1
|
Zeng C, Guo M, Xiao K, Li C. Autophagy mediated by ROS-AKT-FoxO pathway is required for intestinal regeneration in echinoderms. Cell Commun Signal 2025; 23:8. [PMID: 39762855 PMCID: PMC11705696 DOI: 10.1186/s12964-024-01993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Autophagy is essential for maintaining material balance and energy circulation and plays a critical role as a regulatory mechanism in tissue regeneration. However, current studies primarily describe this phenotype, with limited exploration of its molecular mechanisms. In this study, we provided the first evidence that autophagy is required for intestinal regeneration in Apostichopus japonicus and identified a previously unrecognized regulatory mechanism involved in this process. We observed that autophagy activation was significantly associated with enhanced regeneration, and its upregulation was shown to be regulated by reactive oxygen species (ROS) bursts. Mechanistically, ROS induced the dephosphorylation of Forkhead box protein O (FoxO) through AjAKT dephosphorylation. The dephosphorylated AjFoxO translocated to the nucleus, where it bound to the promoters of AjLC3 and AjATG4, inducing their transcription. This study highlights the ROS-AjAKT-AjFoxO-AjATG4/AjLC3 pathway as a novel regulatory mechanism underlying autophagy-mediated intestinal regeneration in echinoderms, providing a reference for studying regenerative processes and cytological mechanisms in economically important echinoderms.
Collapse
Affiliation(s)
- Chuili Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Ke Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
- Ningbo University, Zhejiang Province, Ningbo, 315211, P. R. China.
| |
Collapse
|
2
|
Su F, Dolmatov IY, Cui W, Yang H, Sun L. Molecular dynamics and spatial response of proliferation and apoptosis in wound healing and early intestinal regeneration of sea cucumber Apostichopusjaponicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105297. [PMID: 39638271 DOI: 10.1016/j.dci.2024.105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The sea cucumber, Apostichopus japonicus, exhibits significant regenerative capabilities. To ensure survival and reduce metabolic costs under adverse conditions, A. japonicus can expel intestine, respiratory trees and other internal organs. It takes only 14 days to regenerate a fully connected, lumen-containing intestine. Despite numerous reports characterizing the cellular events in intestinal regeneration, limited investigation has been conducted on the molecular events that occur during wound healing and the initial stages of regeneration after evisceration. Here, we identified differentially expressed genes (DEGs) during wound healing (6 h post-evisceration, Aj6hpe) and early intestinal regeneration (Aj1dpe, Aj3dpe, Aj7dpe). Cell proliferation and apoptosis were detected by EdU and TUNEL assays, respectively. Results demonstrated that calcium ion and neuroactive ligand-receptor interaction were involved in the transmission of injury signals from evisceration to Aj1dpe. The main events occurring in the wound healing and early regeneration process were autophagy, apoptosis, dedifferentiation, migration and shutdown of feeding. Cell proliferation was primarily observed during the lumen formation stage. Maximal number of apoptotic cells were found during wound healing stage (6 hpe - 1 dpe). Consequently, the immune response is mainly mobilized by neural regulation after evisceration. Our findings bridge the gap between evisceration and regeneration, illuminating the molecular events that mediate damage response and initiate regeneration. This study significantly advances our understanding of the mechanisms underlying intestinal regeneration.
