1
|
Bhat AM, Bhat IA, Malik MA, Kaiser P, Ramajayan P, Rayees SR, Ahmed Z, Tasduq SA. Inhibition of IKK complex by (2 methyl butyryl) Shikonin, a naturally occurring naphthoquinone, abrogates melanoma growth and progression via modulation of the IKK/NFκB /EMT signaling axis. Int Immunopharmacol 2025; 148:114026. [PMID: 39823792 DOI: 10.1016/j.intimp.2025.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Melanoma is an aggressive form of malignancy that originates from melanin-producing cells known as melanocytes underlying the basal layer of the epidermis with a poor prognosis, low survival rates, and limited treatment options. Although several specific and effective systematic strategies for treating melanoma have been established, the underlying molecular mechanism of melanoma progression, mortality and the promising therapeutic options remain elusive. Shikonin (SK), a natural naphthoquinone derived from a medicinal herbaceous plant, has been shown to inhibit the proliferation of several cancer cells. However, its role in the context of melanoma is poorly understood. In the present study, the anti-melanoma activity of (2-methylbutyryl) Shikonin was assessed under in vitro and in vivo models. In vitro findings revealed that (2-methylbutyryl) Shikonin significantly reduced the viability and promoted apoptosis in the B16F10 melanoma cells. Additionally (2-methylbutyryl) Shikonin significantly suppressed migration and invasion of melanoma cells by regulating IKK/NFκB/EMT signalling axis thereby attenuating nuclear translocation and subsequent transcription of NF-κB downstream target genes. Furthermore, (2-methylbutyryl) Shikonin administration significantly reduced tumor size and weight in the xenograft melanoma mice model. Our data presents novel insights that justify additional preclinical and clinical validations of (2-methylbutyryl) Shikonin for melanoma therapy.
Collapse
Affiliation(s)
- Aalim Maqsood Bhat
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Irshad Ahmad Bhat
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mushtaq Ahmad Malik
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Peerzada Kaiser
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - P Ramajayan
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sheikh R Rayees
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Zabeer Ahmed
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sheikh Abdullah Tasduq
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
2
|
Lurain KA, Ramaswami R, Krug LT, Whitby D, Ziegelbauer JM, Wang HW, Yarchoan R. HIV-associated cancers and lymphoproliferative disorders caused by Kaposi sarcoma herpesvirus and Epstein-Barr virus. Clin Microbiol Rev 2024; 37:e0002223. [PMID: 38899877 PMCID: PMC11391709 DOI: 10.1128/cmr.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYWithin weeks of the first report of acquired immunodeficiency syndrome (AIDS) in 1981, it was observed that these patients often had Kaposi sarcoma (KS), a hitherto rarely seen skin tumor in the USA. It soon became apparent that AIDS was also associated with an increased incidence of high-grade lymphomas caused by Epstein-Barr virus (EBV). The association of AIDS with KS remained a mystery for more than a decade until Kaposi sarcoma-associated herpesvirus (KSHV) was discovered and found to be the cause of KS. KSHV was subsequently found to cause several other diseases associated with AIDS and human immunodeficiency virus (HIV) infection. People living with HIV/AIDS continue to have an increased incidence of certain cancers, and many of these cancers are caused by EBV and/or KSHV. In this review, we discuss the epidemiology, virology, pathogenesis, clinical manifestations, and treatment of cancers caused by EBV and KSHV in persons living with HIV.
Collapse
Affiliation(s)
- Kathryn A Lurain
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Ramya Ramaswami
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Laurie T Krug
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph M Ziegelbauer
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Li T, Gao SJ. KSHV hijacks FoxO1 to promote cell proliferation and cellular transformation by antagonizing oxidative stress. J Med Virol 2023; 95:e28676. [PMID: 36929740 PMCID: PMC10285692 DOI: 10.1002/jmv.28676] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Reactive oxygen species (ROS) are a group of a highly short-lived molecules that control diverse behaviors of cells. Normal cells maintain ROS balance to ensure their functions. Because of oncogenic stress, cancer cells often have excessive ROS, also known as oxidative stress, which are often counteracted by enhanced antioxidant systems to maintain redox homeostasis. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus associated with Kaposi's sarcoma (KS), which manifests hyper inflammation and oxidative stress as the hallmarks. We have previously shown that excessive ROS can disrupt KSHV latency by inducing viral lytic replication, leading to cell death. Paradoxically, most KS tumor cells are latently infected by KSHV in a highly inflammatory and oxidative stress tumor microenvironment, which is in part due to the activation of alternative complement and TLR4 pathways, indicating the existence of an enhanced antioxidant defense system in KS tumor cells. In this study, we show that KSHV upregulates antioxidant genes, including SOD2 and CAT by hijacking the forkhead box protein O1 (FoxO1), to maintain intracellular ROS level. Moreover, the fine-tuned balance of ROS level in KSHV-transformed cells is essential for cell survival. Consequently, KSHV-transformed cells are extremely sensitive to exogenous ROS insult such as treatment with a low level of hydrogen peroxide (H2 O2 ). Either chemical inhibition or knockdown of FoxO1 by short interfering RNAs decreases the expression of antioxidant genes and subsequently increases the intracellular ROS level in KSHV-transformed cells, resulting in the inhibition of cell proliferation and colony formation in soft agar. Mechanistically, KSHV-encoded microRNAs and vFLIP upregulate FoxO1 by activating the NF-κB pathway. These results reveal a novel mechanism by which an oncogenic virus counteracts oxidative stress by upregulating FoxO1, which is essential for KSHV-induced cell proliferation and cellular transformation. Therefore, FoxO1 might be a potential therapeutic target for KSHV-related malignancies.
Collapse
Affiliation(s)
- Tingting Li
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Current address: Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|