1
|
Thakur MR, Tupe RS. l-Arginine: A multifaceted regulator of diabetic cardiomyopathy. Biochem Biophys Res Commun 2025; 761:151720. [PMID: 40186920 DOI: 10.1016/j.bbrc.2025.151720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
In diabetes mellitus, dysregulated glucose and lipid metabolism lead to diabetic cardiomyopathy (DCM) by imparting pathological myocardial remodeling and cellular injury. Accelerated glycation, oxidative stress, and activated inflammatory pathways culminate in cardiac fibrosis and hypertrophy in DCM. The regulatory effects of l-Arginine (L-Arg) have been elucidated in the pathological changes of DCM, including myocardial fibrosis, hypertrophy, and apoptosis, by inhibiting glycation and oxidative stress-induced inflammation. Disturbed L-Arg metabolism and decreased intracellular L-Arg pool are correlated with the progression of DCM; therefore, L-Arg supplementation has been prescribed for various cardiovascular dysfunctions. This review expands the therapeutic potential of L-Arg supplementation in DCM by elucidating its molecular mechanism of action and exploring potential clinical outcomes.
Collapse
Affiliation(s)
- Muskan R Thakur
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
2
|
Wang D, Qu X, Zhang Z, Zhou G. New developments in the role of ferroptosis in sepsis‑induced cardiomyopathy (Review). Mol Med Rep 2025; 31:118. [PMID: 40052561 PMCID: PMC11904766 DOI: 10.3892/mmr.2025.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
Sepsis is a life‑threatening organ dysfunction disorder caused by dysfunctional host response to infection. Sepsis‑induced cardiomyopathy (SIC) is a common and serious complication of sepsis, and it is associated with increased mortality rates; however, its specific pathogenesis is still unclear. Ferroptosis, which is an iron‑dependent form of programmed cell death, is involved in the pathophysiology of SIC. Further study on the mechanism and therapeutic targets of ferroptosis in SIC may provide new strategies for clinical diagnosis and treatment of this condition. The present article reviews the mechanisms between SIC and ferroptosis, summarizes the progress in research of the involvement of ferroptosis in SIC and provides new potential strategies for further research and treatment in the future.
Collapse
Affiliation(s)
- Dingdeng Wang
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
- Yichang Sepsis Clinical Research Center Yichang, Yichang, Hubei 443003, P.R. China
| | - Xinguang Qu
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
- Yichang Sepsis Clinical Research Center Yichang, Yichang, Hubei 443003, P.R. China
| | - Zhaohui Zhang
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
- Yichang Sepsis Clinical Research Center Yichang, Yichang, Hubei 443003, P.R. China
| | - Gaosheng Zhou
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
- Yichang Sepsis Clinical Research Center Yichang, Yichang, Hubei 443003, P.R. China
| |
Collapse
|
3
|
Budde I, Schlichting A, Ing D, Schimmelpfennig S, Kuntze A, Fels B, Romac JMJ, Swain SM, Liddle RA, Stevens A, Schwab A, Pethő Z. Piezo1-induced durotaxis of pancreatic stellate cells depends on TRPC1 and TRPV4 channels. J Cell Sci 2025; 138:jcs263846. [PMID: 40019468 DOI: 10.1242/jcs.263846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/23/2025] [Indexed: 03/01/2025] Open
Abstract
Pancreatic stellate cells (PSCs) are primarily responsible for producing the stiff tumor tissue in pancreatic ductal adenocarcinoma (PDAC). Thereby, PSCs generate a stiffness gradient between the healthy pancreas and the tumor. This gradient induces durotaxis, a form of directional cell migration driven by differential stiffness. However, the molecular sensors behind durotaxis are still unclear. To investigate the role of mechanosensitive ion channels in PSC durotaxis, we established a two-dimensional stiffness gradient mimicking PDAC. Using pharmacological and genetic methods, we investigated the contribution of the ion channels Piezo1, TRPC1 and TRPV4 in PSC durotaxis. We found that PSC migration towards a stiffer substrate is diminished by altering Piezo1 activity. Moreover, disrupting TRPC1 along with TRPV4 abolishes PSC durotaxis even when Piezo1 is functional. Our results demonstrate that optimal PSC durotaxis requires an intermediary level of ion channel activity, which we simulated via a numerically discretized mathematical model. These findings suggest that mechanosensitive Piezo1 channels detect the differential stiffness microenvironment. The resulting intracellular signals are amplified by TRPV4 and TRPC1 channels to guide efficient PSC durotaxis.
