1
|
Andersen NT, Chen JZY. Stretching semiflexible polymers: Gibbs versus Helmholtz ensembles. Phys Rev E 2025; 111:045402. [PMID: 40411090 DOI: 10.1103/physreve.111.045402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/14/2025] [Indexed: 05/26/2025]
Abstract
What differences in behavior can one draw between the measurable quantities in fixed-force and fixed-extension experiments on semiflexible polymers (such as DNA), stretched by applying a force? The marked difference between the two types of experiment, represented by two different scaling curves as a function of a reduced stretching force and reduced extension, is revealed here. Potential regions of the parameter space that could benefit from further experimental investigation are also suggested.
Collapse
Affiliation(s)
- Nigel T Andersen
- University of Waterloo, Department of Physics and Astronomy, Ontario, Canada N2L 3G1
| | - Jeff Z Y Chen
- University of Waterloo, Department of Physics and Astronomy, Ontario, Canada N2L 3G1
| |
Collapse
|
2
|
Böl M, Leichsenring K, Kohn S, Ehret AE. The anisotropic and region-dependent mechanical response of wrap-around tendons under tensile, compressive and combined multiaxial loads. Acta Biomater 2024; 183:157-172. [PMID: 38838908 DOI: 10.1016/j.actbio.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The present work reports on the multiaxial region and orientation-dependent mechanical properties of two porcine wrap-around tendons under tensile, compressive and combined loads based on an extensive study with n=175 samples. The results provide a detailed dataset of the anisotropic tensile and compressive longitudinal properties and document a pronounced tension-compression asymmetry. Motivated by the physiological loading conditions of these tendons, which include transversal compression at bony abutments in addition to longitudinal tension, we systematically investigated the change in axial tension when the tendon is compressed transversally along one or both perpendicular directions. The results reveal that the transversal compression can increase axial tension (proximal-distal direction) in both cases to orders of 30%, yet by a larger amount in the first case (transversal compression in anterior-posterior direction), which seems to be more relevant for wrap-around tendons in-vivo. These quantitative measurements are in line with earlier findings on auxetic properties of tendon tissue, but show for the first time the influence of this property on the stress response of the tendon, and may thus reveal an important functional principle within these essential elements of force transmission in the body. STATEMENT OF SIGNIFICANCE: The work reports for the first time on multiaxial region and orientation-dependent mechanical properties of wrap-around tendons under various loads. The results indicate that differences in the mechanical properties exist between zones that are predominantly in a uniaxial tensile state and those that experience complex load states. The observed counterintuitive increase of the axial tension upon lateral compression points at auxetic properties of the tendon tissue which may be pivotal for the function of the tendon as an element of the musculoskeletal system. It suggests that the tendon's performance in transmitting forces is not diminished but enhanced when the action line is deflected by a bony pulley around which the tendon wraps, representing an important functional principle of tendon tissue.
Collapse
Affiliation(s)
- Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany.
| | - Kay Leichsenring
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Stephan Kohn
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Alexander E Ehret
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland; Institute for Mechanical Systems, ETH Zurich, Zürich, CH-8092, Switzerland
| |
Collapse
|
3
|
Suhail A, Banerjee A, Rajesh R. Dissipation and recovery in collagen fibrils under cyclic loading: A molecular dynamics study. Phys Rev E 2024; 109:024411. [PMID: 38491641 DOI: 10.1103/physreve.109.024411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/22/2024] [Indexed: 03/18/2024]
Abstract
The hysteretic behavior exhibited by collagen fibrils, when subjected to cyclic loading, is known to result in both dissipation as well as accumulation of residual strain. On subsequent relaxation, partial recovery has also been reported. Cross-links have been considered to play a key role in overall mechanical properties. Here, we modify an existing coarse-grained molecular dynamics model for collagen fibril with initially cross-linked collagen molecules, which is known to reproduce the response to uniaxial strain, by incorporating reformation of cross-links to allow for possible recovery of the fibril. Using molecular dynamics simulations, we show that our model successfully replicates the key features observed in experimental data, including the movement of hysteresis loops, the time evolution of residual strains and energy dissipation, as well as the recovery observed during relaxation. We also show that the characteristic cycle number, describing the approach toward steady state, has a value similar to that in experiments. We also emphasize the vital role of the degree of cross-linking on the key features of the macroscopic response to cyclic loading.
Collapse
Affiliation(s)
- Amir Suhail
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | | | - R Rajesh
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
4
|
Wilcox KG, Kemerer GM, Morozova S. Ionic environment effects on collagen type II persistence length and assembly. J Chem Phys 2023; 158:044903. [PMID: 36725496 DOI: 10.1063/5.0131792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Collagen type II is a main structural protein in cartilage and forms fibrils. The radius of the fibrils ranges from 50 nm to a few hundred nm, and previous theoretical studies point to electrostatics and collagen elasticity (measured as the persistence length, lp) as the main origin for the self-limiting size scales. In this study, we have investigated the collagen triple helical structure and fibril size scales in pH 2 solutions with varying NaCl concentrations from 10-4 to 100 mM, at which collagen is positively charged, and in pH 7.4 solutions, with varying ionic strengths from 100 to 250 mM, at which collagen is both positively and negatively charged. Using static and dynamic light scattering, the radius of gyration (Rg), hydrodynamic radius (Rh), and second virial coefficient (A2) of collagen triple helices are determined, and lp is calculated. With increasing ionic strength, triple helical lp decreases in pH 2 solutions and increases in pH 7.4 solutions. The value ranges from 60 to 100 nm depending on the ionic environment, but at the salt concentration at which A2 is near zero, there are no net backbone interactions in solution, and the intrinsic collagen triple helix lp is determined to be 90-95 nm. Electron microscopy is used to determine the diameter of fibrils assembled in pH 7.4 conditions, and we compare lp of the collagen triple helices and fibril diameter using recent theory on fibril assembly. By better understanding collagen lp and fibril assembly, we can further understand mechanisms of biomacromolecule self-assembly.
Collapse
Affiliation(s)
- Kathryn G Wilcox
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Grace M Kemerer
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Svetlana Morozova
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
5
|
Petitjean N, Canadas P, Royer P, Noël D, Le Floc'h S. Cartilage biomechanics: From the basic facts to the challenges of tissue engineering. J Biomed Mater Res A 2022; 111:1067-1089. [PMID: 36583681 DOI: 10.1002/jbm.a.37478] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 12/31/2022]
Abstract
Articular cartilage (AC) is the thin tissue that covers the long bone ends in the joints and that ensures the transmission of forces between adjacent bones while allowing nearly frictionless movements between them. AC repair is a technologic and scientific challenge that has been addressed with numerous approaches. A major deadlock is the capacity to take in account its complex mechanical properties in repair strategies. In this review, we first describe the major mechanical behaviors of AC for the non-specialists. Then, we show how researchers have progressively identified specific mechanical parameters using mathematical models. There are still gaps in our understanding of some of the observations concerning AC biomechanical properties, particularly the differences in extracellular matrix stiffness measured at the microscale and at the millimetric scale. Nevertheless, for bioengineering applications, AC repair strategies must take into account what are commonly considered the main mechanical features of cartilage: its ability to withstand high stresses through three main behaviors (elasticity, poroelasticity and swelling). Finally, we emphasize that future studies need to investigate AC mechanical properties at different scales, particularly the gradient of mechanical properties around cells and across the cartilage depth, and the differences in mechanical properties at different scales. This multi-scale approach could greatly enhance the success of AC restorative approaches.
