1
|
McMillan SN, Pitts JRT, Barua B, Winkelmann DA, Scarff CA. Mavacamten inhibits myosin activity by stabilising the myosin interacting-heads motif and stalling motor force generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637875. [PMID: 39990378 PMCID: PMC11844505 DOI: 10.1101/2025.02.12.637875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Most sudden cardiac deaths in young people arise from hypertrophic cardiomyopathy, a genetic disease of the heart muscle, with many causative mutations found in the molecular motor beta-cardiac myosin that drives contraction. Therapeutic intervention has until recently been limited to symptomatic relief or invasive procedures. However, small molecule modulators of cardiac myosin are promising therapeutic options to target disease progression. Mavacamten is the first example to gain FDA approval but its molecular mode of action remains unclear, limiting our understanding of its functional effects in disease. To better understand this, we solved the cryoEM structures of beta-cardiac heavy meromyosin in three ADP.Pi-bound states, the primed motor domain in the presence and absence of mavacamten, and the sequestered autoinhibited interacting-heads motif (IHM) in complex with mavacamten, to 2.9 Å, 3.4 Å and 3.7 Å global resolution respectively. Together with quantitative crosslinking mass spectrometric analysis, these structures reveal how mavacamten inhibits myosin. Mavacamten stabilises ADP.Pi binding, stalling the motor domain in a primed state, reducing motor dynamics required for actin-binding cleft closure, and slowing progression through the force generation cycle. Within the two-headed myosin molecule, these effects are propagated and lead to stabilisation of the IHM, through increased contacts at the motor-motor interface. Critically, while mavacamten treatment can thus rescue cardiac muscle relaxation in diastole, it can also reduce contractile output in systole in the heart.
Collapse
Affiliation(s)
- Sean N McMillan
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, Faculty of Medicine and Health, University of Leeds (UoL), UK
- Astbury Centre for Structural Molecular Biology, UoL, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UoL, UK
| | - Jaime R T Pitts
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, Faculty of Medicine and Health, University of Leeds (UoL), UK
- Astbury Centre for Structural Molecular Biology, UoL, UK
| | - Bipasha Barua
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Donald A Winkelmann
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Charlotte A Scarff
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, Faculty of Medicine and Health, University of Leeds (UoL), UK
- Astbury Centre for Structural Molecular Biology, UoL, UK
| |
Collapse
|
2
|
Soundararajan A, Jaysankar K, Doud E, Pasteurin RP, Surma M, Pattabiraman PP. Loss of Cathepsin K impairs collagen biogenesis and enhances actin polymerization in trabecular meshwork. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637394. [PMID: 39990379 PMCID: PMC11844368 DOI: 10.1101/2025.02.10.637394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Trabecular meshwork (TM) dysfunction and extracellular matrix (ECM) dysregulation contribute to increased intraocular pressure (IOP) in primary open-angle glaucoma (POAG). Earlier, we provide a proof-of-concept study identifying the regulation and the role of Cathepsin K (CTSK), a potent collagenase, in ECM homeostasis, actin bundling, and IOP regulation. Better understanding of the loss of CTSK function in TM remains unclear. Using siRNA-mediated knockdown of CTSK (siCTSK) in human TM cells, this study investigated the role of CTSK in actin and ECM homeostasis using an unbiased proteomics approach. Loss of CTSK significantly disrupted collagen biogenesis and ECM homeostasis. CTSK depletion also increased intracellular calcium levels, with proteomics data suggesting possible involvement of calcium-regulatory proteins. Additionally, PRKD1 activation enhanced actin polymerization through the LIMK1/SSH1/cofilin pathway, promoting focal adhesion maturation. Despite increased apoptotic markers (CASP3, CASP7, TRADD, PPM1F), caspase 3/7 activation was not induced, suggesting apoptosis-independent cellular remodeling. Notably, RhoQ and myosin motor proteins were significantly downregulated, indicating altered mechanotransduction in TM cells. These findings highlight the role of CTSK in maintaining ECM homeostasis, calcium signaling, and cytoskeletal regulation in TM. Its depletion induces actin polymerization, which may influence aqueous humor outflow. Targeting CTSK-related pathways may provide novel therapeutic strategies for regulating IOP and preventing glaucoma progression.
Collapse
|
3
|
Olalekan SO, Bakare OO, Okwute PG, Osonuga IO, Adeyanju MM, Edema VB. Hypertrophic cardiomyopathy: insights into pathophysiology and novel therapeutic strategies from clinical studies. Egypt Heart J 2025; 77:5. [PMID: 39776022 PMCID: PMC11706819 DOI: 10.1186/s43044-024-00600-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a frequently encountered cardiac condition worldwide, often inherited, and characterized by intricate phenotypic and genetic manifestations. The natural progression of HCM is diverse, largely due to mutations in the contractile and relaxation proteins of the heart. These mutations disrupt the normal structure and functioning of the heart muscle, particularly affecting genes that encode proteins involved in the contraction and relaxation of cardiac muscle. MAIN BODY This review focused on understanding the role of contractile and relaxation proteins in the pathogenesis of hypertrophic cardiomyopathy. Mutations in contractile proteins such as myosin, actin, tropomyosin, and troponin are associated with hypercontractility and increased sensitivity of the heart muscle, leading to HCM. Additionally, impaired relaxation of the heart muscle, linked to abnormalities in proteins like phospholamban, sarcolipin, titin, myosin binding protein-C, and calsequestrin, contributes significantly to the disease. The review also explored the impact of targeted therapeutic approaches aimed at modulating these proteins to improve patient outcomes. Recent advances in therapeutic strategies, including novel pharmacological agents like mavacamten and aficamten, were examined for their potential to help patients manage the disease and lead more accommodating lifestyles. CONCLUSIONS The review underscored the significance of early diagnosis and personalized treatment approaches in managing HCM. Future research should prioritize the development of robust biomarkers for early detection and risk stratification, particularly in diverse populations, to enhance clinical outcomes. Furthermore, it is imperative to delve deeper into the genetic mutations and molecular mechanisms associated with HCM, with a focus on exploring the roles of less-studied myocardial relaxation proteins and their interactions with sarcomere constituents.
Collapse
Affiliation(s)
- Samuel Oluwadare Olalekan
- Department of Physiology, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria.
| | | | | | - Ifabunmi Oduyemi Osonuga
- Department of Physiology, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria
| | - Muinat Moronke Adeyanju
- Department of Biochemistry, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria
| | - Victoria Biola Edema
- Department of Physiology, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria
| |
Collapse
|
4
|
Li J, Gong G, Zhang Y, Zheng Y, He Y, Chen M, He X, Zheng X, Gong X, Liu L, Zhou K, Zhao Z, Iv CWS, Hua Y, Li Y, Guo J. Polyphenol-Nanoengineered Monocyte Biohybrids for Targeted Cardiac Repair and Immunomodulation. Adv Healthc Mater 2025; 14:e2403595. [PMID: 39526529 DOI: 10.1002/adhm.202403595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Myocardial infarction is one of the leading cause of cardiovascular death worldwide. Invasive interventional procedures and medications are applied to attenuate the attacks associated with ischemic heart disease by reestablishing blood flow and restoring oxygen supply. However, the overactivation of inflammatory responses and unsatisfactory drug delivery efficiency in the infarcted regions prohibit functional improvement. Here, a nanoengineered monocyte (MO)-based biohybrid system, referred to as CTAs @MOs, for the heart-targeted delivery of combinational therapeutic agents (CTAs) containing anti-inflammatory IL-10 and cardiomyogenic miR-19a to overcome the limitation of malperfusion within the infarcted myocardium through a polyphenol-mediated interfacial assembly, is reported. Systemic administration of CTAs@MOs bypasses extensive thoracotomy and intramyocardial administration risks, leading to infarcted heart-specific accumulation and sustained release of therapeutic agents, enabling immunomodulation of the proinflammatory microenvironment and promoting cardiomyocyte proliferation in sequence. Moreover, CTAs@MOs, which serve as a cellular biohybrid-based therapy, significantly improve cardiac function as evidenced by enhanced ejection fractions, increased fractional shortening, and diminished infarct sizes. This polyphenol nanoengineered biohybrid system represents a general and potent platform for the efficient treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Jiawen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Mei Chen
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xianglian He
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xue Gong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - C Wyatt Shields Iv
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Colorado, 80303, USA
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
5
|
Hernandez I, Gobinath C, Padilla AE, Loyola CD, Joddar B. Of cells and tissues: Identifying the elements of a diabetic cardiac in vitro study model. RESEARCH SQUARE 2024:rs.3.rs-5125697. [PMID: 39764116 PMCID: PMC11702775 DOI: 10.21203/rs.3.rs-5125697/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This study aimed to elucidate the impact of advanced glycation end products (AGEs) and glucose shock on cardiomyocyte viability, gene expression, cardiac biomarkers, and cardiac contractility. Firstly, AGEs were generated in-house, and their concentration was confirmed using absorbance measurements. AC16 cardiomyocytes were then exposed to varying doses of AGEs, resulting in dose-dependent decreases in cell viability. The maximum tolerated dose of AGEs was determined, revealing significant downregulation of the cardiac gene gap junction alpha 1 (GJA1). Furthermore, the study assessed the effects of AGEs, glucose shock, and their combination on biomarkers, cardiac myosin heavy chain (MHC), and connexin-43 (Cx-43) in AC16 cells. It was found that AGEs supplementation induced an increase in MHC expression while reducing Cx-43 expression, potentially contributing to cardiac dysfunction. Glucose shock also affected cardiomyocyte contractility, highlighting the complex interplay between AGEs, glucose levels, and cardiac function. Additionally, human iPSC-derived cardiomyocytes were subjected to varying doses of AGEs, revealing dose-dependent cytotoxicity and alterations in contractility. Immunostaining confirmed upregulation of MYH7, a cardiac gene associated with muscle contraction, in response to AGEs. However, the expression of Cx-43 was minimal in these cells. This comprehensive investigation sheds light on the intricate relationship between AGEs, glucose shock, and cardiomyocyte function, providing insights into potential mechanisms underlying cardiac dysfunction associated with metabolic disorders such as diabetic cardiomyopathy (DCM).
Collapse
|
6
|
Morales PN, Coons AN, Koopman AJ, Patel S, Chase PB, Parvatiyar MS, Pinto JR. Post-translational modifications of vertebrate striated muscle myosin heavy chains. Cytoskeleton (Hoboken) 2024; 81:832-842. [PMID: 38587113 PMCID: PMC11458826 DOI: 10.1002/cm.21857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating the function of many sarcomeric proteins, including myosin. Myosins comprise a family of motor proteins that play fundamental roles in cell motility in general and muscle contraction in particular. A myosin molecule consists of two myosin heavy chains (MyHCs) and two pairs of myosin light chains (MLCs); two MLCs are associated with the neck region of each MyHC's N-terminal head domain, while the two MyHC C-terminal tails form a coiled-coil that polymerizes with other MyHCs to form the thick filament backbone. Myosin undergoes extensive PTMs, and dysregulation of these PTMs may lead to abnormal muscle function and contribute to the development of myopathies and cardiovascular disorders. Recent studies have uncovered the significance of PTMs in regulating MyHC function and showed how these PTMs may provide additional modulation of contractile processes. Here, we discuss MyHC PTMs that have been biochemically and/or functionally studied in mammals' and rodents' striated muscle. We have identified hotspots or specific regions in three isoforms of myosin (MYH2, MYH6, and MYH7) where the prevalence of PTMs is more frequent and could potentially play a significant role in fine-tuning the activity of these proteins.