Collapse
Affiliation(s)
- Ilka Budde
- Institute of Physiology II , University of Münster, Robert-Koch Str. 27B, 48149 Münster, Germany
| | - André Schlichting
- Institute for Analysis and Numerics , University of Münster, Einsteinstr. 62, 48149 Münster, Germany
- Institute of Applied Analysis , University of Ulm, Helmholtzstraße 18, 89081 Ulm, Germany
| | - David Ing
- Institute of Physiology II , University of Münster, Robert-Koch Str. 27B, 48149 Münster, Germany
| | - Sandra Schimmelpfennig
- Institute of Physiology II , University of Münster, Robert-Koch Str. 27B, 48149 Münster, Germany
| | - Anna Kuntze
- Institute of Physiology II , University of Münster, Robert-Koch Str. 27B, 48149 Münster, Germany
- Institute of Applied Analysis , University of Ulm, Helmholtzstraße 18, 89081 Ulm, Germany
| | - Benedikt Fels
- Institute of Physiology II , University of Münster, Robert-Koch Str. 27B, 48149 Münster, Germany
- Gerhard-Domagk-Institute of Pathology , University of Münster, 48149 Münster, Germany
| | - Joelle M-J Romac
- Institute of Physiology, University of Lübeck, 23562 Lübeck, Germany
| | - Sandip M Swain
- Institute of Physiology, University of Lübeck, 23562 Lübeck, Germany
| | - Rodger A Liddle
- Institute of Physiology, University of Lübeck, 23562 Lübeck, Germany
| | - Angela Stevens
- Institute for Analysis and Numerics , University of Münster, Einsteinstr. 62, 48149 Münster, Germany
| | - Albrecht Schwab
- Institute of Physiology II , University of Münster, Robert-Koch Str. 27B, 48149 Münster, Germany
| | - Zoltán Pethő
- Institute of Physiology II , University of Münster, Robert-Koch Str. 27B, 48149 Münster, Germany
| |
Collapse
|
4
|
Vujovic F, Farahani RM. Thyroid Hormones and Brain Development: A Focus on the Role of Mitochondria as Regulators of Developmental Time. Cells 2025; 14:150. [PMID: 39936942 PMCID: PMC11816491 DOI: 10.3390/cells14030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/13/2025] Open
Abstract
Thyroid hormones (THs) regulate metabolism in a homeostatic state in an adult organism. During the prenatal period, prior to the establishment of homeostatic mechanisms, THs assume additional functions as key regulators of brain development. Here, we focus on reviewing the role of THs in orchestrating cellular dynamics in a developing brain. The evidence from the reviewed scientific literature suggests that the developmental roles of the hormones are predominantly mediated by non-genomic mitochondrial effects of THs due to attenuation of genomic effects of THs that antagonise non-genomic impacts. We argue that the key function of TH signalling during brain development is to orchestrate the tempo of self-organisation of neural progenitor cells. Further, evidence is provided that major neurodevelopmental consequences of hypothyroidism stem from an altered tempo of cellular self-organisation.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/WSLHD Research and Education Network, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ramin M Farahani
- IDR/WSLHD Research and Education Network, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Farahani RM. An Addendum to the Chemiosmotic Theory of Mitochondrial Activity: The Role of RNA as a Proton Sink. Biomolecules 2025; 15:87. [PMID: 39858481 PMCID: PMC11763203 DOI: 10.3390/biom15010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Mitochondrial ATP synthesis is driven by harnessing the electrochemical gradient of protons (proton motive force) across the mitochondrial inner membrane via the process of chemiosmosis. While there is consensus that the proton gradient is generated by components of the electron transport chain, the mechanism by which protons are supplied to ATP synthase remains controversial. As opposed to a global coupling model whereby protons diffuse into the intermembrane space, a localised coupling model predicts that protons remain closely associated with the lipid membrane prior to interaction with ATP synthase. Herein, a revised version of the chemiosmotic theory is proposed by introducing an RNA-based proton sink which aligns the release of sequestered protons to availability of ADP and Pi thereby maximising the efficiency of oxidative phosphorylation.
Collapse
Affiliation(s)
- Ramin M. Farahani
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- IDR/Research and Education Network, WSLHD, Westmead, NSW 2145, Australia
| |
Collapse
|
6
|
Kowaltowski AJ, Abdulkader F. How and when to measure mitochondrial inner membrane potentials. Biophys J 2024; 123:4150-4157. [PMID: 38454598 PMCID: PMC11700358 DOI: 10.1016/j.bpj.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
The scientific literature on mitochondria has increased significantly over the years due to findings that these organelles have widespread roles in the onset and progression of pathological conditions such as metabolic disorders, neurodegenerative and cardiovascular diseases, inflammation, and cancer. Researchers have extensively explored how mitochondrial properties and functions are modified in different models, often using fluorescent inner mitochondrial membrane potential (ΔΨm) probes to assess functional mitochondrial aspects such as protonmotive force and oxidative phosphorylation. This review provides an overview of existing techniques to measure ΔpH and ΔΨm, highlighting their advantages, limitations, and applications. It discusses drawbacks of ΔΨm probes, especially when used without calibration, and conditions where alternative methods should replace ΔΨm measurements for the benefit of the specific scientific objectives entailed. Studies investigating mitochondria and their vast biological roles would be significantly advanced by the understanding of the correct applications as well as limitations of protonmotive force measurements and use of fluorescent ΔΨm probes, adopting more precise, artifact-free, sensitive, and quantitative measurements of mitochondrial functionality.
Collapse
Affiliation(s)
- Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Fernando Abdulkader
- Departmento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Wu J, Li D, Wang L. Overview of PRMT1 modulators: Inhibitors and degraders. Eur J Med Chem 2024; 279:116887. [PMID: 39316844 DOI: 10.1016/j.ejmech.2024.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Protein arginine methyltransferase 1 (PRMT1) is pivotal in executing normal cellular functions through its catalytic action on the methylation of arginine side chains on protein substrates. Emerging research has revealed a correlation between the dysregulation of PRMT1 expression and the initiation and progression of tumors, significantly influence on patient prognostication, attributed to the essential role played by PRMT1 in a number of biological processes, including transcriptional regulation, signal transduction or DNA repair. Therefore, PRMT1 emerged as a promising therapeutic target for anticancer drug discovery in the past decade. In this review, we first summarize the structure and biological functions of PRMT1 and its association with cancer. Next, we focus on the recent advances in the design and development of PRMT1 modulators, including isoform-selective PRMT1 inhibitors, pan type I PRMT inhibitors, PRMT1-based dual-target inhibitors, and PRMT1-targeting PROTAC degraders, from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and clinical status. Finally, we discuss the challenges and future directions for PRMT1-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Junwei Wu
- Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, 341000, China
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Lifang Wang
- Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, 341000, China.
| |
Collapse
|
8
|
Locke TM, Fields R, Gizinski H, Otto GM, MacEwen MJS, Rusnac DV, He P, Shechner DM, McGann CD, Berg MD, Villen J, Sancak Y, Schweppe DK. High-throughput identification of calcium-regulated proteins across diverse proteomes. Cell Rep 2024; 43:114879. [PMID: 39425928 PMCID: PMC11921809 DOI: 10.1016/j.celrep.2024.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/27/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Calcium ions play important roles in nearly every biological process, yet whole-proteome analysis of calcium effectors has been hindered by a lack of high-throughput, unbiased, and quantitative methods to identify protein-calcium engagement. To address this, we adapted protein thermostability assays in budding yeast, human cells, and mouse mitochondria. Based on calcium-dependent thermostability, we identified 2,884 putative calcium-regulated proteins across human, mouse, and yeast proteomes. These data revealed calcium engagement of signaling hubs and cellular processes, including metabolic enzymes and the spliceosome. Cross-species comparison of calcium-protein engagement and mutagenesis experiments identified residue-specific cation engagement, even within well-known EF-hand domains. Additionally, we found that the dienoyl-coenzyme A (CoA) reductase DECR1 binds calcium at physiologically relevant concentrations with substrate-specific affinity, suggesting direct calcium regulation of mitochondrial fatty acid oxidation. These discovery-based proteomic analyses of calcium effectors establish a key resource to dissect cation engagement and its mechanistic effects across multiple species and diverse biological processes.
