1
|
Xu Y, Brüling J, Carman L, Yeung T, Besier TF, Choisne J. A statistical shape and density model can accurately predict bone morphology and regional femoral bone mineral density variation in children. Bone 2025; 193:117419. [PMID: 39892636 DOI: 10.1016/j.bone.2025.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Finite element analysis (FEA) is a widely used tool to predict bone biomechanics in orthopaedics for prevention, treatment, and implant design. Subject-specific FEA models are more accurate than generic adult-scaled models, especially for a paediatric population, due to significant differences in bone geometry and bone mineral density. However, creating these models can be time-consuming, costly and requires medical imaging. To address these limitations, population-based models have been successful in characterizing bone shape and density variation in adults. However, children are not small adults and need their own population-based model to generate accurate and accessible musculoskeletal geometry and bone mineral density in a paediatric population. Therefore, this study aimed to create a biomechanical research tool to predict the personalized shape and density of the paediatric femur using a statistical shape and density model for a population of children aged from 4 to 18 years old. Femur morphology and bone mineral density were extracted from 330 CT scans of children. Variations in shape and density were captured using Principal Component Analysis (PCA). Principal components were correlated to demographic and linear bone measurements to create a predictive statistical shape-density model, which was used to predict femoral shape and density. A leave-one-out analysis showed that the shape-density model can predict the femur geometry with a root mean square error (RMSE) of 1.78 ± 0.46 mm and the bone mineral density with a normalized RMSE ranging from 8.9 % to 13.5 % across various femoral regions. These results underscore the model's potential to reflect real-world physiological variations in the paediatric femur. This statistical shape and density model has the potential for clinical application in rapidly generating personalized computational models using partial or no medical imaging data.
Collapse
Affiliation(s)
- Yidan Xu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jannes Brüling
- Department of Engineering Science and Biomedical Engineering, The University of Auckland, Auckland, New Zealand
| | - Laura Carman
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Ted Yeung
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Thor F Besier
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Engineering Science and Biomedical Engineering, The University of Auckland, Auckland, New Zealand
| | - Julie Choisne
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
2
|
Bavil AY, Eghan-Acquah E, Dastgerdi AK, Diamond LE, Barrett R, Walsh HP, Barzan M, Saxby DJ, Feih S, Carty CP. Simulated effects of surgical corrections on bone-implant micromotion and implant stresses in paediatric proximal femoral osteotomy. Comput Biol Med 2025; 185:109544. [PMID: 39689524 DOI: 10.1016/j.compbiomed.2024.109544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/24/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND AND OBJECTIVE Proximal femoral osteotomy (PFO) is a surgical intervention, typically performed on paediatric population, that aims to correct femoral deformities caused by different pathologies (e.g., slipped capital femoral epiphysis). A PFO involves introduction of an implant to fix the proximal and distal sections of femur following the surgical corrections. The femoral neck-shaft angle (NSA) and anteversion angle (AVA) are key geometric parameters that influence PFO outcomes. To date, the effects of NSA and AVA on bone-implant system mechanics in paediatric populations have not been examined. METHODS This study used an established neuromusculoskeletal modelling process paired with finite element analysis to determine the sensitivity of the implanted femur's mechanics to variations in NSA and AVA during the stance phase of walking. Three male patients aged 9-12 years with different pathology (Spastic diplegia, Perthes disease and Slipped Capital Femoral Epiphysis), weight (377, 747, 842 N), height (1.39, 1.55, 1.71 m) and femur lengths (34.1, 39.4, 43.7 cm) and geometries (NSA: 143, 102, 111 deg; AVA: 29, 17, -22 deg) were examined. For each patient, a three-dimensional bone model was created from computed tomography imaging and digital surgical corrections were applied to systematically vary the NSA and AVA. Personalized motion and loading conditions driven from a neuromusculoskeletal modelling process were applied to each model and its associated permutations of NSA and AVA. RESULTS Results indicated significant intra-participant variability in post-PFO bone-implant micromotion and peak von Mises stress on implant. For models with a post-surgery NSA of 135° and AVA of 12°, the averaged micromotion increased by 87 % and the peak von Mises stress decreased by 63% between patient 1 and 2. Between patient 2 and 3, the averaged micromotion decreased by 55% while the peak von Mises stress increased by 84%. CONCLUSIONS Furthermore, post-PFO bone-implant mechanics were sensitive to variation in NSA and AVA in a subject-specific manner. Optimization of PFO planning is recommended based on patient-specific characteristics.
Collapse
Affiliation(s)
- Alireza Y Bavil
- Griffith Center of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Australia; School of Health Sciences and Social Work, Griffith University, Australia; Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Australia
| | - Emmanuel Eghan-Acquah
- Griffith Center of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Australia; School of Health Sciences and Social Work, Griffith University, Australia; Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Australia
| | - Ayda Karimi Dastgerdi
- Griffith Center of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Australia; School of Health Sciences and Social Work, Griffith University, Australia; Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Australia
| | - Laura E Diamond
- Griffith Center of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Australia; School of Health Sciences and Social Work, Griffith University, Australia; Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Australia
| | - Rod Barrett
- Griffith Center of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Australia; School of Health Sciences and Social Work, Griffith University, Australia; Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Australia
| | - Henry Pj Walsh
- Griffith Center of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Australia; School of Health Sciences and Social Work, Griffith University, Australia; Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, Australia
| | - Martina Barzan
- Griffith Center of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Australia; School of Health Sciences and Social Work, Griffith University, Australia; Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Australia
| | - David J Saxby
- Griffith Center of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Australia; School of Health Sciences and Social Work, Griffith University, Australia; Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Australia
| | - Stefanie Feih
- Griffith Center of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Australia; Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Australia; School of Engineering and Build Environment, Griffith University, Australia
| | - Christopher P Carty
- Griffith Center of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Australia; School of Medicine and Dentistry, Griffith University, Australia; Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, Australia.
| |
Collapse
|
3
|
Lacroix C, Spangenberg GW, Faber KJ, Langohr GDG. Does improved resection plane coverage during shoulder arthroplasty influence proximal humeral bone stress? A comparison of circular vs. elliptical humeral heads. J Shoulder Elbow Surg 2024:S1058-2746(24)00958-3. [PMID: 39742946 DOI: 10.1016/j.jse.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Stress shielding remains a concern following total shoulder arthroplasty using press-fit short humeral stems. While the effect of alterations in implant geometry, positioning, and sizing on stress shielding have been investigated, the effects of coverage of the cortical boundary of the resection plane have not yet been fully explored. The purpose of this study was to quantify the effect of improved cortical coverage using elliptical vs. circular humeral heads on changes in bone stress and resorbing potential. We hypothesized that better cortical coverage would reduce stress shielding potential. METHODS Finite element models of 8 cadaveric humeri were virtually reconstructed with a short stem implant and an optimally fitted circular or elliptical humeral head. Trabecular bone material properties were assigned based on computed tomography attenuation and cortical bone was assigned uniform properties. Loads were applied to mimic 45° and 75° of abduction, and the resulting changes in bone stress were compared to the intact state and the expected time-zero bone resorbing potential were ascertained. RESULTS The elliptical humeral heads significantly improved cortical coverage and load transfer in the medial and lateral quadrant resulting in less alteration in cortical bone stress compared to intact and significantly less cortical bone with resorbing potential. However, this came at the cost of significant but comparatively lower increases in cortical resorbing potential in the anterior and lateral quadrants. No significant effects were detected for trabecular bone in any quadrant. DISCUSSION The results of this work show that improvements in cortical coverage have a protective effect resulting in less bone volume with resorbing potential. However, in the case of spherical vs. elliptical heads these improvements in the medial and lateral cortex came with tradeoffs in the anterior and posterior cortex because of reduced load transfer in these regions.
Collapse
Affiliation(s)
- Courtney Lacroix
- Department of Mechanical Engineering, Western University, London, ON, Canada; Roth|McFarlane Hand and Upper Limb Centre, St. Joseph's Hospital, London, ON, Canada
| | - Gregory W Spangenberg
- Department of Mechanical Engineering, Western University, London, ON, Canada; Roth|McFarlane Hand and Upper Limb Centre, St. Joseph's Hospital, London, ON, Canada
| | - Kenneth J Faber
- Roth|McFarlane Hand and Upper Limb Centre, St. Joseph's Hospital, London, ON, Canada; Department of Surgery, Western University, London, ON, Canada
| | - G Daniel G Langohr
- Department of Mechanical Engineering, Western University, London, ON, Canada; Roth|McFarlane Hand and Upper Limb Centre, St. Joseph's Hospital, London, ON, Canada; Department of Surgery, Western University, London, ON, Canada
| |
Collapse
|
4
|
Bavil AY, Eghan-Acquah E, Diamond LE, Barrett R, Carty CP, Barzan M, Nasseri A, Lloyd DG, Saxby DJ, Feih S. Effect of different constraining boundary conditions on simulated femoral stresses and strains during gait. Sci Rep 2024; 14:10808. [PMID: 38734763 PMCID: PMC11088641 DOI: 10.1038/s41598-024-61305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Finite element analysis (FEA) is commonly used in orthopaedic research to estimate localised tissue stresses and strains. A variety of boundary conditions have been proposed for isolated femur analysis, but it remains unclear how these assumed constraints influence FEA predictions of bone biomechanics. This study compared the femoral head deflection (FHD), stresses, and strains elicited under four commonly used boundary conditions (fixed knee, mid-shaft constraint, springs, and isostatic methods) and benchmarked these mechanics against the gold standard inertia relief method for normal and pathological femurs (extreme anteversion and retroversion, coxa vara, and coxa valga). Simulations were performed for the stance phase of walking with the applied femoral loading determined from patient-specific neuromusculoskeletal models. Due to unrealistic biomechanics observed for the commonly used boundary conditions, we propose a novel biomechanical constraint method to generate physiological femur biomechanics. The biomechanical method yielded FHD (< 1 mm), strains (approaching 1000 µε), and stresses (< 60 MPa), which were consistent with physiological observations and similar to predictions from the inertia relief method (average coefficient of determination = 0.97, average normalized root mean square error = 0.17). Our results highlight the superior performance of the biomechanical method compared to current methods of constraint for both healthy and pathological femurs.