Collapse
Affiliation(s)
- Paula Nieto Morales
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| | - Arianna N. Coons
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Amelia J. Koopman
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Sonu Patel
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Michelle S. Parvatiyar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| |
Collapse
|
7
|
Teranikar T, Saeed S, Le TV, Kang Y, Hernandez G, Nguyen P, Ding Y, Chuong CJ, Lee JY, Ko H, Lee J. Automated cell tracking using 3D nnUnet and Light Sheet Microscopy to quantify regional deformation in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621759. [PMID: 39574652 PMCID: PMC11580962 DOI: 10.1101/2024.11.04.621759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Light Sheet Microscopy (LSM) in conjunction with embryonic zebrafish, is rapidly advancing three-dimensional, in vivo characterization of myocardial contractility. Preclinical cardiac deformation imaging is predominantly restricted to a low-order dimensionality image space (2i) or suffers from poor reproducibility. In this regard, LSM has enabled high throughput, non-invasive 4i (3d+time) characterization of dynamic organogenesis within the transparent zebrafish model. More importantly, LSM offers cellular resolution across large imaging Field-of-Views at millisecond camera frame rates, enabling single cell localization for global cardiac deformation analysis. However, manual labeling of cells within multilayered tissue is a time-consuming task and requires substantial expertise. In this study, we applied the 3i nnU-Net with Linear Assignment Problem (LAP) framework for automated segmentation and tracking of myocardial cells. Using binarized labels from the neural network, we quantified myocardial deformation of the zebrafish ventricle across 4-6 days post fertilization (dpf). Our study offers tremendous promise for developing highly scalable and disease-specific biomechanical quantification of myocardial microstructures.
Collapse
Affiliation(s)
- Tanveer Teranikar
- Joint Department of Bioengineering at UT Arlington/UT Southwestern, TX, USA
| | - Saad Saeed
- Joint Department of Bioengineering at UT Arlington/UT Southwestern, TX, USA
| | | | | | - Gilberto Hernandez
- Joint Department of Bioengineering at UT Arlington/UT Southwestern, TX, USA
| | - Phuc Nguyen
- Joint Department of Bioengineering at UT Arlington/UT Southwestern, TX, USA
| | | | - Cheng-Jen Chuong
- Joint Department of Bioengineering at UT Arlington/UT Southwestern, TX, USA
| | | | | | - Juhyun Lee
- Joint Department of Bioengineering at UT Arlington/UT Southwestern, TX, USA
| |
Collapse
|
8
|
Scott B, Greenberg L, Squarci C, Campbell KS, Greenberg MJ. Danicamtiv reduces myosin's working stroke but enhances contraction by activating the thin filament. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617269. [PMID: 39416013 PMCID: PMC11482770 DOI: 10.1101/2024.10.09.617269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Heart failure is a leading cause of death worldwide, and even with current treatments, the 5-year transplant-free survival rate is only ~50-70%. As such, there is a need to develop new treatments for patients that improve survival and quality of life. Recently, there have been efforts to develop small molecules for heart failure that directly target components of the sarcomere, including cardiac myosin. One such molecule, danicamtiv, recently entered phase II clinical trials; however, its mechanism of action and direct effects on myosin's mechanics and kinetics are not well understood. Using optical trapping techniques, stopped flow transient kinetics, and in vitro reconstitution assays, we found that danicamtiv reduces the size of cardiac myosin's working stroke, and in contrast to studies in muscle fibers, we found that it does not affect actomyosin detachment kinetics at the level of individual crossbridges. We demonstrate that danicamtiv accelerates actomyosin association kinetics, leading to increased recruitment of myosin crossbridges and subsequent thin filament activation at physiologically-relevant calcium concentrations. Finally, we computationally model how the observed changes in mechanics and kinetics at the level of single crossbridges contribute to increased cardiac contraction and improved diastolic function compared to the related myotrope, omecamtiv mecarbil. Taken together, our results have important implications for the design of new sarcomeric-targeting compounds for heart failure.
Collapse
Affiliation(s)
- Brent Scott
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Caterina Squarci
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
9
|
Sigle M, Rohlfing AK, Cruz Santos M, Kopp T, Krutzke K, Gidlund V, Kollotzek F, Marzi J, von Ungern-Sternberg S, Poso A, Heikenwälder M, Schenke-Layland K, Seizer P, Möllmann J, Marx N, Feil R, Feil S, Lukowski R, Borst O, Schäffer TE, Müller KAL, Gawaz MP, Heinzmann D. Targeting Cyclophilin A in the Cardiac Microenvironment Preserves Heart Function and Structure in Failing Hearts. Circ Res 2024; 135:758-773. [PMID: 39140165 DOI: 10.1161/circresaha.124.324812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Cardiac hypertrophy is characterized by remodeling of the myocardium, which involves alterations in the ECM (extracellular matrix) and cardiomyocyte structure. These alterations critically contribute to impaired contractility and relaxation, ultimately leading to heart failure. Emerging evidence implicates that extracellular signaling molecules are critically involved in the pathogenesis of cardiac hypertrophy and remodeling. The immunophilin CyPA (cyclophilin A) has been identified as a potential culprit. In this study, we aimed to unravel the interplay between eCyPA (extracellular CyPA) and myocardial dysfunction and evaluate the therapeutic potential of inhibiting its extracellular accumulation to improve heart function. METHODS Employing a multidisciplinary approach encompassing in silico, in vitro, in vivo, and ex vivo experiments we studied a mouse model of cardiac hypertrophy and human heart specimen to decipher the interaction of CyPA and the cardiac microenvironment in highly relevant pre-/clinical settings. Myocardial expression of CyPA (immunohistology) and the inflammatory transcriptome (NanoString) was analyzed in human cardiac tissue derived from patients with nonischemic, noninflammatory congestive heart failure (n=187). These analyses were paralleled by a mouse model of Ang (angiotensin) II-induced heart failure, which was assessed by functional (echocardiography), structural (immunohistology, atomic force microscopy), and biomolecular (Raman spectroscopy) analyses. The effect of inhibiting eCyPA in the cardiac microenvironment was evaluated using a newly developed neutralizing anti-eCyPA monoclonal antibody. RESULTS We observed a significant accumulation of eCyPA in both human and murine-failing hearts. Importantly, higher eCyPA expression was associated with poor clinical outcomes in patients (P=0.043) and contractile dysfunction in mice (Pearson correlation coefficient, -0.73). Further, myocardial expression of eCyPA was critically associated with an increase in myocardial hypertrophy, inflammation, fibrosis, stiffness, and cardiac dysfunction in vivo. Antibody-based inhibition of eCyPA prevented (Ang II)-induced myocardial remodeling and dysfunction in mice. CONCLUSIONS Our study provides strong evidence of the pathogenic role of eCyPA in remodeling, myocardial stiffening, and dysfunction in heart failure. The findings suggest that antibody-based inhibition of eCyPA may offer a novel therapeutic strategy for nonischemic heart failure. Further research is needed to evaluate the translational potential of these interventions in human patients with cardiac hypertrophy.
Collapse
Affiliation(s)
- Manuel Sigle
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| | - Melanie Cruz Santos
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy (M.C.S., R.L.), University of Tübingen, Germany
| | - Timo Kopp
- Interfaculty Institute of Biochemistry (IFIB) (T.K., R.F., S.F.), University of Tübingen, Germany
| | - Konstantin Krutzke
- Institute for Applied Physics (K.K., V.G., T.E.S.), University of Tübingen, Germany
| | - Vincent Gidlund
- Interfaculty Institute of Biochemistry (IFIB) (T.K., R.F., S.F.), University of Tübingen, Germany
- Institute for Applied Physics (K.K., V.G., T.E.S.), University of Tübingen, Germany
| | - Ferdinand Kollotzek
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
- DFG Heisenberg Group Cardiovascular Thrombo-Inflammation and Translational Thrombocardiology (F.K., O.B.), University of Tübingen, Germany
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine (J. Marzi, K.S.-L.), Eberhard Karls University Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," (J. Marzi, A.P., K.S.-L.), University of Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen Reutlingen, Germany (J. Marzi, K.S.-L.)
| | - Saskia von Ungern-Sternberg
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
- Now with Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Germany (S.U.-S.)
| | - Antti Poso
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," (J. Marzi, A.P., K.S.-L.), University of Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland Kuopio (A.P.)
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität Tübingen, Germany (A.P.)
- Tübingen Center for Academic Drug Discovery and Development (TüCAD2), Tübingen, Germany (A.P.)
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Centre Heidelberg (DKFZ), Germany (M.H.)
- University Tübingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome (M.H.)
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine (J. Marzi, K.S.-L.), Eberhard Karls University Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," (J. Marzi, A.P., K.S.-L.), University of Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen Reutlingen, Germany (J. Marzi, K.S.-L.)
| | - Peter Seizer
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
- Now with Aalen, Germany (P.S.)
| | - Julia Möllmann
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Germany (J. Möllmann, N.M.)
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Germany (J. Möllmann, N.M.)
| | - Robert Feil
- Interfaculty Institute of Biochemistry (IFIB) (T.K., R.F., S.F.), University of Tübingen, Germany
| | - Susanne Feil
- Interfaculty Institute of Biochemistry (IFIB) (T.K., R.F., S.F.), University of Tübingen, Germany
| | - Robert Lukowski
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy (M.C.S., R.L.), University of Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
- DFG Heisenberg Group Cardiovascular Thrombo-Inflammation and Translational Thrombocardiology (F.K., O.B.), University of Tübingen, Germany
| | - Tilman E Schäffer
- Institute for Applied Physics (K.K., V.G., T.E.S.), University of Tübingen, Germany
| | - Karin Anne Lydia Müller
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| | - Meinrad P Gawaz
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| | - David Heinzmann
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| |
Collapse
|
10
|
Yi X, Qin H, Li G, Kong R, Liu C. Isomer-specific cardiotoxicity induced by tricresyl phosphate in zebrafish embryos/larvae. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134753. [PMID: 38823104 DOI: 10.1016/j.jhazmat.2024.134753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Tricresyl phosphate (TCP) has received extensive attentions due to its potential adverse effects, while the toxicological information of TCP isomers is limited. In this study, 2 h post-fertilization zebrafish embryos were exposed to tri-o-cresyl phosphate (ToCP), tri-m-cresyl phosphate (TmCP) or tri-p-cresyl phosphate (TpCP) at concentrations of 0, 100, 300 and 600 μg/L until 120 hpf, and the cardiotoxicity and mechanism of TCP isomers in zebrafish embryos/larvae were evaluated. The results showed that ToCP or TmCP exposure induced cardiac morphological defects and dysfunction in zebrafish, characterized by increased distance between sinus venosus and bulbus arteriosis, increased atrium and pericardial sac area, trabecular defects, and decreased heart rate and blood flow velocity, while no adverse effects of TpCP on zebrafish heart were found. Transcriptomic results revealed that extracellular matrix (ECM) and motor proteins, as well as PPAR signaling pathways, were included in the cardiac morphological defects and dysfunction induced by ToCP and TmCP. Co-exposure test with D-mannitol indicated that the inhibition of energy metabolism by ToCP and TmCP affected cardiac morphology and function by decreasing osmoregulation. This study is the first to report the cardiotoxicity induced by TCP in zebrafish from an isomer perspective, providing a new insight into the toxicity of TCP isomers and highlighting the importance of evaluating the toxicity of different isomers.