Collapse
Affiliation(s)
- Fang Su
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Igor Yu Dolmatov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Wei Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Wang C, Xiang Y, Shao Y, Li C. Ferroptosis resists intracellular Vibrio splendidus AJ01 mediated by ferroportin in sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109585. [PMID: 38663462 DOI: 10.1016/j.fsi.2024.109585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Ferroptosis, a kind of programmed cell death, is characterized with iron-dependent lipid ROS buildup, which is considered as an important cellular immunity in resisting intracellular bacterial infection in mammalian macrophages. In this process, lipid ROS oxidizes the bacterial biofilm to inhibit intracellular bacteria. However, the function of ferroptosis in invertebrate remains unknown. In this study, the existence of ferroptosis in Apostichopus japonicus coelomocytes was confirmed, and its antibacterial mechanism was investigated. First, our results indicated that the expression of glutathione peroxidase (AjGPX4) was significantly inhibited by 0.21-fold (p < 0.01) after injecting A. japonicus with the ferroptosis inducer RSL3, and the contents of MDA (3.93-fold, p < 0.01), ferrous iron (1.40-fold, p < 0.01), and lipid ROS (3.10-fold, p < 0.01) were all significantly increased under this condition and simultaneously accompanied with mitochondrial contraction and disappearance of cristae, indicating the existence of ferroptosis in the coelomocytes of A. japonicus. Subsequently, the contents of ferrous iron (1.40-fold, p < 0.05), MDA (2.10-fold, p < 0.01), ROS (1.70-fold, p < 0.01), and lipid ROS (2.50-fold, p < 0.01) were all significantly increased, whereas the mitochondrial membrane potential and GSH/GSSG were markedly decreased by 0.68-fold (p < 0.05) and 0.69-fold (p < 0.01) under Vibrio splendidus (AJ01) infection. This process could be reversed by the iron-chelating agent deferoxamine mesylate, which indicated that AJ01 could induce coelomocytic ferroptosis. Moreover, the results demonstrated that the intracellular AJ01 load was clearly decreased to 0.49-fold (p < 0.05) and 0.06-fold (p < 0.01) after treating coelomocytes with RSL3 and ferrous iron, which indicated that enhanced ferroptosis could inhibit bacterial growth. Finally, subcellular localization demonstrated that ferrous iron efflux protein ferroportin (AjFPN) and intracellular AJ01 were co-localized in coelomocytes. After AjFPN interference (0.58-fold, p < 0.01), the signals of ferrous iron and lipid ROS levels in intracellular AJ01 were significantly reduced by 0.38-fold (p < 0.01) and 0.48-fold (p < 0.01), indicating that AjFPN was an important factor in the introduction of ferroptosis into intracellular bacteria. Overall, our findings indicated that ferroptosis could resist intracellular AJ01 infection via AjFPN. These findings provide a novel defense mechanism for aquatic animals against intracellular bacterial infection.
Collapse
Affiliation(s)
- Chengyang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Yangxi Xiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China.
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao, PR China.
| |
Collapse
|
4
|
Liu J, Shao Y, Li C. YTHDC1/CRM1 Facilitates m6A-Modified circRNA388 Nuclear Export to Induce Coelomocyte Autophagy via the miR-2008/ULK Axis in Apostichopus japonicus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1319-1333. [PMID: 38426898 DOI: 10.4049/jimmunol.2300761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
N 6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic RNA, was able to mediate circular RNA (circRNA) function in many immune processes. Nevertheless, the functional role of m6A-modified circRNAs in innate immunity of invertebrates remained unclear. In this study, we identified m6A-modified circRNA388 from cultured sea cucumber (Apostichopus japonicus) coelomocytes, which was mainly detected in cytoplasm after Vibrio splendidus infection. A knockdown assay indicated that cytoplasm circRNA388 promoted coelomocyte autophagy and decreased the number of intracellular V. splendidus. Mechanistically, the circRNA388 in the cytoplasm directly sponged miR-2008 to block its interaction with Unc-51-like kinase 1 from A. japonicus (AjULK) and further promoted autophagy to resist V. splendidus infection. More importantly, we found that m6A modification was vital to circRNA388 nuclear export with YTH domain-containing protein 1 from A. japonicus (AjYTHDC1) as the reader. AjYTHDC1 facilitated the nuclear export of m6A-modified circRNA388 via interaction with exportin-1 (chromosomal maintenance 1) from A. japonicus (AjCRM1). Knockdown of AjCRM1 could significantly decrease the content of cytoplasm circRNA388. Overall, our results provide the first evidence that nuclear export of m6A-modified circRNA388 is dependent on the novel AjCRM1 to our knowledge, which was further promoted coelomocyte autophagy by miR-2008/AjULK axis to clear intracellular V. splendidus.
