1
|
Chen S, Yi M, Yi X, Zhou Y, Song H, Zeng M. Unveiling the fungal frontier: mycological insights into inflammatory bowel disease. Front Immunol 2025; 16:1551289. [PMID: 40207229 PMCID: PMC11979276 DOI: 10.3389/fimmu.2025.1551289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent gastrointestinal disease that seriously affects the quality of life of patients around the world. It is characterized by recurrent abdominal pain, diarrhea, and mucous bloody stools. There is an urgent need for more accurate diagnosis and effective treatment of IBD. Accumulated evidence suggests that gut microbiota plays an important role in the occurrence and development of gut inflammation. However, most studies on the role of gut microbiota in IBD have focused on bacteria, while fungal microorganisms have been neglected. Fungal dysbiosis can activate the host protective immune pathway related to the integrity of the epithelial barrier and release a variety of pro-inflammatory cytokines to trigger the inflammatory response. Dectin-1, CARD9, and IL-17 signaling pathways may be immune drivers of fungal dysbacteriosis in the development of IBD. In addition, fungal-bacterial interactions and fungal-derived metabolites also play an important role. Based on this information, we explored new strategies for IBD treatment targeting the intestinal fungal group and its metabolites, such as fungal probiotics, antifungal drugs, diet therapy, and fecal microbiota transplantation (FMT). This review aims to summarize the fungal dysbiosis and pathogenesis of IBD, and provide new insights and directions for further research in this emerging field.
Collapse
Affiliation(s)
- Silan Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meijing Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinying Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuxuan Zhou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Houpan Song
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Dickenson RE, Pellon A, Ponde NO, Hepworth O, Daniels Gatward LF, Naglik JR, Moyes DL. EGR1 regulates oral epithelial cell responses to Candida albicans via the EGFR- ERK1/2 pathway. Virulence 2024; 15:2435374. [PMID: 39635778 PMCID: PMC11622614 DOI: 10.1080/21505594.2024.2435374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/11/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024] Open
Abstract
Candida albicans is a fungal pathobiont colonizing mucosal surfaces of the human body, including the oral cavity. Under certain predisposing conditions, C. albicans invades mucosal tissues activating EGFR-MAPK signalling pathways in epithelial cells via the action of its peptide toxin candidalysin. However, our knowledge of the epithelial mechanisms involved during C. albicans colonization is rudimentary. Here, we describe the role of the transcription factor early growth response protein 1 (EGR1) in human oral epithelial cells (OECs) in response to C. albicans. EGR1 expression increases in OECs when exposed to C. albicans independently of fungal viability, morphology, or candidalysin release, suggesting EGR1 is involved in the fundamental recognition of C. albicans, rather than in response to invasion or "pathogenesis." Upregulation of EGR1 is mediated by EGFR via Raf1, ERK1/2, and NF-κB signalling but not PI3K/mTOR signalling. Notably, EGR1 mRNA silencing impacts on anti-C. albicans immunity, reducing GM-CSF, IL-1α and IL-1β release, and increasing IL-6 and IL-8 production. These findings identify an important role for EGR1 in priming epithelial cells to respond to subsequent invasive infection by C. albicans and elucidate the regulation circuit of this transcription factor after contact.
Collapse
Affiliation(s)
- Ruth E. Dickenson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Nicole O. Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olivia Hepworth
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Lydia F. Daniels Gatward
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
- School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - David L. Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| |
Collapse
|
3
|
Lin J, Miao J, Schaefer KG, Russell CM, Pyron RJ, Zhang F, Phan QT, Solis NV, Liu H, Tashiro M, Dordick JS, Linhardt RJ, Yeaman MR, King GM, Barrera FN, Peters BM, Filler SG. Sulfated glycosaminoglycans are host epithelial cell targets of the Candida albicans toxin candidalysin. Nat Microbiol 2024; 9:2553-2569. [PMID: 39285260 PMCID: PMC11734966 DOI: 10.1038/s41564-024-01794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/23/2024] [Indexed: 10/03/2024]
Abstract
Candidalysin, a cytolytic peptide produced by the fungal pathogen Candida albicans, is a key virulence factor. However, its host cell targets remain elusive. Here we performed a genome-wide loss-of-function CRISPR screen in the TR146 human oral epithelial cell line and identified that disruption of genes (XYLT2, B3GALT6 and B3GAT3) in glycosaminoglycan (GAG) biosynthesis conferred resistance to damage induced by candidalysin and live C. albicans. Surface plasmon resonance and atomic force and electron microscopy indicated that candidalysin binds to sulfated GAGs, facilitating its enrichment on the host cell surface. Adding exogenous sulfated GAGs or the analogue dextran sulfate protected cells against candidalysin-induced damage. Dextran sulfate also inhibited C. albicans invasion and fungal-induced epithelial cell cytokine production. In mice with vulvovaginal candidiasis, topical dextran sulfate administration reduced intravaginal tissue damage and inflammation. Collectively, sulfated GAGs are epithelial cell targets of candidalysin and can be used therapeutically to protect cells from candidalysin-induced damage.
