this review provides insights into promising research avenues and potential dead ends for EV and LNP-based NA delivery systems.
Collapse
Affiliation(s)
- Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Finn Brigger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
18
|
Zickler AM, Liang X, Gupta D, Mamand DR, De Luca M, Corso G, Errichelli L, Hean J, Sen T, Elsharkasy OM, Kamei N, Niu Z, Zhou G, Zhou H, Roudi S, Wiklander OPB, Görgens A, Nordin JZ, Castilla‐Llorente V, EL Andaloussi S. Novel Endogenous Engineering Platform for Robust Loading and Delivery of Functional mRNA by Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407619. [PMID: 39246205 PMCID: PMC11558116 DOI: 10.1002/advs.202407619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Messenger RNA (mRNA) has emerged as an attractive therapeutic molecule for a plethora of clinical applications. For in vivo functionality, mRNA therapeutics require encapsulation into effective, stable, and safe delivery systems to protect the cargo from degradation and reduce immunogenicity. Here, a bioengineering platform for efficient mRNA loading and functional delivery using bionormal nanoparticles, extracellular vesicles (EVs), is established by expressing a highly specific RNA-binding domain fused to CD63 in EV producer cells stably expressing the target mRNA. The additional combination with a fusogenic endosomal escape moiety, Vesicular Stomatitis Virus Glycoprotein, enables functional mRNA delivery in vivo at doses substantially lower than currently used clinically with synthetic lipid-based nanoparticles. Importantly, the application of EVs loaded with effective cancer immunotherapy proves highly effective in an aggressive melanoma mouse model. This technology addresses substantial drawbacks currently associated with EV-based nucleic acid delivery systems and is a leap forward to clinical EV applications.
Collapse
Affiliation(s)
- Antje M. Zickler
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
| | - Xiuming Liang
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Cancer Research LaboratoryShandong University‐Karolinska Institutet collaborative LaboratorySchool of Basic Medical ScienceShandong UniversityNo. 44, Wenhua Xi RoadJi'nanShandong250012P. R. China
| | - Dhanu Gupta
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics.University of OxfordOld Road Campus, Roosevelt Dr, HeadingtonOxfordOX3 7TYUK
| | - Doste R. Mamand
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Breast Center, Karolinska Comprehensive Cancer CenterKarolinska University HospitalStockholm14186Sweden
| | - Mariacristina De Luca
- Evox Therapeutics Ltd.Oxford Science ParkMedawar CentreRobert Robinson AvenueOxfordOX4 4HGUK
- Human TechnopoleViale Rita Levi Montalcini, 1Milan20157Italy
| | - Giulia Corso
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Evercyte GmbHLeberstrasse 20Vienna1110Austria
| | - Lorenzo Errichelli
- Evox Therapeutics Ltd.Oxford Science ParkMedawar CentreRobert Robinson AvenueOxfordOX4 4HGUK
| | - Justin Hean
- Evox Therapeutics Ltd.Oxford Science ParkMedawar CentreRobert Robinson AvenueOxfordOX4 4HGUK
| | - Titash Sen
- Evox Therapeutics Ltd.Oxford Science ParkMedawar CentreRobert Robinson AvenueOxfordOX4 4HGUK
- Lonza BiologicsChesterford Research ParkCambridgeCB10 1XLUK
| | - Omnia M. Elsharkasy
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
| | - Noriyasu Kamei
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Laboratory of Drug Delivery SystemsFaculty of Pharmaceutical SciencesKobe Gakuin University1‐1‐3 Minatojima, Chuo‐kuKobeHyogo650‐8586Japan
| | - Zheyu Niu
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Department of Hepatobiliary SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityNo. 324, Five Jing RoadJi'nanShandong250012P. R. China
| | - Guannan Zhou
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Department of GynecologyThe Obstetrics and Gynecology Hospital of Fudan UniversityNo. 419, Fangxie RoadShanghai200011P. R. China
| | - Houze Zhou
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
| | - Samantha Roudi
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
| | - Oscar P. B. Wiklander
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Breast Center, Karolinska Comprehensive Cancer CenterKarolinska University HospitalStockholm14186Sweden
| | - André Görgens
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg‐Essen45147EssenGermany
| | - Joel Z. Nordin
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Clinical Immunology and Transfusion Medicine (KITM)Karolinska University HospitalStockholm14186Sweden
| | - Virginia Castilla‐Llorente
- Evox Therapeutics Ltd.Oxford Science ParkMedawar CentreRobert Robinson AvenueOxfordOX4 4HGUK
- Uncommon BioCambridge TechnoparkNewmarket RdCambridgeCB5 8PBUK
| | - Samir EL Andaloussi
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
| |
Collapse
|
19
|
Zhang WY, Wen L, Du L, Liu TT, Sun Y, Chen YZ, Lu YX, Cheng XC, Sun HY, Xiao FJ, Wang LS. S-RBD-modified and miR-486-5p-engineered exosomes derived from mesenchymal stem cells suppress ferroptosis and alleviate radiation-induced lung injury and long-term pulmonary fibrosis. J Nanobiotechnology 2024; 22:662. [PMID: 39462403 PMCID: PMC11515248 DOI: 10.1186/s12951-024-02830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/02/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is associated with alveolar epithelial cell death and secondary fibrosis in injured lung. Mesenchymal stem cell (MSC)-derived exosomes have regenerative effect against lung injury and the potential to intervene of RILI. However, their intervention efficacy is limited because they lack lung targeting characters and do not carry sufficient specific effectors. SARS-CoV-2 spike glycoprotein (SARS-CoV-2-S-RBD) binds angiotensin-converting enzyme 2 (ACE2) receptor and mediates interaction with host cells. MiR-486-5p is a multifunctional miRNA with angiogenic and antifibrotic potential and acts as an effector in MSC-derived exosomes. Ferroptosis is a form of cell death associated with radiation injury, its roles and mechanisms in RILI remain unclear. In this study, we developed an engineered MSC-derived exosomes with SARS-CoV-2-S-RBD- and miR-486-5p- modification and investigated their intervention effects on RIPF and action mechanisms via suppression of epithelial cell ferroptosis. RESULTS Adenovirus-mediated gene modification led to miR-486-5p overexpression in human umbilical cord MSC exosomes (p < 0.05), thereby constructing miR-486-5p engineered MSC exosomes (miR-486-MSC-Exo). MiR-486-MSC-Exo promoted the proliferation and migration of irradiated mouse lung epithelial (MLE-12) cells in vitro and inhibited RILI in vivo (all p < 0.05). MiR-486-MSC-Exo suppressed ferroptosis in MLE-12 cells, and an in vitro assay revealed that the expression of fibrosis-related genes is up-regulated following ferroptosis (both p < 0.05). MiR-486-MSC-Exo reversed the up-regulated expression of fibrosis-related genes induced by TGF-β1 in vitro and improved pathological fibrosis in RIPF mice in vivo (all p < 0.05). SARS-CoV-2-S-RBD-modified and miR-486-5p-engineered MSC exosomes (miR-486-RBD-MSC-Exo) were also constructed, and the distribution of DiR dye-labeled miR-486-RBD-MSC-Exo in hACE2CKI/CKI Sftpc-Cre+ mice demonstrated long-term retention in the lung (p < 0.05). MiR-486-RBD-MSC-Exo significantly improved the survival rate and pathological changes in hACE2CKI/CKI Sftpc-Cre+ RIPF mice (all p < 0.05). Furthermore, miR-486-MSC-Exo exerted anti-fibrotic effects via targeted SMAD2 inhibition and Akt phosphorylation activation (p < 0.05). CONCLUSIONS Engineered MSC exosomes with SARS-CoV-2-S-RBD- and miR-486-5p-modification were developed. MiR-486-RBD-MSC-Exo suppressed ferroptosis and fibrosis of MLE-12 cells in vitro, and alleviated RILI and long-term RIPF in ACE2 humanized mice in vivo. MiR-486-MSC-Exo exerted anti-fibrotic effects via SMAD2 inhibition and Akt activation. This study provides a potential approach for RIPF intervention.