Collapse
Affiliation(s)
- Timothy M Locke
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Hayden Gizinski
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - George M Otto
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Melissa J S MacEwen
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Domnita-Valeria Rusnac
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Peixian He
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - David M Shechner
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Chris D McGann
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Matthew D Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Judit Villen
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Pereyra AS, Fernandez RF, Amorese A, Castro JN, Lin CT, Spangenburg EE, Ellis JM. Loss of mitochondria long-chain fatty acid oxidation impairs skeletal muscle contractility by disrupting myofibril structure and calcium homeostasis. Mol Metab 2024; 89:102015. [PMID: 39182841 PMCID: PMC11408158 DOI: 10.1016/j.molmet.2024.102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Abnormal lipid metabolism in mammalian tissues can be highly deleterious, leading to organ failure. Carnitine Palmitoyltransferase 2 (CPT2) deficiency is an inherited metabolic disorder affecting the liver, heart, and skeletal muscle due to impaired mitochondrial oxidation of long-chain fatty acids (mLCFAO) for energy production. METHODS However, the basis of tissue damage in mLCFAO disorders is not fully understood. Mice lacking CPT2 in skeletal muscle (Cpt2Sk-/-) were generated to investigate the nexus between mFAO deficiency and myopathy. RESULTS Compared to controls, ex-vivo contractile force was reduced by 70% in Cpt2Sk-/- oxidative soleus muscle despite the preserved capacity to couple ATP synthesis to mitochondrial respiration on alternative substrates to long-chain fatty acids. Increased mitochondrial biogenesis, lipid accumulation, and the downregulation of 80% of dystrophin-related and contraction-related proteins severely compromised the structure and function of Cpt2Sk-/- soleus. CPT2 deficiency affected oxidative muscles more than glycolytic ones. Exposing isolated sarcoplasmic reticulum to long-chain acylcarnitines (LCACs) inhibited calcium uptake. In agreement, Cpt2Sk-/- soleus had decreased calcium uptake and significant accumulation of palmitoyl-carnitine, suggesting that LCACs and calcium dyshomeostasis are linked in skeletal muscle. CONCLUSIONS Our data demonstrate that loss of CPT2 and mLCFAO compromise muscle structure and function due to excessive mitochondrial biogenesis, downregulation of the contractile proteome, and disruption of calcium homeostasis.
Collapse
Affiliation(s)
- Andrea S Pereyra
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA.
| | - Regina F Fernandez
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Adam Amorese
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Jasmine N Castro
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Chien-Te Lin
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Espen E Spangenburg
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Jessica M Ellis
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA.
| |
Collapse
|
10
|
Abstract
The mitochondrial intermembrane space (IMS) is a highly protected compartment, second only to the matrix. It is a crucial bridge, coordinating mitochondrial activities with cellular processes such as metabolites, protein, lipid, and ion exchange. This regulation influences signaling pathways for metabolic activities and cellular homeostasis. The IMS harbors various proteins critical for initiating apoptotic cascades and regulating reactive oxygen species production by controlling the respiratory chain. Calcium (Ca2+), a key intracellular secondary messenger, enter the mitochondrial matrix via the IMS, regulating mitochondrial bioenergetics, ATP production, modulating cell death pathways. IMS acts as a regulatory site for Ca2+ entry due to the presence of different Ca2+ sensors such as MICUs, solute carriers (SLCs); ion exchangers (LETM1/SCaMCs); S100A1, mitochondrial glycerol-3-phosphate dehydrogenase, and EFHD1, each with unique Ca2+ binding motifs and spatial localizations. This review primarily emphasizes the role of these IMS-localized Ca2+ sensors concerning their spatial localization, mechanism, and molecular functions. Additionally, we discuss how these sensors contribute to the progression and pathogenesis of various human health conditions and diseases.
Collapse
Affiliation(s)
- Shanikumar Goyani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Shatakshi Shukla
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| |
Collapse
|
11
|
Sheth AI, Althoff MJ, Tolison H, Engel K, Amaya ML, Krug AE, Young TN, Minhajuddin M, Pei S, Patel SB, Winters A, Miller R, Shelton IT, St-Germain J, Ling T, Jones CL, Raught B, Gillen AE, Ransom M, Staggs S, Smith CA, Pollyea DA, Stevens BM, Jordan CT. Targeting Acute Myeloid Leukemia Stem Cells through Perturbation of Mitochondrial Calcium. Cancer Discov 2024; 14:1922-1939. [PMID: 38787341 PMCID: PMC11452272 DOI: 10.1158/2159-8290.cd-23-1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL-2, creating a therapeutic opportunity to target LSCs using the BCL-2 inhibitor venetoclax. Although venetoclax-based regimens have shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug-responsive and nonresponsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate an active metabolic (i.e., OXPHOS) status with relatively high levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter. We demonstrate that inhibition of calcium uptake reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in LSCs and provide an avenue for clinical management of venetoclax resistance. Significance: We identify increased utilization of mitochondrial calcium as a distinct metabolic requirement of venetoclax-resistant LSCs and demonstrate the potential of targeting mitochondrial calcium uptake as a therapeutic strategy.