Collapse
Affiliation(s)
- Jianfeng Lin
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jian Miao
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Robert J Pyron
- Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Quynh T Phan
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Norma V Solis
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hong Liu
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Masato Tashiro
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Michael R Yeaman
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Scott G Filler
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA.
| |
Collapse
|
4
|
Bao M, Bu Q, Pan M, Xu R, Chen Y, Yang Y, Wang C, Wang T. Coptidis rhizoma extract alleviates oropharyngeal candidiasis by gC1qR-EGFR/ERK/c-fos axis-induced endocytosis of oral epithelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118305. [PMID: 38729536 DOI: 10.1016/j.jep.2024.118305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptidis rhizoma, first recorded in the "Shen Nong's Herbal Classic", is one of the traditional Chinese medicine (TCM) used to treat infectious diseases, with reputed effectiveness against oropharyngeal candidiasis (OPC). Studies have demonstrated the inhibitory properties of C. rhizoma (CRE) against Candida albicans, yet there is limited information available regarding its treatment mechanism for OPC. AIM OF THE STUDY Our previous research has suggested that CRE can prevent the formation of C. albicans hyphae and their invasion of the oral mucosa, thereby exerting a therapeutic effect on OPC. Nevertheless, the precise therapeutic mechanisms remain incompletely understood. Previous studies have revealed that a receptor for globular heads of C1q (gC1qR), a crucial co-receptor of the epidermal growth factor receptor (EGFR), facilitates the EGFR-mediated internalization of C. albicans. Therefore, this study aims to investigate the potential mechanism of action of CRE and its primary component, berberine (BBR), in treating OPC by exploring their effects on the gC1qR-EGFR co-receptor. MATERIALS AND METHODS To identify the chemical components of CRE, we utilized Ultra-high performance liquid chromatography in conjunction with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MSE), revealing the presence of at least 18 distinct components. To observe the therapeutic effects of CRE on OPC at the animal level, we employed hematoxylin and eosin staining, periodic acid-Schiff staining, scanning electron microscopy, and fungal load detection. Subsequently, we evaluated the anti-inflammatory properties of CRE and its main component, BBR, in treating OPC. This was achieved through enzyme-linked immunosorbent assay (ELISA) both at the animal and cellular levels. Additionally, we assessed the ability of C. albicans to disrupt the epithelial barrier of FaDu cells by studying the protective effects of BBR on the fusion barrier using the transwell assay. To further explore the underlying mechanisms, we analyzed the effects of BBR on the gC1qR-EGFR/extracellular signal-regulated kinase/c-Fos signaling pathway at the cellular level using qRT-PCR, western blotting, and immunofluorescence. Furthermore, we validated the effects of BBR on the gC1qR-EGFR co-receptor through ELISA, qRT-PCR, and western blotting. Finally, to confirm the outcomes observed at the cellular level, we validated the impact of CRE on the gC1qR-EGFR co-receptor in vivo using qRT-PCR, western blotting, and immunofluorescence. These comprehensive methods allowed us to gain a deeper understanding of the therapeutic mechanisms of CRE and BBR in treating OPC. RESULTS Our findings indicate that CRE and its primary component, BBR, effectively alleviated the symptoms of OPC by modulating the gC1qR-EGFR co-receptor. The chemical composition of CRE and BBR was accurately identified using UPLC-Q/TOF-MSE. The gC1qR-EGFR co-receptor plays a crucial role in regulating downstream signaling pathways, emerging as a potential therapeutic target for OPC treatment. Through both in vitro and in vivo experiments, we explored the therapeutic potential of CRE and BBR in OPC. Additionally, we employed overexpression and silencing techniques to confirm that BBR can indeed influence the gC1qR-EGFR co-receptor and regulate the gC1qR-EGFR/extracellular signal-regulated kinase (ERK)/c-Fos signaling pathway, leading to improved OPC outcomes. Furthermore, the significance of CRE's effect on the gC1qR-EGFR co-receptor was validated in vivo. CONCLUSION Our study demonstrates that CRE and its main component, BBR, can effectively alleviate OPC symptoms by targeting the gC1qR-EGFR heterodimer receptor. This discovery offers a promising new therapeutic approach for the treatment of OPC.