Collapse
Affiliation(s)
| | | | - Pascale Royer
- LMGC, University of Montpellier, CNRS, Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, France
| | | |
Collapse
|
6
|
Phillips JD, Hwang ES, Morgan DJ, Creveling CJ, Coats B. Structure and mechanics of the vitreoretinal interface. J Mech Behav Biomed Mater 2022; 134:105399. [PMID: 35963021 PMCID: PMC9552593 DOI: 10.1016/j.jmbbm.2022.105399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/17/2022] [Accepted: 07/24/2022] [Indexed: 12/24/2022]
Abstract
Vitreoretinal mechanics plays an important role in retinal trauma and many sight-threatening diseases. In age-related pathologies, such as posterior vitreous detachment and vitreomacular traction, lingering vitreoretinal adhesions can lead to macular holes, epiretinal membranes, retinal tears and detachment. In age-related macular degeneration, vitreoretinal traction has been implicated in the acceleration of the disease due to the stimulation of vascular growth factors. Despite this strong mechanobiological influence on trauma and disease in the eye, fundamental understanding of the mechanics at the vitreoretinal interface is limited. Clarification of adhesion mechanisms and the role of vitreoretinal mechanics in healthy eyes and disease is necessary to develop innovative treatments for these pathologies. In this review, we evaluate the existing literature on the structure and function of the vitreoretinal interface to gain insight into age- and region-dependent mechanisms of vitreoretinal adhesion. We explore the role of vitreoretinal adhesion in ocular pathologies to identify knowledge gaps and future research areas. Finally, we recommend future mechanics-based studies to address the critical needs in the field, increase fundamental understanding of vitreoretinal mechanisms and disease, and inform disease treatments.
Collapse
Affiliation(s)
- Joseph D Phillips
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Eileen S Hwang
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Denise J Morgan
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | | | - Brittany Coats
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
7
|
Suhail A, Banerjee A, Rajesh R. Kinetic model description of dissipation and recovery in collagen fibrils under cyclic loading. Phys Rev E 2022; 106:044407. [PMID: 36397482 DOI: 10.1103/physreve.106.044407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Collagen fibrils, when subjected to cyclic loading, are known to exhibit hysteretic behavior with energy dissipation that is partially recovered on relaxation. In this paper, we develop a kinetic model for a collagen fibril incorporating presence of hidden loops and stochastic fragmentation as well as reformation of sacrificial bonds. We show that the model reproduces well the characteristic features of reported experimental data on cyclic response of collagen fibrils, such as moving hysteresis loops, time evolution of residual strains and energy dissipation, recovery on relaxation, etc. We show that the approach to the steady state is controlled by a characteristic cycle number for both residual strain as well as energy dissipation and is in good agreement with reported existing experimental data.
Collapse
Affiliation(s)
- Amir Suhail
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | | | - R Rajesh
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
8
|
Wilcox KG, Dingle ME, Saha A, Hore MJA, Morozova S. Persistence length of α-helical poly-L-lysine. SOFT MATTER 2022; 18:6550-6560. [PMID: 36039676 DOI: 10.1039/d2sm00921h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The α-helix has a significant role in protein function and structure because of its rigidity. In this study, we investigate the persistence length, lp, of α-helical poly-L-lysine, PLL, for two molecular weights. PLL experiences a random coil-helix transition as the pH is raised from 7 to 12. Using light scattering experiments to determine the radius of gyration (Rg), hydrodynamic radius, (Rh), the shape factor (Rg/Rh), and second virial coefficient (A2), and circular dichroism to determine the helical content, we find the structure and lp of PLL as a function of pH (7.4-11.4) and ionic strength (100-166 mM). With increasing pH, we find an increase in lp from 2 nm to 15-21 nm because of α-helix formation. We performed dissipative particle dynamics (DPD) simulations and found a similar increase in lp. While this lp is less than that predicted by molecular dynamics simulations, it is consistent with other experimental results, which quantify the mechanics of α-helices. By determining the mechanics of helical polypeptides like PLL, we can further understand their implications to protein function.
Collapse
Affiliation(s)
- Kathryn G Wilcox
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Marlee E Dingle
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Ankit Saha
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Michael J A Hore
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Svetlana Morozova
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
9
|
Wierzbicki T, Bai Y. Finite element modeling of alpha-helices and tropocollagen molecules with reference to the spike of SARS-CoV-2. Biophys J 2022; 121:2353-2370. [PMID: 35598047 PMCID: PMC9162829 DOI: 10.1016/j.bpj.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/03/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022] Open
Abstract
The newly developed finite element modeling at the atomic scale was used to predict the static and dynamic response of the alpha-helix (AH) and tropocollagen (TC) protein fragments, the main building blocks of the spike of the SARS-CoV-2. The geometry and morphology of the spike's stalk and its connection to the viral envelope were determined from the combination of most recent Molecular Dynamics simulation and images of Cryo-Electron microscope. The stiffness parameters of the covalent bonds in the main chain of the helix were taken from the literature. The AH and TC were modeled using both beam elements (wire model) and shell elements (ribbon model) in finite element analysis to predict their mechanical properties under tension. The asymptotic stiffening features of AH and TC under tensile loading were revealed and compared with a new analytical solution. The mechanical stiffnesses under other loading conditions, including compression, torsion and bending were also predicted numerically and correlated with the results of the existing MD simulations and tests. The mode shapes and natural frequencies of the spike were predicted using the built FE model. The frequencies were shown to be within the safe range of 1-20 MHz routinely used for medical imaging and diagnosis by means of ultrasound. These results provide a solid theoretical basis for using ultrasound to study damaging coronavirus through transient and resonant vibration at large deformations.
Collapse
Affiliation(s)
- Tomasz Wierzbicki
- Impact and Crashworthiness Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuanli Bai
- Department of Mechanical and Aerospace of Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA.
| |
Collapse
|
10
|
Gregory P, Banerjee S, Du C, Thuo M. Introduction: biopolymers and biocomposites. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biopolymers and biocomposites are an exciting class of ubiquitous materials. Interest in these materials has been driven in part by their biocompatibility/biodegradability, sustainability, potentially low-cost, renewability, being environmental benign, among other properties. These fascinating materials come in a range of forms from the DNA and RNA that is essential to life to the cellulose and collagen that mechanically reinforce tissues and as hybrid organic–inorganic composites like teeth. Herein, we summarize some aspects of the two classes of materials biopolymer and biocomposites, exploring specific examples while pointing to potential monomer sources, neoteric post-extraction modification and processing conditions. This lays the foundation to the following more specific chapters while illustrating the breadth of these material classes.