Collapse
Affiliation(s)
- Wei-Yuan Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Li Wen
- School of Nursing, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Li Du
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Ting Ting Liu
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Sun
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Yi-Zhu Chen
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Yu-Xin Lu
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Xiao-Chen Cheng
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hui-Yan Sun
- Yanda Medical Research Institute, Hebei Yanda Hospital, Langfang, 065201, China
| | - Feng-Jun Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Li-Sheng Wang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
- School of Nursing, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
20
|
Han T, Hao Q, Chao T, Sun Q, Chen Y, Gao B, Guan L, Ren W, Zhou X. Extracellular vesicles in cancer: golden goose or Trojan horse. J Mol Cell Biol 2024; 16:mjae025. [PMID: 38796692 PMCID: PMC11540518 DOI: 10.1093/jmcb/mjae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/16/2024] [Accepted: 05/24/2024] [Indexed: 05/28/2024] Open
Abstract
Intercellular communication can be mediated by direct cell-to-cell contact and indirect interactions through secretion of soluble chemokines, cytokines, and growth factors. Extracellular vesicles (EVs) have emerged as important mediators of cell-to-cell and cell-to-environment communications. EVs from tumor cells, immune cells, and stromal cells can remodel the tumor microenvironment and promote cancer cell survival, proliferation, metastasis, immune evasion, and therapeutic resistance. Most importantly, EVs as natural nanoparticles can be manipulated to serve as a potent delivery system for targeted cancer therapy. EVs can be engineered or modified to improve their ability to target tumors and deliver therapeutic substances, such as chemotherapeutic drugs, nucleic acids, and proteins, for the treatment of cancer. This review provides an overview of the biogenesis and recycling of EVs, discusses their roles in cancer development, and highlights their potential as a delivery system for targeted cancer therapy.
Collapse
Affiliation(s)
- Tao Han
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qinggang Sun
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Yitian Chen
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Bo Gao
- Umibio Co. Ltd, Shanghai 201210, China
| | - Liping Guan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenjie Ren
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
21
|
Brezgin S, Danilik O, Yudaeva A, Kachanov A, Kostyusheva A, Karandashov I, Ponomareva N, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. Basic Guide for Approaching Drug Delivery with Extracellular Vesicles. Int J Mol Sci 2024; 25:10401. [PMID: 39408730 PMCID: PMC11476574 DOI: 10.3390/ijms251910401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Extracellular vesicles (EVs) are natural carriers of biomolecules that play a crucial role in cell-to-cell communication and tissue homeostasis under normal and pathological conditions, including inflammatory diseases and cancer. Since the discovery of the pro-regenerative and immune-modulating properties of EVs, EV-based therapeutics have entered clinical trials for conditions such as myocardial infarction and autoimmune diseases, among others. Due to their unique advantages-such as superior bioavailability, substantial packaging capacity, and the ability to traverse biological barriers-EVs are regarded as a promising platform for targeted drug delivery. However, achieving a sufficient accumulation of therapeutic agents at the target site necessitates a larger quantity of EVs per dose compared to using EVs as standalone drugs. This challenge can be addressed by administering larger doses of EVs, increasing the drug dosage per administration, or enhancing the selective accumulation of EVs at target cells. In this review, we will discuss methods to improve the isolation and purification of EVs, approaches to enhance cargo packaging-including proteins, RNAs, and small-molecule drugs-and technologies for displaying targeting ligands on the surface of EVs to facilitate improved targeting. Ultimately, this guide can be applied to the development of novel classes of EV-based therapeutics and to overcoming existing technological challenges.
Collapse
Affiliation(s)
- Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Oleg Danilik
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
22
|
Cone AS, Zhou Y, McNamara RP, Eason AB, Arias GF, Landis JT, Shifflett KW, Chambers MG, Yuan R, Willcox S, Griffith JD, Dittmer DP. CD81 fusion alters SARS-CoV-2 Spike trafficking. mBio 2024; 15:e0192224. [PMID: 39140770 PMCID: PMC11389398 DOI: 10.1128/mbio.01922-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic caused the biggest public health crises in recent history. Many expect future coronavirus introductions into the human population. Hence, it is essential to understand the basic biology of these viruses. In natural infection, the SARS-CoV-2 Spike (S) glycoprotein is co-expressed with all other viral proteins, which modify cellular compartments to maximize virion assembly. By comparison, most of S is degraded when the protein is expressed in isolation, as in current molecular vaccines. To probe the maturation pathway of S, we redirected its maturation by fusing S to the tetraspanin protein CD81. CD81 is a defining constituent of extracellular vesicles (EVs) or exosomes. EVs are generated in large numbers by all cells, extruded into blood and lymph, and transfer cargo between cells and systemically (estimated 1012 EVs per mL plasma). EVs, like platelets, can be transfused between unrelated donors. When fusing the proline-stabilized form of strain Delta S into the flexible, large extracellular loop of CD81 rather than being degraded in the lysosome, S was extruded into EVs. CD81-S fusion containing EVs were produced in large numbers and could be isolated to high purity. Purified CD81::S EVs bound ACE2, and S displayed on individual EV was observed by cryogenic electron microscopy (EM). The CD81::S-fusion EVs were non-toxic and elicited an anti-S trimer and anti-RBD antibody response in mice. This report shows a design path to maximize viral glycoprotein assembly and release without relying on the co-expression of potentially pathogenic nonstructural viral proteins. IMPORTANCE The severe acute respiratory syndrome coronavirus 2 pandemic caused the biggest public health crises in recent history. To understand the maturation pathway of S, we fused S to the tetraspanin protein CD81. The resulting molecule is secreted in extracellular vesicles and induces antibodies in mice. This may be a general design path for viral glycoprotein vaccines.
Collapse
Affiliation(s)
- Allaura S. Cone
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yijun Zhou
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Anthony. B. Eason
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gabriel F. Arias
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin T. Landis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kyle W. Shifflett
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meredith G. Chambers
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Runjie Yuan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
23
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Li J, Xiao H, Zhang C, Liu G, Liu X. From virus to immune system: Harnessing membrane-derived vesicles to fight COVID-19 by interacting with biological molecules. Eur J Immunol 2024; 54:e2350916. [PMID: 38778737 DOI: 10.1002/eji.202350916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Emerging and re-emerging viral pandemics have emerged as a major public health concern. Highly pathogenic coronaviruses, which cause severe respiratory disease, threaten human health and socioeconomic development. Great efforts are being devoted to the development of safe and efficacious therapeutic agents and preventive vaccines to combat them. Nevertheless, the highly mutated virus poses a challenge to drug development and vaccine efficacy, and the use of common immunomodulatory agents lacks specificity. Benefiting from the burgeoning intersection of biological engineering and biotechnology, membrane-derived vesicles have shown superior potential as therapeutics due to their biocompatibility, design flexibility, remarkable bionics, and inherent interaction with phagocytes. The interactions between membrane-derived vesicles, viruses, and the immune system have emerged as a new and promising topic. This review provides insight into considerations for developing innovative antiviral strategies and vaccines against SARS-CoV-2. First, membrane-derived vesicles may provide potential biomimetic decoys with a high affinity for viruses to block virus-receptor interactions for early interruption of infection. Second, membrane-derived vesicles could help achieve a balanced interplay between the virus and the host's innate immunity. Finally, membrane-derived vesicles have revealed numerous possibilities for their employment as vaccines.