Collapse
Affiliation(s)
- Jiqing Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Alula KM, Theiss AL. Autophagy in Crohn's Disease: Converging on Dysfunctional Innate Immunity. Cells 2023; 12:1779. [PMID: 37443813 PMCID: PMC10341259 DOI: 10.3390/cells12131779] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease marked by relapsing, transmural intestinal inflammation driven by innate and adaptive immune responses. Autophagy is a multi-step process that plays a critical role in maintaining cellular homeostasis by degrading intracellular components, such as damaged organelles and invading bacteria. Dysregulation of autophagy in CD is revealed by the identification of several susceptibility genes, including ATG16L1, IRGM, NOD2, LRRK2, ULK1, ATG4, and TCF4, that are involved in autophagy. In this review, the role of altered autophagy in the mucosal innate immune response in the context of CD is discussed, with a specific focus on dendritic cells, macrophages, Paneth cells, and goblet cells. Selective autophagy, such as xenophagy, ERphagy, and mitophagy, that play crucial roles in maintaining intestinal homeostasis in these innate immune cells, are discussed. As our understanding of autophagy in CD pathogenesis evolves, the development of autophagy-targeted therapeutics may benefit subsets of patients harboring impaired autophagy.
Collapse
Affiliation(s)
| | - Arianne L. Theiss
- Division of Gastroenterology & Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Li D, Guo M, Liang W, Jin C, Li C. CHOP promotes coelomocyte apoptosis through p38-MAPK pathway in Vibrio splendidus-challenged sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2023:108855. [PMID: 37257572 DOI: 10.1016/j.fsi.2023.108855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) belongs to the C/EBP family of transcription factors that has been proven to regulate apoptosis in many vertebrate species. However, the functional role of CHOP in invertebrates is largely unknown. In this paper, the open reading frame of CHOP was cloned and characterized in the sea cucumber Apostichopus japonicus (AjCHOP). The deuced amino acid of AjCHOP shared a conserved RTP801_C domain from 63 to 171 aa. Phylogenetic analysis indicated that AjCHOP clustered with CHOPs from Lytechinus variegatus and Strongylocentrotus purpuratus. To confirm the immune function of AjCHOP, the time-course expression profiles of AjCHOP were investigated, and the findings revealed AjCHOP was significantly induced in coelomocytes at mRNA and protein levels after Vibro splendidus challenge. Furthermore, knockdown of AjCHOP in coelomocyes by siRNA transfection significantly decreased the apoptosis level induced by V. splendidus. Mechanically, AjCHOP-mediated apoptosis was dependent on the activation of p38-MAPK pathway but not JNK/ERK-MAPK. Overall, our results supported that V. splendidus triggers apoptosis among the coelomocytes, whereas AjCHOP mediates through the p38-MAPK pathway in A. japonicus.
Collapse
Affiliation(s)
- Dongdong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China
| | - Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China.
| | - Chunhua Jin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
7
|
Dai F, Guo M, Shao Y, Li C. Novel secreted STPKLRR from Vibrio splendidus AJ01 promotes pathogen internalization via mediating tropomodulin phosphorylation dependent cytoskeleton rearrangement. PLoS Pathog 2023; 19:e1011419. [PMID: 37216400 DOI: 10.1371/journal.ppat.1011419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
We previously demonstrated that the flagellin of intracellular Vibrio splendidus AJ01 could be specifically identified by tropomodulin (Tmod) and further mediate p53-dependent coelomocyte apoptosis in the sea cucumber Apostichopus japonicus. In higher animals, Tmod serves as a regulator in stabilizing the actin cytoskeleton. However, the mechanism on how AJ01 breaks the AjTmod-stabilized cytoskeleton for internalization remains unclear. Here, we identified a novel AJ01 Type III secretion system (T3SS) effector of leucine-rich repeat-containing serine/threonine-protein kinase (STPKLRR) with five LRR domains and a serine/threonine kinase (STYKc) domain, which could specifically interact with tropomodulin domain of AjTmod. Furthermore, we found that STPKLRR directly phosphorylated AjTmod at serine 52 (S52) to reduce the binding stability between AjTmod and actin. After AjTmod dissociated from actin, the F-actin/G-actin ratio decreased to induce cytoskeletal rearrangement, which in turn promoted the internalization of AJ01. The STPKLRR knocked out strain could not phosphorylated AjTmod and displayed lower internalization capacity and pathogenic effect compared to AJ01. Overall, we demonstrated for the first time that the T3SS effector STPKLRR with kinase activity was a novel virulence factor in Vibrio and mediated self-internalization by targeting host AjTmod phosphorylation dependent cytoskeleton rearrangement, which provided a candidate target to control AJ01 infection in practice.