Collapse
Affiliation(s)
- Alireza Y Bavil
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - Emmanuel Eghan-Acquah
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - Laura E Diamond
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - Rod Barrett
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - Christopher P Carty
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - Martina Barzan
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - Azadeh Nasseri
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - David G Lloyd
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - David J Saxby
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia.
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia.
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia.
| | - Stefanie Feih
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, Australia.
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia.
- School of Engineering and Built Environment, Griffith University, Gold Coast, Australia.
| |
Collapse
|
5
|
Tavakoli A, Spangenberg GW, Reeves JM, Faber KJ, Langohr GDG. The effect of humeral head positioning and incomplete backside contact on bone stresses following total shoulder arthroplasty with a short humeral stem. J Shoulder Elbow Surg 2023; 32:1988-1998. [PMID: 37230287 DOI: 10.1016/j.jse.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The use of uncemented humeral stems in total shoulder arthroplasty (TSA) is known to be associated with stress shielding. This may be decreased with smaller stems that are well-aligned and do not fill the intramedullary canal; however, the effect of humeral head positioning and incomplete head backside contact has not yet been investigated. The purpose of this study was to quantify the effect of changes in humeral head position and incomplete head backside contact on bone stresses and expected bone response following reconstruction. METHODS Three-dimensional finite element models of 8 cadaveric humeri were generated, which were then virtually reconstructed with a short-stem implant. An optimally sized humeral head was then positioned in both a superolateral and inferomedial position for each specimen that was in full contact with the humeral resection plane. Additionally, for the inferomedial position, 2 incomplete humeral head backside contact conditions were simulated whereby contact was defined between only the superior or inferior half of the backside of the humeral head and the resection plane. Trabecular properties were assigned based on computed tomography attenuation and cortical bone was applied uniform properties. Loads representing 45° and 75° of abduction were then applied, and the resulting differentials in bone stress versus the corresponding intact state and the expected time-zero bone response were determined and compared. RESULTS The superolateral position reduced resorbing potential in the lateral cortex and increased resorbing potential in the lateral trabecular bone, while the inferomedial position produced the same effects but in the medial quadrant. For the inferomedial position, full backside contact with the resection plane was best in terms of changes in bone stress and expected bone response, although a small region of the medial cortex did experience no load transfer. The implant-bone load transfer of the inferior contact condition was concentrated at the midline of the backside of the humeral head, leaving the medial aspect largely unloaded as a result of the lack of lateral backside support. DISCUSSION This study shows that inferomedial humeral head positioning loads the medial cortex at the cost of unloading the medial trabecular bone, with the same occurring for the superolateral position except that the lateral cortex is loaded at the cost of unloading the lateral trabecular bone. Inferomedial positioned heads also were predisposed to humeral head lift-off from the medial cortex, which may increase the risk of calcar stress shielding. For the inferomedial head position, full contact between the implant and resection plane was preferable.
Collapse
Affiliation(s)
- Amir Tavakoli
- Department of Mechanical Engineering, Western University, London, ON, Canada; The Roth | McFarlane Hand and Upper Limb Centre, St. Joseph's Hospital, London, ON, Canada
| | - Gregory W Spangenberg
- Department of Mechanical Engineering, Western University, London, ON, Canada; The Roth | McFarlane Hand and Upper Limb Centre, St. Joseph's Hospital, London, ON, Canada
| | - Jacob M Reeves
- The Roth | McFarlane Hand and Upper Limb Centre, St. Joseph's Hospital, London, ON, Canada; Department of Surgery, Western University, London, ON, Canada
| | - Kenneth J Faber
- The Roth | McFarlane Hand and Upper Limb Centre, St. Joseph's Hospital, London, ON, Canada; Department of Surgery, Western University, London, ON, Canada
| | - G Daniel G Langohr
- Department of Mechanical Engineering, Western University, London, ON, Canada; The Roth | McFarlane Hand and Upper Limb Centre, St. Joseph's Hospital, London, ON, Canada; Department of Surgery, Western University, London, ON, Canada.
| |
Collapse
|
6
|
Milan JL, Manifacier I, Rousseau N, Pithioux M. In silico modelling of long bone healing involving osteoconduction and mechanical stimulation. Comput Methods Biomech Biomed Engin 2023; 26:174-186. [PMID: 35312400 DOI: 10.1080/10255842.2022.2052051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A lot of evidence has shown the importance of stimulating cell mechanically during bone repair. In this study, we modeled the challenging fracture healing of a large bone defect in tibial diaphysis. To fill the fracture gap, we considered the implantation of a porous osteoconductive biomaterial made of poly-lactic acid wrapped by a hydrogel membrane mimicking osteogenic properties of the periosteum. We identified the optimal loading case that best promotes the formation and differentiation into bone tissue. Our results support the idea that a patient's rehabilitation program should be adapted to reproduce optimal mechanical stimulations.
Collapse
Affiliation(s)
- Jean-Louis Milan
- Aix Marseille University, CNRS, ISM, Marseille, France.,Aix Marseille University, Marseille Public University Hospital System (APHM), French National Center for Scientific Research (CNRS), Institute of Movement Science (ISM), Sainte Marguerite Hospital, IML, Department of Orthopedics and Traumatology, Marseille, France.,Aix Marseille University, Marseille Public University Hospital System (APHM), French National Center for Scientific Research (CNRS), Anatomic laboratory, Timone, Marseille, France.,Aix Marseille University, Mecabio Platform, French National Center for Scientific Research (CNRS), Marseille, France
| | - Ian Manifacier
- Aix Marseille University, CNRS, ISM, Marseille, France.,Aix Marseille University, Marseille Public University Hospital System (APHM), French National Center for Scientific Research (CNRS), Institute of Movement Science (ISM), Sainte Marguerite Hospital, IML, Department of Orthopedics and Traumatology, Marseille, France.,Aix Marseille University, Marseille Public University Hospital System (APHM), French National Center for Scientific Research (CNRS), Anatomic laboratory, Timone, Marseille, France.,Aix Marseille University, Mecabio Platform, French National Center for Scientific Research (CNRS), Marseille, France
| | - Nicolas Rousseau
- Aix Marseille University, CNRS, ISM, Marseille, France.,Aix Marseille University, Marseille Public University Hospital System (APHM), French National Center for Scientific Research (CNRS), Institute of Movement Science (ISM), Sainte Marguerite Hospital, IML, Department of Orthopedics and Traumatology, Marseille, France.,Aix Marseille University, Marseille Public University Hospital System (APHM), French National Center for Scientific Research (CNRS), Anatomic laboratory, Timone, Marseille, France.,Aix Marseille University, Mecabio Platform, French National Center for Scientific Research (CNRS), Marseille, France.,Selenium Medical, La Rochelle, France
| | - Martine Pithioux
- Aix Marseille University, CNRS, ISM, Marseille, France.,Aix Marseille University, Marseille Public University Hospital System (APHM), French National Center for Scientific Research (CNRS), Institute of Movement Science (ISM), Sainte Marguerite Hospital, IML, Department of Orthopedics and Traumatology, Marseille, France.,Aix Marseille University, Marseille Public University Hospital System (APHM), French National Center for Scientific Research (CNRS), Anatomic laboratory, Timone, Marseille, France.,Aix Marseille University, Mecabio Platform, French National Center for Scientific Research (CNRS), Marseille, France
| |
Collapse
|
7
|
Tavakoli A, Spangenberg G, Reeves JM, Faber KJ, Langohr GDG. Humeral short stem varus-valgus alignment affects bone stress. J Orthop Res 2022; 40:2169-2178. [PMID: 34914123 DOI: 10.1002/jor.25239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 02/04/2023]
Abstract
The use of uncemented humeral stems in total shoulder arthroplasty (TSA) is associated with stress shielding. Shorter length stems have shown to decrease stress shielding; however, the effect of stem varus-valgus alignment is currently not known. The purpose of this study was to quantify the effect of short stem distal humeral endosteal contact due to varus-valgus angulation on bone stresses after TSA. Three-dimensional models of eight male cadaveric humeri were constructed from computed tomography data. Bone models were reconstructed with a short stem humeral component implant in three positions (standard, varus, and valgus). Modeling was performed at 45° and 75° of abduction and the resulting differentials in bone stress compared to the intact state and the expected time-zero bone response were determined. In cortical and trabecular bone, the standard position (STD) altered bone stress less than the valgus (VAL) and varus (VAR) positions relative to the intact state. For both cortical (p = 0.033) and trabecular (p = 0.012) bone, the VAL position produced a larger volume of bone with resorbing potential compared to the STD position.
Collapse
Affiliation(s)
- Amir Tavakoli
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario, Canada
- Roth McFarlane Hand and Upper Limb Center, St. Joseph's Health Care London, London, Ontario, Canada
| | - Gregory Spangenberg
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario, Canada
- Roth McFarlane Hand and Upper Limb Center, St. Joseph's Health Care London, London, Ontario, Canada
| | - Jacob M Reeves
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario, Canada
- Roth McFarlane Hand and Upper Limb Center, St. Joseph's Health Care London, London, Ontario, Canada
| | - Kenneth J Faber
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario, Canada
- Roth McFarlane Hand and Upper Limb Center, St. Joseph's Health Care London, London, Ontario, Canada
| | - G Daniel G Langohr
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario, Canada
- Roth McFarlane Hand and Upper Limb Center, St. Joseph's Health Care London, London, Ontario, Canada
| |
Collapse
|
8
|
Validation of Experimental and Finite Element Biomechanical Evaluation of Human Cadaveric Mandibles. LUBRICANTS 2022. [DOI: 10.3390/lubricants10080169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Background: Biomechanical analysis of human mandible is important not only to understand mechanical behavior and structural properties, but also to diagnose and develop treatment options for mandibular disorders. Therefore, the objective of this research was to generate analytical and experimental data on mandibles, construct custom 3D models, and compare the analytically derived maximum strains with strain gage data in five areas of interest for each mandible. Methods: We investigated the surface strains in the cadaveric human mandibles under different configurations of cyclic compressive loads in an experimental setting and compared these experimental strain data with results derived from computational finite element analysis (FEA), accurately replicating the experiments. Strains on the surface of each mandible were measured with strain gauges, and subsequently a subject-specific finite element (FE) volume mesh was generated from computed tomography (CT) scans of each mandible. Strain patterns of each mandible were derived from the FEA simulating the experimental setup and matched with the experimental data. Findings: Analysis of experimental data showed that strain as measured at the condylar locations was significantly different from those at other locations on the mandible, and that the sex and age of the subject did not have a significant correlation with the strain. Comparing the FE numerical predictions with the experimental data, we found a good statistical correlation and statistical agreement between in-vitro measurements and FE results. Interpretation: The study demonstrates that our methodology of generating subject-specific FE models is a valid and accurate, non-invasive method to evaluate the complex biomechanical behavior of human mandibles.