Collapse
Affiliation(s)
- Anagha Inguva Sheth
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark J Althoff
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
- These authors contributed equally
| | - Hunter Tolison
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
- These authors contributed equally
| | - Krysta Engel
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maria L. Amaya
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna E. Krug
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tracy N. Young
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mohammad Minhajuddin
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shanshan Pei
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
| | - Sweta B. Patel
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Amanda Winters
- Division of Pediatric Hematology and Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Regan Miller
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ian T. Shelton
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tianyi Ling
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Courtney L. Jones
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Austin E. Gillen
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Monica Ransom
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sarah Staggs
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Clayton A. Smith
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel A. Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brett M. Stevens
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Craig T. Jordan
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
12
|
Vilas-Boas EA, Kowaltowski AJ. Mitochondrial redox state, bioenergetics, and calcium transport in caloric restriction: A metabolic nexus. Free Radic Biol Med 2024; 219:195-214. [PMID: 38677486 DOI: 10.1016/j.freeradbiomed.2024.04.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Mitochondria congregate central reactions in energy metabolism, many of which involve electron transfer. As such, they are expected to both respond to changes in nutrient supply and demand and also provide signals that integrate energy metabolism intracellularly. In this review, we discuss how mitochondrial bioenergetics and reactive oxygen species production is impacted by dietary interventions that change nutrient availability and impact on aging, such as calorie restriction. We also discuss how dietary interventions alter mitochondrial Ca2+ transport, regulating both mitochondrial and cytosolic processes modulated by this ion. Overall, a plethora of literature data support the idea that mitochondrial oxidants and calcium transport act as integrating signals coordinating the response to changes in nutritional supply and demand in cells, tissues, and animals.
Collapse
Affiliation(s)
- Eloisa A Vilas-Boas
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil.
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| |
Collapse
|
13
|
Azevedo RDSD, Falcão KVG, Almeida SMVD, Araújo MC, Silva-Filho RC, Souza Maia MBD, Amaral IPGD, Leite ACR, de Souza Bezerra R. The tissue-specific nature of physiological zebrafish mitochondrial bioenergetics. Mitochondrion 2024; 77:101901. [PMID: 38777222 DOI: 10.1016/j.mito.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Zebrafish are a powerful tool to study a myriad of experimental conditions, including mitochondrial bioenergetics. Considering that mitochondria are different in many aspects depending on the tissue evaluated, in the zebrafish model there is still a lack of this investigation. Especially for juvenile zebrafish. In the present study, we examined whether different tissues from zebrafish juveniles show mitochondrial density- and tissue-specificity comparing brain, liver, heart, and skeletal muscle (SM). The liver and brain complex IV showed the highest O2 consumption of all ETC in all tissues (10x when compared to other respiratory complexes). The liver showed a higher potential for ROS generation. In this way, the brain and liver showed more susceptibility to O2- generation when compared to other tissues. Regarding Ca2+ transport, the brain showed greater capacity for Ca2+ uptake and the liver presented low Ca2+ uptake capacity. The liver and brain were more susceptible to producing NO. The enzymes SOD and Catalase showed high activity in the brain, whereas GPx showed higher activity in the liver and CS in the SM. TEM reveals, as expected, a physiological diverse mitochondrial morphology. The essential differences between zebrafish tissues investigated probably reflect how the mitochondria play a diverse role in systemic homeostasis. This feature may not be limited to normal metabolic functions but also to stress conditions. In summary, mitochondrial bioenergetics in zebrafish juvenile permeabilized tissues showed a tissue-specificity and a useful tool to investigate conditions of redox system imbalance, mainly in the liver and brain.
Collapse
Affiliation(s)
- Rafael David Souto de Azevedo
- Laboratório de Biologia Celular e Molecular, Universidade de Pernambuco - UPE, Campus Garanhuns, Garanhuns, PE, Brazil.
| | - Kivia Vanessa Gomes Falcão
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | | | - Marlyete Chagas Araújo
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | | | | | | | | | - Ranilson de Souza Bezerra
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
14
|
Vecellio Reane D, Serna JDC, Raffaello A. Unravelling the complexity of the mitochondrial Ca 2+ uniporter: regulation, tissue specificity, and physiological implications. Cell Calcium 2024; 121:102907. [PMID: 38788256 DOI: 10.1016/j.ceca.2024.102907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Calcium (Ca2+) signalling acts a pleiotropic message within the cell that is decoded by the mitochondria through a sophisticated ion channel known as the Mitochondrial Ca2+ Uniporter (MCU) complex. Under physiological conditions, mitochondrial Ca2+ signalling is crucial for coordinating cell activation with energy production. Conversely, in pathological scenarios, it can determine the fine balance between cell survival and death. Over the last decade, significant progress has been made in understanding the molecular bases of mitochondrial Ca2+ signalling. This began with the elucidation of the MCU channel components and extended to the elucidation of the mechanisms that regulate its activity. Additionally, increasing evidence suggests molecular mechanisms allowing tissue-specific modulation of the MCU complex, tailoring channel activity to the specific needs of different tissues or cell types. This review aims to explore the latest evidence elucidating the regulation of the MCU complex, the molecular factors controlling the tissue-specific properties of the channel, and the physiological and pathological implications of mitochondrial Ca2+ signalling in different tissues.
Collapse
Affiliation(s)
- Denis Vecellio Reane
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Munich, Germany.
| | - Julian D C Serna
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padova, Italy.
| |
Collapse
|
15
|
Casas-Martinez JC, Samali A, McDonagh B. Redox regulation of UPR signalling and mitochondrial ER contact sites. Cell Mol Life Sci 2024; 81:250. [PMID: 38847861 PMCID: PMC11335286 DOI: 10.1007/s00018-024-05286-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) have a synergistic relationship and are key regulatory hubs in maintaining cell homeostasis. Communication between these organelles is mediated by mitochondria ER contact sites (MERCS), allowing the exchange of material and information, modulating calcium homeostasis, redox signalling, lipid transfer and the regulation of mitochondrial dynamics. MERCS are dynamic structures that allow cells to respond to changes in the intracellular environment under normal homeostatic conditions, while their assembly/disassembly are affected by pathophysiological conditions such as ageing and disease. Disruption of protein folding in the ER lumen can activate the Unfolded Protein Response (UPR), promoting the remodelling of ER membranes and MERCS formation. The UPR stress receptor kinases PERK and IRE1, are located at or close to MERCS. UPR signalling can be adaptive or maladaptive, depending on whether the disruption in protein folding or ER stress is transient or sustained. Adaptive UPR signalling via MERCS can increase mitochondrial calcium import, metabolism and dynamics, while maladaptive UPR signalling can result in excessive calcium import and activation of apoptotic pathways. Targeting UPR signalling and the assembly of MERCS is an attractive therapeutic approach for a range of age-related conditions such as neurodegeneration and sarcopenia. This review highlights the emerging evidence related to the role of redox mediated UPR activation in orchestrating inter-organelle communication between the ER and mitochondria, and ultimately the determination of cell function and fate.