Collapse
Affiliation(s)
- Paul Gregory
- Department of Materials Science and Engineering , Iowa State University , Ames , IA , USA
| | - Souvik Banerjee
- Department of Materials Science and Engineering , Iowa State University , Ames , IA , USA
| | - Chuanshen Du
- Department of Materials Science and Engineering , Iowa State University , Ames , IA , USA
| | - Martin Thuo
- Department of Materials Science and Engineering , Iowa State University , Ames , IA , USA
- Micro-Electronics Research Center , Ames , IA , USA
- Department of Electrical and Computer Engineering , Iowa State University , Ames , IA , USA
| |
Collapse
|
11
|
Lehmann K, Shayegan M, Blab GA, Forde NR. Optical Tweezers Approaches for Probing Multiscale Protein Mechanics and Assembly. Front Mol Biosci 2020; 7:577314. [PMID: 33134316 PMCID: PMC7573139 DOI: 10.3389/fmolb.2020.577314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
Multi-step assembly of individual protein building blocks is key to the formation of essential higher-order structures inside and outside of cells. Optical tweezers is a technique well suited to investigate the mechanics and dynamics of these structures at a variety of size scales. In this mini-review, we highlight experiments that have used optical tweezers to investigate protein assembly and mechanics, with a focus on the extracellular matrix protein collagen. These examples demonstrate how optical tweezers can be used to study mechanics across length scales, ranging from the single-molecule level to fibrils to protein networks. We discuss challenges in experimental design and interpretation, opportunities for integration with other experimental modalities, and applications of optical tweezers to current questions in protein mechanics and assembly.
Collapse
Affiliation(s)
- Kathrin Lehmann
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada.,Soft Condensed Matter and Biophysics, Utrecht University, Utrecht, Netherlands
| | - Marjan Shayegan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Gerhard A Blab
- Soft Condensed Matter and Biophysics, Utrecht University, Utrecht, Netherlands
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development and Disease (C2D2), Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
12
|
Brouwer TB, Hermans N, van Noort J. Multiplexed Nanometric 3D Tracking of Microbeads Using an FFT-Phasor Algorithm. Biophys J 2020; 118:2245-2257. [PMID: 32053775 PMCID: PMC7202940 DOI: 10.1016/j.bpj.2020.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/23/2023] Open
Abstract
Many single-molecule biophysical techniques rely on nanometric tracking of microbeads to obtain quantitative information about the mechanical properties of biomolecules such as chromatin fibers. Their three-dimensional (3D) position can be resolved by holographic analysis of the diffraction pattern in wide-field imaging. Fitting this diffraction pattern to Lorenz-Mie scattering theory yields the bead's position with nanometer accuracy in three dimensions but is computationally expensive. Real-time multiplexed bead tracking therefore requires a more efficient tracking method, such as comparison with previously measured diffraction patterns, known as look-up tables. Here, we introduce an alternative 3D phasor algorithm that provides robust bead tracking with nanometric localization accuracy in a z range of over 10 μm under nonoptimal imaging conditions. The algorithm is based on a two-dimensional cross correlation using fast Fourier transforms with computer-generated reference images, yielding a processing rate of up to 10,000 regions of interest per second. We implemented the technique in magnetic tweezers and tracked the 3D position of over 100 beads in real time on a generic CPU. The accuracy of 3D phasor tracking was extensively tested and compared to a look-up table approach using Lorenz-Mie simulations, avoiding experimental uncertainties. Its easy implementation, efficiency, and robustness can improve multiplexed biophysical bead-tracking applications, especially when high throughput is required and image artifacts are difficult to avoid.
Collapse
Affiliation(s)
- Thomas B Brouwer
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands
| | - Nicolaas Hermans
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
13
|
Ferruzzi J, Zhang Y, Roblyer D, Zaman MH. Multi-scale Mechanics of Collagen Networks: Biomechanical Basis of Matrix Remodeling in Cancer. MULTI-SCALE EXTRACELLULAR MATRIX MECHANICS AND MECHANOBIOLOGY 2020. [DOI: 10.1007/978-3-030-20182-1_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Kirkness MWH, Lehmann K, Forde NR. Mechanics and structural stability of the collagen triple helix. Curr Opin Chem Biol 2019; 53:98-105. [DOI: 10.1016/j.cbpa.2019.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 01/18/2023]
|
15
|
Tension in fibrils suppresses their enzymatic degradation - A molecular mechanism for 'use it or lose it'. Matrix Biol 2019; 85-86:34-46. [PMID: 31201857 DOI: 10.1016/j.matbio.2019.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022]
Abstract
Tissue homeostasis depends on a balance of synthesis and degradation of constituent proteins, with turnover of a given protein potentially regulated by its use. Extracellular matrix (ECM) is predominantly composed of fibrillar collagens that exhibit tension-sensitive degradation, which we review here at different levels of hierarchy. Past experiments and recent proteomics measurements together suggest that mechanical strain stabilizes collagen against enzymatic degradation at the scale of tissues and fibrils whereas isolated collagen molecules exhibit a biphasic behavior that depends on load magnitude. Within a Michaelis-Menten framework, collagenases at constant concentration effectively exhibit a low activity on substrate fibrils when the fibrils are strained by tension. Mechanisms of such mechanosensitive regulation are surveyed together with relevant interactions of collagen fibrils with cells.
Collapse
|
16
|
Li H, Mattson JM, Zhang Y. Integrating structural heterogeneity, fiber orientation, and recruitment in multiscale ECM mechanics. J Mech Behav Biomed Mater 2019; 92:1-10. [PMID: 30654215 PMCID: PMC6387859 DOI: 10.1016/j.jmbbm.2018.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/26/2018] [Accepted: 12/18/2018] [Indexed: 01/06/2023]
Abstract
Extracellular matrix (ECM) plays critical roles in establishing tissue structure-function relationships and controlling cell fate. However, the mechanisms by which ECM mechanics influence cell and tissue behavior remain to be elucidated since the events associated with this process span length scales from the tissue to molecular level. Entirely new methods are needed in order to better understand the multiscale mechanics of ECM. In this study, a multiscale experimental approach was established by integrating Optical Magnetic Twisting Cytometry (OMTC) with a biaxial tensile tester to study the microscopic (local) ECM mechanical properties under controlled tissue-level (global) loading. Adventitial layer of porcine thoracic artery was used as a collagen-based ECM. Multiphoton microscopy imaging was performed to capture the changes in ECM fiber structure during biaxial deformation. As visualized from multiphoton microscopy images, biaxial stretch induces gradual fiber straightening and the fiber families become evident at higher stretch levels. The OMTC measurements show that the local apparent storage and loss modulus increases with the global biaxial stretch, however there exists a complex interplay among local ECM mechanical properties, ECM structural heterogeneity, and fiber distribution and engagement. The phase lag does not change significantly with global biaxial stretch. Our results also show a much faster increase in global tissue tangent modulus compared to the local apparent complex modulus with biaxial stretch, indicating the scale dependency of ECM mechanics.
Collapse
Affiliation(s)
- Haiyue Li
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Jeffrey M Mattson
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
17
|
Rezaei N, Lyons A, Forde NR. Environmentally Controlled Curvature of Single Collagen Proteins. Biophys J 2018; 115:1457-1469. [PMID: 30269884 PMCID: PMC6260212 DOI: 10.1016/j.bpj.2018.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 12/01/2022] Open
Abstract
The predominant structural protein in vertebrates is collagen, which plays a key role in extracellular matrix and connective tissue mechanics. Despite its prevalence and physical importance in biology, the mechanical properties of molecular collagen are far from established. The flexibility of its triple helix is unresolved, with descriptions from different experimental techniques ranging from flexible to semirigid. Furthermore, it is unknown how collagen type (homo- versus heterotrimeric) and source (tissue derived versus recombinant) influence flexibility. Using SmarTrace, a chain-tracing algorithm we devised, we performed statistical analysis of collagen conformations collected with atomic force microscopy to determine the protein's mechanical properties. Our results show that types I, II, and III collagens-the key fibrillar varieties-exhibit similar molecular flexibilities. However, collagen conformations are strongly modulated by salt, transitioning from compact to extended as KCl concentration increases in both neutral and acidic pH. Although analysis with a standard worm-like chain model suggests that the persistence length of collagen can attain a wide range of values within the literature range, closer inspection reveals that this modulation of collagen's conformational behavior is not due to changes in flexibility but rather arises from the induction of curvature (either intrinsic or induced by interactions with the mica surface). By modifying standard polymer theory to include innate curvature, we show that collagen behaves as an equilibrated curved worm-like chain in two dimensions. Analysis within the curved worm-like chain model shows that collagen's curvature depends strongly on pH and salt, whereas its persistence length does not. Thus, we find that triple-helical collagen is well described as semiflexible irrespective of source, type, pH, and salt environment. These results demonstrate that collagen is more flexible than its conventional description as a rigid rod, which may have implications for its cellular processing and secretion.