Collapse
|
9
|
Liao M, Wang C, Wang C, Xu Y. Influence of bone morphology on the mechanobiological stimuli distribution of maxillary anterior labial bone: A biomechanical study. J ESTHET RESTOR DENT 2022; 34:1085-1095. [PMID: 35674468 DOI: 10.1111/jerd.12935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/14/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study intended to ascertain the dimensional effects of labial bone thickness and height on the mechanobiological stimuli distribution of maxillary anterior labial bone through biomechanical analysis. MATERIAL AND METHODS Twelve 3D finite element models of an anterior maxillary region with an implant were computer-simulated, including four levels of labial bone thicknesses (2, 1.5, 1.0, and 0.5 mm) and three levels of labial bone heights (normal, reduced by 1/3, reduced by 1/2). A 45° buccolingual oblique load of 100 N was applied to the implant restoration. RESULTS Equivalent stress and principal strain mainly concentrated on crestal bone around the implant neck. The maximum equivalent stress in bone decreased as labial bone mass decreased, while the maximum principal strain and the displacement of dental implant increased as labial bone mass decreased. No significant difference of these three indicators was observed, when the labial bone thickness changed in the range of 2.0-1.0 mm with sufficient labial bone height. CONCLUSIONS In terms of biomechanics, the thickness of labial bone plate was recommended ≥1 mm. Sufficient labial bone height was warranted to prevent the stability of the implants from being seriously affected. The labial bone heights were more effective than thicknesses on the mechanobiological stimuli response of the dental implant-bone system. CLINICAL SIGNIFICANCE For this 3D finite element study, the biomechanical responses under different bone mass conditions were explored, in order to predict the process of bone remodeling and provide valid clinical recommendations for the decision-making process regarding the choices of tissue augmentation for some specific esthetic implantation cases for future clinical applications.
Collapse
Affiliation(s)
- Menglin Liao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chunjuan Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yamei Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Martelli S. The effect of age and initial compression on the force relaxation response of the femur in elderly women. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220301. [PMID: 35592757 PMCID: PMC9066301 DOI: 10.1098/rsos.220301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
The effect of force amount, age, body weight and bone mineral density (BMD) on the femur's force relaxation response was analysed for 12 donors (age: 56-91 years). BMD and fracture load, F L, were estimated from clinical CT images. The 30 min force relaxation was obtained using a constant compression generating an initial force F 0 between 7% and 78% of F L. The stretched decay function (F(t) = A × e (-t/τ)β ) proposed earlier for bone tissue was fitted to the data and analysed using robust linear regression. The relaxation function fitted well to all the recordings (R 2 = 0.99). The relative initial force was bilinearly associated (R 2 = 0.83) to the shape factor, β, and the characteristic time, τ, when F 0/F L was less than 0.4, although β was no longer associated with F 0/F L by pooling all the data. The characteristic time τ increased with age (R 2 = 0.37, p = 0.03) explaining 35% of the variation of τ in the entire dataset. In conclusion, the relative initial force mostly determines the femur's force relaxation response, although the early relaxation response under subcritical loading is variable, possibly due to damage occurring at subcritical loading levels.
Collapse
Affiliation(s)
- Saulo Martelli
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, Australia
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley SA, Australia
| |
Collapse
|
11
|
Abstract
Bone is an outstanding, well-designed composite. It is constituted by a multi-level structure wherein its properties and behavior are dependent on its composition and structural organization at different length scales. The combination of unique mechanical properties with adaptive and self-healing abilities makes bone an innovative model for the future design of synthetic biomimetic composites with improved performance in bone repair and regeneration. However, the relation between structure and properties in bone is very complex. In this review article, we intend to describe the hierarchical organization of bone on progressively greater scales and present the basic concepts that are fundamental to understanding the arrangement-based mechanical properties at each length scale and their influence on bone’s overall structural behavior. The need for a better understanding of bone’s intricate composite structure is also highlighted.
Collapse
|
12
|
Babel H, Omoumi P, Cosendey K, Stanovici J, Cadas H, Jolles BM, Favre J. An Expert-Supervised Registration Method for Multiparameter Description of the Knee Joint Using Serial Imaging. J Clin Med 2022; 11:548. [PMID: 35160002 PMCID: PMC8837137 DOI: 10.3390/jcm11030548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023] Open
Abstract
As knee osteoarthritis is a disease of the entire joint, our pathophysiological understanding could be improved by the characterization of the relationships among the knee components. Diverse quantitative parameters can be characterized using magnetic resonance imaging (MRI) and computed tomography (CT). However, a lack of methods for the coordinated measurement of multiple parameters hinders global analyses. This study aimed to design an expert-supervised registration method to facilitate multiparameter description using complementary image sets obtained by serial imaging. The method is based on three-dimensional tissue models positioned in the image sets of interest using manually placed attraction points. Two datasets, with 10 knees CT-scanned twice and 10 knees imaged by CT and MRI were used to assess the method when registering the distal femur and proximal tibia. The median interoperator registration errors, quantified using the mean absolute distance and Dice index, were ≤0.45 mm and ≥0.96 unit, respectively. These values differed by less than 0.1 mm and 0.005 units compared to the errors obtained with gold standard methods. In conclusion, an expert-supervised registration method was introduced. Its capacity to register the distal femur and proximal tibia supports further developments for multiparameter description of healthy and osteoarthritic knee joints, among other applications.
Collapse
Affiliation(s)
- Hugo Babel
- Swiss BioMotion Lab, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), CH-1011 Lausanne, Switzerland; (H.B.); (K.C.); (B.M.J.)
| | - Patrick Omoumi
- Service of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), CH-1011 Lausanne, Switzerland;
- Department of Radiology, Cliniques Universitaires St Luc-UC Louvain, BE-1200 Brussels, Belgium
| | - Killian Cosendey
- Swiss BioMotion Lab, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), CH-1011 Lausanne, Switzerland; (H.B.); (K.C.); (B.M.J.)
| | - Julien Stanovici
- Service of Orthopedics and Traumatology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), CH-1011 Lausanne, Switzerland;
| | - Hugues Cadas
- Unité Facultaire d’Anatomie et de Morphologie, University of Lausanne (UNIL), CH-1005 Lausanne, Switzerland;
| | - Brigitte M. Jolles
- Swiss BioMotion Lab, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), CH-1011 Lausanne, Switzerland; (H.B.); (K.C.); (B.M.J.)
- Institute of Microengineering, Ecole Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Julien Favre
- Swiss BioMotion Lab, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), CH-1011 Lausanne, Switzerland; (H.B.); (K.C.); (B.M.J.)
| |
Collapse
|
13
|
Hennicke NS, Saemann M, Kluess D, Bader R, Sander M. Subject specific finite element modelling of periprosthetic femoral fractures in different load cases. J Mech Behav Biomed Mater 2021; 126:105059. [PMID: 34995835 DOI: 10.1016/j.jmbbm.2021.105059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 11/19/2022]
Abstract
Periprosthetic femoral fractures (PFF) around total hip replacements are one of the biggest challenges for orthopaedic surgeons. To understand the risk factors and formation of these fractures, the development of a reliable finite element (FE) model incorporating bone failure is essential. Due to the anisotropic and complex hierarchical structure of bone, the mechanical behaviour under large strains is difficult to predict. In this study, a state-of-the-art subject specific FE modelling technique for bone is utilised to generate and investigate PFF. A bilinear constitutive law is applied to bone tissue in subject specific FE models of five human femurs which are virtually implanted with a straight hip stem to numerically analyse PFF. The material parameters of the models are expressed as a function of bone ash density and mapped node wise to the FE mesh. In this way the subject specific, heterogeneous structure of bone is mimicked. For material mapping of the parameters, computed tomography (CT) images of the original fresh-frozen femurs are used. Periprosthetic fractures are generated by deleting elements on the basis of a critical plastic strain failure criterion. The models are analysed under physiological and clinically relevant conditions in two different load cases re-enacting stumbling and a sideways fall on the hip. The results of the analyses are quantified with experimental data from previous work. With regard to fracture pattern, stiffness and failure load the simulations of the load case stumbling delivered the most stable and accurate results. In general, mapping of material properties was found to be an appropriate way to reproduce PFF with finite element models.
Collapse
Affiliation(s)
- N S Hennicke
- Institute of Structural Mechanics, University of Rostock, Albert-Einstein-Str. 2, 18059, Rostock, Germany.
| | - M Saemann
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - D Kluess
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - R Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - M Sander
- Institute of Structural Mechanics, University of Rostock, Albert-Einstein-Str. 2, 18059, Rostock, Germany
| |
Collapse
|
14
|
Amini M, Reisinger A, Hirtler L, Pahr D. Which experimental procedures influence the apparent proximal femoral stiffness? A parametric study. BMC Musculoskelet Disord 2021; 22:815. [PMID: 34556078 PMCID: PMC8461859 DOI: 10.1186/s12891-021-04656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Experimental validation is the gold standard for the development of FE predictive models of bone. Employing multiple loading directions could improve this process. To capture the correct directional response of a sample, the effect of all influential parameters should be systematically considered. This study aims to determine the impact of common experimental parameters on the proximal femur’s apparent stiffness. Methods To that end, a parametric approach was taken to study the effects of: repetition, pre-loading, re-adjustment, re-fixation, storage, and μCT scanning as random sources of uncertainties, and loading direction as the controlled source of variation in both stand and side-fall configurations. Ten fresh-frozen proximal femoral specimens were prepared and tested with a novel setup in three consecutive sets of experiments. The neutral state and 15-degree abduction and adduction angles in both stance and fall configurations were tested for all samples and parameters. The apparent stiffness of the samples was measured using load-displacement data from the testing machine and validated against marker displacement data tracked by DIC cameras. Results Among the sources of uncertainties, only the storage cycle affected the proximal femoral apparent stiffness significantly. The random effects of setup manipulation and intermittent μCT scanning were negligible. The 15∘ deviation in loading direction had a significant effect comparable in size to that of switching the loading configuration from neutral stance to neutral side-fall. Conclusion According to these results, comparisons between the stiffness of the samples under various loading scenarios can be made if there are no storage intervals between the different load cases on the same samples. These outcomes could be used as guidance in defining a highly repeatable and multi-directional experimental validation study protocol.