Collapse
Affiliation(s)
- Mengyuan Bao
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, 230012, China
| | - Qingru Bu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, 230012, China
| | - Min Pan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ran Xu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, 230012, China
| | - Yujie Chen
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, 230012, China
| | - Yue Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Changzhong Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Tianming Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
5
|
Zeng S, Schnabl B. Gut mycobiome alterations and implications for liver diseases. PLoS Pathog 2024; 20:e1012377. [PMID: 39116092 PMCID: PMC11309506 DOI: 10.1371/journal.ppat.1012377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Chronic liver disease and its complications are a significant global health burden. Changes in fungal communities (mycobiome), an integral component of the gut microbiome, are associated with and contribute to the development of liver disease. Fungal dysbiosis can induce intestinal barrier dysfunction and allow fungal products to translocate to the liver causing progression of disease. This review explores recent progress in understanding the compositional and functional diversity of gut mycobiome signatures across different liver diseases. It delves into causative connections between gut fungi and liver diseases. We emphasize the significance of fungal translocation, with a particular focus on fungal-derived metabolites and immune cells induced by fungi, as key contributors to liver disease. Furthermore, we review the potential impact of the intrahepatic mycobiome on the progression of liver diseases.
Collapse
Affiliation(s)
- Suling Zeng
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, United States of America
| |
Collapse
|
6
|
Jin M, Wu X, Hu J, Chen Y, Yang B, Cheng C, Yang M, Zhang X. EGFR-MEK1/2 cascade negatively regulates bactericidal function of bone marrow macrophages in mice with Staphylococcus aureus osteomyelitis. PLoS Pathog 2024; 20:e1012437. [PMID: 39102432 PMCID: PMC11326603 DOI: 10.1371/journal.ppat.1012437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
The ability of Staphylococcus aureus (S. aureus) to survive within macrophages is a critical strategy for immune evasion, contributing to the pathogenesis and progression of osteomyelitis. However, the underlying mechanisms remain poorly characterized. This study discovered that inhibiting the MEK1/2 pathway reduced bacterial load and mitigated bone destruction in a mouse model of S. aureus osteomyelitis. Histological staining revealed increased phosphorylated MEK1/2 levels in bone marrow macrophages surrounding abscess in the mouse model of S. aureus osteomyelitis. Activation of MEK1/2 pathway and its roles in impairing macrophage bactericidal function were confirmed in primary mouse bone marrow-derived macrophages (BMDMs). Transcriptome analysis and in vitro experiments demonstrated that S. aureus activates the MEK1/2 pathway through EGFR signaling. Moreover, we found that excessive activation of EGFR-MEK1/2 cascade downregulates mitochondrial reactive oxygen species (mtROS) levels by suppressing Chek2 expression, thereby impairing macrophage bactericidal function. Furthermore, pharmacological inhibition of EGFR signaling prevented upregulation of phosphorylated MEK1/2 and restored Chek2 expression in macrophages, significantly enhancing S. aureus clearance and improving bone microstructure in vivo. These findings highlight the critical role of the EGFR-MEK1/2 cascade in host immune defense against S. aureus, suggesting that S. aureus may reduce mtROS levels by overactivating the EGFR-MEK1/2 cascade, thereby suppressing macrophage bactericidal function. Therefore, combining EGFR-MEK1/2 pathway blockade with antibiotics could represent an effective therapeutic approach for the treatment of S. aureus osteomyelitis.