Collapse
Affiliation(s)
- Jiayuan Li
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Haiqing Xiao
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Chang Zhang
- Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Xuan Liu
- Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Shen Zhen Research Institute of Xiamen University, Xiamen University, Shenzhen, China
| |
Collapse
|
25
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Kalluri R. The biology and function of extracellular vesicles in immune response and immunity. Immunity 2024; 57:1752-1768. [PMID: 39142276 PMCID: PMC11401063 DOI: 10.1016/j.immuni.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 01/02/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Extracellular vesicles (EVs), such as ectosomes and exosomes, contain DNA, RNA, proteins and are encased in a phospholipid bilayer. EVs provide intralumenal cargo for delivery into the cytoplasm of recipient cells with an impact on the function of immune cells, in part because their biogenesis can also intersect with antigen processing and presentation. Motile EVs from activated immune cells may increase the frequency of immune synapses on recipient cells in a proximity-independent manner for local and long-distance modulation of systemic immunity in inflammation, autoimmunity, organ fibrosis, cancer, and infections. Natural and engineered EVs exhibit the ability to impact innate and adaptive immunity and are entering clinical trials. EVs are likely a component of an optimally functioning immune system, with the potential to serve as immunotherapeutics. Considering the evolving evidence, it is possible that EVs could be the original primordial organic units that preceded the creation of the first cell.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
27
|
Park SY, Yi KH. Exosome-mediated Advancements in Plastic Surgery: Navigating Therapeutic Potential in Skin Rejuvenation and Wound Healing. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6021. [PMID: 39534068 PMCID: PMC11556992 DOI: 10.1097/gox.0000000000006021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/10/2024] [Indexed: 11/16/2024]
Abstract
Exosomes, tiny extracellular vesicles derived from various cells such as adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, and human umbilical cord mesenchymal stem cells, exhibit considerable potential in wound healing due to their ability to facilitate cell communication and modulate inflammatory responses. These exosomes contribute positively to collagen synthesis and scar reduction, and have shown efficacy in documented clinical cases of wound improvement. Although research indicates their potential in reducing hypertrophic scars and suppressing keloid fibroblasts, further clinical investigations are warranted. In plastic surgery, exosome application postsurgery can enhance wound healing, particularly in cases prone to swelling or poor healing conditions. This study incorporates five case reports of individuals undergoing exosome treatment (EXOP; Sihler Inc., and Exodew; Hyundaimeditech, Inc.) for wound healing, providing practical insights into the application of this therapeutic approach. The five case reports presented in this study demonstrate the practical applications and efficacy of exosome therapy in promoting wound healing and reducing scarring. Exosomes emerge as a promising avenue within the field of plastic surgery, showcasing their potential to enhance wound healing, reduce scarring, and improve overall outcomes in clinical settings. The findings from this study underscore the importance of further exploration into the therapeutic benefits of exosomes in wound management, paving the way for their widespread adoption in clinical practice.
Collapse
Affiliation(s)
- Soo Yeon Park
- From the Made-Young Plastic Surgery Clinic, Seoul, Korea
| | - Kyu-Ho Yi
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
- Maylin Clinic (Apgujeong), Seoul, Korea
| |
Collapse
|
28
|
Zhu X, Lin X, Hu L, Wang L, Zhu Q. Harnessing crosstalk between extracellular vesicles and viruses for disease diagnostics and therapeutics. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:358-370. [PMID: 39697627 PMCID: PMC11648403 DOI: 10.20517/evcna.2024.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are increasingly acknowledged as important mediators of intercellular communication, closely related to the occurrence and development of a variety of diseases. Numerous studies have demonstrated that EVs play a multifaceted role in the infection process of viral diseases, elucidating their ability to both facilitate viral spread and inhibit infection progression. These versatile entities not only enhance infection rates and widen the scope of viral infection through the transmission of entire viruses or viral genomes, but also trigger antiviral responses and prompt cytokine secretion near the infection site, thereby fortifying the host's defense mechanisms and safeguarding neighboring cells against infection. This complicated crosstalk between EVs and viral infections prompts a deeper exploration into their roles in potential clinical applications. In this review, we aim to encapsulate the recent advances in understanding the intricate interplay between viruses and EVs, shedding light on the mechanisms underlying this vesicle-to-virion crosstalk. Furthermore, we underscore the significance of harnessing this knowledge for diagnostic and therapeutic functions in combating viral diseases.
Collapse
Affiliation(s)
- Xinxi Zhu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xiuhui Lin
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liang Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Liangxing Wang
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Qingfu Zhu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
29
|
Iqbal Z, Rehman K, Mahmood A, Shabbir M, Liang Y, Duan L, Zeng H. Exosome for mRNA delivery: strategies and therapeutic applications. J Nanobiotechnology 2024; 22:395. [PMID: 38965553 PMCID: PMC11225225 DOI: 10.1186/s12951-024-02634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/13/2024] [Indexed: 07/06/2024] Open
Abstract
Messenger RNA (mRNA) has emerged as a promising therapeutic molecule with numerous clinical applications in treating central nervous system disorders, tumors, COVID-19, and other diseases. mRNA therapies must be encapsulated into safe, stable, and effective delivery vehicles to preserve the cargo from degradation and prevent immunogenicity. Exosomes have gained growing attention in mRNA delivery because of their good biocompatibility, low immunogenicity, small size, unique capacity to traverse physiological barriers, and cell-specific tropism. Moreover, these exosomes can be engineered to utilize the natural carriers to target specific cells or tissues. This targeted approach will enhance the efficacy and reduce the side effects of mRNAs. However, difficulties such as a lack of consistent and reliable methods for exosome purification and the efficient encapsulation of large mRNAs into exosomes must be addressed. This article outlines current breakthroughs in cell-derived vesicle-mediated mRNA delivery and its biomedical applications.