Collapse
Affiliation(s)
- Nagmeh Rezaei
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Aaron Lyons
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, Canada.
| |
Collapse
|
18
|
Worm-like chain model extensions for highly stretched tropocollagen molecules. J Biomech 2018; 80:129-135. [DOI: 10.1016/j.jbiomech.2018.08.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/18/2022]
|
19
|
Steered molecular dynamics characterization of the elastic modulus and deformation mechanisms of single natural tropocollagen molecules. J Mech Behav Biomed Mater 2018; 86:359-367. [PMID: 30015207 DOI: 10.1016/j.jmbbm.2018.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/30/2018] [Accepted: 07/04/2018] [Indexed: 11/21/2022]
Abstract
Collagen is a common structural protein, providing mechanical integrity for various vertebrate connective tissues such as cartilage and bone. The mechanical behaviours of these tissues under physical stimulations are controlled by the hierarchical structure of collagen and its interactions with other extracellular matrix molecules. However, the mechanical properties and deformation mechanisms of natural collagen under physiological loading rates at the molecular level are not fully understood. In this study, comprehensive steered molecular dynamics (SMD) simulations were performed on the 2nd intact overlap region (d2ol) and the 2nd intact D-period (d2olgp) of an in-situ characterized collagen molecule, under a large range of strain rates (6.5 × 106% s-1 to 1.3 × 1012% s-1). The results show that, depending on the applied strain rates, tropocollagen molecules unfold in different ways. Particularly, at high and intermediate strain rates, the number of inter-chain hydrogen bonds decreases rapidly even at small deformations, leading to a dramatic increase in the force. This results in an increase in the estimated Young's modulus of collagen triple helices as the deformation rate goes up, which, together with the nonlinear mechanical behaviour, explains the broad range of the Young's modulus for collagen model peptides reported in earlier SMD studies. Atomistic-level analyses indicate that the elastic modulus of single tropocollagen molecules decreases as the strain rate becomes smaller. However, for strain rates below 1.3 × 108% s-1, the tangent Young's modulus of d2ol (d2olgp) converges to approximately 3.2 GPa (3.4 GPa), at the strain of 10.5% (12%) when the segment is fully uncrimped. Furthermore, for strain rates under 1.3 × 108% s-1, d2ol and d2olgp show identical deformation mechanisms (unwinding, uncoiling and backbone stretching), but the corresponding strain ranges are different. This study will aid in future studies on characterizing the mechanical properties of collagen molecules and collagen-like peptides by indicating the proper pulling strain rates and how to determine the suitable strain range used for evaluating the elastic modulus.
Collapse
|
20
|
Yeo J, Jung GS, Martín-Martínez FJ, Ling S, Gu GX, Qin Z, Buehler MJ. Materials-by-Design: Computation, Synthesis, and Characterization from Atoms to Structures. PHYSICA SCRIPTA 2018; 93:053003. [PMID: 31866694 PMCID: PMC6924929 DOI: 10.1088/1402-4896/aab4e2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the 50 years that succeeded Richard Feynman's exposition of the idea that there is "plenty of room at the bottom" for manipulating individual atoms for the synthesis and manufacturing processing of materials, the materials-by-design paradigm is being developed gradually through synergistic integration of experimental material synthesis and characterization with predictive computational modeling and optimization. This paper reviews how this paradigm creates the possibility to develop materials according to specific, rational designs from the molecular to the macroscopic scale. We discuss promising techniques in experimental small-scale material synthesis and large-scale fabrication methods to manipulate atomistic or macroscale structures, which can be designed by computational modeling. These include recombinant protein technology to produce peptides and proteins with tailored sequences encoded by recombinant DNA, self-assembly processes induced by conformational transition of proteins, additive manufacturing for designing complex structures, and qualitative and quantitative characterization of materials at different length scales. We describe important material characterization techniques using numerous methods of spectroscopy and microscopy. We detail numerous multi-scale computational modeling techniques that complements these experimental techniques: DFT at the atomistic scale; fully atomistic and coarse-grain molecular dynamics at the molecular to mesoscale; continuum modeling at the macroscale. Additionally, we present case studies that utilize experimental and computational approaches in an integrated manner to broaden our understanding of the properties of two-dimensional materials and materials based on silk and silk-elastin-like proteins.
Collapse
Affiliation(s)
- Jingjie Yeo
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Gang Seob Jung
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Francisco J. Martín-Martínez
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shengjie Ling
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Grace X. Gu
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Wieczorek A, Chan CK, Kovacic S, Li C, Dierks T, Forde NR. Genetically modified human type II collagen for N- and C-terminal covalent tagging. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Collagen is the predominant structural protein in vertebrates, where it contributes to connective tissues and the ECM; it is also widely used in biomaterials and tissue engineering. Dysfunction of this protein and its processing can lead to a wide variety of developmental disorders and connective tissue diseases. Recombinantly engineering the protein is challenging due to post-translational modifications generally required for its stability and secretion from cells. Introducing end labels into the protein is problematic, because the N- and C-termini of the physiologically relevant tropocollagen lie internal to the initially flanking N- and C-propeptide sequences. Here, we introduce mutations into human type II procollagen in a manner that addresses these concerns and purify the recombinant protein from a stably transfected HT1080 human fibrosarcoma cell line. Our approach introduces chemically addressable groups into the N- and C-telopeptide termini of tropocollagen. Simultaneous overexpression of formylglycine generating enzyme (FGE) allows the endogenous production of an aldehyde tag in a defined, substituted sequence in the N terminus of the mutated collagen, whereas the C-terminus of each chain presents a sulfhydryl group from an introduced cysteine. These modifications are designed to enable specific covalent end-labelling of collagen. We find that the doubly mutated protein folds and is secreted from cells. Higher order assembly into well-ordered collagen fibrils is demonstrated through transmission electron microscopy. Chemical tagging of thiols is successful; however, background from endogenous aldehydes present in wild-type collagen has thus far obscured the desired specific N-terminal labelling. Strategies to overcome this challenge are proposed.