Collapse
Affiliation(s)
- Jose C Casas-Martinez
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland
- Apoptosis Research Centre, University of Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland.
- Apoptosis Research Centre, University of Galway, Galway, Ireland.
| |
Collapse
|
16
|
Donnelly C, Komlódi T, Cecatto C, Cardoso LHD, Compagnion AC, Matera A, Tavernari D, Campiche O, Paolicelli RC, Zanou N, Kayser B, Gnaiger E, Place N. Functional hypoxia reduces mitochondrial calcium uptake. Redox Biol 2024; 71:103037. [PMID: 38401291 PMCID: PMC10906399 DOI: 10.1016/j.redox.2024.103037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 02/26/2024] Open
Abstract
Mitochondrial respiration extends beyond ATP generation, with the organelle participating in many cellular and physiological processes. Parallel changes in components of the mitochondrial electron transfer system with respiration render it an appropriate hub for coordinating cellular adaption to changes in oxygen levels. How changes in respiration under functional hypoxia (i.e., when intracellular O2 levels limit mitochondrial respiration) are relayed by the electron transfer system to impact mitochondrial adaption and remodeling after hypoxic exposure remains poorly defined. This is largely due to challenges integrating findings under controlled and defined O2 levels in studies connecting functions of isolated mitochondria to humans during physical exercise. Here we present experiments under conditions of hypoxia in isolated mitochondria, myotubes and exercising humans. Performing steady-state respirometry with isolated mitochondria we found that oxygen limitation of respiration reduced electron flow and oxidative phosphorylation, lowered the mitochondrial membrane potential difference, and decreased mitochondrial calcium influx. Similarly, in myotubes under functional hypoxia mitochondrial calcium uptake decreased in response to sarcoplasmic reticulum calcium release for contraction. In both myotubes and human skeletal muscle this blunted mitochondrial adaptive responses and remodeling upon contractions. Our results suggest that by regulating calcium uptake the mitochondrial electron transfer system is a hub for coordinating cellular adaption under functional hypoxia.
Collapse
Affiliation(s)
- Chris Donnelly
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Oroboros Instruments, Innsbruck, Austria.
| | | | | | | | | | - Alessandro Matera
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Daniele Tavernari
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; Swiss Cancer Centre Léman, Lausanne, Switzerland
| | - Olivier Campiche
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | | | - Nadège Zanou
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | | | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Rocha DS, Manucci AC, Bruni-Cardoso A, Kowaltowski AJ, Vilas-Boas EA. A practical and robust method to evaluate metabolic fluxes in primary pancreatic islets. Mol Metab 2024; 83:101922. [PMID: 38521184 PMCID: PMC11002748 DOI: 10.1016/j.molmet.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024] Open
Abstract
OBJECTIVE Evaluation of mitochondrial oxygen consumption and ATP production is important to investigate pancreatic islet pathophysiology. Most studies use cell lines due to difficulties in measuring primary islet respiration, which requires specific equipment and consumables, is expensive and poorly reproducible. Our aim was to establish a practical method to assess primary islet metabolic fluxes using standard commercial consumables. METHODS Pancreatic islets were isolated from mice/rats, dispersed with trypsin, and adhered to pre-coated standard Seahorse or Resipher microplates. Oxygen consumption was evaluated using a Seahorse Extracellular Flux Analyzer or a Resipher Real-time Cell Analyzer. RESULTS We provide a detailed protocol with all steps to optimize islet isolation with high yield and functionality. Our method requires a few islets per replicate; both rat and mouse islets present robust basal respiration and proper response to mitochondrial modulators and glucose. The technique was validated by other functional assays, which show these cells present conserved calcium influx and insulin secretion in response to glucose. We also show that our dispersed islets maintain robust basal respiration levels, in addition to maintaining up to 89% viability after five days in dispersed cultures. Furthermore, OCRs can be measured in Seahorse analyzers and in other plate respirometry systems, using standard materials. CONCLUSIONS Overall, we established a practical and robust method to assess islet metabolic fluxes and oxidative phosphorylation, a valuable tool to uncover basic β-cell metabolic mechanisms as well as for translational investigations, such as pharmacological candidate discovery and islet transplantation protocols.
Collapse
Affiliation(s)
- Debora S Rocha
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Antonio C Manucci
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | | | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Eloisa A Vilas-Boas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil; Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Vilela WR, Ramalho LS, Bechara LRG, Cabral-Costa JV, Serna JDC, Kowaltowski AJ, Xavier GF, Ferreira JCB, de Bem AF. Metabolic dysfunction induced by HFD + L-NAME preferentially affects hippocampal mitochondria, impacting spatial memory in rats. J Bioenerg Biomembr 2024; 56:87-99. [PMID: 38374292 DOI: 10.1007/s10863-024-10005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024]
Abstract
High-fat diet-induced metabolic changes are not restricted to the onset of cardiovascular diseases, but also include effects on brain functions related to learning and memory. This study aimed to evaluate mitochondrial markers and function, as well as cognitive function, in a rat model of metabolic dysfunction. Eight-week-old male Wistar rats were subjected to either a control diet or a two-hit protocol combining a high fat diet (HFD) with the nitric oxide synthase inhibitor L-NAME in the drinking water. HFD plus L-NAME induced obesity, hypertension, and increased serum cholesterol. These rats exhibited bioenergetic dysfunction in the hippocampus, characterized by decreased oxygen (O2) consumption related to ATP production, with no changes in H2O2 production. Furthermore, OPA1 protein expression was upregulated in the hippocampus of HFD + L-NAME rats, with no alterations in other morphology-related proteins. Consistently, HFD + L-NAME rats showed disruption of performance in the Morris Water Maze Reference Memory test. The neocortex did not exhibit either bioenergetic changes or alterations in H2O2 production. Calcium uptake rate and retention capacity in the neocortex of HFD + L-NAME rats were not altered. Our results indicate that hippocampal mitochondrial bioenergetic function is disturbed in rats exposed to a HFD plus L-NAME, thus disrupting spatial learning, whereas neocortical function remains unaffected.