Collapse
Affiliation(s)
- Zoya Iqbal
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Khurrum Rehman
- Department of Allied Health Sciences, The University of Agriculture, D.I.Khan, Pakistan
| | - Ayesha Mahmood
- Department of Pharmacy, The University of Lahore, Lahore Campus, Lahore, Pakistan
| | - Maryam Shabbir
- Department of Pharmacy, The University of Lahore, Lahore Campus, Lahore, Pakistan
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| | - Li Duan
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Hui Zeng
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| |
Collapse
|
30
|
Rahmani A, Soleymani A, Almukhtar M, Behzad Moghadam K, Vaziri Z, Hosein Tabar Kashi A, Adabi Firoozjah R, Jafari Tadi M, Zolfaghari Dehkharghani M, Valadi H, Moghadamnia AA, Gasser RB, Rostami A. Exosomes, and the potential for exosome-based interventions against COVID-19. Rev Med Virol 2024; 34:e2562. [PMID: 38924213 DOI: 10.1002/rmv.2562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Since late 2019, the world has been devastated by the coronavirus disease 2019 (COVID-19) induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with more than 760 million people affected and ∼seven million deaths reported. Although effective treatments for COVID-19 are currently limited, there has been a strong focus on developing new therapeutic approaches to address the morbidity and mortality linked to this disease. An approach that is currently being investigated is the use of exosome-based therapies. Exosomes are small, extracellular vesicles that play a role in many clinical diseases, including viral infections, infected cells release exosomes that can transmit viral components, such as miRNAs and proteins, and can also include receptors for viruses that facilitate viral entry into recipient cells. SARS-CoV-2 has the ability to impact the formation, secretion, and release of exosomes, thereby potentially facilitating or intensifying the transmission of the virus among cells, tissues and individuals. Therefore, designing synthetic exosomes that carry immunomodulatory cargo and antiviral compounds are proposed to be a promising strategy for the treatment of COVID-19 and other viral diseases. Moreover, exosomes generated from mesenchymal stem cells (MSC) might be employed as cell-free therapeutic agents, as MSC-derived exosomes can diminish the cytokine storm and reverse the suppression of host anti-viral defences associated with COVID-19, and boost the repair of lung damage linked to mitochondrial activity. The present article discusses the significance and roles of exosomes in COVID-19, and explores potential future applications of exosomes in combating this disease. Despite the challenges posed by COVID-19, exosome-based therapies could represent a promising avenue for improving patient outcomes and reducing the impact of this disease.
Collapse
Affiliation(s)
- Abolfazl Rahmani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Soleymani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Kimia Behzad Moghadam
- Independent Researcher, Former University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Zahra Vaziri
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Hosein Tabar Kashi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Reza Adabi Firoozjah
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehrdad Jafari Tadi
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Maryam Zolfaghari Dehkharghani
- Department of Healthcare Administration and Policy, School of Public Health, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ali Akbar Moghadamnia
- Department of Pharmacology and Toxicology, Babol University of Medical Sciences, Babol, Iran
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Robin B Gasser
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
31
|
Toniolo A, Maccari G, Camussi G. mRNA Technology and Mucosal Immunization. Vaccines (Basel) 2024; 12:670. [PMID: 38932399 PMCID: PMC11209623 DOI: 10.3390/vaccines12060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Current mRNA vaccines are mainly administered via intramuscular injection, which induces good systemic immunity but limited mucosal immunity. Achieving mucosal immunity through mRNA vaccination could diminish pathogen replication at the entry site and reduce interhuman transmission. However, delivering mRNA vaccines to mucosae faces challenges like mRNA degradation, poor entry into cells, and reactogenicity. Encapsulating mRNA in extracellular vesicles may protect the mRNA and reduce reactogenicity, making mucosal mRNA vaccines possible. Plant-derived extracellular vesicles from edible fruits have been investigated as mRNA carriers. Studies in animals show that mRNA vehiculated in orange-derived extracellular vesicles can elicit both systemic and mucosal immune responses when administered by the oral, nasal, or intramuscular routes. Once lyophilized, these products show remarkable stability. The optimization of mRNA to improve translation efficiency, immunogenicity, reactogenicity, and stability can be obtained through adjustments of the 5'cap region, poly-A tail, codons selection, and the use of nucleoside analogues. Recent studies have also proposed self-amplifying RNA vaccines containing an RNA polymerase as well as circular mRNA constructs. Data from parenterally primed animals demonstrate the efficacy of nasal immunization with non-adjuvanted protein, and studies in humans indicate that the combination of a parenteral vaccine with the natural exposure of mucosae to the same antigen provides protection and reduces transmission. Hence, mucosal mRNA vaccination would be beneficial at least in organisms pre-treated with parenteral vaccines. This practice could have wide applications for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Antonio Toniolo
- Global Virus Network, University of Insubria Medical School, 21100 Varese, Italy
| | - Giuseppe Maccari
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
| | - Giovanni Camussi
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy;
| |
Collapse
|
32
|
Yuan W, Shi X, Lee LTO. RNA therapeutics in targeting G protein-coupled receptors: Recent advances and challenges. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102195. [PMID: 38741614 PMCID: PMC11089380 DOI: 10.1016/j.omtn.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
G protein-coupled receptors (GPCRs) are the major targets of existing drugs for a plethora of human diseases and dominate the pharmaceutical market. However, over 50% of the GPCRs remain undruggable. To pursue a breakthrough and overcome this situation, there is significant clinical research for developing RNA-based drugs specifically targeting GPCRs, but none has been approved so far. RNA therapeutics represent a unique and promising approach to selectively targeting previously undruggable targets, including undruggable GPCRs. However, the development of RNA therapeutics faces significant challenges in areas of RNA stability and efficient in vivo delivery. This review presents an overview of the advances in RNA therapeutics and the diverse types of nanoparticle RNA delivery systems. It also describes the potential applications of GPCR-targeted RNA drugs for various human diseases.
Collapse
Affiliation(s)
- Wanjun Yuan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
33
|
Xu X, Xu L, Wang J, Wen C, Xia J, Zhang Y, Liang Y. Bioinspired cellular membrane-derived vesicles for mRNA delivery. Theranostics 2024; 14:3246-3266. [PMID: 38855184 PMCID: PMC11155408 DOI: 10.7150/thno.93755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/15/2024] [Indexed: 06/11/2024] Open
Abstract
The rapid advancement of mRNA as vaccines and therapeutic agents in the biomedical field has sparked hope in the fight against untreatable diseases. Successful clinical application of mRNA therapeutics largely depends on the carriers. Recently, a new and exciting focus has emerged on natural cell-derived vesicles. These nanovesicles offer many functions, including enhanced drug delivery capabilities and immune evasion, thereby presenting a unique and promising platform for the effective and safe delivery of mRNA therapeutics. In this study, we summarize the characteristics and properties of biomimetic delivery systems for mRNA therapeutics. In particular, we discuss the unique features of cellular membrane-derived vesicles (CDVs) and the combination of synthetic nanovesicles with CDVs.
Collapse
Affiliation(s)
- Xiao Xu
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Limei Xu
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Jingzhi Wang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Caining Wen
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuanmin Zhang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- College of Rehabilitation Medicine, Jining Medical University, Jining, China
| | - Yujie Liang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- College of Rehabilitation Medicine, Jining Medical University, Jining, China
| |
Collapse
|
34
|
Ai Y, Guo C, Garcia-Contreras M, Sánchez B. LS, Saftics A, Shodubi O, Raghunandan S, Xu J, Tsai SJ, Dong Y, Li R, Jovanovic-Talisman T, Gould SJ. Endocytosis blocks the vesicular secretion of exosome marker proteins. SCIENCE ADVANCES 2024; 10:eadi9156. [PMID: 38718108 PMCID: PMC11078179 DOI: 10.1126/sciadv.adi9156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Exosomes are secreted vesicles of ~30 to 150 nm diameter that play important roles in human health and disease. To better understand how cells release these vesicles, we examined the biogenesis of the most highly enriched human exosome marker proteins, the exosomal tetraspanins CD81, CD9, and CD63. We show here that endocytosis inhibits their vesicular secretion and, in the case of CD9 and CD81, triggers their destruction. Furthermore, we show that syntenin, a previously described exosome biogenesis factor, drives the vesicular secretion of CD63 by blocking CD63 endocytosis and that other endocytosis inhibitors also induce the plasma membrane accumulation and vesicular secretion of CD63. Finally, we show that CD63 is an expression-dependent inhibitor of endocytosis that triggers the vesicular secretion of lysosomal proteins and the clathrin adaptor AP-2 mu2. These results suggest that the vesicular secretion of exosome marker proteins in exosome-sized vesicles occurs primarily by an endocytosis-independent pathway.