Collapse
Affiliation(s)
- Andrew Wieczorek
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Clara K. Chan
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Suzana Kovacic
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Cindy Li
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Thomas Dierks
- Department of Chemistry, Biochemistry I, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Nancy R. Forde
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
22
|
Unraveling the role of Calcium ions in the mechanical properties of individual collagen fibrils. Sci Rep 2017; 7:46042. [PMID: 28378770 PMCID: PMC5380965 DOI: 10.1038/srep46042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Collagen, the dominating material in the extracellular matrix, provides the strength, elasticity and mechanical stability to the organisms. The mechanical property of collagen is mainly dominated by its surrounding environments. However, the variation and origin of the mechanics of collagen fibril under different concentrations of calcium ions (χCa) remains unknown. By using the atomic force microscopy based nanoindentation, the mechanics and structure of individual type II collagen fibril were first investigated under different χCa in this study. The results demonstrate that both of the mechanical and structural properties of the collagen fibril show a prominent dependence on χCa. The mechanism of χCa-dependence of the collagen fibril was attributed to the chelation between collagen molecules and the calcium ions. Given the role of calcium in the pathology of osteoarthritis, the current study may cast new light on the understanding of osteoarthritis and other soft tissue hardening related diseases in the future.
Collapse
|
23
|
Heterogeneous nanomechanical properties of type I collagen in longitudinal direction. Biomech Model Mechanobiol 2017; 16:1023-1033. [DOI: 10.1007/s10237-016-0870-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 12/24/2016] [Indexed: 01/28/2023]
|
24
|
Kamble H, Barton MJ, Jun M, Park S, Nguyen NT. Cell stretching devices as research tools: engineering and biological considerations. LAB ON A CHIP 2016; 16:3193-203. [PMID: 27440436 DOI: 10.1039/c6lc00607h] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cells within the human body are subjected to continuous, cyclic mechanical strain caused by various organ functions, movement, and growth. Cells are well known to have the ability to sense and respond to mechanical stimuli. This process is referred to as mechanotransduction. A better understanding of mechanotransduction is of great interest to clinicians and scientists alike to improve clinical diagnosis and understanding of medical pathology. However, the complexity involved in in vivo biological systems creates a need for better in vitro technologies, which can closely mimic the cells' microenvironment using induced mechanical strain. This technology gap motivates the development of cell stretching devices for better understanding of the cell response to mechanical stimuli. This review focuses on the engineering and biological considerations for the development of such cell stretching devices. The paper discusses different types of stretching concepts, major design consideration and biological aspects of cell stretching and provides a perspective for future development in this research area.
Collapse
Affiliation(s)
- Harshad Kamble
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, QLD 4111, Australia.
| | - Matthew J Barton
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Myeongjun Jun
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, QLD 4111, Australia.
| |
Collapse
|
25
|
Miranda-Nieves D, Chaikof EL. Collagen and Elastin Biomaterials for the Fabrication of Engineered Living Tissues. ACS Biomater Sci Eng 2016; 3:694-711. [PMID: 33440491 DOI: 10.1021/acsbiomaterials.6b00250] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Collagen and elastin represent the two most predominant proteins in the body and are responsible for modulating important biological and mechanical properties. Thus, the focus of this review is the use of collagen and elastin as biomaterials for the fabrication of living tissues. Considering the importance of both biomaterials, we first propose the notion that many tissues in the human body represent a reinforced composite of collagen and elastin. In the rest of the review, collagen and elastin biosynthesis and biophysics, as well as molecular sources and biomaterial fabrication methodologies, including casting, fiber spinning, and bioprinting, are discussed. Finally, we summarize the current attempts to fabricate a subset of living tissues and, based on biochemical and biomechanical considerations, suggest that future tissue-engineering efforts consider direct incorporation of collagen and elastin biomaterials.
Collapse
Affiliation(s)
- David Miranda-Nieves
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Elliot L Chaikof
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| |
Collapse
|
26
|
Kwansa AL, De Vita R, Freeman JW. Tensile mechanical properties of collagen type I and its enzymatic crosslinks. Biophys Chem 2016; 214-215:1-10. [DOI: 10.1016/j.bpc.2016.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 04/17/2016] [Indexed: 12/12/2022]
|
27
|
Harshad K, Jun M, Park S, Barton MJ, Vadivelu RK, St John J, Nguyen NT. An electromagnetic cell-stretching device for mechanotransduction studies of olfactory ensheathing cells. Biomed Microdevices 2016; 18:45. [DOI: 10.1007/s10544-016-0071-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Rens R, Vahabi M, Licup AJ, MacKintosh FC, Sharma A. Nonlinear Mechanics of Athermal Branched Biopolymer Networks. J Phys Chem B 2016; 120:5831-41. [PMID: 26901575 DOI: 10.1021/acs.jpcb.6b00259] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Naturally occurring biopolymers such as collagen and actin form branched fibrous networks. The average connectivity in branched networks is generally below the isostatic threshold at which central force interactions marginally stabilize the network. In the submarginal regime, for connectivity below this threshold, such networks are unstable toward small deformations unless stabilized by additional interactions such as bending. Here we perform a numerical study on the elastic behavior of such networks. We show that the nonlinear mechanics of branched networks is qualitatively similar to that of filamentous networks with freely hinged cross-links. In agreement with a recent theoretical study,1 we find that branched networks also exhibit nonlinear mechanics consistent with athermal critical phenomena controlled by strain. We obtain the critical exponents capturing the nonlinear elastic behavior near the critical point by performing scaling analysis of the stiffening curves. We find that the exponents evolve with the connectivity in the network. We show that the nonlinear mechanics of disordered networks, independent of the detailed microstructure, can be characterized by a strain-driven second-order phase transition, and that the primary quantitative differences among different architectures are in the critical exponents describing the transition.
Collapse
Affiliation(s)
- R Rens
- Department of Physics and Astronomy, Vrije Universiteit , Amsterdam 1081 HV, The Netherlands.,Institute of Physics, University of Amsterdam , Amsterdam 1098 XH, The Netherlands
| | - M Vahabi
- Department of Physics and Astronomy, Vrije Universiteit , Amsterdam 1081 HV, The Netherlands
| | - A J Licup
- Department of Physics and Astronomy, Vrije Universiteit , Amsterdam 1081 HV, The Netherlands
| | - F C MacKintosh
- Department of Physics and Astronomy, Vrije Universiteit , Amsterdam 1081 HV, The Netherlands
| | - A Sharma
- Department of Physics and Astronomy, Vrije Universiteit , Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
29
|
Wieczorek A, Rezaei N, Chan CK, Xu C, Panwar P, Brömme D, Merschrod S EF, Forde NR. Development and characterization of a eukaryotic expression system for human type II procollagen. BMC Biotechnol 2015; 15:112. [PMID: 26666739 PMCID: PMC4678704 DOI: 10.1186/s12896-015-0228-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/07/2015] [Indexed: 11/10/2022] Open
Abstract
Background Triple helical collagens are the most abundant structural protein in vertebrates and are widely used as biomaterials for a variety of applications including drug delivery and cellular and tissue engineering. In these applications, the mechanics of this hierarchically structured protein play a key role, as does its chemical composition. To facilitate investigation into how gene mutations of collagen lead to disease as well as the rational development of tunable mechanical and chemical properties of this full-length protein, production of recombinant expressed protein is required. Results Here, we present a human type II procollagen expression system that produces full-length procollagen utilizing a previously characterized human fibrosarcoma cell line for production. The system exploits a non-covalently linked fluorescence readout for gene expression to facilitate screening of cell lines. Biochemical and biophysical characterization of the secreted, purified protein are used to demonstrate the proper formation and function of the protein. Assays to demonstrate fidelity include proteolytic digestion, mass spectrometric sequence and posttranslational composition analysis, circular dichroism spectroscopy, single-molecule stretching with optical tweezers, atomic-force microscopy imaging of fibril assembly, and transmission electron microscopy imaging of self-assembled fibrils. Conclusions Using a mammalian expression system, we produced full-length recombinant human type II procollagen. The integrity of the collagen preparation was verified by various structural and degradation assays. This system provides a platform from which to explore new directions in collagen manipulation. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0228-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew Wieczorek
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Naghmeh Rezaei
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Clara K Chan
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.,Present Address: Department of Bioengineering, University of California at Los Angeles, Los Angeles, USA
| | - Chuan Xu
- Department of Chemistry, Memorial University, St. John's, NL, A1B 3X7, Canada.,Present Address: Green Innovative Technologies R&D Centre Ltd, Vancouver, Canada
| | - Preety Panwar
- Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Dieter Brömme
- Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.,Department of Biochemistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Erika F Merschrod S
- Department of Chemistry, Memorial University, St. John's, NL, A1B 3X7, Canada
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
30
|
Böl M, Ehret AE, Leichsenring K, Ernst M. Tissue-scale anisotropy and compressibility of tendon in semi-confined compression tests. J Biomech 2015; 48:1092-8. [DOI: 10.1016/j.jbiomech.2015.01.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 01/22/2023]
|
31
|
Nilsen-Nygaard J, Sletmoen M, Draget KI. Stability and interaction forces of oil-in-water emulsions as observed by optical tweezers – a proof-of-concept study. RSC Adv 2014. [DOI: 10.1039/c4ra07140a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
This proof-of-concept study documents the suitability of optical tweezers in studies aiming at revealing the forces acting between emulsion droplets.