Collapse
Affiliation(s)
- Wembley R Vilela
- Department of Physiological Sciences, University of Brasilia, Federal District, Brasília, DF, 70910-900, Brazil
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, 22362, Sweden
| | - Lisley S Ramalho
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Luiz R G Bechara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - João V Cabral-Costa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Julian D C Serna
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Gilberto F Xavier
- Department of Physiology, Biosciences Institute, University of São Paulo, São Paulo, SP, 05508- 090, Brazil
| | - Julio C B Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Andreza Fabro de Bem
- Department of Physiological Sciences, University of Brasilia, Federal District, Brasília, DF, 70910-900, Brazil.
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil.
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 581 85, Sweden.
| |
Collapse
|
19
|
Irigoyen P, Mansilla S, Castro L, Cassina A, Sapiro R. Mitochondrial function and reactive oxygen species production during human sperm capacitation: Unraveling key players. FASEB J 2024; 38:e23486. [PMID: 38407497 DOI: 10.1096/fj.202301957rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Sperm capacitation is a critical process for male fertility. It involves a series of biochemical and physiological changes that occur in the female reproductive tract, rendering the sperm competent for successful fertilization. The precise mechanisms and, specifically, the role of mitochondria, in sperm capacitation remain incompletely understood. Previously, we revealed that in mouse sperm mitochondrial activity (e.g., oxygen consumption, membrane potential, ATP/ADP exchange, and mitochondrial Ca2+ ) increases during capacitation. Herein, we studied mitochondrial function by high-resolution respirometry (HRR) and reactive oxygen species production in capacitated (CAP) and non-capacitated (NC) human spermatozoa. We found that in capacitated sperm from normozoospermic donors, the respiratory control ratio increased by 36%, accompanied by a double oxygen consumption rate (OCR) in the presence of antimycin A. Extracellular hydrogen peroxide (H2 O2 ) detection was three times higher in CAP than in NC sperm cells. To confirm that H2 O2 production depends on mitochondrial superoxide (O 2 · - $$ {\mathrm{O}}_2^{\cdotp -} $$ ) formation, we evaluated mitochondrial aconitase (ACO2) amount, activity, and role in the metabolic flux from the sperm tricarboxylic acid cycle. We estimated that CAP cells produce, on average by individual, (59 ± 22)% moreO 2 · - $$ {\mathrm{O}}_2^{\cdotp -} $$ in the steady-state compared to NC cells. Finally, we analyzed two targets of oxidative stress: lipid peroxidation by western blot against 4-hydroxynonenal and succinate dehydrogenase (SDH) activity by HRR. We did not observe modifications in lipoperoxidation nor the activity of SDH, suggesting that during capacitation, the increase in mitochondrial H2 O2 production does not damage sperm and it is necessary for the normal CAP process.
Collapse
Affiliation(s)
- Pilar Irigoyen
- Unidad Académica Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mansilla
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Castro
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rossana Sapiro
- Unidad Académica Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
20
|
Yang M, Yu L, Jiang D, Deng C, Wang Z, Xu X, Wang J, Wu S, Zhang F, Hu X. Calcium stress reduces the reproductive capacity and pathogenicity of the pine wood nematode (Bursaphelenchus xylophilus) by inhibiting oxidative phosphorylation reaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169531. [PMID: 38145666 DOI: 10.1016/j.scitotenv.2023.169531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
The continuous use of chemical pesticides to control nematodes could result in the developing of pesticide-resistant nematodes. Novel nucleic acid pesticides are becoming the focus of pesticide research due to their strong specificity, high efficiency, and environmental friendliness. However, the limited known biochemical targets restrict the development of target pesticides for nematodes. The calcium stress experiments on pine wood nematodes (PWN) showed that 100 mmol/L Ca2+ resulted in longitudinal depression on the PWN body wall, reduced oviposition, and increased corrected mortality. To enrich the biological targets of nematode pesticides, we further investigated the response mechanism of PWN to calcium stress at the molecular level. Differentially expressed gene analysis showed that genes involved in the oxidative phosphorylation (OXPHOS) pathway were significantly enriched. RNA interference results of 6 key genes belonging to four mitochondrial complex I (BXNDUFA2), III (BXQCR8), IV (BXCOX17), V (BXV-ATPaseB, BXV-ATPaseE, BXV-ATPaseε) in non-stressed nematodes showed reduction in PWN oviposition, population size, feeding ability, and pathogenicity. The BXNDUFA2 gene interference had the highest inhibitory impact by decreasing the oviposition from 31.00 eggs to 6.75 eggs and PWN population size from 8.27 × 103 nematodes to 1.64 × 103 nematodes, respectively. Interestingly, RNA interference of these 6 key genes in calcium-stressed nematodes also led to increased mortality and decreased oviposition of PWN. In summary, calcium stress inhibited the reproductive capacity of PWN by down-regulating key genes BXNDUFA2, BXQCR8, BXV-ATPaseB, BXV-ATPaseE, BXV-ATPaseε, and BXCOX17, thereby reducing the pathogenicity. The current results enrich the RNAi targets in PWN and provide a scientific basis for developing novel nucleic nematicides.