Collapse
Affiliation(s)
- Xun'e Yi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyu Qin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Kong
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Chunsheng Liu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
11
|
Sharma J, Bhargava P, Mishra P, Bhatia J, Arya DS. Molecular mechanisms of flavonoids in myocardial ischemia reperfusion injury: Evidence from in-vitro and in-vivo studies. Vascul Pharmacol 2024; 155:107378. [PMID: 38729253 DOI: 10.1016/j.vph.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVES Flavonoids are polyphenolic compounds found in a wide range of foods, including fruits, vegetables, tea plants, and other natural products. They have been mainly classified as flavanols, flavonols, flavones, isoflavones, flavanones, and flavanonols. In this comprehensive review, we will discuss preclinical pieces of evidence on the potential of flavonoids for the prevention/treatment of myocardial ischemia-reperfusion (IR) injury. KEY FINDINGS In-vitro and in-vivo studies have shown that flavonoids play an important role in preventing ischemic heart disease (IHD). They possess strong anti-oxidant, anti-inflammatory, anti-bacterial, anti-thrombotic, anti-apoptotic, and anti-carcinogenic activities. In addition, at a molecular level, flavonoids also modulate various pathways like MAPK, NFκB etc. to confer beneficial effects. SUMMARY The current review of flavonoids in myocardial ischemia-reperfusion injury furnishes updated information that could drive future research. The in-vitro and in-vivo experiments have demonstrated various favourable pharmacological properties of flavonoids. This review provides valuable information to conduct clinical studies, validating the safety aspects of flavonoids in the clinical domain.
Collapse
Affiliation(s)
- Jatin Sharma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Poorva Bhargava
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Prashant Mishra
- Armed Forces Medical College, Pune, Maharashtra 411040, India
| | - Jagriti Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
12
|
Bravo-Olín J, Martínez-Carreón SA, Francisco-Solano E, Lara AR, Beltran-Vargas NE. Analysis of the role of perfusion, mechanical, and electrical stimulation in bioreactors for cardiac tissue engineering. Bioprocess Biosyst Eng 2024; 47:767-839. [PMID: 38643271 DOI: 10.1007/s00449-024-03004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/13/2024] [Indexed: 04/22/2024]
Abstract
Since cardiovascular diseases (CVDs) are globally one of the leading causes of death, of which myocardial infarction (MI) can cause irreversible damage and decrease survivors' quality of life, novel therapeutics are needed. Current approaches such as organ transplantation do not fully restore cardiac function or are limited. As a valuable strategy, tissue engineering seeks to obtain constructs that resemble myocardial tissue, vessels, and heart valves using cells, biomaterials as scaffolds, biochemical and physical stimuli. The latter can be induced using a bioreactor mimicking the heart's physiological environment. An extensive review of bioreactors providing perfusion, mechanical and electrical stimulation, as well as the combination of them is provided. An analysis of the stimulations' mechanisms and modes that best suit cardiac construct culture is developed. Finally, we provide insights into bioreactor configuration and culture assessment properties that need to be elucidated for its clinical translation.
Collapse
Affiliation(s)
- Jorge Bravo-Olín
- Biological Engineering Undergraduate Program, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Sabina A Martínez-Carreón
- Biological Engineering Undergraduate Program, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Emmanuel Francisco-Solano
- Natural Science and Engineering Graduate Program, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Alvaro R Lara
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Nohra E Beltran-Vargas
- Process and Technology Department, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México.
| |
Collapse
|
13
|
Zupcic A, Latic N, Oubounyt M, Ramesova A, Carmeliet G, Baumbach J, Elkjaer ML, Erben RG. Ablation of Vitamin D Signaling in Cardiomyocytes Leads to Functional Impairment and Stimulation of Pro-Inflammatory and Pro-Fibrotic Gene Regulatory Networks in a Left Ventricular Hypertrophy Model in Mice. Int J Mol Sci 2024; 25:5929. [PMID: 38892126 PMCID: PMC11172934 DOI: 10.3390/ijms25115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The association between vitamin D deficiency and cardiovascular disease remains a controversial issue. This study aimed to further elucidate the role of vitamin D signaling in the development of left ventricular (LV) hypertrophy and dysfunction. To ablate the vitamin D receptor (VDR) specifically in cardiomyocytes, VDRfl/fl mice were crossed with Mlcv2-Cre mice. To induce LV hypertrophy experimentally by increasing cardiac afterload, transverse aortic constriction (TAC) was employed. Sham or TAC surgery was performed in 4-month-old, male, wild-type, VDRfl/fl, Mlcv2-Cre, and cardiomyocyte-specific VDR knockout (VDRCM-KO) mice. As expected, TAC induced profound LV hypertrophy and dysfunction, evidenced by echocardiography, aortic and cardiac catheterization, cardiac histology, and LV expression profiling 4 weeks post-surgery. Sham-operated mice showed no differences between genotypes. However, TAC VDRCM-KO mice, while having comparable cardiomyocyte size and LV fibrosis to TAC VDRfl/fl controls, exhibited reduced fractional shortening and ejection fraction as measured by echocardiography. Spatial transcriptomics of heart cryosections revealed more pronounced pro-inflammatory and pro-fibrotic gene regulatory networks in the stressed cardiac tissue niches of TAC VDRCM-KO compared to VDRfl/fl mice. Hence, our study supports the notion that vitamin D signaling in cardiomyocytes plays a protective role in the stressed heart.
Collapse
MESH Headings
- Animals
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Mice
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/pathology
- Receptors, Calcitriol/metabolism
- Receptors, Calcitriol/genetics
- Vitamin D/metabolism
- Gene Regulatory Networks
- Fibrosis
- Signal Transduction
- Male
- Disease Models, Animal
- Mice, Knockout
- Inflammation/metabolism
- Inflammation/genetics
- Inflammation/pathology
Collapse
Affiliation(s)
- Ana Zupcic
- Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (A.Z.); (N.L.); (A.R.)
| | - Nejla Latic
- Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (A.Z.); (N.L.); (A.R.)
| | - Mhaned Oubounyt
- Institute for Computational Systems Biology, University of Hamburg, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany; (J.B.); (M.L.E.)
| | - Alice Ramesova
- Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (A.Z.); (N.L.); (A.R.)
| | - Geert Carmeliet
- Department of Chronic Diseases, Metabolism and Ageing, 3000 Leuven, Belgium;
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany; (J.B.); (M.L.E.)
| | - Maria L. Elkjaer
- Institute for Computational Systems Biology, University of Hamburg, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany; (J.B.); (M.L.E.)
| | - Reinhold G. Erben
- Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (A.Z.); (N.L.); (A.R.)
- Ludwig Boltzmann Institute of Osteology, Heinrich-Collin-Strasse 30, 1140 Vienna, Austria
| |
Collapse
|
14
|
Chakraborti A, Tardiff JC, Schwartz SD. Myosin-Catalyzed ATP Hydrolysis in the Presence of Disease-Causing Mutations: Mavacamten as a Way to Repair Mechanism. J Phys Chem B 2024; 128:4716-4727. [PMID: 38708944 PMCID: PMC11103257 DOI: 10.1021/acs.jpcb.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Hypertrophic cardiomyopathy is one of the most common forms of genetic cardiomyopathy. Mavacamten is a first-in-class myosin modulator that was identified via activity screening on the wild type, and it is FDA-approved for the treatment of obstructive hypertrophic cardiomyopathy (HCM). The drug selectively binds to the cardiac β-myosin, inhibiting myosin function to decrease cardiac contractility. Though the drug is thought to affect multiple steps of the myosin cross-bridge cycle, its detailed mechanism of action is still under investigation. Individual steps in the overall cross-bridge cycle must be queried to elucidate the full mechanism of action. In this study, we utilize the rare-event method of transition path sampling to generate reactive trajectories to gain insights into the action of the drug on the dynamics and rate of the ATP hydrolysis step for human cardiac β-myosin. We study three known HCM causative myosin mutations: R453C, P710R, and R712L to observe the effect of the drug on the alterations caused by these mutations in the chemical step. Since the crystal structure of the drug-bound myosin was not available at the time of this work, we created a model of the drug-bound system utilizing a molecular docking approach. We find a significant effect of the drug in one case, where the actual mechanism of the reaction is altered from the wild type by mutation. The drug restores both the rate of hydrolysis to the wildtype level and the mechanism of the reaction. This is a way to check the effect of the drug on untested mutations.
Collapse
Affiliation(s)
- Ananya Chakraborti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85724, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
15
|
Greenberg L, Tom Stump W, Lin Z, Bredemeyer AL, Blackwell T, Han X, Greenberg AE, Garcia BA, Lavine KJ, Greenberg MJ. Harnessing molecular mechanism for precision medicine in dilated cardiomyopathy caused by a mutation in troponin T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588306. [PMID: 38645235 PMCID: PMC11030379 DOI: 10.1101/2024.04.05.588306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Familial dilated cardiomyopathy (DCM) is frequently caused by autosomal dominant point mutations in genes involved in diverse cellular processes, including sarcomeric contraction. While patient studies have defined the genetic landscape of DCM, genetics are not currently used in patient care, and patients receive similar treatments regardless of the underlying mutation. It has been suggested that a precision medicine approach based on the molecular mechanism of the underlying mutation could improve outcomes; however, realizing this approach has been challenging due to difficulties linking genotype and phenotype and then leveraging this information to identify therapeutic approaches. Here, we used multiscale experimental and computational approaches to test whether knowledge of molecular mechanism could be harnessed to connect genotype, phenotype, and drug response for a DCM mutation in troponin T, deletion of K210. Previously, we showed that at the molecular scale, the mutation reduces thin filament activation. Here, we used computational modeling of this molecular defect to predict that the mutant will reduce cellular and tissue contractility, and we validated this prediction in human cardiomyocytes and engineered heart tissues. We then used our knowledge of molecular mechanism to computationally model the effects of a small molecule that can activate the thin filament. We demonstrate experimentally that the modeling correctly predicts that the small molecule can partially rescue systolic dysfunction at the expense of diastolic function. Taken together, our results demonstrate how molecular mechanism can be harnessed to connect genotype and phenotype and inspire strategies to optimize mechanism-based therapeutics for DCM.
Collapse
Affiliation(s)
- Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - W. Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrea L. Bredemeyer
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thomas Blackwell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xian Han
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Akiva E. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kory J. Lavine
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
16
|
Li M, Hu Y, Wang Q. Exploring the Super-Relaxed State of Human Cardiac β-Myosin by Molecular Dynamics Simulations. J Phys Chem B 2024; 128:3113-3120. [PMID: 38516963 DOI: 10.1021/acs.jpcb.3c07956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Human β-cardiac myosin plays a critical role in generating the mechanical forces necessary for cardiac muscle contraction. This process relies on a delicate dynamic equilibrium between the disordered relaxed state (DRX) and the super-relaxed state (SRX) of myosin. Disruptions in this equilibrium due to mutations can lead to heart diseases. However, the structural characteristics of SRX and the molecular mechanisms underlying pathogenic mutations have remained elusive. To bridge this gap, we conducted molecular dynamics simulations and free energy calculations to explore the conformational changes in myosin. Our findings indicate that the size of the phosphate-binding pocket can serve as a valuable metric for characterizing the transition from the DRX to SRX state. Importantly, we established a global dynamic coupling network within the myosin motor head at the residue level, elucidating how the pathogenic mutation E483K impacts the equilibrium between SRX and DRX through allosteric effects. Our work illuminates molecular details of SRX and offers valuable insights into disease treatment through the regulation of SRX.