Collapse
Affiliation(s)
- Julie Nilsen-Nygaard
- Norwegian Biopolymer Laboratory (NOBIPOL)
- Department of Biotechnology
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim, Norway
| | - Marit Sletmoen
- Department of Physics
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim, Norway
| | - Kurt Ingar Draget
- Norwegian Biopolymer Laboratory (NOBIPOL)
- Department of Biotechnology
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim, Norway
| |
Collapse
|
32
|
Barkaoui A, Hambli R. Nanomechanical properties of mineralised collagen microfibrils based on finite elements method: biomechanical role of cross-links. Comput Methods Biomech Biomed Engin 2013; 17:1590-601. [PMID: 23439084 DOI: 10.1080/10255842.2012.758255] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hierarchical structures in bio-composites such as bone tissue have many scales or levels and synergic interactions between the different levels. They also have a highly complex architecture in order to fulfil their biological and mechanical functions. In this study, a new three-dimensional (3D) model based on the finite elements (FEs) method was used to model the relationship between the hierarchical structure and the properties of the constituents at the sub-structure scale (mineralised collagen microfibrils) and to investigate their apparent nanomechanical properties. The results of the proposed FE simulations show that the elastic properties of microfibrils depend on different factors such as the number of cross-links, the mechanical properties and the volume fraction of phases. The results obtained under compression loading at a small deformation < 2% show that the microfibrils have a Young's modulus (Ef) ranging from 0.4 to 1.16 GPa and a Poisson's ratio ranging from 0.26 to 0.3. These results are in excellent agreement with experimental data (X-ray, AFM and MEMS) and molecular simulations.
Collapse
Affiliation(s)
- Abdelwahed Barkaoui
- a PRISME Laboratory, EA4229, University of Orleans , Polytech' Orléans, 8, Rue Léonard de Vinci 45072, Orléans , France
| | | |
Collapse
|
33
|
Kim W, Argento A, Rozsa FW, Mallett K. Constitutive behavior of ocular tissues over a range of strain rates. J Biomech Eng 2013; 134:061002. [PMID: 22757499 DOI: 10.1115/1.4006847] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The constitutive behavior of bovine scleral and corneal tissues is measured in tension and compression, at quasi-static and moderate strain rates. Experiments are conducted at strain rates up to about 50 strain per second by a pneumatic testing system developed to overcome noise and measurement difficulties associated with the time dependent test of low impedance materials. Results for the tissues at room and the natural bovine body temperatures are similar and indicate that ocular tissue exhibits nonlinear stiffening for increasing strain rates, a phenomena termed rate hardening. For example, at a tensile strain rate of 29/s, corneal tissue is found to develop 10 times the stress that it does quasi-statically at the same strain. Thus, conventional constitutive models will grossly underpredict stresses occurring in the corneo-scleral shell due to moderate dynamic events. This has implication to the accuracy of ocular injury models, the study of the stress field in the corneo-scleral shell for glaucoma research and tonometry measurements. The measured data at various strain rates is represented using the general framework of a constitutive model that has been used to represent biological tissue mechanical data. Here it is extended to represent the measured data of the ocular tissues over the range of tested strain rates. Its form allows for straightforward incorporation in various numerical codes. The experimental and analytical methods developed here are felt to be applicable to the test of human ocular tissue.
Collapse
Affiliation(s)
- Wonsuk Kim
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA
| | | | | | | |
Collapse
|
34
|
Gautieri A, Pate MI, Vesentini S, Redaelli A, Buehler MJ. Hydration and distance dependence of intermolecular shearing between collagen molecules in a model microfibril. J Biomech 2012; 45:2079-83. [DOI: 10.1016/j.jbiomech.2012.05.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/24/2012] [Accepted: 05/27/2012] [Indexed: 11/25/2022]
|
35
|
Espinosa HD, Filleter T, Naraghi M. Multiscale experimental mechanics of hierarchical carbon-based materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:2805-2823. [PMID: 22576263 DOI: 10.1002/adma.201104850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Indexed: 05/31/2023]
Abstract
Investigation of the mechanics of natural materials, such as spider silk, abalone shells, and bone, has provided great insight into the design of materials that can simultaneously achieve high specific strength and toughness. Research has shown that their emergent mechanical properties are owed in part to their specific self-organization in hierarchical molecular structures, from nanoscale to macroscale, as well as their mixing and bonding. To apply these findings to manmade materials, researchers have devoted significant efforts in developing a fundamental understanding of multiscale mechanics of materials and its application to the design of novel materials with superior mechanical performance. These efforts included the utilization of some of the most promising carbon-based nanomaterials, such as carbon nanotubes, carbon nanofibers, and graphene, together with a variety of matrix materials. At the core of these efforts lies the need to characterize material mechanical behavior across multiple length scales starting from nanoscale characterization of constituents and their interactions to emerging micro- and macroscale properties. In this report, progress made in experimental tools and methods currently used for material characterization across multiple length scales is reviewed, as well as a discussion of how they have impacted our current understanding of the mechanics of hierarchical carbon-based materials. In addition, insight is provided into strategies for bridging experiments across length scales, which are essential in establishing a multiscale characterization approach. While the focus of this progress report is in experimental methods, their concerted use with theoretical-computational approaches towards the establishment of a robust material by design methodology is also discussed, which can pave the way for the development of novel materials possessing unprecedented mechanical properties.