Collapse
Affiliation(s)
- Fa Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
8
|
Liu J, Shao Y, Li D, Li C. N6-methyladenosine helps Apostichopus japonicus resist Vibrio splendidus infection by targeting coelomocyte autophagy via the AjULK-AjYTHDF/AjEEF-1α axis. Commun Biol 2023; 6:547. [PMID: 37210465 DOI: 10.1038/s42003-023-04929-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
N6-Methyladenosine (m6A) modification is one of the most abundant post-transcriptional modifications that can mediate autophagy in various pathological processes. However, the functional role of m6A in autophagy regulation is not well-documented during Vibrio splendidus infection of Apostichopus japonicus. In this study, the inhibition of m6A level by knockdown of methyltransferase-like 3 (AjMETTL3) significantly decreased V. splendidus-induced coelomocyte autophagy and led to an increase in the intracellular V. splendidus burden. In this condition, Unc-51-like kinase 1 (AjULK) displayed the highest differential expression of m6A level. Moreover, knockdown of AjULK can reverse the V. splendidus-mediated autophagy in the condition of AjMETTL3 overexpression. Furthermore, knockdown of AjMETTL3 did not change the AjULK mRNA transcript levels but instead decreased protein levels. Additionally, YTH domain-containing family protein (AjYTHDF) was identified as a reader protein of AjULK and promoted AjULK expression in an m6A-dependent manner. Furthermore, the AjYTHDF-mediated AjULK expression depended on its interaction with translation elongation factor 1-alpha (AjEEF-1α). Altogether, our findings suggest that m6A is involved in resisting V. splendidus infection via facilitating coelomocyte autophagy in AjULK-AjYTHDF/AjEEF-1α-dependent manner, which provides a theoretical basis for disease prevention and therapy in A. japonicus.
Collapse
Affiliation(s)
- Jiqing Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China
| | - Dongdong Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China.
| |
Collapse
|
9
|
Li D, Guo M, Lv Z, Shao Y, Liang W, Li C. METTL3 activates PERK-eIF2α dependent coelomocyte apoptosis by targeting the endoplasmic reticulum degradation-related protein SEL1L in echinoderms. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194927. [PMID: 36933883 DOI: 10.1016/j.bbagrm.2023.194927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
N6-methyladenosine (m6A) plays an important role in regulating many physiological and disease processes in vertebrates, in which methyltransferase-like 3 (METTL3) is the best-known m6A methyltransferase. However, the functional roles of invertebrate METTL3 have not yet been highlighted. In this study, we found that METTL3 from Apostichopus japonicus (AjMETTL3) was significantly induced in coelomocytes accompanied by higher levels of m6A modification in response to Vibrio splendidus challenge. Overexpression or silencing of AjMETTL3 in coelomocytes increased or decreased the m6A levels and promoted or inhibited V. splendidus-induced coelomocyte apoptosis, respectively. To further explore the molecular mechanism of AjMETTL3-mediated coelomic immunity, m6A-seq analysis revealed that the endoplasmic reticulum-related degradation (ERAD) pathway was significantly enriched, in which suppressor/enhancer of Lin-12-like (AjSEL1L) was suggested to be a target of AjMETTL3 in a negative regulatory manner. Functional analysis revealed that the increased AjMETTL3 reduced the stability of AjSEL1L mRNA by targeting the m6A modification site of 2004 bp-GGACA-2008 bp. The decreased AjSEL1L was further confirmed to be involved in AjMETTL3-mediated coelomocyte apoptosis. Mechanistically, the inhibited AjSEL1L increased the transcription of AjOS9 and Ajp97 in the EARD pathway to promote ubiquitin protein accumulation and ER stress, which further activated AjPERK-AjeIF2α pathway dependent coelomocyte apoptosis, but not the AjIRE1 or AjATF6 pathway. Taken together, our results supported invertebrate METTL3-mediated coelomocyte apoptosis by regulating the PERK-eIF2α pathway.
