1
|
Force E, Suray C, Girardin C, Sokolowski MBC, Dacher M. Insights on the nutritional ecology of a nocturnal pollinating insect. INSECT SCIENCE 2025. [PMID: 40035497 DOI: 10.1111/1744-7917.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
Nutritional ecology examines the environmental effects on nutritional needs, food intake and foraging behaviors, and the use of nutrients ingested by animals. Adults of many insects' species feed on nectars rich in sugars allowing them to match the nutritional needs necessary for reproduction. Among insects, Lepidoptera are often considered opportunistic foragers that visit a wide variety of available flowers, although with some preferences. While nutritional ecology of diurnal Lepidoptera is beginning to be explored, very little work focuses on nocturnal species because they are complicated to study in the wild. To address this, we used new laboratory approaches to study feeding behaviors (number and duration of visits to artificial flowers, food preferences associated with the texture and odors of the flowers) as well as gustatory detection by antennae (proboscis extension reflex) in the male crop pest moth Agrotis ipsilon. We showed that (i) food responsiveness is age-dependent and increases mainly with sugar quantity and marginally with sugar quality, (ii) diet quality impacts feeding behaviors in the first days of adulthood, and (iii) male moths choose their food through floral cues. Taken together, these data allow to define this species as a generalist forager with a preference for flowers with sugary nectars rich in sucrose, fructose, and glucose. Our results thus provide considerable information on the close links between food sources and nutritional ecology in this species, which is important for guiding future studies on their behavioral ecology, population dynamics, as well as for population monitoring and for regional pest management.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Paris, France
| | - Caroline Suray
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
| | - Charlotte Girardin
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
| | | | - Matthieu Dacher
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Paris, France
| |
Collapse
|
2
|
Yan Y, Seim I, Guo Y, Chi X, Zhong Z, Wang D, Li M, Wang H, Zhang H, Wang M, Li C. Degenerated vision, altered lipid metabolism, and expanded chemoreceptor repertoires enable Lindaspio polybranchiata to thrive in deep-sea cold seeps. BMC Biol 2025; 23:13. [PMID: 39806408 PMCID: PMC11730519 DOI: 10.1186/s12915-025-02112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea. Supporting this, transcriptomic and fatty acid data further corroborate our findings. RESULTS We report the first genome of a deep-sea spionid, L. polybranchiata. Over long-term adaptive evolution, genes associated with vision and biological rhythmicity were lost, which may indirectly benefit oligotrophy by eliminating energetically costly processes. Compared to its shallow-sea relatives, L. polybranchiata has a significantly higher proportion of polyunsaturated fatty acids (PUFAs) and expanded gene families involved in the biosynthesis of unsaturated fatty acids and chromatin stabilization, possibly in response to high hydrostatic pressure. Additionally, L. polybranchiata has broad digestive scope, allowing it to fully utilize the limited food resources in the deep sea to sustain a large population. As a pioneer species, L. polybranchiata has an expanded repertoire of genes encoding potential chemoreceptor proteins, including ionotropic receptors (IRs) and gustatory receptor-like receptors (GRLs). These proteins, characterized by their conserved 3D structures, may enhance the organism's ability to detect chemical cues in chemosynthetic ecosystems, facilitating rapid settlement in suitable environments. CONCLUSIONS Our results shed light on the adaptation of Lindaspio to the darkness, high hydrostatic pressure, and food deprivation in the deep sea, providing insights into the molecular basis for L. polybranchiata becoming a pioneer species.