Collapse
Affiliation(s)
- Morteza Amini
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt 9, Vienna, 1060, Austria.,Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau, 3500, Austria
| | - Andreas Reisinger
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt 9, Vienna, 1060, Austria.,Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau, 3500, Austria
| | - Lena Hirtler
- Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Straße 13, Vienna, 1090, Austria
| | - Dieter Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt 9, Vienna, 1060, Austria. .,Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau, 3500, Austria.
| |
Collapse
|
15
|
Irarrázaval S, Ramos-Grez JA, Pérez LI, Besa P, Ibáñez A. Finite element modeling of multiple density materials of bone specimens for biomechanical behavior evaluation. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04760-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AbstractThe finite elements method allied with the computerized axial tomography (CT) is a mathematical modeling technique that allows constructing computational models for bone specimens from CT data. The objective of this work was to compare the experimental biomechanical behavior by three-point bending tests of porcine femur specimens with different types of computational models generated through the finite elements’ method and a multiple density materials assignation scheme. Using five femur specimens, 25 scenarios were created with differing quantities of materials. This latter was applied to computational models and in bone specimens subjected to failure. Among the three main highlights found, first, the results evidenced high precision in predicting experimental reaction force versus displacement in the models with larger number of assigned materials, with maximal results being an R2 of 0.99 and a minimum root-mean-square error of 3.29%. Secondly, measured and computed elastic stiffness values follow same trend with regard to specimen mass, and the latter underestimates stiffness values a 6% in average. Third and final highlight, this model can precisely and non-invasively assess bone tissue mechanical resistance based on subject-specific CT data, particularly if specimen deformation values at fracture are considered as part of the assessment procedure.
Collapse
|
16
|
MacLeod AR, Peckham N, Serrancolí G, Rombach I, Hourigan P, Mandalia VI, Toms AD, Fregly BJ, Gill HS. Personalised high tibial osteotomy has mechanical safety equivalent to generic device in a case-control in silico clinical trial. COMMUNICATIONS MEDICINE 2021; 1:6. [PMID: 35602226 PMCID: PMC9053187 DOI: 10.1038/s43856-021-00001-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Background Despite favourable outcomes relatively few surgeons offer high tibial osteotomy (HTO) as a treatment option for early knee osteoarthritis, mainly due to the difficulty of achieving planned correction and reported soft tissue irritation around the plate used to stablise the osteotomy. To compare the mechanical safety of a new personalised 3D printed high tibial osteotomy (HTO) device, created to overcome these issues, with an existing generic device, a case-control in silico virtual clinical trial was conducted. Methods Twenty-eight knee osteoarthritis patients underwent computed tomography (CT) scanning to create a virtual cohort; the cohort was duplicated to form two arms, Generic and Personalised, on which virtual HTO was performed. Finite element analysis was performed to calculate the stresses in the plates arising from simulated physiological activities at three healing stages. The odds ratio indicative of the relative risk of fatigue failure of the HTO plates between the personalised and generic arms was obtained from a multi-level logistic model. Results Here we show, at 12 weeks post-surgery, the odds ratio indicative of the relative risk of fatigue failure was 0.14 (95%CI 0.01 to 2.73, p = 0.20). Conclusions This novel (to the best of our knowledge) in silico trial, comparing the mechanical safety of a new personalised 3D printed high tibial osteotomy device with an existing generic device, shows that there is no increased risk of failure for the new personalised design compared to the existing generic commonly used device. Personalised high tibial osteotomy can overcome the main technical barriers for this type of surgery, our findings support the case for using this technology for treating early knee osteoarthritis.
Collapse
Affiliation(s)
| | - Nicholas Peckham
- Oxford Clinical Trials Research Unit, NDORMS, University of Oxford, Oxford, UK
| | - Gil Serrancolí
- Department of Mechanical Engineering, Polytechnic University of Catalonia, Barcelona, Catalunya Spain
| | - Ines Rombach
- Oxford Clinical Trials Research Unit, NDORMS, University of Oxford, Oxford, UK
| | | | | | | | | | - Harinderjit S. Gill
- Department of Mechanical Engineering, University of Bath, Bath, UK
- Centre for Therapeutic Innovation, University of Bath, Bath, UK
| |
Collapse
|
17
|
Babel H, Wägeli L, Sonmez B, Thiran JP, Omoumi P, Jolles BM, Favre J. A Registration Method for Three-Dimensional Analysis of Bone Mineral Density in the Proximal Tibia. J Biomech Eng 2021; 143:014502. [PMID: 32879939 DOI: 10.1115/1.4048335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Indexed: 12/28/2022]
Abstract
Although alterations in bone mineral density (BMD) at the proximal tibia have been suggested to play a role in various musculoskeletal conditions, their pathophysiological implications and their value as markers for diagnosis remain unclear. Improving our understanding of proximal tibial BMD requires novel tools for three-dimensional (3D) analysis of BMD distribution. Three-dimensional imaging is possible with computed tomography (CT), but computational anatomy algorithms are missing to standardize the quantification of 3D proximal tibial BMD, preventing distribution analyses. The objectives of this study were to develop and assess a registration method, suitable with routine knee CT scans, to allow the standardized quantification of 3D BMD distribution in the proximal tibia. Second, as an example of application, the study aimed to characterize the distribution of BMD below the tibial cartilages in healthy knees. A method was proposed to register both the surface (vertices) and the content (voxels) of proximal tibias. The method combines rigid transformations to account for differences in bone size and position in the scanner's field of view and to address inconsistencies in the portion of the tibial shaft included in routine CT scan, with a nonrigid transformation locally matching the proximal tibias. The method proved to be highly reproducible and provided a comprehensive description of the relationship between bone depth and BMD. Specifically it reported significantly higher BMD in the first 6 mm of bone than deeper in the proximal tibia. In conclusion, the proposed method offers promising possibilities to analyze BMD and other properties of the tibia in 3D.
Collapse
Affiliation(s)
- Hugo Babel
- Swiss BioMotion Lab, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne CH-1011, Switzerland
| | - Loïc Wägeli
- Swiss BioMotion Lab, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne CH-1011, Switzerland
| | - Berke Sonmez
- Swiss BioMotion Lab, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne CH-1011, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne CH-1015, Switzerland
- Service of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne CH-1011, Switzerland
| | - Patrick Omoumi
- Service of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne CH-1011, Switzerland
| | - Brigitte M Jolles
- Swiss BioMotion Lab, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne CH-1011, Switzerland
- Institute of Microengineering, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Julien Favre
- Swiss BioMotion Lab, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne CH-1011, Switzerland
| |
Collapse
|
18
|
Li JJ, Tian DM, Yang L, Zhang JY, Hu YC. Influence of a metaphyseal sleeve on the stress-strain state of a bone-tumor implant system in the distal femur: an experimental and finite element analysis. J Orthop Surg Res 2020; 15:589. [PMID: 33298115 PMCID: PMC7724731 DOI: 10.1186/s13018-020-02025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/14/2020] [Indexed: 12/03/2022] Open
Abstract
Background Aseptic loosening of distal femoral tumor implants significantly correlates with the resection length. We designed a new “sleeve” that is specially engaged in the metaphysis at least 5 cm proximal to the knee joint line to preserve as much bone stock as possible. This study investigates the influence of a metaphyseal sleeve on the stress-strain state of a bone tumor implant system in the distal femur. Methods Cortex strains in intact and implanted femurs were predicted with finite element (FE) models. Moreover strains were experimentally measured in a cadaveric femur with and without a sleeve and stem under an axial compressive load of 1000 N. The FE models, which were validated by linear regression, were used to investigate the maximal von Mises stress and the implanted-to-intact (ITI) ratios of strain in the femur with single-legged stance loading under immediate postoperative and osseointegration conditions. Results Good agreement was noted between the experimental measurements and numerical predictions of the femoral strains (coefficient of determination (R2) ≥ 0.95; root-mean-square error (RMSE%) ≈ 10%). The ITI ratios for the metaphysis were between 13 and 28% and between 10 and 21% under the immediate postoperative and osseointegration conditions, respectively, while the ITI ratios for the posterior and lateral cortices around the tip of the stem were 110% and 119% under the immediate-postoperative condition, respectively, and 114% and 101% under the osseointegration condition, respectively. The maximal von Mises stresses for the implanted femur were 113.8 MPa and 43.41 MPa under the immediate postoperative and osseointegration conditions, which were 284% and 47% higher than those in the intact femur (29.6 MPa), respectively. Conclusions This study reveals that a metaphyseal sleeve may cause stress shielding relative to the intact femur, especially in the distal metaphysis. Stress concentrations might mainly occur in the posterior cortex around the tip of the stem. However, stress concentrations may not be accompanied by periprosthetic fracture under the single-legged stance condition.