Collapse
Affiliation(s)
- Mingchao Jin
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohu Wu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yijie Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingsheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chubin Cheng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mankai Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianrong Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Mills KAM, Aufiero MA, Hohl TM. Epithelial responses to fungal pathogens. Curr Opin Microbiol 2024; 80:102508. [PMID: 38986398 PMCID: PMC11331878 DOI: 10.1016/j.mib.2024.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Epithelial cells orchestrate immune responses against fungal pathogens. This review highlights advances in integrating epithelial cells in immune responses against inhaled molds and dimorphic fungi, and against Candida species that colonize mucosal surfaces. In the lung, epithelial cells respond to interleukin-1 (IL-1) and interferon signaling to regulate effector cell influx and fungal killing. In the alimentary and vulvovaginal tracts, epithelial cells modulate fungal commensalism, invasive growth, and local immune tone, in part by responding to damage caused by candidalysin, a C. albicans peptide toxin, and through IL-17-dependent release of antimicrobial peptides that contribute to Candida colonization resistance. Understanding fungal-epithelial interactions in mammalian models of disease is critical to predict vulnerabilities and to identify opportunities for immune-based strategies to treat fungal infections.
Collapse
Affiliation(s)
- Kathleen A M Mills
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Mariano A Aufiero
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tobias M Hohl
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
8
|
Lin J, Miao J, Schaefer KG, Russell CM, Pyron RJ, Zhang F, Phan QT, Solis-Swidergall NV, Liu H, Tashiro M, Dordick JS, Linhardt RJ, Yeaman MR, King GM, Barrera FN, Peters BM, Filler SG. A genome-scale screen identifies sulfated glycosaminoglycans as pivotal in epithelial cell damage by Candida albicans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595417. [PMID: 38826446 PMCID: PMC11142209 DOI: 10.1101/2024.05.23.595417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Candidalysin is a cytolytic peptide produced by the opportunistic fungal pathogen Candida albicans. This peptide is a key virulence factor in mouse models of mucosal and hematogenously disseminated candidiasis. Despite intense interest in the role of candidalysin in C. albicans pathogenicity, its host cell targets have remained elusive. To fill this knowledge gap, we performed a genome-wide loss-of-function CRISPR screen in a human oral epithelial cell line to identify specific host factors required for susceptibility to candidalysin-induced cellular damage. Among the top hits were XYLT2, B3GALT6 and B3GAT3, genes that function in glycosaminoglycan (GAG) biosynthesis. Deletion of these genes led to the absence of GAGs such as heparan sulfate on the epithelial cell surface and increased resistance to damage induced by both candidalysin and live C. albicans. Biophysical analyses including surface plasmon resonance and atomic force and electron microscopy indicated that candidalysin physically binds to sulfated GAGs, facilitating its oligomerization or enrichment on the host cell surface. The addition of exogenous sulfated GAGs or the GAG analogue dextran sulfate protected cells against candidalysin-induced damage. Dextran sulfate, but not non-sulfated dextran, also inhibited epithelial cell endocytosis of C. albicans and fungal-induced epithelial cell cytokine and chemokine production. In a murine model of vulvovaginal candidiasis, topical dextran sulfate administration reduced host tissue damage and decreased intravaginal IL-1β and neutrophil levels. Collectively, these data indicate that GAGs are epithelial cell targets of candidalysin and can be used therapeutically to protect cells from candidalysin-induced damage.