Collapse
Affiliation(s)
- Yujie Yan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Yang Guo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xupeng Chi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaoshan Zhong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | | - Mengna Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- National Deep Sea Center, Qingdao, 266071, China
| | - Haining Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Minxiao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
| | - Chaolun Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
3
|
Lafont R, Dinan L. Insect Sterols and Steroids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39384701 DOI: 10.1007/5584_2024_823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Insects are incapable of biosynthesising sterols de novo so they need to obtain them from their diets or, in certain cases, from symbiotic microorganisms. Sterols serve a structural role in cellular membranes and act as precursors for signalling molecules and defence compounds. Many phytophagous insects dealkylate phytosterols to yield primarily cholesterol, which is also the main sterol that carnivorous and omnivorous insects obtain in their diets. Some phytophagous species have secondarily lost the capacity to dealkylate and consequently use phytosterols for structural and functional roles. The polyhydroxylated steroid hormones of insects, the ecdysteroids, are derived from cholesterol (or phytosterols in non-dealkylating phytophagous species) and regulate many crucial aspects of insect development and reproduction by means of precisely regulated titres resulting from controlled synthesis, storage and further metabolism/excretion. Ecdysteroids differ significantly from vertebrate steroid hormones in their chemical, biochemical and biological properties. Defensive steroids (cardenolides, bufadienolides, cucurbitacins and ecdysteroids) can be accumulated from host plants or biosynthesised within the insect, depending on species, stored in significant amounts in the insect and released when it is attacked. Other allelochemical steroids serve as pheromones. Vertebrate-type steroids have also been conclusively identified from insect sources, but debate continues about their significance. Side chain dealkylation of phytosterols, ecdysteroid metabolism and ecdysteroid mode of action are targets of potential insect control strategies.
Collapse
Affiliation(s)
- René Lafont
- BIOSIPE, Sorbonne Université, Paris, France.
| | | |
Collapse
|
4
|
Zhang SS, Wang PC, Ning C, Yang K, Li GC, Cao LL, Huang LQ, Wang CZ. The larva and adult of Helicoverpa armigera use differential gustatory receptors to sense sucrose. eLife 2024; 12:RP91711. [PMID: 38814697 PMCID: PMC11139476 DOI: 10.7554/elife.91711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Almost all herbivorous insects feed on plants and use sucrose as a feeding stimulant, but the molecular basis of their sucrose reception remains unclear. Helicoverpa armigera as a notorious crop pest worldwide mainly feeds on reproductive organs of many plant species in the larval stage, and its adult draws nectar. In this study, we determined that the sucrose sensory neurons located in the contact chemosensilla on larval maxillary galea were 100-1000 times more sensitive to sucrose than those on adult antennae, tarsi, and proboscis. Using the Xenopus expression system, we discovered that Gr10 highly expressed in the larval sensilla was specifically tuned to sucrose, while Gr6 highly expressed in the adult sensilla responded to fucose, sucrose and fructose. Moreover, using CRISPR/Cas9, we revealed that Gr10 was mainly used by larvae to detect lower sucrose, while Gr6 was primarily used by adults to detect higher sucrose and other saccharides, which results in differences in selectivity and sensitivity between larval and adult sugar sensory neurons. Our results demonstrate the sugar receptors in this moth are evolved to adapt toward the larval and adult foods with different types and amounts of sugar, and fill in a gap in sweet taste of animals.
Collapse
Affiliation(s)
- Shuai-Shuai Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Pei-Chao Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Chao Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Ke Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Lin-Lin Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Gomes JV, Singh-Bhagania S, Cenci M, Chacon Cordon C, Singh M, Butterwick JA. The molecular basis of sugar detection by an insect taste receptor. Nature 2024; 629:228-234. [PMID: 38447670 PMCID: PMC11062906 DOI: 10.1038/s41586-024-07255-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Animals crave sugars because of their energy potential and the pleasurable sensation of tasting sweetness. Yet all sugars are not metabolically equivalent, requiring mechanisms to detect and differentiate between chemically similar sweet substances. Insects use a family of ionotropic gustatory receptors to discriminate sugars1, each of which is selectively activated by specific sweet molecules2-6. Here, to gain insight into the molecular basis of sugar selectivity, we determined structures of Gr9, a gustatory receptor from the silkworm Bombyx mori (BmGr9), in the absence and presence of its sole activating ligand, D-fructose. These structures, along with structure-guided mutagenesis and functional assays, illustrate how D-fructose is enveloped by a ligand-binding pocket that precisely matches the overall shape and pattern of chemical groups in D-fructose. However, our computational docking and experimental binding assays revealed that other sugars also bind BmGr9, yet they are unable to activate the receptor. We determined the structure of BmGr9 in complex with one such non-activating sugar, L-sorbose. Although both sugars bind a similar position, only D-fructose is capable of engaging a bridge of two conserved aromatic residues that connects the pocket to the pore helix, inducing a conformational change that allows the ion-conducting pore to open. Thus, chemical specificity does not depend solely on the selectivity of the ligand-binding pocket, but it is an emergent property arising from a combination of receptor-ligand interactions and allosteric coupling. Our results support a model whereby coarse receptor tuning is derived from the size and chemical characteristics of the pocket, whereas fine-tuning of receptor activation is achieved through the selective engagement of an allosteric pathway that regulates ion conduction.