Collapse
Affiliation(s)
- Meijiao Yang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Yu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Di Jiang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Deng
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeguang Wang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuhuizi Xu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinda Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Songqing Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiping Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xia Hu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
21
|
Ramos VM, Serna JDC, Vilas-Boas EA, Cabral-Costa JV, Cunha FM, Kataura T, Korolchuk VI, Kowaltowski AJ. Mitochondrial sodium/calcium exchanger (NCLX) regulates basal and starvation-induced autophagy through calcium signaling. FASEB J 2024; 38:e23454. [PMID: 38315457 DOI: 10.1096/fj.202301368rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
Mitochondria shape intracellular Ca2+ signaling through the concerted activity of Ca2+ uptake via mitochondrial calcium uniporters and efflux by Na+ /Ca2+ exchangers (NCLX). Here, we describe a novel relationship among NCLX, intracellular Ca2+ , and autophagic activity. Conditions that stimulate autophagy in vivo and in vitro, such as caloric restriction and nutrient deprivation, upregulate NCLX expression in hepatic tissue and cells. Conversely, knockdown of NCLX impairs basal and starvation-induced autophagy. Similarly, acute inhibition of NCLX activity by CGP 37157 affects bulk and endoplasmic reticulum autophagy (ER-phagy) without significant impacts on mitophagy. Mechanistically, CGP 37157 inhibited the formation of FIP200 puncta and downstream autophagosome biogenesis. Inhibition of NCLX caused decreased cytosolic Ca2+ levels, and intracellular Ca2+ chelation similarly suppressed autophagy. Furthermore, chelation did not exhibit an additive effect on NCLX inhibition of autophagy, demonstrating that mitochondrial Ca2+ efflux regulates autophagy through the modulation of Ca2+ signaling. Collectively, our results show that the mitochondrial Ca2+ extrusion pathway through NCLX is an important regulatory node linking nutrient restriction and autophagy regulation.
Collapse
Affiliation(s)
- Vitor M Ramos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Julian D C Serna
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Eloisa A Vilas-Boas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Fernanda M Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Shen S, Zhou H, Xiao Z, Zhan S, Tuo Y, Chen D, Pang X, Wang Y, Wang J. PRMT1 in human neoplasm: cancer biology and potential therapeutic target. Cell Commun Signal 2024; 22:102. [PMID: 38326807 PMCID: PMC10851560 DOI: 10.1186/s12964-024-01506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), the predominant type I protein arginine methyltransferase, plays a crucial role in normal biological functions by catalyzing the methylation of arginine side chains, specifically monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), within proteins. Recent investigations have unveiled an association between dysregulated PRMT1 expression and the initiation and progression of tumors, significantly impacting patient prognosis, attributed to PRMT1's involvement in regulating various facets of tumor cell biology, including DNA damage repair, transcriptional and translational regulation, as well as signal transduction. In this review, we present an overview of recent advancements in PRMT1 research across different tumor types, with a specific focus on its contributions to tumor cell proliferation, metastasis, invasion, and drug resistance. Additionally, we expound on the dynamic functions of PRMT1 during distinct stages of cancer progression, elucidating its unique regulatory mechanisms within the same signaling pathway and distinguishing between its promotive and inhibitory effects. Importantly, we sought to provide a comprehensive summary and analysis of recent research progress on PRMT1 in tumors, contributing to a deeper understanding of its role in tumorigenesis, development, and potential treatment strategies.
Collapse
Affiliation(s)
- Shiquan Shen
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Honglong Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zongyu Xiao
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215124, China
| | - Shaofen Zhan
- Department of Neurology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, 510317, China
| | - Yonghua Tuo
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Danmin Chen
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiao Pang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yezhong Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Ji Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
23
|
Locke TM, Fields R, Gizinski H, Otto GM, Shechner DM, Berg MD, Villen J, Sancak Y, Schweppe D. High-Throughput Identification of Calcium Regulated Proteins Across Diverse Proteomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.575273. [PMID: 38293219 PMCID: PMC10827220 DOI: 10.1101/2024.01.18.575273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Calcium ions play important roles in nearly every biological process, yet whole-proteome analysis of calcium effectors has been hindered by lack of high-throughput, unbiased, and quantitative methods to identify proteins-calcium engagement. To address this, we adapted protein thermostability assays in the budding yeast, human cells, and mouse mitochondria. Based on calcium-dependent thermostability, we identified 2884 putative calcium-regulated proteins across human, mouse, and yeast proteomes. These data revealed calcium engagement of novel signaling hubs and cellular processes, including metabolic enzymes and the spliceosome. Cross-species comparison of calcium-protein engagement and mutagenesis experiments identified residue-specific cation engagement, even within well-known EF-hand domains. Additionally, we found that the dienoyl-CoA reductase DECR1 binds calcium at physiologically-relevant concentrations with substrate-specific affinity, suggesting direct calcium regulation of mitochondrial fatty acid oxidation. These unbiased, proteomic analyses of calcium effectors establish a key resource to dissect cation engagement and its mechanistic effects across multiple species and diverse biological processes.
Collapse
Affiliation(s)
- Timothy M Locke
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Hayden Gizinski
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - George M Otto
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - David M Shechner
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Matthew D Berg
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Judit Villen
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Devin Schweppe
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
24
|
Sheth AI, Engel K, Tolison H, Althoff MJ, Amaya ML, Krug A, Young T, Pei S, Patel SB, Minhajuddin M, Winters A, Miller R, Shelton I, St-Germain J, Ling T, Jones C, Raught B, Gillen A, Ransom M, Staggs S, Smith CA, Pollyea DA, Stevens BM, Jordan CT. Targeting Acute Myeloid Leukemia Stem Cells Through Perturbation of Mitochondrial Calcium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560330. [PMID: 37873284 PMCID: PMC10592899 DOI: 10.1101/2023.10.02.560330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
We previously reported that acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL2, creating a therapeutic opportunity to target LSCs using the BCL2 inhibitor drug venetoclax. While venetoclax-based regimens have indeed shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence mechanisms that dictate venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate a more active metabolic (i.e., OXPHOS) status with relatively high steady-state levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake sharply reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in the biology of LSCs and provide a therapeutic avenue for clinical management of venetoclax resistance.