Collapse
Affiliation(s)
- Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208-3111, USA.
| | | | | |
Collapse
|
36
|
Physically based 3D finite element model of a single mineralized collagen microfibril. J Theor Biol 2012; 301:28-41. [DOI: 10.1016/j.jtbi.2012.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/14/2011] [Accepted: 02/07/2012] [Indexed: 01/22/2023]
|
37
|
Wei X, Naraghi M, Espinosa HD. Optimal length scales emerging from shear load transfer in natural materials: application to carbon-based nanocomposite design. ACS NANO 2012; 6:2333-2344. [PMID: 22316210 DOI: 10.1021/nn204506d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Numerous theoretical and experimental studies on various species of natural composites, such as nacre in abalone shells, collagen fibrils in tendon, and spider silk fibers, have been pursued to provide insight into the synthesis of novel bioinspired high-performance composites. However, a direct link between the mechanical properties of the constituents and the various geometric features and hierarchies remains to be fully established. In this paper, we explore a common denominator leading to the outstanding balance between strength and toughness in natural composite materials. We present an analytical model to link the mechanical properties of constituents, their geometric arrangement, and the chemistries used in their lateral interactions. Key critical overlap length scales between adjacent reinforcement constituents, which directly control strength and toughness of composite materials, emerge from the analysis. When these length scales are computed for three natural materials-nacre, collagen molecules, and spider silk fibers-very good agreement is found as compared with experimental measurements. The model was then used to interpret load transfer capabilities in synthetic carbon-based materials through parametrization of in situ SEM shear experiments on overlapping multiwall carbon nanotubes.
Collapse
Affiliation(s)
- Xiaoding Wei
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3111, USA
| | | | | |
Collapse
|
38
|
Chang SW, Shefelbine SJ, Buehler MJ. Structural and mechanical differences between collagen homo- and heterotrimers: relevance for the molecular origin of brittle bone disease. Biophys J 2012; 102:640-8. [PMID: 22325288 DOI: 10.1016/j.bpj.2011.11.3999] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/28/2011] [Accepted: 11/10/2011] [Indexed: 11/19/2022] Open
Abstract
Collagen constitutes one-third of the human proteome, providing mechanical stability, elasticity, and strength to organisms. Normal type I collagen is a heterotrimer triple-helical molecule consisting of two α-1 chains and one α-2 chain. The homotrimeric isoform of type I collagen, which consists of three α-1 chains, is only found in fetal tissues, fibrosis, and cancer in humans. A mouse model of the genetic brittle bone disease, osteogenesis imperfect, oim, is characterized by a replacement of the α-2 chain by an α-1 chain, resulting also in a homotrimer collagen molecule. Experimental studies of oim mice tendon and bone have shown reduced mechanical strength compared to normal mice. The relationship between the molecular content and the decrease in strength is, however, still unknown. Here, fully atomistic simulations of a section of mouse type I heterotrimer and homotrimer collagen molecules are developed to explore the effect of the substitution of the α-2 chain. We calculate the persistence length and carry out a detailed analysis of the structure to determine differences in structural and mechanical behavior between hetero- and homotrimers. The results show that homotrimer persistence length is half of that of the heterotrimer (96 Å vs. 215 Å), indicating it is more flexible and confirmed by direct mechanical testing. Our structural analyses reveal that in contrast to the heterotrimer, the homotrimer easily forms kinks and freely rotates with angles much larger than heterotrimer. These local kinks may explain the larger lateral distance between collagen molecules seen in the fibrils of oim mice tendon and could have implications for reducing the intermolecular cross-linking, which is known to reduce the mechanical strength.
Collapse
Affiliation(s)
- Shu-Wei Chang
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
39
|
Qin Z, Gautieri A, Nair AK, Inbar H, Buehler MJ. Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen-hydroxyapatite interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1982-1992. [PMID: 22208454 DOI: 10.1021/la204052a] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Collagen-hydroxyapatite interfaces compose an important building block of bone structures. While it is known that the nanoscale structure of this elementary building block can affect the mechanical properties of bone, a systematic understanding of the effect of the geometry on the mechanical properties of this interface between protein and mineral is lacking. Here we study the effect of geometry, different crystal surfaces, and hydration on the mechanical properties of collagen-hydroxyapatite interfaces from an atomistic perspective, and discuss underlying deformation mechanisms. We find that the presence of hydroxyapatite significantly enhances the tensile modulus and strength compared with a tropocollagen molecule alone. The stiffening effect is strongly dependent on the thickness of the mineral crystal until a plateau is reached at 2 nm crystal thickness. We observe no significant differences due to the mineral surface (Ca surface vs OH surface) or due to the presence of water. Our result shows that the hydroxyapatite crystal with its thickness confined to the nanometer size efficiently increases the tensile modulus and strength of the collagen-hydroxyapatite composite, agreeing well with experimental observations that consistently show the existence of extremely thin mineral flakes in various types of bones. We also show that the collagen-hydroxyapatite interface can be modeled with an elastic network model which, based on the results of atomistic simulations, provides a good estimate of the surface energy and other mechanical features.
Collapse
Affiliation(s)
- Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-235 A&B, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
40
|
Murphy C, Kelliher D, Davenport J. Shape and material characteristics of the trachea in the leatherback sea turtle promote progressive collapse and reinflation during dives. J Exp Biol 2012; 215:3064-71. [DOI: 10.1242/jeb.072108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The leatherback turtle regularly undertakes deep dives and has been recorded attaining depths in excess of 1,200 m. Its trachea is an almost solid, elliptical-section tube of uncalcified hyaline cartilage with minimal connective tissue between successive rings. The structure appears to be advantageous for diving and perfectly designed for withstanding repeated collapse and reinflation. This study applies Boyle's law to the respiratory system (lungs, trachea and larynx) and estimates the changes in tracheal volume during a dive. These changes are subsequently compared with the results predicted by a corresponding finite element (FE) structural model, itself based on laboratory studies of the trachea of an adult turtle. Boyle's law predicts that the trachea will collapse progressively with greater volume change occurring in the early stages. The FE model reproduces the changes extremely well (agreeing closely with Boyle's law estimations) and provides visual representation of the deformed tracheal luminal area. Initially, the trachea compresses both ventrally and dorsally before levelling ventrally. Bulges are subsequently formed laterally and become more pronounced at deeper depths. The geometric configuration of the tracheal structure confers both homogeneity and strength upon it, which makes it extremely suited for enduring repeated collapse and re-expansion. The structure actually promotes collapse and is an adaptation to the turtle's natural environment in which large numbers of deep dives are performed annually.
Collapse
|
41
|
Limbert G. A mesostructurally-based anisotropic continuum model for biological soft tissues—Decoupled invariant formulation. J Mech Behav Biomed Mater 2011; 4:1637-57. [DOI: 10.1016/j.jmbbm.2011.07.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 07/12/2011] [Accepted: 07/18/2011] [Indexed: 10/18/2022]
|
42
|
Han L, Frank EH, Greene JJ, Lee HY, Hung HHK, Grodzinsky AJ, Ortiz C. Time-dependent nanomechanics of cartilage. Biophys J 2011; 100:1846-54. [PMID: 21463599 DOI: 10.1016/j.bpj.2011.02.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/27/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022] Open
Abstract
In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus E(ind), force-relaxation time constant τ, magnitude of dynamic complex modulus |E(∗)|, phase angle δ between force and indentation depth, storage modulus E', and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E(∗)| increased significantly with frequency from 0.22 ± 0.02 MPa (1 Hz) to 0.77 ± 0.10 MPa (316 Hz), accompanied by an increase in δ (energy dissipation). At this length scale, the energy dissipation mechanisms were deconvoluted: the dynamic frequency dependence was primarily governed by the fluid-flow-induced poroelasticity, whereas the long-time force relaxation reflected flow-independent viscoelasticity. After PG depletion, the change in the frequency response of |E(∗)| and δ was consistent with an increase in cartilage local hydraulic permeability. Although untreated disks showed only slight dynamic amplitude-dependent behavior, PG-depleted disks showed great amplitude-enhanced energy dissipation, possibly due to additional viscoelastic mechanisms. Hence, in addition to functioning as a primary determinant of cartilage compressive stiffness and hydraulic permeability, the presence of aggrecan minimized the amplitude dependence of |E(∗)| at nanometer-scale deformation.