Collapse
Affiliation(s)
- Mingwei Li
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Hu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qian Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
17
|
Garg A, Lavine KJ, Greenberg MJ. Assessing Cardiac Contractility From Single Molecules to Whole Hearts. JACC Basic Transl Sci 2024; 9:414-439. [PMID: 38559627 PMCID: PMC10978360 DOI: 10.1016/j.jacbts.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 04/04/2024]
Abstract
Fundamentally, the heart needs to generate sufficient force and power output to dynamically meet the needs of the body. Cardiomyocytes contain specialized structures referred to as sarcomeres that power and regulate contraction. Disruption of sarcomeric function or regulation impairs contractility and leads to cardiomyopathies and heart failure. Basic, translational, and clinical studies have adapted numerous methods to assess cardiac contraction in a variety of pathophysiological contexts. These tools measure aspects of cardiac contraction at different scales ranging from single molecules to whole organisms. Moreover, these studies have revealed new pathogenic mechanisms of heart disease leading to the development of novel therapies targeting contractility. In this review, the authors explore the breadth of tools available for studying cardiac contractile function across scales, discuss their strengths and limitations, highlight new insights into cardiac physiology and pathophysiology, and describe how these insights can be harnessed for therapeutic candidate development and translational.
Collapse
Affiliation(s)
- Ankit Garg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Cao J, Wei Z, Nie Y, Chen HZ. Therapeutic potential of alternative splicing in cardiovascular diseases. EBioMedicine 2024; 101:104995. [PMID: 38350330 PMCID: PMC10874720 DOI: 10.1016/j.ebiom.2024.104995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
RNA splicing is an important RNA processing step required by multiexon protein-coding mRNAs and some noncoding RNAs. Precise RNA splicing is required for maintaining gene and cell function; however, mis-spliced RNA transcripts can lead to loss- or gain-of-function effects in human diseases. Mis-spliced RNAs induced by gene mutations or the dysregulation of splicing regulators may result in frameshifts, nonsense-mediated decay (NMD), or inclusion/exclusion of exons. Genetic animal models have characterised multiple splicing factors required for cardiac development or function. Moreover, sarcomeric and ion channel genes, which are closely associated with cardiovascular function and disease, are hotspots for AS. Here, we summarise splicing factors and their targets that are associated with cardiovascular diseases, introduce some therapies potentially related to pathological AS targets, and raise outstanding questions and future directions in this field.
Collapse
Affiliation(s)
- Jun Cao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China; University of Texas Medical Branch at Galveston, TX, 77555, USA
| | - Ziyu Wei
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
19
|
Chen L, Liu J, Rastegarpouyani H, Janssen PML, Pinto JR, Taylor KA. Structure of mavacamten-free human cardiac thick filaments within the sarcomere by cryoelectron tomography. Proc Natl Acad Sci U S A 2024; 121:e2311883121. [PMID: 38386705 PMCID: PMC10907299 DOI: 10.1073/pnas.2311883121] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Heart muscle has the unique property that it can never rest; all cardiomyocytes contract with each heartbeat which requires a complex control mechanism to regulate cardiac output to physiological requirements. Changes in calcium concentration regulate the thin filament activation. A separate but linked mechanism regulates the thick filament activation, which frees sufficient myosin heads to bind the thin filament, thereby producing the required force. Thick filaments contain additional nonmyosin proteins, myosin-binding protein C and titin, the latter being the protein that transmits applied tension to the thick filament. How these three proteins interact to control thick filament activation is poorly understood. Here, we show using 3-D image reconstruction of frozen-hydrated human cardiac muscle myofibrils lacking exogenous drugs that the thick filament is structured to provide three levels of myosin activation corresponding to the three crowns of myosin heads in each 429Å repeat. In one crown, the myosin heads are almost completely activated and disordered. In another crown, many myosin heads are inactive, ordered into a structure called the interacting heads motif. At the third crown, the myosin heads are ordered into the interacting heads motif, but the stability of that motif is affected by myosin-binding protein C. We think that this hierarchy of control explains many of the effects of length-dependent activation as well as stretch activation in cardiac muscle control.
Collapse
Affiliation(s)
- Liang Chen
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT06516
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Hosna Rastegarpouyani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Paul M. L. Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH43210
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State College of Medicine, Florida State University, Tallahassee, FL32306
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| |
Collapse
|
20
|
Stein AP, Harder J, Holmes HR, Merz CNB, Pepine CJ, Keeley EC. Single Nucleotide Polymorphisms in Coronary Microvascular Dysfunction. J Am Heart Assoc 2024; 13:e032137. [PMID: 38348798 PMCID: PMC11010085 DOI: 10.1161/jaha.123.032137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
Coronary microvascular dysfunction is an underdiagnosed pathologic process that is associated with adverse clinical outcomes. There are data to suggest that coronary microvascular dysfunction, in some cases, may be genetically determined. We present an updated review of single nucleotide polymorphisms in coronary microvascular dysfunction.
Collapse
Affiliation(s)
| | | | | | - C. Noel Bairey Merz
- Barbra Streisand Women’s Heart CenterSmidt Heart Institute, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Carl J. Pepine
- Department of MedicineUniversity of FloridaGainesvilleFLUSA
- Division of Cardiovascular MedicineUniversity of FloridaGainesvilleFLUSA
| | - Ellen C. Keeley
- Department of MedicineUniversity of FloridaGainesvilleFLUSA
- Division of Cardiovascular MedicineUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
21
|
Marghany F, Ayobahan SU, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Transcriptomic and proteomic fingerprints induced by the fungicides difenoconazole and metalaxyl in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104348. [PMID: 38135202 DOI: 10.1016/j.etap.2023.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
In this study, we applied OMICs analysis to identify substance-specific biomarker candidates, which may act as early indicators for specific ecotoxic modes of actions (MoA). Zebrafish embryos were exposed to two sublethal concentrations of difenoconazole and metalaxyl according to a modified protocol of the OECD test guideline No. 236. At the end of exposure, total RNA and protein were extracted, followed by transcriptomics and proteomics analysis. The analysis of significantly differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) revealed a positive exposure-response correlation in all test concentrations for both fungicides. Similarly, also a positive correlation between the obtained transcriptome and proteome data was observed, highlighting the robustness of our approach. From the detected DEGs, candidate biomarkers specific for difenoconazole (apoa1b, gatm, mylpfb and acta1b) and metalaxyl (lgals2b, abat, fabp1b.1 and myh9a) were selected, and their biological functions were discussed to assess the predictive potential.
Collapse
Affiliation(s)
- Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
22
|
Zhou KZ, Wu PF, Ling XZ, Zhang J, Wang QF, Zhang XC, Xue Q, Zhang T, Han W, Zhang GX. miR-460b-5p promotes proliferation and differentiation of chicken myoblasts and targets RBM19 gene. Poult Sci 2024; 103:103231. [PMID: 37980764 PMCID: PMC10685028 DOI: 10.1016/j.psj.2023.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/20/2023] [Indexed: 11/21/2023] Open
Abstract
The meat production of broilers is crucial to economic benefits of broiler industries, while the slaughter performance of broilers is directly determined by skeletal muscle development. Hence, the broiler breeding for growth traits shows a great importance. As a kind of small noncoding RNA, microRNA (miRNA) can regulate the expression of multiple genes and perform a wide range of regulation in organisms. Currently, more and more studies have confirmed that miRNAs are closely associated with skeletal muscle development of chickens. Based on our previous miR-seq analysis (accession number: PRJNA668199), miR-460b-5p was screened as one of the key miRNAs probably involved in the growth regulation of chickens. However, the regulatory effect of miR-460b-5p on the development of chicken skeletal muscles is still unclear. Therefore, miR-460b-5p was further used for functional validation at the cellular level in this study. The expression pattern of miR-460b-5p was investigated in proliferation and differentiation stages of chicken primary myoblasts. It was showed that the expression level of miR-460b-5p gradually decreased from the proliferation stage (GM 50%) to the lowest at 24 h of differentiation. As differentiation proceeded, miR-460b-5p expression increased significantly, reaching the highest and stabilizing at 72 h and 96 h of differentiation. Through mRNA quantitative analysis of proliferation marker genes, CCK-8 and Edu assays, miR-460b-5p was found to significantly facilitate the transition of myoblasts from G1 to S phase and promote chicken myoblast proliferation. mRNA and protein quantitative analysis of differentiation marker genes, as well as the indirect immunofluorescence results of myotubes, revealed that miR-460b-5p significantly stimulated myotube development and promote chicken myoblast differentiation. In addition, the target relationship was validated for miR-460b-5p according to the dual-luciferase reporter assay and mRNA quantitative analysis, which indicates that miR-460b-5p was able to regulate RBM19 expression by specifically binding to the 3' UTR of RBM19. In summary, miR-460b-5p has positive regulatory effects on the proliferation and differentiation of chicken myoblasts, and RBM19 is a target gene of miR-460b-5p.
Collapse
Affiliation(s)
- Kai-Zhi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Peng-Fei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xuan-Ze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qi-Fan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xin-Chao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qian Xue
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Gen-Xi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
23
|
Scott B, Greenberg MJ. Multiscale biophysical models of cardiomyopathies reveal complexities challenging existing dogmas. Biophys J 2023; 122:4632-4634. [PMID: 38006882 PMCID: PMC10754685 DOI: 10.1016/j.bpj.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023] Open
Abstract
Mutations in sarcomeric proteins, including myosin, cause a variety of cardiomyopathies. A prominent hypothesis has been that myosin mutations causing hypercontractility of the motor lead to hypertrophic cardiomyopathy, while those causing hypocontractility lead to dilated cardiomyopathy; however, recent biophysical studies using multiscale computational and experimental models have revealed complexities not captured by this hypothesis. We summarize recent publications in Biophysical Journal challenging this dogma and highlighting the need for multiscale modeling of these complex diseases.
Collapse
Affiliation(s)
- Brent Scott
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
24
|
Lee MMY, Masri A. Differentiating Cardiac Troponin Levels During Cardiac Myosin Inhibition or Cardiac Myosin Activation Treatments: Drug Effect or the Canary in the Coal Mine? Curr Heart Fail Rep 2023; 20:504-518. [PMID: 37875744 PMCID: PMC10746589 DOI: 10.1007/s11897-023-00620-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 10/26/2023]
Abstract
PURPOSE OF REVIEW Cardiac myosin inhibitors (CMIs) and activators are emerging therapies for hypertrophic cardiomyopathy (HCM) and heart failure with reduced ejection fraction (HFrEF), respectively. However, their effects on cardiac troponin levels, a biomarker of myocardial injury, are incompletely understood. RECENT FINDINGS In patients with HCM, CMIs cause substantial reductions in cardiac troponin levels which are reversible after stopping treatment. In patients with HFrEF, cardiac myosin activator (omecamtiv mecarbil) therapy cause modest increases in cardiac troponin levels which are reversible following treatment cessation and not associated with myocardial ischaemia or infarction. Transient changes in cardiac troponin levels might reflect alterations in cardiac contractility and mechanical stress. Such transient changes might not indicate cardiac injury and do not appear to be associated with adverse outcomes in the short to intermediate term. Longitudinal changes in troponin levels vary depending on the population and treatment. Further research is needed to elucidate mechanisms underlying changes in troponin levels.