Collapse
Affiliation(s)
- João Victor Gomes
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Matthew Cenci
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos Chacon Cordon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Manjodh Singh
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Joel A Butterwick
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Frank HM, Walujkar S, Walsh RM, Laursen WJ, Theobald DL, Garrity PA, Gaudet R. Structural basis of ligand specificity and channel activation in an insect gustatory receptor. Cell Rep 2024; 43:114035. [PMID: 38573859 PMCID: PMC11100771 DOI: 10.1016/j.celrep.2024.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Gustatory receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors, making their structural investigation a vital step toward such applications. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect odorant receptors (ORs). Upon fructose binding, BmGr9's channel gate opens through helix S7b movements. In contrast to ORs, BmGr9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also, unlike ORs, fructose binding by BmGr9 involves helix S5 and a pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with different ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.
Collapse
Affiliation(s)
- Heather M Frank
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Sanket Walujkar
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Richard M Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Willem J Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | | | - Paul A Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Ma D, Hu M, Yang X, Liu Q, Ye F, Cai W, Wang Y, Xu X, Chang S, Wang R, Yang W, Ye S, Su N, Fan M, Xu H, Guo J. Structural basis for sugar perception by Drosophila gustatory receptors. Science 2024; 383:eadj2609. [PMID: 38305684 DOI: 10.1126/science.adj2609] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Insects rely on a family of seven transmembrane proteins called gustatory receptors (GRs) to encode different taste modalities, such as sweet and bitter. We report structures of Drosophila sweet taste receptors GR43a and GR64a in the apo and sugar-bound states. Both GRs form tetrameric sugar-gated cation channels composed of one central pore domain (PD) and four peripheral ligand-binding domains (LBDs). Whereas GR43a is specifically activated by the monosaccharide fructose that binds to a narrow pocket in LBDs, disaccharides sucrose and maltose selectively activate GR64a by binding to a larger and flatter pocket in LBDs. Sugar binding to LBDs induces local conformational changes, which are subsequently transferred to the PD to cause channel opening. Our studies reveal a structural basis for sugar recognition and activation of GRs.
Collapse
Affiliation(s)
- Demin Ma
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310058, China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou 311121, China
| | - Xiaotong Yang
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310058, China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou 311121, China
| | - Qiang Liu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310058, China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou 311121, China
| | - Fan Ye
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Weijie Cai
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310058, China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou 311121, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ximing Xu
- Marine Biomedical Institute of Qingdao, School of Pharmacy and Medicine, Ocean University of China, Qingdao, Shandong 266100, China
| | - Shenghai Chang
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruiying Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Nannan Su
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Minrui Fan
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310058, China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou 311121, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
8
|
Lee S, Eom S, Pyeon M, Moon M, Yun J, Lee J, Choi YS, Lee JH. Identification of 2,4-Di- tert-butylphenol as a Novel Agonist for Insect Odorant Receptors. Int J Mol Sci 2023; 25:220. [PMID: 38203390 PMCID: PMC10779170 DOI: 10.3390/ijms25010220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Odorant molecules interact with odorant receptors (ORs) lining the pores on the surface of the sensilla on an insect's antennae and maxillary palps. This interaction triggers an electrical signal that is transmitted to the insect's nervous system, thereby influencing its behavior. Orco, an OR coreceptor, is crucial for olfactory transduction, as it possesses a conserved sequence across the insect lineage. In this study, we focused on 2,4-di-tert-butylphenol (DTBP), a single substance present in acetic acid bacteria culture media. We applied DTBP to oocytes expressing various Drosophila melanogaster odor receptors and performed electrophysiology experiments. After confirming the activation of DTBP on the receptor, the binding site was confirmed through point mutations. Our findings confirmed that DTBP interacts with the insect Orco subunit. The 2-heptanone, octanol, and 2-hexanol were not activated for the Orco homomeric channel, but DTBP was activated, and the EC50 value was 13.4 ± 3.0 μM. Point mutations were performed and among them, when the W146 residue changed to alanine, the Emax value was changed from 1.0 ± 0 in the wild type to 0.0 ± 0 in the mutant type, and all activity was decreased. Specifically, DTBP interacted with the W146 residue of the Orco subunit, and the activation manner was concentration-dependent and voltage-independent. This molecular-level analysis provides the basis for novel strategies to minimize pest damage. DTBP, with its specific binding to the Orco subunit, shows promise as a potential pest controller that can exclusively target insects.