Collapse
Affiliation(s)
- Jian-Jun Li
- Tianjin Medical University, 22 Qixiangtai Road, Tianjin, People's Republic of China.,Department of Bone Oncology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, People's Republic of China.,Department of Bone Trauma, Second Hospital of Tangshan, 22 Jianshe North Road, Tangshan, Hebei, People's Republic of China
| | - Dong-Mu Tian
- Beijing Weigao Yahua Artificial Joint Development Company, 7 Niuhui Street, Shunyi, Beijing, People's Republic of China
| | - Li Yang
- Tianjin Medical University, 22 Qixiangtai Road, Tianjin, People's Republic of China
| | - Jing-Yu Zhang
- Department of Bone Oncology, Second Hospital of Tangshan, 22 Jianshe North Road, Tangshan, Hebei, People's Republic of China
| | - Yong-Cheng Hu
- Department of Bone Oncology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, People's Republic of China.
| |
Collapse
|
19
|
Affiliation(s)
- Chloe E H Scott
- Department of Orthopaedics, The University of Edinburgh, Edinburgh, UK.,Department of Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Pankaj Pankaj
- School of Engineering University of Edinburgh, Edinburgh, UK
| |
Collapse
|
20
|
Goin B, Renault JB, Thibes L, Chabrand P. Influence of material properties and boundary conditions on patient-specific models. Comput Methods Biomech Biomed Engin 2020; 24:429-439. [PMID: 33063536 DOI: 10.1080/10255842.2020.1833326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Patient-specific finite element models (PSFEM) are becoming more and more used. Different methods for assigning their material properties were studied on PSFEMs of 9 tibias along with the minimal required length of the CT acquisition window. Material properties are generally attributed to the PSFEM using relationships linking the grayscale of CT scans to the elasticity moduli. Using cortical-specific and trabecular-specific relationships or a generic one, did not result in significant differences. However, the use of homogeneous elastic moduli in the cortical and trabecular regions led to considerable differences. The result highlight that the PSFEM must comprise at least 40% of the tibia to ensure consistent results in the proximal 20%.
Collapse
Affiliation(s)
- Bastien Goin
- CNRS, ISM, Aix-Marseille Universite, Marseille, France
| | - Jean-Baptiste Renault
- CNRS, ISM, Aix-Marseille Universite, Marseille, France.,Department of orthopaedics and Traumatology, APHM, Institute for Locomotion, Sainte-Marguerite Hospital, Marseille, France
| | - Lisa Thibes
- CNRS, ISM, Aix-Marseille Universite, Marseille, France
| | - Patrick Chabrand
- CNRS, ISM, Aix-Marseille Universite, Marseille, France.,Department of orthopaedics and Traumatology, APHM, Institute for Locomotion, Sainte-Marguerite Hospital, Marseille, France
| |
Collapse
|
21
|
Giovanetti K, Caldas RA, Caria PHF. How many implants are needed for mandibular full-arch rehabilitation? BRAZILIAN JOURNAL OF ORAL SCIENCES 2020. [DOI: 10.20396/bjos.v19i0.8659191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Aim: To analyze the stress distribution at the peri-implant bone tissue of mandible in full-arch implant-supported rehabilitation using a different number of implants as support. Methods: Three-dimensional finite element models of full-arch prosthesis with 3, 4 and 5 implants and those respective mandibular bone, screws and structure were built. ANSYS Workbench software was used to analyze the maximum and minimum principal stresses (quantitative analysis) and modified von Mises stress (qualitative analysis) in peri-implant bone tissue after vertical and oblique forces (100N) applied to the structure at the cantilever site (region of the first molars). Results: The peak of tensile stress values were at the bone tissue around to the distal implant in all models. The model with 3 implants presented the maximum principal stress, in the surrounding bone tissue, higher (~14%) than the other models. The difference of maximum principal stress for model with 4 and 5 implants was not relevant (~1%). The first medial implant of the model with 5 implants presented the lower (17%) stress values in bone than model with 3 implants. It was also not different from model with 4 implants. Conclusion: Three regular implants might present a slight higher chance of failure than rehabilitations with four or five implants. The use of four implants showed to be an adequate alternative to the use of classical five implants.
Collapse
|
22
|
Luria S. Understanding the Patterns of Deformity of Wrist Fractures Using Computer Analysis. Curr Rheumatol Rev 2020; 16:194-200. [PMID: 32967607 DOI: 10.2174/1573397115666190429144944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/14/2018] [Accepted: 04/11/2019] [Indexed: 11/22/2022]
Abstract
Computer modeling of the wrist has followed other fields in the search for descriptive methods to understand the biomechanics of injury. Using patient-specific 3D computer models, we may better understand the biomechanics of wrist fractures in order to plan better care. We may better estimate fracture morphology and stability and evaluate surgical indications, design more adequate or effective surgical approaches and develop novel methods of therapy. The purpose of this review is to question the actual advances made in the understanding of wrist fractures using computer models.
Collapse
Affiliation(s)
- Shai Luria
- Department of Orthopaedic Surgery, Hadassah Hebrew-University Medical Center, Kiryat Hadassah, POB 12000, Jerusalem 91120, Israel
| |
Collapse
|
23
|
Benca E, Amini M, Pahr DH. Effect of CT imaging on the accuracy of the finite element modelling in bone. Eur Radiol Exp 2020; 4:51. [PMID: 32869123 PMCID: PMC7458968 DOI: 10.1186/s41747-020-00180-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
The finite element (FE) analysis is a highly promising tool to simulate the behaviour of bone. Skeletal FE models in clinical routine rely on the information about the geometry and bone mineral density distribution from quantitative computed tomography (CT) imaging systems. Several parameters in CT imaging have been reported to affect the accuracy of FE models. FE models of bone are exclusively developed in vitro under scanning conditions deviating from the clinical setting, resulting in variability of FE results (< 10%). Slice thickness and field of view had little effect on FE predicted bone behaviour (≤ 4%), while the reconstruction kernels showed to have a larger effect (≤ 20%). Due to large interscanner variations (≤ 20%), the translation from an experimental model into clinical reality is a critical step. Those variations are assumed to be mostly caused by different “black box” reconstruction kernels and the varying frequency of higher density voxels, representing cortical bone. Considering the low number of studies together with the significant effect of CT imaging on the finite element model outcome leading to high variability in the predicted behaviour, we propose further systematic research and validation studies, ideally preceding multicentre and longitudinal studies.
Collapse
Affiliation(s)
- Emir Benca
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Morteza Amini
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria.,Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500, Krems an der Donau, Austria
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria.,Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500, Krems an der Donau, Austria
| |
Collapse
|
24
|
Tatani I, Megas P, Panagopoulos A, Diamantakos I, Nanopoulos P, Pantelakis S. Comparative analysis of the biomechanical behavior of two different design metaphyseal-fitting short stems using digital image correlation. Biomed Eng Online 2020; 19:65. [PMID: 32814586 PMCID: PMC7437017 DOI: 10.1186/s12938-020-00806-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/04/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The progressive evolution in hip replacement research is directed to follow the principles of bone and soft tissue sparing surgery. Regarding hip implants, a renewed interest has been raised towards short uncemented femoral implants. A heterogeneous group of short stems have been designed with the aim to approximate initial, post-implantation bone strain to the preoperative levels in order to minimize the effects of stress shielding. This study aims to investigate the biomechanical properties of two distinctly designed femoral implants, the TRI-LOCK Bone Preservation Stem, a shortened conventional stem and the Minima S Femoral Stem, an even shorter and anatomically shaped stem, based on experiments and numerical simulations. Furthermore, finite element models of implant-bone constructs should be evaluated for their validity against mechanical tests wherever it is possible. In this work, the validation was performed via a direct comparison of the FE calculated strain fields with their experimental equivalents obtained using the digital image correlation technique. RESULTS Design differences between Trilock BPS and Minima S femoral stems conditioned different strain pattern distributions. A distally shifting load distribution pattern as a result of implant insertion and also an obvious decrease of strain in the medial proximal aspect of the femur was noted for both stems. Strain changes induced after the implantation of the Trilock BPS stem at the lateral surface were greater compared to the non-implanted femur response, as opposed to those exhibited by the Minima S stem. Linear correlation analyses revealed a reasonable agreement between the numerical and experimental data in the majority of cases. CONCLUSION The study findings support the use of DIC technique as a preclinical evaluation tool of the biomechanical behavior induced by different implants and also identify its potential for experimental FE model validation. Furthermore, a proximal stress-shielding effect was noted after the implantation of both short-stem designs. Design-specific variations in short stems were sufficient to produce dissimilar biomechanical behaviors, although their clinical implication must be investigated through comparative clinical studies.
Collapse
Affiliation(s)
- I Tatani
- Orthopaedic Department, University Hospital of Patras, Papanikolaou 1, Rio-Patra, 26504, Patras, Greece.
| | - P Megas
- Orthopaedic Department, University Hospital of Patras, Papanikolaou 1, Rio-Patra, 26504, Patras, Greece
| | - A Panagopoulos
- Orthopaedic Department, University Hospital of Patras, Papanikolaou 1, Rio-Patra, 26504, Patras, Greece
| | - I Diamantakos
- Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| | - Ph Nanopoulos
- Department of Computer Engineering & Informatics, University of Patras, Patras, Greece
| | - Sp Pantelakis
- Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| |
Collapse
|
25
|
Falcinelli C, Whyne C. Image-based finite-element modeling of the human femur. Comput Methods Biomech Biomed Engin 2020; 23:1138-1161. [PMID: 32657148 DOI: 10.1080/10255842.2020.1789863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fracture is considered a critical clinical endpoint in skeletal pathologies including osteoporosis and bone metastases. However, current clinical guidelines are limited with respect to identifying cases at high risk of fracture, as they do not account for many mechanical determinants that contribute to bone fracture. Improving fracture risk assessment is an important area of research with clear clinical relevance. Patient-specific numerical musculoskeletal models generated from diagnostic images are widely used in biomechanics research and may provide the foundation for clinical tools used to quantify fracture risk. However, prior to clinical translation, in vitro validation of predictions generated from such numerical models is necessary. Despite adopting radically different models, in vitro validation of image-based finite element (FE) models of the proximal femur (predicting strains and failure loads) have shown very similar, encouraging levels of accuracy. The accuracy of such in vitro models has motivated their application to clinical studies of osteoporotic and metastatic fractures. Such models have demonstrated promising but heterogeneous results, which may be explained by the lack of a uniform strategy with respect to FE modeling of the human femur. This review aims to critically discuss the state of the art of image-based femoral FE modeling strategies, highlighting principal features and differences among current approaches. Quantitative results are also reported with respect to the level of accuracy achieved from in vitro evaluations and clinical applications and are used to motivate the adoption of a standardized approach/workflow for image-based FE modeling of the femur.