Collapse
Affiliation(s)
- Matthew M Y Lee
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.
| | - Ahmad Masri
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
25
|
Tamborrini D, Wang Z, Wagner T, Tacke S, Stabrin M, Grange M, Kho AL, Rees M, Bennett P, Gautel M, Raunser S. Structure of the native myosin filament in the relaxed cardiac sarcomere. Nature 2023; 623:863-871. [PMID: 37914933 PMCID: PMC10665186 DOI: 10.1038/s41586-023-06690-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
The thick filament is a key component of sarcomeres, the basic units of striated muscle1. Alterations in thick filament proteins are associated with familial hypertrophic cardiomyopathy and other heart and muscle diseases2. Despite the central importance of the thick filament, its molecular organization remains unclear. Here we present the molecular architecture of native cardiac sarcomeres in the relaxed state, determined by cryo-electron tomography. Our reconstruction of the thick filament reveals the three-dimensional organization of myosin, titin and myosin-binding protein C (MyBP-C). The arrangement of myosin molecules is dependent on their position along the filament, suggesting specialized capacities in terms of strain susceptibility and force generation. Three pairs of titin-α and titin-β chains run axially along the filament, intertwining with myosin tails and probably orchestrating the length-dependent activation of the sarcomere. Notably, whereas the three titin-α chains run along the entire length of the thick filament, titin-β chains do not. The structure also demonstrates that MyBP-C bridges thin and thick filaments, with its carboxy-terminal region binding to the myosin tails and directly stabilizing the OFF state of the myosin heads in an unforeseen manner. These results provide a foundation for future research investigating muscle disorders involving sarcomeric components.
Collapse
Affiliation(s)
- Davide Tamborrini
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Zhexin Wang
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sebastian Tacke
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Markus Stabrin
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Michael Grange
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
| | - Ay Lin Kho
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Martin Rees
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Pauline Bennett
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
26
|
Soares LL, Leite LB, Ervilha LOG, Pelozin BRA, Pereira NP, da Silva BAF, Portes AMO, Drummond FR, de Rezende LMT, Fernandes T, Oliveira EM, Neves MM, Reis ECC, Natali AJ. Resistance exercise training benefits pulmonary, cardiac, and muscular structure and function in rats with stable pulmonary artery hypertension. Life Sci 2023; 332:122128. [PMID: 37769805 DOI: 10.1016/j.lfs.2023.122128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
AIM We tested the effects of low- to moderate-intensity resistance exercise training (RT) on the structure and function of pulmonary, right ventricle (RV), and skeletal muscle tissues in rats with stable pulmonary artery hypertension (PAH). MAIN METHODS After the first monocrotaline (MCT; 20 mg/kg) injection, male rats were submitted to a RT program (Ladder climbing; 55-65 % intensity), 5 times/week. Seven days later rats received the second MCT dose. Physical effort tolerance test and echocardiographic examination were performed. After euthanasia, lung, heart, and biceps brachii were processed for histological, single myocyte, and biochemical analysis. KEY FINDINGS RT improved survival and physical effort tolerance (i.e., maximum carrying load), mitigated the pulmonary artery resistance increase (i.e., TA/TE), and preserved cardiac function (i.e., fractional shortening, ejection fraction, stroke volume and TAPSE). RT counteracted oxidative stress (i.e., CAT, SOD, GST, MDA and NO) and adverse remodeling in lung (i.e., collapsed alveoli) and in biceps brachii (i.e., atrophy and total collagen) tissues. RT delayed RV adverse remodeling (i.e., hypertrophy, extracellular matrix, collagen types I and III, and fibrosis) and impairments in single RV myocyte contractility (i.e., amplitude and velocity to peak and relaxation). RT improved the expression of gene (i.e., miRNA 214) and intracellular Ca2+ cycling regulatory proteins (i.e., PLBser16); and of pathological (i.e., α/β-MHC and Foxo3) and physiological (i.e., Akt, p-Akt, mTOR, p-mTOR, and Bcl-xL) hypertrophy pathways markers in RV tissue. SIGNIFICANCE Low- to moderate-intensity RT benefits the structure and function of pulmonary, RV, and skeletal muscle tissues in rats with stable pulmonary artery hypertension.
Collapse
Affiliation(s)
- Leôncio Lopes Soares
- Universidade Federal de Viçosa, Departamento de Educação Física, Viçosa, Brazil.
| | | | | | | | - Noemy Pinto Pereira
- Universidade de São Paulo, Escola de Educação Física e Esportes, São Paulo, Brazil
| | | | | | | | | | - Tiago Fernandes
- Universidade de São Paulo, Escola de Educação Física e Esportes, São Paulo, Brazil
| | | | | | | | - Antônio José Natali
- Universidade Federal de Viçosa, Departamento de Educação Física, Viçosa, Brazil
| |
Collapse
|
27
|
Chua CJ, Morrissette-McAlmon J, Tung L, Boheler KR. Understanding Arrhythmogenic Cardiomyopathy: Advances through the Use of Human Pluripotent Stem Cell Models. Genes (Basel) 2023; 14:1864. [PMID: 37895213 PMCID: PMC10606441 DOI: 10.3390/genes14101864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiomyopathies (CMPs) represent a significant healthcare burden and are a major cause of heart failure leading to premature death. Several CMPs are now recognized to have a strong genetic basis, including arrhythmogenic cardiomyopathy (ACM), which predisposes patients to arrhythmic episodes. Variants in one of the five genes (PKP2, JUP, DSC2, DSG2, and DSP) encoding proteins of the desmosome are known to cause a subset of ACM, which we classify as desmosome-related ACM (dACM). Phenotypically, this disease may lead to sudden cardiac death in young athletes and, during late stages, is often accompanied by myocardial fibrofatty infiltrates. While the pathogenicity of the desmosome genes has been well established through animal studies and limited supplies of primary human cells, these systems have drawbacks that limit their utility and relevance to understanding human disease. Human induced pluripotent stem cells (hiPSCs) have emerged as a powerful tool for modeling ACM in vitro that can overcome these challenges, as they represent a reproducible and scalable source of cardiomyocytes (CMs) that recapitulate patient phenotypes. In this review, we provide an overview of dACM, summarize findings in other model systems linking desmosome proteins with this disease, and provide an up-to-date summary of the work that has been conducted in hiPSC-cardiomyocyte (hiPSC-CM) models of dACM. In the context of the hiPSC-CM model system, we highlight novel findings that have contributed to our understanding of disease and enumerate the limitations, prospects, and directions for research to consider towards future progress.
Collapse
Affiliation(s)
- Christianne J. Chua
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Justin Morrissette-McAlmon
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Kenneth R. Boheler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
28
|
Coscarella IL, Landim-Vieira M, Rastegarpouyani H, Chase PB, Irianto J, Pinto JR. Nucleus Mechanosensing in Cardiomyocytes. Int J Mol Sci 2023; 24:13341. [PMID: 37686151 PMCID: PMC10487505 DOI: 10.3390/ijms241713341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cardiac muscle contraction is distinct from the contraction of other muscle types. The heart continuously undergoes contraction-relaxation cycles throughout an animal's lifespan. It must respond to constantly varying physical and energetic burdens over the short term on a beat-to-beat basis and relies on different mechanisms over the long term. Muscle contractility is based on actin and myosin interactions that are regulated by cytoplasmic calcium ions. Genetic variants of sarcomeric proteins can lead to the pathophysiological development of cardiac dysfunction. The sarcomere is physically connected to other cytoskeletal components. Actin filaments, microtubules and desmin proteins are responsible for these interactions. Therefore, mechanical as well as biochemical signals from sarcomeric contractions are transmitted to and sensed by other parts of the cardiomyocyte, particularly the nucleus which can respond to these stimuli. Proteins anchored to the nuclear envelope display a broad response which remodels the structure of the nucleus. In this review, we examine the central aspects of mechanotransduction in the cardiomyocyte where the transmission of mechanical signals to the nucleus can result in changes in gene expression and nucleus morphology. The correlation of nucleus sensing and dysfunction of sarcomeric proteins may assist the understanding of a wide range of functional responses in the progress of cardiomyopathic diseases.
Collapse
Affiliation(s)
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Hosna Rastegarpouyani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
29
|
Mangmool S, Duangrat R, Parichatikanond W, Kurose H. New Therapeutics for Heart Failure: Focusing on cGMP Signaling. Int J Mol Sci 2023; 24:12866. [PMID: 37629047 PMCID: PMC10454066 DOI: 10.3390/ijms241612866] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Current drugs for treating heart failure (HF), for example, angiotensin II receptor blockers and β-blockers, possess specific target molecules involved in the regulation of the cardiac circulatory system. However, most clinically approved drugs are effective in the treatment of HF with reduced ejection fraction (HFrEF). Novel drug classes, including angiotensin receptor blocker/neprilysin inhibitor (ARNI), sodium-glucose co-transporter-2 (SGLT2) inhibitor, hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, soluble guanylyl cyclase (sGC) stimulator/activator, and cardiac myosin activator, have recently been introduced for HF intervention based on their proposed novel mechanisms. SGLT2 inhibitors have been shown to be effective not only for HFrEF but also for HF with preserved ejection fraction (HFpEF). In the myocardium, excess cyclic adenosine monophosphate (cAMP) stimulation has detrimental effects on HFrEF, whereas cyclic guanosine monophosphate (cGMP) signaling inhibits cAMP-mediated responses. Thus, molecules participating in cGMP signaling are promising targets of novel drugs for HF. In this review, we summarize molecular pathways of cGMP signaling and clinical trials of emerging drug classes targeting cGMP signaling in the treatment of HF.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.M.); (R.D.)
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.M.); (R.D.)
| | | | - Hitoshi Kurose
- Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| |
Collapse
|
30
|
Nag S, Gollapudi SK, Del Rio CL, Spudich JA, McDowell R. Mavacamten, a precision medicine for hypertrophic cardiomyopathy: From a motor protein to patients. SCIENCE ADVANCES 2023; 9:eabo7622. [PMID: 37506209 DOI: 10.1126/sciadv.abo7622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/23/2023] [Indexed: 07/30/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a primary myocardial disorder characterized by left ventricular hypertrophy, hyperdynamic contraction, and impaired relaxation of the heart. These functional derangements arise directly from altered sarcomeric function due to either mutations in genes encoding sarcomere proteins, or other defects such as abnormal energetics. Current treatment options do not directly address this causal biology but focus on surgical and extra-sarcomeric (sarcolemmal) pharmacological symptomatic relief. Mavacamten (formerly known as MYK-461), is a small molecule designed to regulate cardiac function at the sarcomere level by selectively but reversibly inhibiting the enzymatic activity of myosin, the fundamental motor of the sarcomere. This review summarizes the mechanism and translational progress of mavacamten from proteins to patients, describing how the mechanism of action and pharmacological characteristics, involving both systolic and diastolic effects, can directly target pathophysiological derangements within the cardiac sarcomere to improve cardiac structure and function in HCM. Mavacamten was approved by the Food and Drug Administration in April 2022 for the treatment of obstructive HCM and now goes by the commercial name of Camzyos. Full information about the risks, limitations, and side effects can be found at www.accessdata.fda.gov/drugsatfda_docs/label/2022/214998s000lbl.pdf.