Collapse
Affiliation(s)
- Lin Han
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Han L, Grodzinsky AJ, Ortiz C. Nanomechanics of the Cartilage Extracellular Matrix. ANNUAL REVIEW OF MATERIALS RESEARCH 2011; 41:133-168. [PMID: 22792042 PMCID: PMC3392687 DOI: 10.1146/annurev-matsci-062910-100431] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as osteoarthritis. Here, the application of the field of nanomechanics to cartilage is reviewed. Nanomechanics involves the measurement and prediction of nanoscale forces and displacements, intra- and intermolecular interactions, spatially varying mechanical properties, and other mechanical phenomena existing at small length scales. Experimental nanomechanics and theoretical nanomechanics have been applied to cartilage at varying levels of material complexity, e.g., nanoscale properties of intact tissue, the matrix associated with single cells, biomimetic molecular assemblies, and individual extracellular matrix biomolecules (such as aggrecan, collagen, and hyaluronan). These studies have contributed to establishing a fundamental mechanism-based understanding of native and engineered cartilage tissue function, quality, and pathology.
Collapse
Affiliation(s)
- Lin Han
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Alan J. Grodzinsky
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Christine Ortiz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
44
|
Lee KH, Kuczera K, Holl MMB. Effect of osteogenesis imperfecta mutations on free energy of collagen model peptides: A molecular dynamics simulation. Biophys Chem 2011; 156:146-52. [DOI: 10.1016/j.bpc.2011.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 03/22/2011] [Accepted: 03/31/2011] [Indexed: 11/16/2022]
|
45
|
Mechanical force characterization in manipulating live cells with optical tweezers. J Biomech 2011; 44:741-6. [DOI: 10.1016/j.jbiomech.2010.10.034] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/04/2010] [Accepted: 10/25/2010] [Indexed: 11/19/2022]
|
46
|
Cranford S, Buehler MJ. Materiomics: biological protein materials, from nano to macro. Nanotechnol Sci Appl 2010; 3:127-48. [PMID: 24198478 PMCID: PMC3781696 DOI: 10.2147/nsa.s9037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics - discovering Nature's complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents) such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and replicate Nature's materials have been hindered by our lack of fundamental understanding of these materials' intricate hierarchical structures, scale-bridging mechanisms, and complex material components that bestow protein-based materials their unique properties. Recent advances in analytical tools and experimental methods allow a holistic view of such a hierarchical biological material system. The integration of these approaches and amalgamation of material properties at all scale levels to develop a complete description of a material system falls within the emerging field of materiomics. Materiomics is the result of the convergence of engineering and materials science with experimental and computational biology in the context of natural and synthetic materials. Through materiomics, fundamental advances in our understanding of structure-property-process relations of biological systems contribute to the mechanistic understanding of certain diseases and facilitate the development of novel biological, biologically inspired, and completely synthetic materials for applications in medicine (biomaterials), nanotechnology, and engineering.
Collapse
Affiliation(s)
- Steven Cranford
- Center for Materials Science and Engineering, Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Markus J Buehler
- Center for Materials Science and Engineering, Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
47
|
Lee KH, Kuczera K, Banaszak Holl MM. The severity of osteogenesis imperfecta: A comparison to the relative free energy differences of collagen model peptides. Biopolymers 2010; 95:182-93. [DOI: 10.1002/bip.21552] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Comparative biomechanics of thick filaments and thin filaments with functional consequences for muscle contraction. J Biomed Biotechnol 2010; 2010:473423. [PMID: 20625489 PMCID: PMC2896680 DOI: 10.1155/2010/473423] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/26/2010] [Indexed: 02/02/2023] Open
Abstract
The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanical properties of filaments impact muscle performance.
Collapse
|
49
|
Barth HD, Launey ME, Macdowell AA, Ager JW, Ritchie RO. On the effect of X-ray irradiation on the deformation and fracture behavior of human cortical bone. Bone 2010; 46:1475-85. [PMID: 20206724 DOI: 10.1016/j.bone.2010.02.025] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/13/2010] [Accepted: 02/25/2010] [Indexed: 12/26/2022]
Abstract
In situ mechanical testing coupled with imaging using high-energy synchrotron X-ray diffraction or tomography is gaining in popularity as a technique to investigate micrometer and even sub-micrometer deformation and fracture mechanisms in mineralized tissues, such as bone and teeth. However, the role of the irradiation in affecting the nature and properties of the tissue is not always taken into account. Accordingly, we examine here the effect of X-ray synchrotron-source irradiation on the mechanistic aspects of deformation and fracture in human cortical bone. Specifically, the strength, ductility and fracture resistance (both work-of-fracture and resistance-curve fracture toughness) of human femoral bone in the transverse (breaking) orientation were evaluated following exposures to 0.05, 70, 210 and 630 kGrays (kGy) irradiation. Our results show that the radiation typically used in tomography imaging can have a major and deleterious impact on the strength, post-yield behavior and fracture toughness of cortical bone, with the severity of the effect progressively increasing with higher doses of radiation. Plasticity was essentially suppressed after as little as 70 kGy of radiation; the fracture toughness was decreased by a factor of five after 210 kGy of radiation. Mechanistically, the irradiation was found to alter the salient toughening mechanisms, manifest by the progressive elimination of the bone's capacity for plastic deformation which restricts the intrinsic toughening from the formation "plastic zones" around crack-like defects. Deep-ultraviolet Raman spectroscopy indicated that this behavior could be related to degradation in the collagen integrity.
Collapse
Affiliation(s)
- Holly D Barth
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
50
|
Tang Y, Ballarini R, Buehler MJ, Eppell SJ. Deformation micromechanisms of collagen fibrils under uniaxial tension. J R Soc Interface 2010; 7:839-50. [PMID: 19897533 PMCID: PMC2874230 DOI: 10.1098/rsif.2009.0390] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 10/13/2009] [Indexed: 11/12/2022] Open
Abstract
Collagen, an essential building block of connective tissues, possesses useful mechanical properties due to its hierarchical structure. However, little is known about the mechanical properties of collagen fibril, an intermediate structure between the collagen molecule and connective tissue. Here, we report the results of systematic molecular dynamics simulations to probe the mechanical response of initially unflawed finite size collagen fibrils subjected to uniaxial tension. The observed deformation mechanisms, associated with rupture and sliding of tropocollagen molecules, are strongly influenced by fibril length, width and cross-linking density. Fibrils containing more than approximately 10 molecules along their length and across their width behave as representative volume elements and exhibit brittle fracture. Shorter fibrils experience a more graceful ductile-like failure. An analytical model is constructed and the results of the molecular modelling are used to find curve-fitted expressions for yield stress, yield strain and fracture strain as functions of fibril structural parameters. Our results for the first time elucidate the size dependence of mechanical failure properties of collagen fibrils. The associated molecular deformation mechanisms allow the full power of traditional material and structural engineering theory to be applied to our understanding of the normal and pathological mechanical behaviours of collagenous tissues under load.
Collapse
Affiliation(s)
- Yuye Tang
- Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roberto Ballarini
- Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Steven J. Eppell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|