Collapse
Affiliation(s)
- Yiwei Ai
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chenxu Guo
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marta Garcia-Contreras
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laura S. Sánchez B.
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andras Saftics
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Oluwapelumi Shodubi
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shankar Raghunandan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junhao Xu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shang Jui Tsai
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yi Dong
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Tijana Jovanovic-Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Stephen J. Gould
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
35
|
Ho LLY, Schiess GHA, Miranda P, Weber G, Astakhova K. Pseudouridine and N1-methylpseudouridine as potent nucleotide analogues for RNA therapy and vaccine development. RSC Chem Biol 2024; 5:418-425. [PMID: 38725905 PMCID: PMC11078203 DOI: 10.1039/d4cb00022f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/10/2024] [Indexed: 05/12/2024] Open
Abstract
Modified nucleosides are integral to modern drug development, serving as crucial building blocks for creating safer, more potent, and more precisely targeted therapeutic interventions. Nucleobase modifications often confer antiviral and anti-cancer activity as monomers. When incorporated into nucleic acid oligomers, they increase stability against degradation by enzymes, enhancing the drugs' lifespan within the body. Moreover, modification strategies can mitigate potential toxic effects and reduce immunogenicity, making drugs safer and better tolerated. Particularly, N1-methylpseudouridine modification improved the efficacy of the mRNA coding for spike protein of COVID-19. This became a crucial step for developing COVID-19 vaccine applied during the 2020 pandemic. This makes N1-methylpseudouridine, and its "parent" analogue pseudouridine, potent nucleotide analogues for future RNA therapy and vaccine development. This review focuses on the structure and properties of pseudouridine and N1-methylpseudouridine. RNA has a greater structural versatility, different conformation, and chemical reactivity than DNA. Watson-Crick pairing is not strictly followed by RNA that has more unusual base pairs and base-triplets. This requires detailed structural studies and structure-activity relationship analyses for RNA, also when modifications are incorporated. Recent successes in this direction are revised in this review. We describe recent successes with using pseudouridine and N1-methylpseudouridine in mRNA drug candidates. We also highlight remaining challenges that need to be solved to develop new mRNA vaccines and therapies.
Collapse
Affiliation(s)
- Lyana L Y Ho
- Technical University of Denmark 2800 Kongens Lyngby Denmark
- The Hong Kong Polytechnic University 11 Yuk Choi Rd Hung Hom Hong Kong
| | - Gabriel H A Schiess
- Departamento de Física, Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Pâmella Miranda
- Departamento de Física, Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
- Programa Interunidades de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Kira Astakhova
- Technical University of Denmark 2800 Kongens Lyngby Denmark
| |
Collapse
|
36
|
Vo N, Tran C, Tran NHB, Nguyen NT, Nguyen T, Ho DTK, Nguyen DDN, Pham T, Nguyen TA, Phan HTN, Nguyen H, Tu LN. A novel multi-stage enrichment workflow and comprehensive characterization for HEK293F-derived extracellular vesicles. J Extracell Vesicles 2024; 13:e12454. [PMID: 38760878 PMCID: PMC11101607 DOI: 10.1002/jev2.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Extracellular vesicles (EVs) are emerging as a promising drug delivery vehicle as they are biocompatible and capable of targeted delivery. However, clinical translation of EVs remains challenging due to the lack of standardized and scalable manufacturing protocols to consistently isolate small EVs (sEVs) with both high yield and high purity. The heterogenous nature of sEVs leading to unknown composition of biocargos causes further pushback due to safety concerns. In order to address these issues, we developed a robust quality-controlled multi-stage process to produce and isolate sEVs from human embryonic kidney HEK293F cells. We then compared different 2-step and 3-step workflows for eliminating protein impurities and cell-free nucleic acids to meet acceptable limits of regulatory authorities. Our results showed that sEV production was maximized when HEK293F cells were grown at high-density stationary phase in semi-continuous culture. The novel 3-step workflow combining tangential flow filtration, sucrose-cushion ultracentrifugation and bind-elute size-exclusion chromatography outperformed other methods in sEV purity while still preserved high yield and particle integrity. The purified HEK293F-derived sEVs were thoroughly characterized for identity including sub-population analysis, content profiling including proteomics and miRNA sequencing, and demonstrated excellent preclinical safety profile in both in-vitro and in-vivo testing. Our rigorous enrichment workflow and comprehensive characterization will help advance the development of EVs, particularly HEK293F-derived sEVs, to be safe and reliable drug carriers for therapeutic applications.
Collapse
Affiliation(s)
- Nhan Vo
- Medical Genetics InstituteHo Chi Minh CityVietnam
| | - Chau Tran
- Medical Genetics InstituteHo Chi Minh CityVietnam
| | | | | | - Thieu Nguyen
- Medical Genetics InstituteHo Chi Minh CityVietnam
| | | | | | - Tran Pham
- Medical Genetics InstituteHo Chi Minh CityVietnam
| | | | | | | | - Lan N. Tu
- Medical Genetics InstituteHo Chi Minh CityVietnam
| |
Collapse
|
37
|
Hillman T. The application of plant-exosome-like nanovesicles as improved drug delivery systems for cancer vaccines. Discov Oncol 2024; 15:136. [PMID: 38683256 PMCID: PMC11058161 DOI: 10.1007/s12672-024-00974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
The use of cancer immunotherapeutics is currently increasing. Cancer vaccines, as a form of immunotherapy, are gaining much attention in the medical community since specific tumor-antigens can activate immune cells to induce an anti-tumor immune response. However, the delivery of cancer vaccines presents many issues for research scientists when designing cancer treatments and requires further investigation. Nanoparticles, synthetic liposomes, bacterial vectors, viral particles, and mammalian exosomes have delivered cancer vaccines. In contrast, the use of many of these nanotechnologies produces many issues of cytotoxicity, immunogenicity, and rapid clearance by the mononuclear phagocyte system (MPS). Plant-exosome-like nanovesicles (PELNVs) can provide solutions for many of these challenges because they are innocuous and nonimmunogenic when delivering nanomedicines. Hence, this review will describe the potential use of PELNVs to deliver cancer vaccines. In this review, different approaches of cancer vaccine delivery will be detailed, the mechanism of oral vaccination for delivering cancer vaccines will be described, and the review will discuss the use of PELNVs as improved drug delivery systems for cancer vaccines via oral administration while also addressing the subsequent challenges for advancing their usage into the clinical setting.