Collapse
Affiliation(s)
- Anagha Inguva Sheth
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Krysta Engel
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
- These authors contributed equally
| | - Hunter Tolison
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
- These authors contributed equally
| | - Mark J Althoff
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maria L. Amaya
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna Krug
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tracy Young
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shanshan Pei
- Liangzhu Laboratory, Zhejiang University Medical Center, Bone Marrow Transplantation Center, Hangzhou, China
| | - Sweta B. Patel
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mohammad Minhajuddin
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Amanda Winters
- Division of Pediatric Hematology and Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Regan Miller
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ian Shelton
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tianyi Ling
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Courtney Jones
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Austin Gillen
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Monica Ransom
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sarah Staggs
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Clayton A. Smith
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel A. Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brett M. Stevens
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Craig T. Jordan
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
25
|
Trewin AJ, Weeks KL, Wadley GD, Lamon S. Regulation of mitochondrial calcium uniporter expression and calcium-dependent cell signaling by lncRNA Tug1 in cardiomyocytes. Am J Physiol Cell Physiol 2023; 325:C1097-C1105. [PMID: 37721002 DOI: 10.1152/ajpcell.00339.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Cardiomyocyte calcium homeostasis is a tightly regulated process. The mitochondrial calcium uniporter (MCU) complex can buffer elevated cytosolic Ca2+ levels and consists of pore-forming proteins including MCU, and various regulatory proteins such as mitochondrial calcium uptake proteins 1 and 2 (MICU1/2). The stoichiometry of these proteins influences the sensitivity to Ca2+ and the activity of the complex. However, the factors that regulate their gene expression remain incompletely understood. Long noncoding RNAs (lncRNAs) regulate gene expression through various mechanisms, and we recently found that the lncRNA Tug1 increased the expression of Mcu and associated genes. To further explore this, we performed antisense LNA knockdown of Tug1 (Tug1 KD) in H9c2 rat cardiomyocytes. Tug1 KD increased MCU protein expression, yet pyruvate dehydrogenase dephosphorylation, which is indicative of mitochondrial Ca2+ uptake, was not enhanced. However, RNA-seq revealed that Tug1 KD increased Mcu along with differential expression of >1,000 genes including many related to Ca2+ regulation pathways in the heart. To understand the effect of this on Ca2+ signaling, we measured phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and its downstream target cAMP Response Element-Binding protein (CREB), a transcription factor known to drive Mcu gene expression. In response to a Ca2+ stimulus, the increase in CaMKII and CREB phosphorylation was attenuated by Tug1 KD. Inhibition of CaMKII, but not CREB, partially prevented the Tug1 KD-mediated increase in Mcu. Together, these data suggest that Tug1 modulates MCU expression via a mechanism involving CaMKII and regulates cardiomyocyte Ca2+ signaling, which could have important implications for cardiac function.NEW & NOTEWORTHY Calcium is essential for signaling, excitation contraction, and energy homeostasis in the heart. Despite this, molecular regulators of these processes are not completely understood. We report that knockdown of lncRNA Tug1 alters the calcium handling transcriptome and increases mitochondrial calcium uniporter expression via a mechanism involving CaMKII. As overexpression of MCU is known to be protective against pathological cardiac remodeling, targeting Tug1 may be a potential strategy for treating cardiovascular disease.
Collapse
Affiliation(s)
- Adam J Trewin
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Glenn D Wadley
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| | - Séverine Lamon
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
26
|
Cabral-Costa JV, Vicente-Gutiérrez C, Agulla J, Lapresa R, Elrod JW, Almeida Á, Bolaños JP, Kowaltowski AJ. Mitochondrial sodium/calcium exchanger NCLX regulates glycolysis in astrocytes, impacting on cognitive performance. J Neurochem 2023; 165:521-535. [PMID: 36563047 PMCID: PMC10478152 DOI: 10.1111/jnc.15745] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Intracellular Ca2+ concentrations are strictly controlled by plasma membrane transporters, the endoplasmic reticulum, and mitochondria, in which Ca2+ uptake is mediated by the mitochondrial calcium uniporter complex (MCUc), while efflux occurs mainly through the mitochondrial Na+ /Ca2+ exchanger (NCLX). RNAseq database repository searches led us to identify the Nclx transcript as highly enriched in astrocytes when compared with neurons. To assess the role of NCLX in mouse primary culture astrocytes, we inhibited its function both pharmacologically or genetically. This resulted in re-shaping of cytosolic Ca2+ signaling and a metabolic shift that increased glycolytic flux and lactate secretion in a Ca2+ -dependent manner. Interestingly, in vivo genetic deletion of NCLX in hippocampal astrocytes improved cognitive performance in behavioral tasks, whereas hippocampal neuron-specific deletion of NCLX impaired cognitive performance. These results unveil a role for NCLX as a novel modulator of astrocytic glucose metabolism, impacting on cognition.
Collapse
Affiliation(s)
- João Victor Cabral-Costa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Institute of Functional Biology and Genomics, University of Salamanca-CSIC, Salamanca, Spain
| | - Carlos Vicente-Gutiérrez
- Institute of Functional Biology and Genomics, University of Salamanca-CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red Sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca-CSIC, Salamanca, Spain
| | - Jesús Agulla
- Institute of Functional Biology and Genomics, University of Salamanca-CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca-CSIC, Salamanca, Spain
| | - Rebeca Lapresa
- Institute of Functional Biology and Genomics, University of Salamanca-CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca-CSIC, Salamanca, Spain
| | - John W. Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ángeles Almeida
- Institute of Functional Biology and Genomics, University of Salamanca-CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca-CSIC, Salamanca, Spain
| | - Juan P. Bolaños
- Institute of Functional Biology and Genomics, University of Salamanca-CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red Sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca-CSIC, Salamanca, Spain
| | - Alicia J. Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|