Collapse
Affiliation(s)
- Dongdong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China
| | - Zhimeng Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China
| | - Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
10
|
Ou J, Liu Q, Bian Y, Luan X, Meng Y, Dong H, Cao M, Zhang B, Wang Z, Zhao W. Integrated analysis of mRNA and microRNA transcriptome related to immunity and autophagy in shrimp hemocytes infected with Spiroplasma eriocheiris. FISH & SHELLFISH IMMUNOLOGY 2022; 130:436-452. [PMID: 36184970 DOI: 10.1016/j.fsi.2022.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In recent years, the industry in charge of the cultivation of Macrobrachium nipponense (M.nipponense) has suffered significant economic losses due to an infectious pathogen called Spiroplasma eriocheiris (S.eriocheiris). There has therefore been a need to identify the key immune and autophagy genes that respond to M.nipponense's infection with S. eriocheiris to analyze its immune response mechanism and the regulation of related microRNAs (miRNAs). In this study, the mRNA and miRNA transcriptome of M.nipponense's hemocytes were analyzed at different stages of infection. This analysis employed the second and third-generation sequencing technologies. In the mRNA transcriptome, 1656 genes were expressed in healthy and susceptible M.nipponense. 892 of these were significantly up-regulated, while 764 were down-regulated. 118 genes with significant differences in autophagy, endocytosis, lysosome, Toll, IMD, and VEGF pathways were obtained from the transcriptome. In the miRNA transcriptome, 312 miRNAs (Conserved: 112, PN-type: 18, PC-type: 182) were sequenced. 74 were significantly up-regulated, and 57 were down-regulated. There were 25 miRNAs involved in regulating the Toll and IMD pathways, 41 in endocytosis, 30 in lysosome, and 12 in the VEGF pathway. An integrated analysis of immune-related miRNAs and mRNAs showed that miRNAs with significant differences (P < 0.05) such as ame-miR-29b-3p, dpu-miR-1and PC-3p-945_4074, had corresponding regulatory relationships with 118 important immune genes such as Relish, Dorsal, Caspase-3, and NF-κB. This study obtained the key immune and autophagy-related genes and corresponding regulatory miRNAs in M. nipponense's hemocytes in response to an infection by S.eriocheiris. The results can provide vital data that further reveals the defense mechanism of M.nipponense's immune system against S.eriocheiris. It can also help further comprehension and interpretation of M.nipponense's resistance mechanism to the invading S.eriocheiris, and provide molecular research information for the realization of host-directed therapies (HDT) for M.nipponense.
Collapse
Affiliation(s)
- Jiangtao Ou
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China.
| | - Qiao Liu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China; The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Province Jiangsu, China
| | - Yunxia Bian
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Xiaoqi Luan
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China; Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yusuo Meng
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Huizi Dong
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Miao Cao
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Benhou Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Zisheng Wang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Weihong Zhao
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| |
Collapse
|
11
|
Xiao K, Zhang S, Li C. The complement system and complement-like factors in sea cucumber. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104511. [PMID: 36029917 DOI: 10.1016/j.dci.2022.104511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The complement system is an important part of innate immunity and plays an essential role in immune responses. Complement system consists of a series of proteins, its activation results in opsonization and phagocytosis of pathogens. Although the complement system has been studied extensively in vertebrates, considerably less is known about complement in invertebrates, especially in sea cucumber. Here, we reviewed the complement-like factors including Component 3 (C3), Complement factor B (Bf), Mannan-binding lectin (MBL) and globular Complement component 1q Receptor (gC1qR), which had been found in the complement system of sea cucumber. Furthermore, we compared the features of complement components among marine invertebrates and described the evolution of sea cucumber complement system obviously. This review can offer theoretical basis for disease control of the sea cucumber and will provide new insights into immune system of marine invertebrates. Meantime, the complete framework of sea cucumber complement may benefit the aquaculture industry.