Collapse
|
38
|
Liu M, Hu S, Yan N, Popowski KD, Cheng K. Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. NATURE NANOTECHNOLOGY 2024; 19:565-575. [PMID: 38212521 DOI: 10.1038/s41565-023-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Lung carcinoma is one of the most common cancers and has one of the lowest survival rates in the world. Cytokines such as interleukin-12 (IL-12) have demonstrated considerable potential as robust tumour suppressors. However, their applications are limited due to off-target toxicity. Here we report on a strategy involving the inhalation of IL-12 messenger RNA, encapsulated within extracellular vesicles. Inhalation and preferential uptake by cancer cells results in targeted delivery and fewer systemic side effects. The IL-12 messenger RNA generates interferon-γ production in both innate and adaptive immune-cell populations. This activation consequently incites an intense activation state in the tumour microenvironment and augments its immunogenicity. The increased immune response results in the expansion of tumour cytotoxic immune effector cells, the formation of immune memory, improved antigen presentation and tumour-specific T cell priming. The strategy is demonstrated against primary neoplastic lesions and provides profound protection against subsequent tumour rechallenge. This shows the potential for locally delivered cytokine-based immunotherapies to address orthotopic and metastatic lung tumours.
Collapse
Affiliation(s)
- Mengrui Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Shiqi Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Na Yan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Kristen D Popowski
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill/Raleigh, NC, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill/Raleigh, NC, USA.
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
39
|
El Safadi D, Mokhtari A, Krejbich M, Lagrave A, Hirigoyen U, Lebeau G, Viranaicken W, Krejbich-Trotot P. Exosome-Mediated Antigen Delivery: Unveiling Novel Strategies in Viral Infection Control and Vaccine Design. Vaccines (Basel) 2024; 12:280. [PMID: 38543914 PMCID: PMC10974137 DOI: 10.3390/vaccines12030280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 01/03/2025] Open
Abstract
Exosomes are small subtypes of extracellular vesicles (EVs) naturally released by different types of cells into their environment. Their physiological roles appear to be multiple, yet many aspects of their biological activities remain to be understood. These vesicles can transport and deliver a variety of cargoes and may serve as unconventional secretory vesicles. Thus, they play a crucial role as important vectors for intercellular communication and the maintenance of homeostasis. Exosome production and content can vary under several stresses or modifications in the cell microenvironment, influencing cellular responses and stimulating immunity. During infectious processes, exosomes are described as double-edged swords, displaying both beneficial and detrimental effects. Owing to their tractability, the analysis of EVs from multiple biofluids has become a booming tool for monitoring various pathologies, from infectious to cancerous origins. In this review, we present an overview of exosome features and discuss their particular and ambiguous functions in infectious contexts. We then focus on their properties as diagnostic or therapeutic tools. In this regard, we explore the capacity of exosomes to vectorize immunogenic viral antigens and their function in mounting adaptive immune responses. As exosomes provide interesting platforms for antigen presentation, we further review the available data on exosome engineering, which enables peptides of interest to be exposed at their surface. In the light of all these data, exosomes are emerging as promising avenues for vaccine strategies.
Collapse
Affiliation(s)
- Daed El Safadi
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
| | - Alexandre Mokhtari
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
| | - Morgane Krejbich
- Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers, CRCI2NA, INSERM U1307, CNRS UMR 6075, Université de Nantes, Université d’Angers, 8 Quai Moncousu, P.O. Box 70721, Cedex 1, 44007 Nantes, France; (M.K.); (U.H.)
| | - Alisé Lagrave
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
- National Reference Center for Arboviruses, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana
| | - Ugo Hirigoyen
- Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers, CRCI2NA, INSERM U1307, CNRS UMR 6075, Université de Nantes, Université d’Angers, 8 Quai Moncousu, P.O. Box 70721, Cedex 1, 44007 Nantes, France; (M.K.); (U.H.)
| | - Grégorie Lebeau
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
- Unité Mixte Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM U1188, Campus Santé de Terre Sainte, 97410 Saint-Pierre, La Réunion, France
| | - Wildriss Viranaicken
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
- Unité Mixte Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM U1188, Campus Santé de Terre Sainte, 97410 Saint-Pierre, La Réunion, France
| | - Pascale Krejbich-Trotot
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
| |
Collapse
|
40
|
Estapé Senti M, García Del Valle L, Schiffelers RM. mRNA delivery systems for cancer immunotherapy: Lipid nanoparticles and beyond. Adv Drug Deliv Rev 2024; 206:115190. [PMID: 38307296 DOI: 10.1016/j.addr.2024.115190] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
mRNA-based vaccines are emerging as a promising alternative to standard cancer treatments and the conventional vaccines. Moreover, the FDA-approval of three nucleic acid based therapeutics (Onpattro, BNT162b2 and mRNA-1273) has further increased the interest and trust on this type of therapeutics. In order to achieve a significant therapeutic efficacy, the mRNA needs from a drug delivery system. In the last years, several delivery platforms have been explored, being the lipid nanoparticles (LNPs) the most well characterized and studied. A better understanding on how mRNA-based therapeutics operate (both the mRNA itself and the drug delivery system) will help to further improve their efficacy and safety. In this review, we will provide an overview of what mRNA cancer vaccines are and their mode of action and we will highlight the advantages and challenges of the different delivery platforms that are under investigation.
Collapse
Affiliation(s)
- Mariona Estapé Senti
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Lucía García Del Valle
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Raymond M Schiffelers
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
41
|
Keysberg C, Hertel O, Hoffrogge R, Reich S, Hornung N, Holzmann K, Otte K. Hyperthermic shift and cell engineering increase small extracellular vesicle production in HEK293F cells. Biotechnol Bioeng 2024; 121:942-958. [PMID: 38037755 DOI: 10.1002/bit.28612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
Although small extracellular vesicles (sEVs) have promising features as an emerging therapeutic format for a broad spectrum of applications, for example, blood-brain-barrier permeability, low immunogenicity, and targeted delivery, economic manufacturability will be a crucial factor for the therapeutic applicability of sEVs. In the past, bioprocess optimization and cell line engineering improved titers of classical biologics multifold. We therefore performed a design of experiments (DoE) screening to identify beneficial bioprocess conditions for sEV production in HEK293F suspension cells. Short-term hyperthermia at 40°C elevated volumetric productivity 5.4-fold while sEVs displayed improved exosomal characteristics and cells retained >90% viability. Investigating the effects of hyperthermia via transcriptomics and proteomics analyses, an expectable, cellular heat-shock response was found together with an upregulation of many exosome biogenesis and vesicle trafficking related molecules, which could cause the productivity boost in tandem with heat shock proteins (HSPs), like HSP90 and HSC70. Because of these findings, a selection of 44 genes associated with exosome biogenesis, vesicle secretion machinery, or heat-shock response was screened for their influence on sEV production. Overexpression of six genes, CHMP1A, CHMP3, CHMP5, VPS28, CD82, and EZR, significantly increased both sEV secretion and titer, making them suitable targets for cell line engineering.