Collapse
Affiliation(s)
- Suman Nag
- MyoKardia Inc., a wholly owned subsidiary of Bristol Myers Squibb, Brisbane, CA 94005, USA
| | - Sampath K Gollapudi
- MyoKardia Inc., a wholly owned subsidiary of Bristol Myers Squibb, Brisbane, CA 94005, USA
| | - Carlos L Del Rio
- MyoKardia Inc., a wholly owned subsidiary of Bristol Myers Squibb, Brisbane, CA 94005, USA
- Cardiac Consulting, 1630 S Delaware St. #56426, San Mateo, CA 94403, USA
| | | | - Robert McDowell
- MyoKardia Inc., a wholly owned subsidiary of Bristol Myers Squibb, Brisbane, CA 94005, USA
| |
Collapse
|
31
|
Fujita H, Kaneshiro J, Takeda M, Sasaki K, Yamamoto R, Umetsu D, Kuranaga E, Higo S, Kondo T, Asano Y, Sakata Y, Miyagawa S, Watanabe TM. Estimation of crossbridge-state during cardiomyocyte beating using second harmonic generation. Life Sci Alliance 2023; 6:e202302070. [PMID: 37236659 PMCID: PMC10215972 DOI: 10.26508/lsa.202302070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Estimation of dynamic change of crossbridge formation in living cardiomyocytes is expected to provide crucial information for elucidating cardiomyopathy mechanisms, efficacy of an intervention, and others. Here, we established an assay system to dynamically measure second harmonic generation (SHG) anisotropy derived from myosin filaments depended on their crossbridge status in pulsating cardiomyocytes. Experiments utilizing an inheritable mutation that induces excessive myosin-actin interactions revealed that the correlation between sarcomere length and SHG anisotropy represents crossbridge formation ratio during pulsation. Furthermore, the present method found that ultraviolet irradiation induced an increased population of attached crossbridges that lost the force-generating ability upon myocardial differentiation. Taking an advantage of infrared two-photon excitation in SHG microscopy, myocardial dysfunction could be intravitally evaluated in a Drosophila disease model. Thus, we successfully demonstrated the applicability and effectiveness of the present method to evaluate the actomyosin activity of a drug or genetic defect on cardiomyocytes. Because genomic inspection alone may not catch the risk of cardiomyopathy in some cases, our study demonstrated herein would be of help in the risk assessment of future heart failure.
Collapse
Affiliation(s)
- Hideaki Fujita
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Junichi Kaneshiro
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kensuke Sasaki
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Rikako Yamamoto
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Daiki Umetsu
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shuichiro Higo
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takumi Kondo
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomonobu M Watanabe
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
32
|
Clippinger Schulte SR, Scott B, Barrick SK, Stump WT, Blackwell T, Greenberg MJ. Single-molecule mechanics and kinetics of cardiac myosin interacting with regulated thin filaments. Biophys J 2023; 122:2544-2555. [PMID: 37165621 PMCID: PMC10323011 DOI: 10.1016/j.bpj.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
The cardiac cycle is a tightly regulated process wherein the heart generates force to pump blood to the body during systole and then relaxes during diastole. Disruption of this finely tuned cycle can lead to a range of diseases including cardiomyopathies and heart failure. Cardiac contraction is driven by the molecular motor myosin, which pulls regulated thin filaments in a calcium-dependent manner. In some muscle and nonmuscle myosins, regulatory proteins on actin tune the kinetics, mechanics, and load dependence of the myosin working stroke; however, it is not well understood whether or how thin-filament regulatory proteins tune the mechanics of the cardiac myosin motor. To address this critical gap in knowledge, we used single-molecule techniques to measure the kinetics and mechanics of the substeps of the cardiac myosin working stroke in the presence and absence of thin filament regulatory proteins. We found that regulatory proteins gate the calcium-dependent interactions between myosin and the thin filament. At physiologically relevant ATP concentrations, cardiac myosin's mechanics and unloaded kinetics are not affected by thin-filament regulatory proteins. We also measured the load-dependent kinetics of cardiac myosin at physiologically relevant ATP concentrations using an isometric optical clamp, and we found that thin-filament regulatory proteins do not affect either the identity or magnitude of myosin's primary load-dependent transition. Interestingly, at low ATP concentrations at both saturating and physiologically relevant subsaturating calcium concentrations, thin-filament regulatory proteins have a small effect on actomyosin dissociation kinetics, suggesting a mechanism beyond simple steric blocking. These results have important implications for the modeling of cardiac physiology and diseases.
Collapse
Affiliation(s)
- Sarah R Clippinger Schulte
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Brent Scott
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Thomas Blackwell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
33
|
Kukshal P, Joshi RO, Kumar A, Ahamad S, Murthy PR, Sathe Y, Manohar K, Guhathakurta S, Chellappan S. Case-control association study of congenital heart disease from a tertiary paediatric cardiac centre from North India. BMC Pediatr 2023; 23:290. [PMID: 37322441 PMCID: PMC10268439 DOI: 10.1186/s12887-023-04095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/27/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Congenital Heart diseases (CHDs) account for 1/3rd of all congenital birth defects. Etiopathogenesis of CHDs remain elusive despite extensive investigations globally. Phenotypic heterogeneity witnessed in this developmental disorder reiterate gene-environment interactions with periconceptional factors as risk conferring; and genetic analysis of both sporadic and familial forms of CHD suggest its multigenic basis. Significant association of de novo and inherited variants have been observed. Approximately 1/5th of CHDs are documented in the ethnically distinct Indian population but genetic insights have been very limited. This pilot case-control based association study was undertaken to investigate the status of Caucasian SNPs in a north Indian cohort. METHOD A total of 306 CHD cases sub-classified into n = 198 acyanotic and n = 108 cyanotic types were recruited from a dedicated tertiary paediatric cardiac centre in Palwal, Haryana. 23 SNPs primarily prioritized from Genome-wide association studies (GWAS) on Caucasians were genotyped using Agena MassARRAY Technology and test of association was performed with adequately numbered controls. RESULTS Fifty percent of the studied SNPs were substantially associated in either allelic, genotypic or sub-phenotype categories validating their strong correlation with disease manifestation. Of note, strongest allelic association was observed for rs73118372 in CRELD1 (p < 0.0001) on Chr3, rs28711516 in MYH6 (p = 0.00083) and rs735712 in MYH7 (p = 0.0009) both on Chr 14 and were also significantly associated with acyanotic, and cyanotic categories separately. rs28711516 (p = 0.003) and rs735712 (p = 0.002) also showed genotypic association. Strongest association was observed with rs735712(p = 0.003) in VSD and maximum association was observed for ASD sub-phenotypes. CONCLUSIONS Caucasian findings were partly replicated in the north Indian population. The findings suggest the contribution of genetic, environmental and sociodemographic factors, warranting continued investigations in this study population.
Collapse
Affiliation(s)
- Prachi Kukshal
- Sri Sathya Sai Sanjeevani Research Foundation, NH-2, Delhi-Mathura Highway, Baghola, Haryana, District Palwal, Pin- 121102, India.
| | - Radha O Joshi
- Present address Sri Sathya Sai Sanjeevani Research Foundation, Kharghar, Navi Mumbai- 410210, Maharashtra, India
| | - Ajay Kumar
- Sri Sathya Sai Sanjeevani Research Foundation, NH-2, Delhi-Mathura Highway, Baghola, Haryana, District Palwal, Pin- 121102, India
| | - Shadab Ahamad
- Sri Sathya Sai Sanjeevani Research Foundation, NH-2, Delhi-Mathura Highway, Baghola, Haryana, District Palwal, Pin- 121102, India
| | - Prabhatha Rashmi Murthy
- Sri Sathya Sai Sanjeevani Centre for Child Heart Care and Training in Paediatric Cardiac Skills, Navi Mumbai Maharashtra, India
| | - Yogesh Sathe
- Sri Sathya Sai Sanjeevani International Centre for Child Heart Care & Research, NH-2, Delhi-Mathura Highway, Baghola, District Palwal, Haryana, Pin 121102, India
| | - Krishna Manohar
- Sri Sathya Sai Sanjeevani International Centre for Child Heart Care & Research, NH-2, Delhi-Mathura Highway, Baghola, District Palwal, Haryana, Pin 121102, India
| | - Soma Guhathakurta
- Sri Sathya Sai Sanjeevani Research Foundation, NH-2, Delhi-Mathura Highway, Baghola, Haryana, District Palwal, Pin- 121102, India
| | - Subramanian Chellappan
- Sri Sathya Sai Sanjeevani International Centre for Child Heart Care & Research, NH-2, Delhi-Mathura Highway, Baghola, District Palwal, Haryana, Pin 121102, India.
| |
Collapse
|
34
|
Duan S, Zhang M, Zeng H, Song J, Zhang M, Gao S, Yang H, Ding M, Li P. Integrated proteomics and phosphoproteomics profiling reveals the cardioprotective mechanism of bioactive compounds derived from Salvia miltiorrhiza Burge. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154897. [PMID: 37307738 DOI: 10.1016/j.phymed.2023.154897] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/29/2023] [Accepted: 05/21/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Natural products are an important source for discovering novel drugs due to their various pharmacological activities. Salvia miltiorrhiza Burge (Danshen) has been shown to have promising therapeutic potential in the management of heart diseases, making it a candidate for cardiovascular drug discovery. Currently, there is limited quantitative analysis of the phosphorylation levels of Danshen-derived natural products on a proteome-wide, which may bias the study of their mechanisms of action. PURPOSE This study aimed to evaluate the global signaling perturbation induced by Danshen-derived bioactive compounds and their potential relationship with myocardial ischemia/reperfusion (IR) injury therapy. STUDY DESIGN We employed quantitative proteome and phosphoproteome analysis to identify dysregulated signaling in IR injury hearts from mice. We compared changes induced by Danshen-derived compounds based on IR-associated phospho-events, using an integrative approach that maps relative abundance of proteins and phosphorylation sites. METHODS Isobaric chemical tandem mass tags (TMT) labeled multiplexing strategy was used to generate unbiased quantitative proteomics and phosphoproteomics data. Highly accurate and precise TMT quantitation was performed using the Orbitrap Fusion Tribrid Mass Spectrometer with synchronous precursor selection MS3 detection mode. Mass spectrometric raw files were analyzed with MaxQuant (2.0.1.0) and statistical and bioinformatics analysis was conducted with Perseus (1.6.15). RESULTS We quantified 3661 proteins and over 11,000 phosphosites in impaired heart tissue of the IR mice model, expanding our knowledge of signaling pathways and other biological processes disrupted in IR injury. Next, 1548 and 5545 differently expressed proteins and phosphosites were identified by quantifying the proteome and phosphoproteome of H9c2 cells treated by five Danshen bioactive compounds respectively. Results revealed the vast differences in abilities of five Danshen-derived bioactive compounds to regulate phosphorylation modifications in cardiomyocytes, with dihydrotanshinone I (DHT) showing potential for protecting against IR injury by modulating the AMPK/mTOR signaling pathway. CONCLUSIONS This study provides a new strategy for analyzing drug/natural product-regulated phosphorylation modification levels on a proteome-wide scale, leading to a better understanding of cell signaling pathways and downstream phenotypic responses.