Collapse
Affiliation(s)
- Shinhui Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; (S.L.); (S.E.); (J.Y.)
| | - Sanung Eom
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; (S.L.); (S.E.); (J.Y.)
| | - Minsu Pyeon
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; (S.L.); (S.E.); (J.Y.)
| | - Myungmi Moon
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; (S.L.); (S.E.); (J.Y.)
| | - Jihwon Yun
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; (S.L.); (S.E.); (J.Y.)
| | - Jaehyeong Lee
- Organic Agriculture Division, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea;
| | - Yong-Seok Choi
- Bioenvironmental Division, Chungnam Agricultural Research and Extension Services, Yesan 32418, Republic of Korea
| | - Junho H. Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; (S.L.); (S.E.); (J.Y.)
| |
Collapse
|
9
|
Frank HM, Walujkar S, Walsh RM, Laursen WJ, Theobald DL, Garrity PA, Gaudet R. Structure of an insect gustatory receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572336. [PMID: 38187590 PMCID: PMC10769236 DOI: 10.1101/2023.12.19.572336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Gustatory Receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors. However, GR structures have not been experimentally determined. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect Olfactory Receptors (ORs). Upon fructose binding, BmGr9's ion channel gate opens through helix S7b movements. In contrast to ORs, BmGR9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also unlike ORs, fructose binding by BmGr9 involves helix S5 and a binding pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with distinct ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.
Collapse
Affiliation(s)
- Heather M. Frank
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
- These authors contributed equally
| | - Sanket Walujkar
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
- These authors contributed equally
| | - Richard M. Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally
| | - Willem J. Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | | | - Paul A. Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
- Lead contact
| |
Collapse
|
10
|
Ahn JE, Amrein H. Opposing chemosensory functions of closely related gustatory receptors. eLife 2023; 12:RP89795. [PMID: 38060294 PMCID: PMC10703443 DOI: 10.7554/elife.89795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
In the fruit fly Drosophila melanogaster, gustatory sensory neurons express taste receptors that are tuned to distinct groups of chemicals, thereby activating neural ensembles that elicit either feeding or avoidance behavior. Members of a family of ligand -gated receptor channels, the Gustatory receptors (Grs), play a central role in these behaviors. In general, closely related, evolutionarily conserved Gr proteins are co-expressed in the same type of taste neurons, tuned to chemically related compounds, and therefore triggering the same behavioral response. Here, we report that members of the Gr28 subfamily are expressed in largely non-overlapping sets of taste neurons in Drosophila larvae, detect chemicals of different valence, and trigger opposing feeding behaviors. We determined the intrinsic properties of Gr28 neurons by expressing the mammalian Vanilloid Receptor 1 (VR1), which is activated by capsaicin, a chemical to which wild-type Drosophila larvae do not respond. When VR1 is expressed in Gr28a neurons, larvae become attracted to capsaicin, consistent with reports showing that Gr28a itself encodes a receptor for nutritious RNA. In contrast, expression of VR1 in two pairs of Gr28b.c neurons triggers avoidance to capsaicin. Moreover, neuronal inactivation experiments show that the Gr28b.c neurons are necessary for avoidance of several bitter compounds. Lastly, behavioral experiments of Gr28 deficient larvae and live Ca2+ imaging studies of Gr28b.c neurons revealed that denatonium benzoate, a synthetic bitter compound that shares structural similarities with natural bitter chemicals, is a ligand for a receptor complex containing a Gr28b.c or Gr28b.a subunit. Thus, the Gr28 proteins, which have been evolutionarily conserved over 260 million years in insects, represent the first taste receptor subfamily in which specific members mediate behavior with opposite valence.