Collapse
Affiliation(s)
- Christoph Keysberg
- Institute for Applied Biotechnology (IAB), University of Applied Sciences Biberach, Biberach, Germany
- International Graduate School in Molecular Medicine (IGradU), Ulm University, Ulm, Germany
| | - Oliver Hertel
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Cell Culture Technology, Bielefeld University, Bielefeld, Germany
| | - Raimund Hoffrogge
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Cell Culture Technology, Bielefeld University, Bielefeld, Germany
| | - Sibylle Reich
- Institute for Applied Biotechnology (IAB), University of Applied Sciences Biberach, Biberach, Germany
| | - Nadine Hornung
- Institute for Applied Biotechnology (IAB), University of Applied Sciences Biberach, Biberach, Germany
| | | | - Kerstin Otte
- Institute for Applied Biotechnology (IAB), University of Applied Sciences Biberach, Biberach, Germany
| |
Collapse
|
42
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
43
|
Gai C, Pomatto MAC, Deregibus MC, Dieci M, Piga A, Camussi G. Edible Plant-Derived Extracellular Vesicles for Oral mRNA Vaccine Delivery. Vaccines (Basel) 2024; 12:200. [PMID: 38400183 PMCID: PMC10893065 DOI: 10.3390/vaccines12020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Nucleic acid delivery through extracellular vesicles (EVs) is a well-preserved evolutionary mechanism in all life kingdoms including eukaryotes, prokaryotes, and plants. EVs naturally allow horizontal transfer of native as well as exogenous functional mRNAs, which once incorporated in EVs are protected from enzymatic degradation. This observation has prompted researchers to investigate whether EVs from different sources, including plants, could be used for vaccine delivery. Several studies using human or bacterial EVs expressing mRNA or recombinant SARS-CoV-2 proteins showed induction of a humoral and cell mediated immune response. Moreover, EV-based vaccines presenting the natural configuration of viral antigens have demonstrated advantages in conferring long-lasting immunization and lower toxicity than synthetic nanoparticles. Edible plant-derived EVs were shown to be an alternative to human EVs for vaccine delivery, especially via oral administration. EVs obtained from orange juice (oEVs) loaded with SARS-CoV-2 mRNAs protected their cargo from enzymatic degradation, were stable at room temperature for one year, and were able to trigger a SARS-CoV-2 immune response in mice. Lyophilized oEVs containing the S1 mRNA administered to rats via gavage induced a specific humoral immune response with generation of blocking antibodies, including IgA and Th1 lymphocyte activation. In conclusion, mRNA-containing oEVs could be used for developing new oral vaccines due to optimal mucosal absorption, resistance to stress conditions, and ability to stimulate a humoral and cellular immune response.
Collapse
Affiliation(s)
- Chiara Gai
- EvoBiotech s.r.l., 10148 Torino, Italy; (C.G.); (M.A.C.P.); (M.D.); (A.P.)
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy;
| | - Margherita Alba Carlotta Pomatto
- EvoBiotech s.r.l., 10148 Torino, Italy; (C.G.); (M.A.C.P.); (M.D.); (A.P.)
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy;
| | | | - Marco Dieci
- EvoBiotech s.r.l., 10148 Torino, Italy; (C.G.); (M.A.C.P.); (M.D.); (A.P.)
| | - Alessandro Piga
- EvoBiotech s.r.l., 10148 Torino, Italy; (C.G.); (M.A.C.P.); (M.D.); (A.P.)
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy;
| |
Collapse
|
44
|
Latanova A, Karpov V, Starodubova E. Extracellular Vesicles in Flaviviridae Pathogenesis: Their Roles in Viral Transmission, Immune Evasion, and Inflammation. Int J Mol Sci 2024; 25:2144. [PMID: 38396820 PMCID: PMC10889558 DOI: 10.3390/ijms25042144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The members of the Flaviviridae family are becoming an emerging threat for public health, causing an increasing number of infections each year and requiring effective treatment. The consequences of these infections can be severe and include liver inflammation with subsequent carcinogenesis, endothelial damage with hemorrhage, neuroinflammation, and, in some cases, death. The mechanisms of Flaviviridae pathogenesis are being actively investigated, but there are still many gaps in their understanding. Extracellular vesicles may play important roles in these mechanisms, and, therefore, this topic deserves detailed research. Recent data have revealed the involvement of extracellular vesicles in steps of Flaviviridae pathogenesis such as transmission, immune evasion, and inflammation, which is critical for disease establishment. This review covers recent papers on the roles of extracellular vesicles in the pathogenesis of Flaviviridae and includes examples of clinical applications of the accumulated data.
Collapse
Affiliation(s)
- Anastasia Latanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.K.); (E.S.)
| | | | | |
Collapse
|
45
|
Cummings SE, Delaney SP, St-Denis Bissonnette F, Stalker A, Muradia G, Mehic J, Graber TE, Alain T, Lavoie JR. SARS-CoV-2 antigen-carrying extracellular vesicles activate T cell responses in a human immunogenicity model. iScience 2024; 27:108708. [PMID: 38226155 PMCID: PMC10788222 DOI: 10.1016/j.isci.2023.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/16/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Extracellular vesicles (EVs) are entering the clinical arena as novel biologics for infectious diseases, potentially serving as the immunogenic components of next generation vaccines. However, relevant human assays to evaluate the immunogenicity of EVs carrying viral antigens are lacking, contributing to challenges in translating rodent studies to human clinical trials. Here, we engineered EVs to carry SARS-CoV-2 Spike to evaluate the immunogenicity of antigen-carrying EVs using human peripheral blood mononuclear cells (PBMCs). Delivery of Spike EVs to PBMCs resulted in specific immune cell activation as assessed through T cell activation marker expression. Further, Spike EVs were taken up largely by antigen-presenting cells (monocytes, dendritic cells and B cells). Taken together, this human PBMC-based system models physiologically relevant pathways of antigen delivery, uptake and presentation. In summary, the current study highlights the suitability of using human PBMCs for evaluating the immunogenicity of EVs engineered to carry antigens for infectious disease therapeutics.
Collapse
Affiliation(s)
- Sarah E. Cummings
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Sean P. Delaney
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Frederic St-Denis Bissonnette
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Andrew Stalker
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Gauri Muradia
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Jelica Mehic
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Tyson E. Graber
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1 Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1 Canada
| | - Jessie R. Lavoie
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
46
|
Guo C, Sachithanandham J, Zhong W, Craney M, Villano J, Pekosz A, Gould SJ. Antigen-display exosomes provide adjuvant-free protection against SARS-CoV-2 disease at nanogram levels of spike protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574272. [PMID: 38328234 PMCID: PMC10849639 DOI: 10.1101/2024.01.04.574272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
As the only bionormal nanovesicle, exosomes have high potential as a nanovesicle for delivering vaccines and therapeutics. We show here that the loading of type-1 membrane proteins into the exosome membrane is induced by exosome membrane anchor domains, EMADs, that maximize protein delivery to the plasma membrane, minimize protein sorting to other compartments, and direct proteins into exosome membranes. Using SARS-CoV-2 spike as an example and EMAD13 as our most effective exosome membrane anchor, we show that cells expressing a spike-EMAD13 fusion protein produced exosomes that carry dense arrays of spike trimers on 50% of all exosomes. Moreover, we find that immunization with spike-EMAD13 exosomes induced strong neutralizing antibody responses and protected hamsters against SARS-CoV-2 disease at doses of just 0.5-5 ng of spike protein, without adjuvant, demonstrating that antigen-display exosomes are particularly immunogenic, with important implications for both structural and expression-dependent vaccines.