Collapse
Affiliation(s)
- Jianfeng Lin
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jian Miao
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri United States
| | - Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee United States
| | - Robert J Pyron
- Genome Science and Technology, University of Tennessee, Knoxville, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Quynh T Phan
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Norma V Solis-Swidergall
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Hong Liu
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Masato Tashiro
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Michael R Yeaman
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri United States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee United States
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Scott G Filler
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| |
Collapse
|
9
|
Sprague JL, Schille TB, Allert S, Trümper V, Lier A, Großmann P, Priest EL, Tsavou A, Panagiotou G, Naglik JR, Wilson D, Schäuble S, Kasper L, Hube B. Candida albicans translocation through the intestinal epithelial barrier is promoted by fungal zinc acquisition and limited by NFκB-mediated barrier protection. PLoS Pathog 2024; 20:e1012031. [PMID: 38427950 PMCID: PMC10907035 DOI: 10.1371/journal.ppat.1012031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
The opportunistic fungal pathogen Candida albicans thrives on human mucosal surfaces as a harmless commensal, but frequently causes infections under certain predisposing conditions. Translocation across the intestinal barrier into the bloodstream by intestine-colonizing C. albicans cells serves as the main source of disseminated candidiasis. However, the host and microbial mechanisms behind this process remain unclear. In this study we identified fungal and host factors specifically involved in infection of intestinal epithelial cells (IECs) using dual-RNA sequencing. Our data suggest that host-cell damage mediated by the peptide toxin candidalysin-encoding gene ECE1 facilitates fungal zinc acquisition. This in turn is crucial for the full virulence potential of C. albicans during infection. IECs in turn exhibit a filamentation- and damage-specific response to C. albicans infection, including NFκB, MAPK, and TNF signaling. NFκB activation by IECs limits candidalysin-mediated host-cell damage and mediates maintenance of the intestinal barrier and cell-cell junctions to further restrict fungal translocation. This is the first study to show that candidalysin-mediated damage is necessary for C. albicans nutrient acquisition during infection and to explain how IECs counteract damage and limit fungal translocation via NFκB-mediated maintenance of the intestinal barrier.
Collapse
Affiliation(s)
- Jakob L. Sprague
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Tim B. Schille
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Verena Trümper
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Adrian Lier
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Peter Großmann
- Department of Microbiome Dynamics, Hans-Knöll-Institute, Jena, Germany
| | - Emily L. Priest
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Antzela Tsavou
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Gianni Panagiotou
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Microbiome Dynamics, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Duncan Wilson
- Medical Research Council, Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Hans-Knöll-Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
10
|
Xu X, Li Y, Xu R, Meng Y, Li Z, Zuo D, Wu Y. CD74-ROS1 L2026M mutant enhances autophagy through the MEK/ERK pathway to promote invasion, metastasis and crizotinib resistance in non-small cell lung cancer cells. FEBS J 2024; 291:1199-1219. [PMID: 38148635 DOI: 10.1111/febs.17032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/09/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
The treatment of non-small cell lung cancer (NSCLC) patients harboring a proto-oncogene tyrosine-protein kinase c-ros oncogene 1 (ROS1) fusion gene has greatly benefited from the use of crizotinib. However, drug resistance inevitably occurs after 1 year of treatment. Clinical studies have shown that patients with an L2026M mutation in the ROS1 kinase domain account for about 6% of the total number of crizotinib-resistant cases, which is an important group that cannot be ignored. To explore the mechanism involved, we constructed the HLA class II histocompatibility antigen gamma chain (CD74)-ROS1 L2026M mutant gene by fusion polymerase chain reaction (PCR) and transfected it into H460 and A549 cells. We found that the invasion and metastasis abilities of drug-resistant cells were increased. The results of monodansylcadaverine (MDC) staining, Acridine orange (AO) staining, and western blot indicated that the autophagy level of CD74-ROS1 L2026M mutant NSCLC cells was increased compared with the CD74-ROS1 group, and the inhibition of autophagy could reverse the increased invasion and metastasis abilities caused by the L2026M mutation. In addition, the L2026M mutation led to excessive activation of the MEK/ERK pathway, and MEK inhibitors could reduce the autophagy level, invasion, and metastasis abilities of cells; additionally, this process could be blocked by rapamycin, an activator of autophagy. Furthermore, crizotinib treatment activated expression of Src homology region 2 domain-containing phosphatase-2 (SHP2; also known as PTPN11) to upregulate the MEK/ERK pathway, and the combination of MEK inhibitors and crizotinib increased apoptosis compared with crizotinib alone. In conclusion, our results indicate that the MEK/ERK pathway mediates the induction of invasion, metastasis, and crizotinib resistance through autophagy caused by CD74-ROS1 L2026M mutation in NSCLC cells, and targeting MEK could reverse these processes.