Collapse
Affiliation(s)
- Ke Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Siyuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
12
|
Chen K, Shao Y, Li C. miR-137 modulates coelomocytes autophagy by targeting Atg13 in the sea cucumber Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104486. [PMID: 35772590 DOI: 10.1016/j.dci.2022.104486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs), as important regulators of host immune responses, play an crucial position in the interaction between host and pathogen by inhibiting the target gene's transcriptional and post-transcriptional expression. A well-validated tumor suppressor, Previously, miR-137 was found to be variably expressed in the sick sea cucumber Apostichopus japonicus specimens by high-throughput sequencing. To further investigate the mechanism of miR-137 regulation of SUS, we identified Atg13 from sea cucumber by dual luciferase reporter assay and RACE (designated as AjAtg13) and was able to serve as a target gene for miR-137. The full-length cDNA of AjAtg13 is a 2197 bp fragment containing an ORF (open reading frame) of 1149 bp and encodes a total of 382 amino acid polypeptides with a predicted molecular weight of 41.7 kDa. Further expression profiling analysis showed increased mRNA levels of AjAtg13 and reduced expression levels of miR-137 in LPS-stimulated sea cucumber coelomocytes, hinting that miR-137 may negatively regulate AjAtg13. MiR-137 targets AjAtg13 through binding to the 3'UTR region by dual-luciferase reporter gene analysis. MiR-137 overexpression in coelomocytes repressed the expression of autophagy related genes, such as AjAtg13, AjLC3, at the same time, it significantly inhibited autophagy and reduced the ability to clear Vibrio splendidus. Conversely, inhibition of miR-137 significantly upregulated the expression of AjAtg13, promoted autophagy and increased clearance of V. splendidus. Subsequent interference with AjAtg13 also significantly inhibits autophagy. In summary, our results suggested that miR-137 could promote coelomocytes autophagy to restrict bacterial invasion by aiming at AjAtg13 in pathogen-stimulated sea cucumbers.
Collapse
Affiliation(s)
- Kaiyu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
13
|
Zhao X, Liu Y, Wang H, Li W, Liu J. Editorial: Xenophagy: Its role in pathogen infections. Front Cell Infect Microbiol 2022; 12:1003451. [PMID: 36093208 PMCID: PMC9461560 DOI: 10.3389/fcimb.2022.1003451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Xiaona Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Hongwei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Wentao Li
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, United States
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
14
|
Zhang S, Shao Y, Li D, Li C. Dynamic N6-methyladenosine modification of lncRNA modulated by METTL3 during bacterial disease development in an echinoderm. FISH & SHELLFISH IMMUNOLOGY 2022; 124:497-504. [PMID: 35483599 DOI: 10.1016/j.fsi.2022.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs (lncRNAs) are novel functional non-coding RNAs which engaged in many aspects of biological processes. N6-methyladenosine (m6A) as a kind of abundant epitranscriptomic modification in eukaryotes, plays important roles in regulation of gene expression for various physiological functions. Our previous study demonstrated that sea cucumber lncRNAs were differentially expressed during bacterial infection. However, whether the post-transcriptional regulation of lncRNAs influenced by m6A modification in sea cucumbers with different stages of skin ulceration syndrome (SUS) are largely unknown. Here, we generated the genome-wide map of m6A lncRNAs in SUS-diseased and SUS-resistant sea cucumbers for the first time, revealed that m6A levels in lncRNAs were mainly upregulated in SUS-resistant group. Intriguingly, most of the m6A lncRNAs showed a positive correlation between the expression levels and m6A levels based on conjoint analysis, suggesting that m6A modification on a lncRNA may contribute to its RNA stability. Furthermore, the host genes of lncRNAs with dysregulated m6A peaks were enriched in immune pathway. More importantly, methyltransferase METTL3 was required for m6A methylation modification and played positive roles in lncRNA expression. Collectively, this study presents the comprehensive characters of m6A lncRNAs in marine invertebrate. These m6A modified lncRNAs may be served as potential regulators associated with SUS and provide a promising avenue for disease therapy through targeting METTL3.
Collapse
Affiliation(s)
- Siyuan Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China
| | - Dongdong Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|