Collapse
Affiliation(s)
- Chenxu Guo
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jaiprasath Sachithanandham
- Department of Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - William Zhong
- Department of Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Morgan Craney
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jason Villano
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Andrew Pekosz
- Department of Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Stephen J Gould
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
47
|
D’Avila H, Lima CNR, Rampinelli PG, Mateus LCO, de Sousa Silva RV, Correa JR, de Almeida PE. Lipid Metabolism Modulation during SARS-CoV-2 Infection: A Spotlight on Extracellular Vesicles and Therapeutic Prospects. Int J Mol Sci 2024; 25:640. [PMID: 38203811 PMCID: PMC10778989 DOI: 10.3390/ijms25010640] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) have a significant impact on the pathophysiological processes associated with various diseases such as tumors, inflammation, and infection. They exhibit molecular, biochemical, and entry control characteristics similar to viral infections. Viruses, on the other hand, depend on host metabolic machineries to fulfill their biosynthetic requirements. Due to potential advantages such as biocompatibility, biodegradation, and efficient immune activation, EVs have emerged as potential therapeutic targets against the SARS-CoV-2 infection. Studies on COVID-19 patients have shown that they frequently have dysregulated lipid profiles, which are associated with an increased risk of severe repercussions. Lipid droplets (LDs) serve as organelles with significant roles in lipid metabolism and energy homeostasis as well as having a wide range of functions in infections. The down-modulation of lipids, such as sphingolipid ceramide and eicosanoids, or of the transcriptional factors involved in lipogenesis seem to inhibit the viral multiplication, suggesting their involvement in the virus replication and pathogenesis as well as highlighting their potential as targets for drug development. Hence, this review focuses on the role of modulation of lipid metabolism and EVs in the mechanism of immune system evasion during SARS-CoV-2 infection and explores the therapeutic potential of EVs as well as application for delivering therapeutic substances to mitigate viral infections.
Collapse
Affiliation(s)
- Heloisa D’Avila
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | | | - Pollianne Garbero Rampinelli
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - Laiza Camila Oliveira Mateus
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - Renata Vieira de Sousa Silva
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - José Raimundo Correa
- Laboratory of Microscopy and Microanalysis, University of Brasília, Brasília 70910-900, Brazil;
| | - Patrícia Elaine de Almeida
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| |
Collapse
|
48
|
Lau HC, Passalacqua I, Jung JH, Kwon Y, Zocco D, Park SS, Oh SW. Unraveling the surface marker signature of cell-derived vesicles via proteome analysis and nanoparticle flow cytometry. Sci Rep 2024; 14:121. [PMID: 38167556 PMCID: PMC10762029 DOI: 10.1038/s41598-023-50279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
The cell-derived vesicles (CDVs) obtained using a proprietary extrusion process are the foundation of BioDrone platform technology. With superior productivity and versatility, this technology has garnered increasing attention in broad applications, particularly as a drug delivery vehicle. Previously, we showed that CDVs exhibited varying levels of expression for tetraspanin and organelle membrane markers while revealing no discernible differences in physical characteristics compared to naturally produced extracellular vesicles (EVs). To further understand and utilize the therapeutic potentials of CDVs, a more comprehensive study of membrane protein profiles is necessary. In addition, it is crucial to validate that the CDVs produced from extrusion are indeed intact lipid vesicles rather than other impurities. Here, we produced multiple batches of CDVs and EVs from HEK293 cells. CDVs and EVs were subjected to the same purification processes for subsequent proteome and particle analyses. The proteome analyses revealed unique proteome signatures between CDVs, EVs, and parental cells. Extensive proteome analyses identified the nine most prominent membrane markers that are abundant in CDVs compared to cells and EVs. Subsequent western blotting and nanoparticle flow cytometry analyses confirmed that CD63, lysosome-associated membrane glycoprotein 1 (LAMP1), and nicastrin (NCSTN) are highly enriched in CDVs, whereas CD81, CD9, and prostaglandin F2 receptor negative regulator (PTGFRN) are more abundant in EVs. This highlights the unique membrane composition and marker signature of CDVs that are distinct from EVs. Lastly, we demonstrated that more than 90% of the CDVs are genuine lipid vesicles by combining two different classes of vesicle labeling dyes and detergents to disrupt lipid membranes. This indicates that our proprietary extrusion technology is highly compatible with other well-characterized EV production methods. The robust CDV markers identified in this study will also facilitate the engineering of CDVs to achieve enhanced therapeutic effects or tissue-selective cargo delivery.
Collapse
Affiliation(s)
- Hui-Chong Lau
- BioDrone Research Institute, MDimune Inc., Seoul, South Korea
| | | | - Jik-Han Jung
- BioDrone Research Institute, MDimune Inc., Seoul, South Korea
| | - Yerim Kwon
- BioDrone Research Institute, MDimune Inc., Seoul, South Korea
| | | | - Sung-Soo Park
- BioDrone Research Institute, MDimune Inc., Seoul, South Korea
| | - Seung Wook Oh
- BioDrone Research Institute, MDimune Inc., Seoul, South Korea.
- BioDrone Therapeutics Inc., Seattle, USA.
| |
Collapse
|
49
|
Picon MA, Wang L, Da Fonseca Ferreira A, Dong C, Marzouka GR. Extracellular Vesicles as Delivery Systems in Disease Therapy. Int J Mol Sci 2023; 24:17134. [PMID: 38138963 PMCID: PMC10742668 DOI: 10.3390/ijms242417134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Extracellular vesicles (EVs)/exosomes are nanosized membrane-bound structures that are released by virtually all cells. EVs have attracted great attention in the scientific community since the discovery of their roles in cell-to-cell communication. EVs' enclosed structure protects bioactive molecules from degradation in the extracellular space and targets specific tissues according to the topography of membrane proteins. Upon absorption by recipient cells, EV cargo can modify the transcription machinery and alter the cellular functions of these cells, playing a role in disease pathogenesis. EVs have been tested as the delivery system for the mRNA COVID-19 vaccine. Recently, different therapeutic strategies have been designed to use EVs as a delivery system for microRNAs and mRNA. In this review, we will focus on the exciting and various platforms related to using EVs as delivery vehicles, mainly in gene editing using CRISPR/Cas9, cancer therapy, drug delivery, and vaccines. We will also touch upon their roles in disease pathogenesis.
Collapse
Affiliation(s)
- Manuel Alejandro Picon
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.A.P.); (A.D.F.F.)
| | - Liyong Wang
- John T. Macdonald Foundation Department of Human Genetics and the John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Andrea Da Fonseca Ferreira
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.A.P.); (A.D.F.F.)
| | - Chunming Dong
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.A.P.); (A.D.F.F.)
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Section of Cardiology, Department of Medicine, Miami VA Health System, University of Miami, Miami, FL 33125, USA
| | - George R. Marzouka
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Section of Cardiology, Department of Medicine, Miami VA Health System, University of Miami, Miami, FL 33125, USA
| |
Collapse
|
50
|
Zhang Y, Luo J, Gui X, Zheng Y, Schaar E, Liu G, Shi J. Bioengineered nanotechnology for nucleic acid delivery. J Control Release 2023; 364:124-141. [PMID: 37879440 PMCID: PMC10838211 DOI: 10.1016/j.jconrel.2023.10.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Nucleic acid-based therapy has emerged as a promising therapeutic approach for treating various diseases, such as genetic disorders, cancers, and viral infections. Diverse nucleic acid delivery systems have been reported, and some, including lipid nanoparticles, have exhibited clinical success. In parallel, bioengineered nucleic acid delivery nanocarriers have also gained significant attention due to their flexible functional design and excellent biocompatibility. In this review, we summarize recent advances in bioengineered nucleic acid delivery nanocarriers, focusing on exosomes, cell membrane-derived nanovesicles, protein nanocages, and virus-like particles. We highlight their unique features, advantages for nucleic acid delivery, and biomedical applications. Furthermore, we discuss the challenges that bioengineered nanocarriers face towards clinical translation and the possible avenues for their further development. This review ultimately underlines the potential of bioengineered nanotechnology for the advancement of nucleic acid therapy.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Luo
- Department of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiran Gui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Eric Schaar
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|