Collapse
Affiliation(s)
- Xiaobo Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, China
| | - Ye Li
- Department of Pharmacology, Shenyang Pharmaceutical University, China
| | - Rui Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, China
| | - Yuting Meng
- Department of Pharmacology, Shenyang Pharmaceutical University, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, China
| |
Collapse
|
11
|
Mori T, Kataoka H, Into T. Effect of NLRP3 deficiency on cytotoxic and IL-1β-producing activities of synthetic candidalysin peptide. J Oral Biosci 2023; 65:287-292. [PMID: 37659475 DOI: 10.1016/j.job.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
OBJECTIVES Candidalysin (CL), a hydrophobic peptide toxin secreted by Candida albicans, is a key virulence factor that contributes to cytolysis, tissue damage, and immune activation. CL is thought to exert some of its biological activities, including IL-1β production, through the activation of the NLRP3-inflammasome pathway. To date, the mechanism by which CL affects human NLRP3 is not fully understood. We investigated specific activities of synthetic CL peptides using human-derived NLRP3-deficient cells. METHODS Two distinct synthetic CL peptide solutions were prepared: CLd, with CL completely solubilized as nanoparticles in dimethyl sulfoxide, and CLw, with CL partly solubilized in water, and including insoluble microparticles. THP-1 human monocytic cells and NLRP3-deficient THP-1 cells were differentiated into macrophages and stimulated with these peptide solutions. Cell membrane damage, lactate dehydrogenase release, IL-1β production, and caspase-1 activation in stimulated cells were subsequently evaluated. RESULTS Both CLd and CLw exhibited cytotoxic activities independent of NLRP3. Importantly, CLd induced IL-1β production and caspase-1 activation in an NLRP3-independent manner, whereas these activities in CLw-stimulated cells were entirely NLRP3-dependent, suggesting that the NLRP3-dependent response might be triggered by insoluble microparticles. CONCLUSIONS Our results demonstrate that inherent CL activities can cause cell damage and IL-1β production in an NLRP3-independent manner. Our research advances the elucidation of the role of NLRP3 in CL biological activity, underscoring the necessity for further exploration of the precise mechanisms underlying the NLRP3-independent effects of CL and providing novel insights into the complexity of host-pathogen interactions.
Collapse
Affiliation(s)
- Taiki Mori
- Department of Oral Microbiology, Division of Oral Infections Health Sciences, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Hideo Kataoka
- Department of Oral Microbiology, Division of Oral Infections Health Sciences, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Takeshi Into
- Department of Oral Microbiology, Division of Oral Infections Health Sciences, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan.
| |
Collapse
|
12
|
Yang L, Cheng T, Shao J. Perspective on receptor-associated immune response to Candida albicans single and mixed infections: Implications for therapeutics in oropharyngeal candidiasis. Med Mycol 2023; 61:myad077. [PMID: 37533203 DOI: 10.1093/mmy/myad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Oropharyngeal candidiasis (OPC), commonly known as 'thrush', is an oral infection that usually dismantles oral mucosal integrity and malfunctions local innate and adaptive immunities in compromised individuals. The major pathogen responsible for the occurrence and progression of OPC is the dimorphic opportunistic commensal Candida albicans. However, the incidence induced by non-albicans Candida species including C. glabrata, C. tropicalis, C. dubliniensis, C. parapsilosis, and C. krusei are increasing in company with several oral bacteria, such as Streptococcus mutans, S. gordonii, S. epidermidis, and S. aureus. In this review, the microbiological and infection features of C. albicans and its co-contributors in the pathogenesis of OPC are outlined. Since the invasion and concomitant immune response lie firstly on the recognition of oral pathogens through diverse cellular surface receptors, we subsequently emphasize the roles of epidermal growth factor receptor, ephrin-type receptor 2, human epidermal growth factor receptor 2, and aryl hydrocarbon receptor located on oral epithelial cells to delineate the underlying mechanism by which host immune recognition to oral pathogens is mediated. Based on these observations, the therapeutic approaches to OPC comprising conventional and non-conventional antifungal agents, fungal vaccines, cytokine and antibody therapies, and antimicrobial peptide therapy are finally overviewed. In the face of newly emerging life-threatening microbes (C. auris and SARS-CoV-2), risks (biofilm formation and interconnected translocation among diverse organs), and complicated clinical settings (HIV and oropharyngeal cancer), the research on OPC is still a challenging task.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| | - Ting Cheng
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| |
Collapse
|