Collapse
Affiliation(s)
- Cristina Falcinelli
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Cari Whyne
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
26
|
Biomechanical comparison of anterior cruciate ligament repair with internal brace augmentation versus anterior cruciate ligament repair without augmentation. Clin Biomech (Bristol, Avon) 2020; 77:105065. [PMID: 32504897 DOI: 10.1016/j.clinbiomech.2020.105065] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Newer repair techniques of anterior cruciate ligament tears, including augmentation with internal brace, have shown promising clinical results. Few biomechanical studies exist comparing anterior cruciate ligament repair only versus repair with internal brace. The purpose of this study was to compare the load to failure and stiffness of anterior cruciate ligament repair with internal brace augmentation versus repair-only. METHODS Proximal femoral avulsion type anterior cruciate ligament injuries were created in 20 cadaver knees. Anterior cruciate ligament repair-only or repair with internal brace was performed using arthroscopic tools. Load to failure and failure modes were collected, with calculations of stiffness and energy to failure performed. FINDINGS The average load to failure for the internal brace group was higher than the repair-only group: 693 N (SD 248) versus 279 N (SD 91), P = .002. The stiffness and energy to failure values were higher for the internal brace group than the repair-only group: 83 N/mm versus 58 N/mm, P = .02 and 16.88 J (SD 12.44) versus 6.91 J (SD 2.49), P = .04, respectively. Failure modes differed between groups (P = .00097) with 80% failure in the repair-only due to suture pull through the anterior cruciate ligament and 90% failure in the internal brace group due to suture button pull through the femur. INTERPRETATION There was higher load to failure, stiffness, and energy to failure for the internal brace group compared to the repair-only group, and a high positive correlation between bone density and load to failure for the internal brace group. CLINICAL SIGNIFICANCE Anterior cruciate ligament repair with internal brace augmentation demonstrates significantly higher load to failure. It may be a useful adjunct to protect the anterior cruciate ligament repair from failure during the early stages of healing.
Collapse
|
27
|
Toniolo I, Salmaso C, Bruno G, De Stefani A, Stefanini C, Gracco ALT, Carniel EL. Anisotropic computational modelling of bony structures from CT data: An almost automatic procedure. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 189:105319. [PMID: 31951872 DOI: 10.1016/j.cmpb.2020.105319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/27/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE The use of modelling techniques that combine CT data and bone tissue micromechanics is spreading in computational biomechanics. Finite Element models show great potential in surgical planning of intervention and in prediction of stress and strain fields through a non-invasive method. The main challenge pertains to the reliable characterization of bone mechanical behaviour. An almost automatic procedure is here defined, which provides computational models of bony structures considering the actual anisotropy of bone tissue response. The innovative aspect resides on the automatic detection of the directions of anisotropy as the eigenvectors of a three-dimensional distribution matrix of HU values. METHODS The procedure combines CT data and micromechanics modelling techniques. Regarding a specific location, the procedure reports both the orthotropic elastic constants, by the analysis of the local HU value, and the anisotropic material directions, by the analysis of the HU values distribution around the specific location. RESULTS The procedure returns the distribution of bone tissue orthotropic elasticity tensor. The procedure proves to correctly respect the differentiation between cortical and trabecular bone. Principal directions show to be consistent with experimental data from ultrasound measurements. Regarding the material mapping from voxel to FE model, the developed strategies show to be reliable, leading to marginal errors (lower than 10%) for most of CT voxels (more than 90%). The computational analyses of typical structural loading conditions lead to strain values that are comparable with results from strain gauges experimentations. The development and the exploitation of FE models of different bony structures allow assessing the reliability of the procedure for cortical bone. CONCLUSIONS The results highlight the potentialities of the procedure in providing accurate patient-specific biomechanical models of bony structures starting from CT data. The accuracy and the automatism of the procedure are important factors for the development of real time clinical tools. The main limitations of this work remain the not fully automatism and the reliability assessment, which is based mainly on cortical bone regions only.
Collapse
Affiliation(s)
- Ilaria Toniolo
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Department of Industrial Engineering, University of Padova, Italy.
| | - Claudia Salmaso
- Department of Industrial Engineering, University of Padova, Italy
| | - Giovanni Bruno
- Department of Neurosciences, University of Padova, Italy
| | | | - Cesare Stefanini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Emanuele Luigi Carniel
- Department of Industrial Engineering, University of Padova, Italy; Centre for Mechanics of Biological Materials, University of Padova, Italy
| |
Collapse
|
28
|
Martelli S, Beck B, Saxby D, Lloyd D, Pivonka P, Taylor M. Modelling Human Locomotion to Inform Exercise Prescription for Osteoporosis. Curr Osteoporos Rep 2020; 18:301-311. [PMID: 32335858 PMCID: PMC7250953 DOI: 10.1007/s11914-020-00592-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW We review the literature on hip fracture mechanics and models of hip strain during exercise to postulate the exercise regimen for best promoting hip strength. RECENT FINDINGS The superior neck is a common location for hip fracture and a relevant exercise target for osteoporosis. Current modelling studies showed that fast walking and stair ambulation, but not necessarily running, optimally load the femoral neck and therefore theoretically would mitigate the natural age-related bone decline, being easily integrated into routine daily activity. High intensity jumps and hopping have been shown to promote anabolic response by inducing high strain in the superior anterior neck. Multidirectional exercises may cause beneficial non-habitual strain patterns across the entire femoral neck. Resistance knee flexion and hip extension exercises can induce high strain in the superior neck when performed using maximal resistance loadings in the average population. Exercise can stimulate an anabolic response of the femoral neck either by causing higher than normal bone strain over the entire hip region or by causing bending of the neck and localized strain in the superior cortex. Digital technologies have enabled studying interdependences between anatomy, bone distribution, exercise, strain and metabolism and may soon enable personalized prescription of exercise for optimal hip strength.
Collapse
Affiliation(s)
- Saulo Martelli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley, SA, 5042, Australia.
| | - Belinda Beck
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
| | - David Saxby
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - David Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Peter Pivonka
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology, Brisbane, Australia
| | - Mark Taylor
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley, SA, 5042, Australia
| |
Collapse
|
29
|
Jacquet C, Marret A, Myon R, Ehlinger M, Bahlouli N, Wilson A, Kley K, Rossi JM, Parratte S, Ollivier M. Adding a protective screw improves hinge's axial and torsional stability in High Tibial Osteotomy. Clin Biomech (Bristol, Avon) 2020; 74:96-102. [PMID: 32151903 DOI: 10.1016/j.clinbiomech.2020.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUNDS Despite the use of a locking plate a 30% incidence of lateral hinge fracture after Open-Wedge High Tibial Ostetomy was described in the literature. A finite element model was used to analyze if the presence of a hinge-securing screw in the osteotomy area, using Patient Specific Cutting Guides with a locking plate, decreases the stresses within the lateral hinge during compression and torsion. METHODS A 3D model of a tibial sawbone was used to simulate an opening wedge of 10°. To apply loads on the tibial plateau, two supports were modelled on each tibial plateau to simulate the femoral condyles forces. A two second model with a hinge-stabilizing was defined with two different screws (diameter 2 mm and 4 mm). Two cases of static charges were considered 1) compression test (2500 N) 2) Torsion test (along the tibial mechanical axis). FINDINGS During compression simulation, 17% of the total surface of lateral hinge was stressed between 41-50Mpa without hinge-securing screw while the amount of surface under stress between 41 and 50 MPa dropped significantly under screw stabilization (1% for the 2 mm and 3% for the 4 mm). During torsion stress simulation a decrease of the value of the maximal stress in the lateral hinge was also observed with the addition of a hinge-securing screw (37 MPa without screw, 27Mpa with a 2 mm screw and 25 Mpa with a 4 mm screw). INTERPRETATION Positioning a screw intersecting the cutting plane at the theoretical lateral hinge location associated with a locking plate reduces lateral hinge stress in both compression and torsion. Those findings need to be confirmed by further specimens' mechanical testing.
Collapse
Affiliation(s)
- Christophe Jacquet
- Institute of Movement and locomotion Department of Orthopedics and Traumatology, St Marguerite Hospital, 270 Boulevard Sainte Marguerite, BP 29 13274 Marseille, France; Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopedics and Traumatology, Marseille, France
| | - Auriane Marret
- Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopedics and Traumatology, Marseille, France
| | - Robin Myon
- Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopedics and Traumatology, Marseille, France
| | - Matthieu Ehlinger
- Service de Chirurgie Orthopédique et de Traumatologie, CHU Hautepierre, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, 1 Avenue Molière, 67098 Strasbourg Cedex, France
| | - Nadia Bahlouli
- Laboratoire ICube, IUT de Haguenau 2 rue Boussingault, FR-67000 Strasbourg, France
| | - Adrian Wilson
- Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopedics and Traumatology, Marseille, France
| | - Kristian Kley
- Institute of Movement and locomotion Department of Orthopedics and Traumatology, St Marguerite Hospital, 270 Boulevard Sainte Marguerite, BP 29 13274 Marseille, France
| | - Jean-Marie Rossi
- Institute of Movement and locomotion Department of Orthopedics and Traumatology, St Marguerite Hospital, 270 Boulevard Sainte Marguerite, BP 29 13274 Marseille, France; Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopedics and Traumatology, Marseille, France; Centrale Marseille, 13451 Marseille Cedex 20, France
| | - Sebastien Parratte
- Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopedics and Traumatology, Marseille, France
| | - Matthieu Ollivier
- Institute of Movement and locomotion Department of Orthopedics and Traumatology, St Marguerite Hospital, 270 Boulevard Sainte Marguerite, BP 29 13274 Marseille, France; Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopedics and Traumatology, Marseille, France.