Collapse
Affiliation(s)
- Shengnan Duan
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Meiting Zhang
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Hao Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China
| | - Jinyi Song
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Min Zhang
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Song Gao
- Department of Pharmaceutical and Environmental Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China
| | - Ming Ding
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
35
|
Zatorski N, Sobie EA, Schlessinger A. Mavacamten improves symptoms in obstructive hypertrophic cardiomyopathy patients. Trends Pharmacol Sci 2023; 44:318-319. [PMID: 36914446 PMCID: PMC10288863 DOI: 10.1016/j.tips.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/14/2023]
Affiliation(s)
- Nicole Zatorski
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
36
|
Marcucci L. Muscle Mechanics and Thick Filament Activation: An Emerging Two-Way Interaction for the Vertebrate Striated Muscle Fine Regulation. Int J Mol Sci 2023; 24:ijms24076265. [PMID: 37047237 PMCID: PMC10094676 DOI: 10.3390/ijms24076265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Contraction in striated muscle is classically described as regulated by calcium-mediated structural changes in the actin-containing thin filaments, which release the binding sites for the interaction with myosin motors to produce force. In this view, myosin motors, arranged in the thick filaments, are basically always ready to interact with the thin filaments, which ultimately regulate the contraction. However, a new “dual-filament” activation paradigm is emerging, where both filaments must be activated to generate force. Growing evidence from the literature shows that the thick filament activation has a role on the striated muscle fine regulation, and its impairment is associated with severe pathologies. This review is focused on the proposed mechanical feedback that activates the inactive motors depending on the level of tension generated by the active ones, the so-called mechanosensing mechanism. Since the main muscle function is to generate mechanical work, the implications on muscle mechanics will be highlighted, showing: (i) how non-mechanical modulation of the thick filament activation influences the contraction, (ii) how the contraction influences the activation of the thick filament and (iii) how muscle, through the mechanical modulation of the thick filament activation, can regulate its own mechanics. This description highlights the crucial role of the emerging bi-directional feedback on muscle mechanical performance.
Collapse
Affiliation(s)
- Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Center for Biosystems Dynamics Research, RIKEN, Suita 565-0874, Japan
| |
Collapse
|
37
|
Barrick SK, Garg A, Greenberg L, Zhang S, Lin CY, Stitziel NO, Greenberg MJ. Functional assays reveal the pathogenic mechanism of a de novo tropomyosin variant identified in patient with dilated cardiomyopathy. J Mol Cell Cardiol 2023; 176:58-67. [PMID: 36739943 PMCID: PMC11285302 DOI: 10.1016/j.yjmcc.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure and a major indicator for heart transplant. Human genetic studies have identified over a thousand causal mutations for DCM in genes involved in a variety of cellular processes, including sarcomeric contraction. A substantial clinical challenge is determining the pathogenicity of novel variants in disease-associated genes. This challenge of connecting genotype and phenotype has frustrated attempts to develop effective, mechanism-based treatments for patients. Here, we identified a de novo mutation (T237S) in TPM1, the gene that encodes the thin filament protein tropomyosin, in a patient with DCM and conducted in vitro experiments to characterize the pathogenicity of this novel variant. We expressed recombinant mutant protein, reconstituted it into thin filaments, and examined the effects of the mutation on thin filament function. We show that the mutation reduces the calcium sensitivity of thin filament activation, as previously seen for known pathogenic mutations. Mechanistically, this shift is due to mutation-induced changes in tropomyosin positioning along the thin filament. We demonstrate that the thin filament activator omecamtiv mecarbil restores the calcium sensitivity of thin filaments regulated by the mutant tropomyosin, which lays the foundation for additional experiments to explore the therapeutic potential of this drug for patients harboring the T237S mutation. Taken together, our results suggest that the TPM1 T237S mutation is likely pathogenic and demonstrate how functional in vitro characterization of pathogenic protein variants in the lab might guide precision medicine in the clinic.
Collapse
Affiliation(s)
- Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ankit Garg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shanshan Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan O Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
38
|
Rasicci DV, Ge J, Milburn GN, Wood NB, Pruznak AM, Lang CH, Previs MJ, Campbell KS, Yengo CM. Cardiac myosin motor deficits are associated with left ventricular dysfunction in human ischemic heart failure. Am J Physiol Heart Circ Physiol 2023; 324:H198-H209. [PMID: 36525480 PMCID: PMC9829461 DOI: 10.1152/ajpheart.00272.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
During ischemic heart failure (IHF), cardiac muscle contraction is typically impaired, though the molecular changes within the myocardium are not fully understood. Thus, we aimed to characterize the biophysical properties of cardiac myosin in IHF. Cardiac tissue was harvested from 10 age-matched males, either with a history of IHF or nonfailing (NF) controls that had no history of structural or functional cardiac abnormalities. Clinical measures before cardiac biopsy demonstrated significant differences in measures of ejection fraction and left ventricular dimensions. Myofibrils and myosin were extracted from left ventricular free wall cardiac samples. There were no changes in myofibrillar ATPase activity or calcium sensitivity between groups. Using isolated myosin, we found a 15% reduction in the IHF group in actin sliding velocity in the in vitro motility assay, which was observed in the absence of a myosin isoform shift. Oxidative damage (carbonylation) of isolated myosin was compared, in which there were no significant differences between groups. Synthetic thick filaments were formed from purified myosin and the ATPase activity was similar in both basal and actin-activated conditions (20 µM actin). Correlation analysis and Deming linear regression were performed between all studied parameters, in which we found statistically significant correlations between clinical measures of contractility with molecular measures of sliding velocity and ELC carbonylation. Our data indicate that subtle deficits in myosin mechanochemical properties are associated with reduced contractile function and pathological remodeling of the heart, suggesting that the myosin motor may be an effective pharmacological intervention in ischemia.NEW & NOTEWORTHY Ischemic heart failure is associated with impairments in contractile performance of the heart. This study revealed that cardiac myosin isolated from patients with ischemic heart failure had reduced mechanical activity, which correlated with the impaired clinical phenotype of the patients. The results suggest that restoring myosin function with pharmacological intervention may be a viable method for therapeutic intervention.
Collapse
Affiliation(s)
- D. V. Rasicci
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| | - J. Ge
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - G. N. Milburn
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - N. B. Wood
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - A. M. Pruznak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - C. H. Lang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - M. J. Previs
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - K. S. Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - C. M. Yengo
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
39
|
Meller A, Lotthammer JM, Smith LG, Novak B, Lee LA, Kuhn CC, Greenberg L, Leinwand LA, Greenberg MJ, Bowman GR. Drug specificity and affinity are encoded in the probability of cryptic pocket opening in myosin motor domains. eLife 2023; 12:e83602. [PMID: 36705568 PMCID: PMC9995120 DOI: 10.7554/elife.83602] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The design of compounds that can discriminate between closely related target proteins remains a central challenge in drug discovery. Specific therapeutics targeting the highly conserved myosin motor family are urgently needed as mutations in at least six of its members cause numerous diseases. Allosteric modulators, like the myosin-II inhibitor blebbistatin, are a promising means to achieve specificity. However, it remains unclear why blebbistatin inhibits myosin-II motors with different potencies given that it binds at a highly conserved pocket that is always closed in blebbistatin-free experimental structures. We hypothesized that the probability of pocket opening is an important determinant of the potency of compounds like blebbistatin. To test this hypothesis, we used Markov state models (MSMs) built from over 2 ms of aggregate molecular dynamics simulations with explicit solvent. We find that blebbistatin's binding pocket readily opens in simulations of blebbistatin-sensitive myosin isoforms. Comparing these conformational ensembles reveals that the probability of pocket opening correctly identifies which isoforms are most sensitive to blebbistatin inhibition and that docking against MSMs quantitatively predicts blebbistatin binding affinities (R2=0.82). In a blind prediction for an isoform (Myh7b) whose blebbistatin sensitivity was unknown, we find good agreement between predicted and measured IC50s (0.67 μM vs. 0.36 μM). Therefore, we expect this framework to be useful for the development of novel specific drugs across numerous protein targets.
Collapse
Affiliation(s)
- Artur Meller
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
- Medical Scientist Training Program, Washington University in St. LouisPhiladelphiaUnited States
| | - Jeffrey M Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
| | - Louis G Smith
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| | - Borna Novak
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
- Medical Scientist Training Program, Washington University in St. LouisPhiladelphiaUnited States
| | - Lindsey A Lee
- Molecular, Cellular, and Developmental Biology Department, University of Colorado BoulderBoulderUnited States
- BioFrontiers InstituteBoulderUnited States
| | - Catherine C Kuhn
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
| | - Leslie A Leinwand
- Molecular, Cellular, and Developmental Biology Department, University of Colorado BoulderBoulderUnited States
- BioFrontiers InstituteBoulderUnited States
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
40
|
Clippinger Schulte SR, Scott B, Barrick SK, Stump WT, Blackwell T, Greenberg MJ. Single Molecule Mechanics and Kinetics of Cardiac Myosin Interacting with Regulated Thin Filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.522880. [PMID: 36711892 PMCID: PMC9881944 DOI: 10.1101/2023.01.09.522880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cardiac cycle is a tightly regulated process wherein the heart generates force to pump blood to the body during systole and then relaxes during diastole. Disruption of this finely tuned cycle can lead to a range of diseases including cardiomyopathies and heart failure. Cardiac contraction is driven by the molecular motor myosin, which pulls regulated thin filaments in a calcium-dependent manner. In some muscle and non-muscle myosins, regulatory proteins on actin tune the kinetics, mechanics, and load dependence of the myosin working stroke; however, it is not well understood whether or how thin filament regulatory proteins tune the mechanics of the cardiac myosin motor. To address this critical gap in knowledge, we used single-molecule techniques to measure the kinetics and mechanics of the substeps of the cardiac myosin working stroke in the presence and absence of thin filament regulatory proteins. We found that regulatory proteins gate the calcium-dependent interactions between myosin and the thin filament. At physiologically relevant ATP concentrations, cardiac myosin's mechanics and unloaded kinetics are not affected by thin filament regulatory proteins. We also measured the load-dependent kinetics of cardiac myosin at physiologically relevant ATP concentrations using an isometric optical clamp, and we found that thin filament regulatory proteins do not affect either the identity or magnitude of myosin's primary load-dependent transition. Interestingly, at low ATP concentrations, thin filament regulatory proteins have a small effect on actomyosin dissociation kinetics, suggesting a mechanism beyond simple steric blocking. These results have important implications for both disease modeling and computational models of muscle contraction. Significance Statement Human heart contraction is powered by the molecular motor β-cardiac myosin, which pulls on thin filaments consisting of actin and the regulatory proteins troponin and tropomyosin. In some muscle and non-muscle systems, these regulatory proteins tune the kinetics, mechanics, and load dependence of the myosin working stroke. Despite having a central role in health and disease, it is not well understood whether the mechanics or kinetics of β-cardiac myosin are affected by regulatory proteins. We show that regulatory proteins do not affect the mechanics or load-dependent kinetics of the working stroke at physiologically relevant ATP concentrations; however, they can affect the kinetics at low ATP concentrations, suggesting a mechanism beyond simple steric blocking. This has important implications for modeling of cardiac physiology and diseases.