Collapse
Affiliation(s)
- Ji-Eun Ahn
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M UniversityBryanUnited States
| | - Hubert Amrein
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M UniversityBryanUnited States
| |
Collapse
|
11
|
Ahn JE, Amrein H. Opposing chemosensory functions of closely related gustatory receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545761. [PMID: 37905057 PMCID: PMC10614748 DOI: 10.1101/2023.06.20.545761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Most animals have functionally distinct populations of taste cells, expressing receptors that are tuned to compounds of different valence. This organizational feature allows for discrimination between chemicals associated with specific taste modalities and facilitates differentiating between unadulterated foods and foods contaminated with toxic substances. In the fruit fly D. melanogaster , primary sensory neurons express taste receptors that are tuned to distinct groups of chemicals, thereby activating neural ensembles that elicit either feeding or avoidance behavior. Members of a family of ligand gated receptor channels, the Gustatory receptors (Grs), play a central role in these behaviors. In general, closely related, evolutionarily conserved Gr proteins are co-expressed in the same type of taste neurons, tuned to chemically related compounds, and therefore triggering the same behavioral response. Here, we report that members of the Gr28 subfamily are expressed in largely non-overlapping sets of taste neurons in Drosophila larvae, detect chemicals of different valence and trigger opposing feeding behaviors. We determined the intrinsic properties of Gr28 neurons by expressing the mammalian Vanilloid Receptor (VR1), which is activated by capsaicin, a chemical to which wildtype Drosophila larvae do not respond. When VR1 is expressed in Gr28a neurons, larvae become attracted to capsaicin, consistent with reports showing that Gr28a itself encodes a receptor for nutritious RNA. In contrast, expression of VR1 in two pairs of Gr28b.c neurons triggers avoidance to capsaicin. Moreover, neuronal inactivation experiments show that the Gr28b.c neurons are necessary for avoidance of several bitter compounds. Lastly, behavioral experiments of Gr28 deficient larvae and live Ca 2+ imaging studies of Gr28b.c neurons revealed that denatonium benzoate, a synthetic bitter compound that shares structural similarities with natural bitter chemicals, is a ligand for a receptor complex containing a Gr28b.c or Gr28b.a subunit. Thus, the Gr28 proteins, which have been evolutionarily conserved over 260 million years in insects, represent the first taste receptor subfamily in which specific members mediate behavior with opposite valence.
Collapse
|
12
|
Benton R, Himmel NJ. Structural screens identify candidate human homologs of insect chemoreceptors and cryptic Drosophila gustatory receptor-like proteins. eLife 2023; 12:85537. [PMID: 36803935 PMCID: PMC9998090 DOI: 10.7554/elife.85537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Insect odorant receptors and gustatory receptors define a superfamily of seven transmembrane domain ion channels (referred to here as 7TMICs), with homologs identified across Animalia except Chordata. Previously, we used sequence-based screening methods to reveal conservation of this family in unicellular eukaryotes and plants (DUF3537 proteins) (Benton et al., 2020). Here, we combine three-dimensional structure-based screening, ab initio protein folding predictions, phylogenetics, and expression analyses to characterize additional candidate homologs with tertiary but little or no primary structural similarity to known 7TMICs, including proteins in disease-causing Trypanosoma. Unexpectedly, we identify structural similarity between 7TMICs and PHTF proteins, a deeply conserved family of unknown function, whose human orthologs display enriched expression in testis, cerebellum, and muscle. We also discover divergent groups of 7TMICs in insects, which we term the gustatory receptor-like (Grl) proteins. Several Drosophila melanogaster Grls display selective expression in subsets of taste neurons, suggesting that they are previously unrecognized insect chemoreceptors. Although we cannot exclude the possibility of remarkable structural convergence, our findings support the origin of 7TMICs in a eukaryotic common ancestor, counter previous assumptions of complete loss of 7TMICs in Chordata, and highlight the extreme evolvability of this protein fold, which likely underlies its functional diversification in different cellular contexts.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Nathaniel J Himmel
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| |
Collapse
|