| |
Collapse
|
30
|
Mouloodi S, Rahmanpanah H, Burvill C, Davies HMS. Prediction of displacement in the equine third metacarpal bone using a neural network prediction algorithm. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2019.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Langohr GDG, Reeves J, Roche CP, Faber KJ, Johnson JA. The effect of short-stem humeral component sizing on humeral bone stress. J Shoulder Elbow Surg 2020; 29:761-767. [PMID: 31711829 DOI: 10.1016/j.jse.2019.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Several humeral stem design modifications for shoulder arthroplasty, including reduced stem length, changes to metaphyseal geometry, and alterations to implant surface texture, have been introduced to reduce stress shielding. However, the effect of changes in the diametral size of short-stem humeral components remains poorly understood. The purpose of this finite element study was to quantify the effect of varying the size of short-stem humeral components on the changes in bone stress from the intact state to the reconstructed state. METHODS Three-dimensional models of 8 male cadaveric humeri (mean age, 68 ± 6 years; all left-sided humeri) were constructed from computed tomography data using Mimics software. Each humerus was then reconstructed with 2 short-stem components (Exactech Preserve), one having a larger diametral size (SH+) and one having a smaller diametral size (SH-). Modeling was conducted for loading states consistent with 45° and 75° of abduction, and the resulting changes in bone stress compared with the intact state and the expected bone response were determined. RESULTS The smaller (SH-) short-stem implant produced humeral cortical and trabecular bone stresses that were closer to the intact state than the larger (SH+) short-stem implant at several locations beneath the humeral head resection (P ≤ .032). A similar trend was observed for expected bone response, where the smaller (SH-) short-stem implant had a smaller proportion of bone that was expected to resorb following reconstruction compared with the larger (SH+) short-stem implant for several slice depths in the medial quadrant (P ≤ .02). DISCUSSION These findings may indicate that smaller short-stem components are favorable in terms of stress shielding.
Collapse
Affiliation(s)
| | - Jacob Reeves
- Roth
- McFarlane Hand and Upper Limb Center, London, ON, Canada
| | | | - Kenneth J Faber
- Roth
- McFarlane Hand and Upper Limb Center, London, ON, Canada
| | - James A Johnson
- Roth
- McFarlane Hand and Upper Limb Center, London, ON, Canada.
| |
Collapse
|
32
|
Alcântara ACS, Assis I, Prada D, Mehle K, Schwan S, Costa-Paiva L, Skaf MS, Wrobel LC, Sollero P. Patient-Specific Bone Multiscale Modelling, Fracture Simulation and Risk Analysis-A Survey. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E106. [PMID: 31878356 PMCID: PMC6981613 DOI: 10.3390/ma13010106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022]
Abstract
This paper provides a starting point for researchers and practitioners from biology, medicine, physics and engineering who can benefit from an up-to-date literature survey on patient-specific bone fracture modelling, simulation and risk analysis. This survey hints at a framework for devising realistic patient-specific bone fracture simulations. This paper has 18 sections: Section 1 presents the main interested parties; Section 2 explains the organzation of the text; Section 3 motivates further work on patient-specific bone fracture simulation; Section 4 motivates this survey; Section 5 concerns the collection of bibliographical references; Section 6 motivates the physico-mathematical approach to bone fracture; Section 7 presents the modelling of bone as a continuum; Section 8 categorizes the surveyed literature into a continuum mechanics framework; Section 9 concerns the computational modelling of bone geometry; Section 10 concerns the estimation of bone mechanical properties; Section 11 concerns the selection of boundary conditions representative of bone trauma; Section 12 concerns bone fracture simulation; Section 13 presents the multiscale structure of bone; Section 14 concerns the multiscale mathematical modelling of bone; Section 15 concerns the experimental validation of bone fracture simulations; Section 16 concerns bone fracture risk assessment. Lastly, glossaries for symbols, acronyms, and physico-mathematical terms are provided.
Collapse
Affiliation(s)
- Amadeus C. S. Alcântara
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| | - Israel Assis
- Department of Integrated Systems, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil;
| | - Daniel Prada
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| | - Konrad Mehle
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, 06217 Merseburg, Germany;
| | - Stefan Schwan
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle/Saale, Germany;
| | - Lúcia Costa-Paiva
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-887, Brazil;
| | - Munir S. Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil;
| | - Luiz C. Wrobel
- Institute of Materials and Manufacturing, Brunel University London, Uxbridge UB8 3PH, UK;
- Department of Civil and Environmental Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| | - Paulo Sollero
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| |
Collapse
|
33
|
Poletto-Neto V, Tretto PHW, Zen BM, Bacchi A, dos Santos MBF. Influence of Implant Inclination and Prosthetic Abutment Type on the Biomechanics of Implant-Supported Fixed Partial Dentures. J ORAL IMPLANTOL 2019; 45:343-350. [DOI: 10.1563/aaid-joi-d-18-00305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obtaining parallelism during implant placement is often difficult, leading to inclination of implants. The present study evaluated the stress distribution in 3-unit fixed partial dentures supported by 2 implants with different inclinations and prosthetic abutments. Universal castable long abutments (UCLAs) or tapered abutments were used considering 17° of implant angulation in different directions (mesial, distal, buccal, or lingual). To do so, 3-dimensional finite element models were built and exported to specific analysis software. Forces were applied to the functional cusps. Data were obtained with regard to the maximum principal and von Mises stresses (in MPa). No relevant differences were observed in the stress values in the cortical and cancellous bone nor in the prosthesis with UCLA or tapered abutments. However, a relevant stress reduction in the prosthetic screws of the tilted implant was observed when using UCLA abutments. According to the obtained results, it is possible to suggest that both UCLA or tapered abutments can be used for 3-unit fixed partial dentures when 1 of the implants is tilted. UCLA abutment might lead to less biomechanical problems related to screw loosening or fracture.
Collapse
Affiliation(s)
| | | | | | - Ataís Bacchi
- School of Dentistry, Meridional Faculty, Passo Fundo, RS, Brazil
| | | |
Collapse
|
34
|
Robinson DL, Tse KM, Franklyn M, Zhang J, Ackland D, Lee PVS. Cortical and Trabecular Bone Fracture Characterisation in the Vertebral Body Using Acoustic Emission. Ann Biomed Eng 2019; 47:2384-2401. [DOI: 10.1007/s10439-019-02316-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
|
35
|
Bahia MT, Hecke MB, Mercuri EG. Image-based anatomical reconstruction and pharmaco-mediated bone remodeling model applied to a femur with subtrochanteric fracture: A subject-specific finite element study. Med Eng Phys 2019; 69:58-71. [DOI: 10.1016/j.medengphy.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 04/17/2019] [Accepted: 05/19/2019] [Indexed: 01/25/2023]
|
36
|
Robinson D, Aguilar L, Gatti A, Abduo J, Lee PVS, Ackland D. Load response of the natural tooth and dental implant: A comparative biomechanics study. J Adv Prosthodont 2019; 11:169-178. [PMID: 31297176 PMCID: PMC6609758 DOI: 10.4047/jap.2019.11.3.169] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/11/2019] [Accepted: 06/11/2019] [Indexed: 11/23/2022] Open
Abstract
PURPOSE While dental implants have displayed high success rates, poor mechanical fixation is a common complication, and their biomechanical response to occlusal loading remains poorly understood. This study aimed to develop and validate a computational model of a natural first premolar and a dental implant with matching crown morphology, and quantify their mechanical response to loading at the occlusal surface. MATERIALS AND METHODS A finite-element model of the stomatognathic system comprising the mandible, first premolar and periodontal ligament (PDL) was developed based on a natural human tooth, and a model of a dental implant of identical occlusal geometry was also created. Occlusal loading was simulated using point forces applied at seven landmarks on each crown. Model predictions were validated using strain gauge measurements acquired during loading of matched physical models of the tooth and implant assemblies. RESULTS For the natural tooth, the maximum vonMises stress (6.4 MPa) and maximal principal strains at the mandible (1.8 mε, −1.7 mε) were lower than those observed at the prosthetic tooth (12.5 MPa, 3.2 mε, and −4.4 mε, respectively). As occlusal load was applied more bucally relative to the tooth central axis, stress and strain magnitudes increased. CONCLUSION Occlusal loading of the natural tooth results in lower stress-strain magnitudes in the underlying alveolar bone than those associated with a dental implant of matched occlusal anatomy. The PDL may function to mitigate axial and bending stress intensities resulting from off-centered occlusal loads. The findings may be useful in dental implant design, restoration material selection, and surgical planning.