Collapse
|
41
|
Chakraborti A, Tardiff JC, Schwartz SD. Insights into the Mechanism of the Cardiac Drug Omecamtiv Mecarbil─A Computational Study. J Phys Chem B 2022; 126:10069-10082. [PMID: 36448224 PMCID: PMC9830884 DOI: 10.1021/acs.jpcb.2c06679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Omecamtiv mecarbil (OM) is a positive inotrope that is thought to bind directly to an allosteric site of the β-cardiac myosin. The drug is under investigation for the treatment of systolic heart failure. The drug is classified as a cardiac myosin modulator and has been observed to affect multiple vital steps of the cross-bridge cycle including the recovery stroke and the chemical step. We explored the free-energy surface of the recovery stroke of the human cardiac β-myosin in the presence of OM to determine its influence on this process. We also investigated the effects of OM on the recovery stroke in the presence of genetic cardiomyopathic mutations R712L, F764L, and P710R using metadynamics. We also utilized the method of transition path sampling to generate an unbiased ensemble of reactive trajectories for the ATP hydrolysis step in the presence of OM that were able to provide insight into the differences observed due to OM in the dynamics and mechanism of the decomposition of ATP to ADP and HPO42-, a central part of the power generation in cardiac muscle. We studied chemistry in the presence of the same three mutations to further elucidate the effect of OM, and its use in the treatment of cardiac disease.
Collapse
Affiliation(s)
- Ananya Chakraborti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85724, United States
| | - Steven D. Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
42
|
Sewanan LR, Shimada YJ. Prospects for remodeling the hypertrophic heart with myosin modulators. Front Cardiovasc Med 2022; 9:1051564. [PMID: 36330009 PMCID: PMC9622926 DOI: 10.3389/fcvm.2022.1051564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 09/25/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a complex but relatively common genetic disease that usually arises from pathogenic variants that disrupt sarcomere function and lead to variable structural, hypertrophic, and fibrotic remodeling of the heart which result in substantial adverse clinical outcomes including arrhythmias, heart failure, and sudden cardiac death. HCM has had few effective treatments with the potential to ameliorate disease progression until the recent advent of inhibitory myosin modulators like mavacamten. Preclinical investigations and clinical trials utilizing this treatment targeted to this specific pathophysiological mechanism of sarcomere hypercontractility in HCM have confirmed that myosin modulators can alter disease expression and attenuate hypertrophic remodeling. Here, we summarize the state of hypertrophic remodeling and consider the arguments for and against salutary HCM disease modification using targeted myosin modulators. Further, we consider critical unanswered questions for future investigative and therapeutic avenues in HCM disease modification. We are at the precipice of a new era in understanding and treating HCM, with the potential to target agents toward modifying disease expression and natural history of this most common inherited disease of the heart.
Collapse
Affiliation(s)
- Lorenzo R. Sewanan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Yuichi J. Shimada
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
43
|
Yang Y, Fu Z, Zhu W, Hu H, Wang J. Application of optical tweezers in cardiovascular research: More than just a measuring tool. Front Bioeng Biotechnol 2022; 10:947918. [PMID: 36147537 PMCID: PMC9486066 DOI: 10.3389/fbioe.2022.947918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/12/2022] [Indexed: 12/04/2022] Open
Abstract
Recent advances in the field of optical tweezer technology have shown intriguing potential for applications in cardiovascular medicine, bringing this laboratory nanomechanical instrument into the spotlight of translational medicine. This article summarizes cardiovascular system findings generated using optical tweezers, including not only rigorous nanomechanical measurements but also multifunctional manipulation of biologically active molecules such as myosin and actin, of cells such as red blood cells and cardiomyocytes, of subcellular organelles, and of microvessels in vivo. The implications of these findings in the diagnosis and treatment of diseases, as well as potential perspectives that could also benefit from this tool, are also discussed.
Collapse
Affiliation(s)
- Yi Yang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Zhenhai Fu
- Quantum Sensing Center, Zhejiang Lab, Hangzhou, China
| | - Wei Zhu
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
- *Correspondence: Wei Zhu, ; Huizhu Hu, ; Jian’an Wang,
| | - Huizhu Hu
- Quantum Sensing Center, Zhejiang Lab, Hangzhou, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- *Correspondence: Wei Zhu, ; Huizhu Hu, ; Jian’an Wang,
| | - Jian’an Wang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
- *Correspondence: Wei Zhu, ; Huizhu Hu, ; Jian’an Wang,
| |
Collapse
|
44
|
Zhang Y, Peng R, Wang H. Identification and genetic analysis of rare variants in myosin family genes in 412 Han Chinese congenital heart disease patients. Mol Genet Genomic Med 2022; 10:e2041. [PMID: 35993536 PMCID: PMC9544220 DOI: 10.1002/mgg3.2041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background Myosin family genes, including those encoding myosin heavy chain 6, myosin heavy chain 7, myosin light chain 3, and myosin light chain 2 (MYL2), are important genetic factors in congenital heart disease (CHD). However, how these genes contribute to CHD in the Han Chinese population remains unclear. Methods We sequenced myosin family genes in a Han Chinese cohort comprising 412 CHD patients and 213 matched controls in the present study. A zebrafish model was used to evaluate the pathogenicity of rare mutations in MYL2. Results We identified 30 known mutations and 12 novel mutations. Furthermore, the contributions of two novel mutations, MYL2 p.Ile158Thr and p.Val146Met, to CHD were analyzed. The p.Ile158Thr mutation increased MYL2 expression. In zebrafish embryos, injection of myl2b‐targeting morpholinos led to aberrant cardiac structures, an effect that was reversed by expression of wild‐type MYL2 but not MYL2 p.Ile158Thr and pVal146Met. Conclusions Overall, our findings suggest that MYL2 p.Ile158Thr and p.Val146Met contribute to the etiology of CHD. The results also indicate the importance of MYL2 in heart formation.
Collapse
Affiliation(s)
- Yunqian Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering at School of Life Sciences, Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Rui Peng
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering at School of Life Sciences, Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction (Shanghai Institute of Planned Parenthood Research), Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China
| | - Hongyan Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering at School of Life Sciences, Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction (Shanghai Institute of Planned Parenthood Research), Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China.,Children's Hospital, Fudan University, Shanghai, China.,The Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
45
|
McMillan SN, Scarff CA. Cryo-electron microscopy analysis of myosin at work and at rest. Curr Opin Struct Biol 2022; 75:102391. [DOI: 10.1016/j.sbi.2022.102391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 01/01/2023]
|
46
|
Ribeiro S, Simões AR, Rocha F, Vala IS, Pinto AT, Ministro A, Poli E, Diegues IM, Pina F, Benadjaoud MA, Flamant S, Tamarat R, Osório H, Pais D, Casal D, Pinto FJ, Matthiesen R, Fiuza M, Constantino Rosa Santos S. Molecular Changes In Cardiac Tissue As A New Marker To Predict Cardiac Dysfunction Induced By Radiotherapy. Front Oncol 2022; 12:945521. [PMID: 35957913 PMCID: PMC9360508 DOI: 10.3389/fonc.2022.945521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
The contribution of radiotherapy, per se, to late cardiotoxicity remains controversial. To clarify its impact on the development of early cardiac dysfunction, we developed an experimental model in which the hearts of rats were exposed, in a fractionated plan, to clinically relevant doses of ionizing radiation for oncological patients that undergo thoracic radiotherapy. Rat hearts were exposed to daily doses of 0.04, 0.3, and 1.2 Gy for 23 days, achieving cumulative doses of 0.92, 6.9, and 27.6 Gy, respectively. We demonstrate that myocardial deformation, assessed by global longitudinal strain, was impaired (a relative percentage reduction of >15% from baseline) in a dose-dependent manner at 18 months. Moreover, by scanning electron microscopy, the microvascular density in the cardiac apex was significantly decreased exclusively at 27.6 Gy dosage. Before GLS impairment detection, several tools (qRT-PCR, mass spectrometry, and western blot) were used to assess molecular changes in the cardiac tissue. The number/expression of several genes, proteins, and KEGG pathways, related to inflammation, fibrosis, and cardiac muscle contraction, were differently expressed in the cardiac tissue according to the cumulative dose. Subclinical cardiac dysfunction occurs in a dose-dependent manner as detected by molecular changes in cardiac tissue, a predictor of the severity of global longitudinal strain impairment. Moreover, there was no dose threshold below which no myocardial deformation impairment was detected. Our findings i) contribute to developing new markers and exploring non-invasive magnetic resonance imaging to assess cardiac tissue changes as an early predictor of cardiac dysfunction; ii) should raise red flags, since there is no dose threshold below which no myocardial deformation impairment was detected and should be considered in radiation-based imaging and -guided therapeutic cardiac procedures; and iii) highlights the need for personalized clinical approaches.
Collapse
Affiliation(s)
- Sónia Ribeiro
- Centro Cardiovascular da Universidade de Lisboa, Lisbon School of Medicine of the Universidade de Lisboa, Lisbon, Portugal
- Santa Maria University Hospital, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Ana Rita Simões
- Centro Cardiovascular da Universidade de Lisboa, Lisbon School of Medicine of the Universidade de Lisboa, Lisbon, Portugal
| | - Filipe Rocha
- Centro Cardiovascular da Universidade de Lisboa, Lisbon School of Medicine of the Universidade de Lisboa, Lisbon, Portugal
| | - Inês Sofia Vala
- Centro Cardiovascular da Universidade de Lisboa, Lisbon School of Medicine of the Universidade de Lisboa, Lisbon, Portugal
| | - Ana Teresa Pinto
- Centro Cardiovascular da Universidade de Lisboa, Lisbon School of Medicine of the Universidade de Lisboa, Lisbon, Portugal
| | - Augusto Ministro
- Centro Cardiovascular da Universidade de Lisboa, Lisbon School of Medicine of the Universidade de Lisboa, Lisbon, Portugal
- Santa Maria University Hospital, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Esmeralda Poli
- Santa Maria University Hospital, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Isabel Maria Diegues
- Santa Maria University Hospital, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Filomena Pina
- Santa Maria University Hospital, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Mohamed Amine Benadjaoud
- Department of Radiobiology and Regenerative Medicine, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Stephane Flamant
- Department of Radiobiology and Regenerative Medicine, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Radia Tamarat
- Department of Radiobiology and Regenerative Medicine, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Hugo Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Diogo Pais
- NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Diogo Casal
- NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Fausto José Pinto
- Centro Cardiovascular da Universidade de Lisboa, Lisbon School of Medicine of the Universidade de Lisboa, Lisbon, Portugal
- Santa Maria University Hospital, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Rune Matthiesen
- Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Manuela Fiuza
- Centro Cardiovascular da Universidade de Lisboa, Lisbon School of Medicine of the Universidade de Lisboa, Lisbon, Portugal
- Santa Maria University Hospital, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Susana Constantino Rosa Santos
- Centro Cardiovascular da Universidade de Lisboa, Lisbon School of Medicine of the Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Susana Constantino Rosa Santos,
| |
Collapse
|