Collapse
Affiliation(s)
- Dale Robinson
- Department of Biomedical Engineering, University of Melbourne, Victoria, Australia
| | - Luis Aguilar
- Department of Biomedical Engineering, University of Melbourne, Victoria, Australia
| | - Andrea Gatti
- Department of Biomedical Engineering, University of Melbourne, Victoria, Australia
| | - Jaafar Abduo
- Melbourne Dental Shool, University of Melbourne, Victoria, Australia
| | - Peter Vee Sin Lee
- Department of Biomedical Engineering, University of Melbourne, Victoria, Australia
| | - David Ackland
- Department of Biomedical Engineering, University of Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Cam FAI and Smaller Neck Angles Increase Subchondral Bone Stresses During Squatting: A Finite Element Analysis. Clin Orthop Relat Res 2019; 477:1053-1063. [PMID: 30516652 PMCID: PMC6494292 DOI: 10.1097/corr.0000000000000528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Individuals with a cam deformity and a decreased (varus) femoral neck-shaft angle may be predisposed to symptomatic femoroacetabular impingement (FAI). However, it is unclear what combined effects the cam deformity and neck angle have on acetabular cartilage and subchondral bone stresses during an impinging squat motion. We therefore used finite element analysis to examine the combined effects of cam morphology and femoral neck-shaft angle on acetabular cartilage and subchondral bone stresses during squatting, examining the differences in stress characteristics between symptomatic and asymptomatic individuals with cam deformities and individuals without cam deformities and no hip pain. QUESTIONS/PURPOSES Using finite element analysis in this population, we asked: (1) What are the differences in acetabular cartilage stresses? (2) What are the differences in subchondral bone stresses? (3) What are the effects of high and low femoral neck-shaft angles on these stresses? METHODS Six male participants were included to represent three groups (symptomatic cam, asymptomatic cam, control without cam deformity) with two participants per group, one with the highest femoral neck-shaft angle and one with the lowest (that is, most valgus and most varus neck angles, respectively). Each participant's finite element hip models were reconstructed from imaging data and assigned subject-specific bone material properties. Hip contact forces during squatting were determined and applied to the finite element models to examine maximum shear stresses in the acetabular cartilage and subchondral bone. RESULTS Both groups with cam deformities experienced higher subchondral bone stresses than cartilage stresses. Both groups with cam deformities also had higher subchondral bone stresses (symptomatic with high and low femoral neck-shaft angle = 14.1 and 15.8 MPa, respectively; asymptomatic with high and low femoral neck-shaft angle = 10.9 and 13.0 MPa, respectively) compared with the control subjects (high and low femoral neck-shaft angle = 6.4 and 6.5 MPa, respectively). The symptomatic and asymptomatic participants with low femoral neck-shaft angles had the highest cartilage and subchondral bone stresses in their respective subgroups. The asymptomatic participant with low femoral neck-shaft angle (123°) demonstrated anterolateral subchondral bone stresses (13.0 MPa), similar to the symptomatic group. The control group also showed no differences between cartilage and subchondral bone stresses. CONCLUSIONS The resultant subchondral bone stresses modeled here coincide with findings that acetabular subchondral bone is denser in hips with cam lesions. Future laboratory studies will expand the parametric finite element analyses, varying these anatomic and subchondral bone stiffness parameters to better understand the contributions to the pathomechanism of FAI. CLINICAL RELEVANCE Individuals with a cam deformity and more varus neck orientation may experience elevated subchondral bone stresses, which may increase the risks of early clinical signs and degenerative processes associated with FAI, whereas individuals with cam morphology and normal-to-higher femoral neck-shaft angles may be at lesser risk of disease progression that would potentially require surgical intervention.
Collapse
|
38
|
Barth J, Garret J, Geais L, Bothorel H, Saffarini M, Godenèche A. Influence of uncemented humeral stem proximal geometry on stress distributions and torsional stability following total shoulder arthroplasty. J Exp Orthop 2019; 6:8. [PMID: 30805747 PMCID: PMC6389999 DOI: 10.1186/s40634-019-0178-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/15/2019] [Indexed: 11/23/2022] Open
Abstract
Background While surgeons tend to implant larger stems to improve torsional stability, numerous studies demonstrated that increasing humeral stem diameter could exacerbate stress-shielding and lead to bone resorption. We aimed to determine the influence of humeral stem proximal geometry on stress distributions and torsional stability following total shoulder arthroplasty. Methods Preoperative computed tomography scans were acquired from 5 patients and processed to form 3-dimensional models of the proximal humerus. Computer models of 3 generic implants were created based on three designs: predominantly oval, semi-angular, and predominantly angular. All stems shared identical head geometry and differed only in the proximal metaphyseal area. Finite element analyses were performed, with the humerus rigidly constrained distally, and loaded to simulate the joint reaction force. Implant torsional stability and proximal bone stress distributions were assessed for the three different stem designs with three sizes: oversized (stem making contact with the cortical diaphysis), normosized (one increment smaller) and undersized (two increments smaller). Results Considering the normosized stems, the angular design increased the physiologic bone stresses at the proximal section by 39–42%, while the oval and semi-angular designs reduced them by 5–9% and 8–13%, respectively. The oval design exhibited a median rotation of 2.1°, while the semi-angular and angular designs exhibited median rotations of 1.8°. Conclusion The semi-angular stem granted an adequate compromise between physiologic stress distributed by the oval stem and torsional stability of the angular stem. Surgeons should be aware of the various benefits and drawbacks of the different humeral stem designs to ensure adequate torsional stability and physiologic loading.
Collapse
Affiliation(s)
- Johannes Barth
- Department of Orthopaedic Surgery, Centre Osteoarticulaire des Cèdres, Grenoble, France
| | | | | | - Hugo Bothorel
- ReSurg SA, Chemin de la Vuarpillière 35, 1260, Nyon, Switzerland
| | - Mo Saffarini
- ReSurg SA, Chemin de la Vuarpillière 35, 1260, Nyon, Switzerland.
| | | | - Arnaud Godenèche
- Ramsay Générale de Santé, Hôpital Privé Jean Mermoz, Centre Orthopédique Santy, Lyon, France
| |
Collapse
|
39
|
Ziaeipoor H, Martelli S, Pandy M, Taylor M. Efficacy and efficiency of multivariate linear regression for rapid prediction of femoral strain fields during activity. Med Eng Phys 2018; 63:88-92. [PMID: 30551929 DOI: 10.1016/j.medengphy.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 11/19/2022]
Abstract
Multivariate Linear Regression-based (MLR) surrogate models were explored to reduce the computational cost of predicting femoral strains during normal activity in comparison with finite element analysis. The musculoskeletal model of one individual, the finite-element model of the right femur, and experimental force and motion data for normal walking, fast walking, stair ascent, stair descent, and rising from a chair were obtained from a previous study. Equivalent Von Mises strain was calculated for 1000 frames uniformly distributed across activities. MLR surrogate models were generated using training sets of 50, 100, 200 and 300 samples. The finite-element and MLR analyses were compared using linear regression. The Root Mean Square Error (RMSE) and the 95th percentile of the strain error distribution were used as indicators of average and peak error. The MLR model trained using 200 samples (RMSE < 108 µε; peak error < 228 µε) was used as a reference. The finite-element method required 66 s per frame on a standard desktop computer. The MLR model required 0.1 s per frame plus 1848 s of training time. RMSE ranged from 1.2% to 1.3% while peak error ranged from 2.2% to 3.6% of the maximum micro-strain (5020 µε). Performance within an activity was lower during early and late stance, with RMSE of 4.1% and peak error of 8.6% of the maximum computed micro-strain. These results show that MLR surrogate models may be used to rapidly and accurately estimate strain fields in long bones during daily physical activity.
Collapse
Affiliation(s)
- Hamed Ziaeipoor
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Clovelly Park, Tonsley, Adelaide, SA, Australia.
| | - Saulo Martelli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Clovelly Park, Tonsley, Adelaide, SA, Australia; NorthWest Academic Centre, The University of Melbourne, St Albans, VIC, Australia
| | - Marcus Pandy
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Mark Taylor
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Clovelly Park, Tonsley, Adelaide, SA, Australia
| |
Collapse
|
40
|
An Anisotropic Analysis of Human Femur Bone with Walking Posture: Experimental and Numerical Analysis. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-018-0560-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Abe S, Narra N, Nikander R, Hyttinen J, Kouhia R, Sievänen H. Impact loading history modulates hip fracture load and location: A finite element simulation study of the proximal femur in female athletes. J Biomech 2018; 76:136-143. [PMID: 29921524 DOI: 10.1016/j.jbiomech.2018.05.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/11/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
Abstract
Sideways falls impose high stress on the thin superolateral cortical bone of the femoral neck, the region regarded as a fracture-prone region of the hip. Exercise training is a natural mode of mechanical loading to make bone more robust. Exercise-induced adaptation of cortical bone along the femoral neck has been previously demonstrated. However, it is unknown whether this adaption modulates hip fracture behavior. The purpose of this study was to investigate the influence of specific exercise loading history on fall-induced hip fracture behavior by estimating fracture load and location with proximal femur finite element (FE) models created from magnetic resonance images (MRI) of 111 women with distinct exercise histories: 91 athletes (aged 24.7 ± 6.1 years, >8 years competitive career) and 20 women as controls (aged 23.7 ± 3.8 years). The athletes were divided into five groups based on typical loading patterns of their sports: high-impact (H-I: 9 triple-jumpers and 10 high jumpers), odd-impact (O-I: 9 soccer and 10 squash players), high-magnitude (H-M: 17 power-lifters), repetitive-impact (R-I: 18 endurance runners), and repetitive non-impact (R-NI: 18 swimmers). Compared to the controls, the H-I, O-I, and R-I groups had significantly higher (11-26%, p < 0.05) fracture loads. Also, the fracture location in the H-I and O-I groups was significantly more proximal (7-10%) compared to the controls. These results suggest that an exercise loading history of high impacts, impacts from unusual directions, or repetitive impacts increases the fracture load and may lower the risk of fall-induced hip fracture.
Collapse
Affiliation(s)
- Shinya Abe
- Laboratory of Civil Engineering, Tampere University of Technology, Tampere, Finland.
| | - Nathaniel Narra
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Riku Nikander
- Gerontology Research Center, Faculty of Sports Sciences, University of Jyväskylä, Jyväskylä, Finland; Central Hospital of Central Finland, Jyväskylä, Finland; GeroCenter Foundation for Aging Research and Development, Jyväskylä, Finland
| | - Jari Hyttinen
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Reijo Kouhia
- Laboratory of Civil Engineering, Tampere University of Technology, Tampere, Finland
| | - Harri Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland.
| |
Collapse
|
42
|
Schoell SL, Weaver AA, Beavers DP, Lenchik L, Marsh AP, Rejeski WJ, Stitzel JD, Beavers KM. Development of Subject-Specific Proximal Femur Finite Element Models Of Older Adults with Obesity to Evaluate the Effects of Weight Loss on Bone Strength. ACTA ACUST UNITED AC 2018; 6. [PMID: 29683141 PMCID: PMC5909834 DOI: 10.4172/2329-9509.1000213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Study background Recommendation of intentional weight loss in older adults remains controversial, due in part to the loss of bone mineral density (BMD) known to accompany weight loss. While finite element (FE) models have been used to assess bone strength, these methods have not been used to study the effects of weight loss. The purpose of this study is to develop subject-specific FE models of the proximal femur and study the effect of intentional weight loss on bone strength. Methods Computed tomography (CT) scans of the proximal femur of 25 overweight and obese (mean BMI=29.7 ± 4.0 kg/m2), older adults (mean age=65.6 ± 4.1 years) undergoing an 18-month intentional weight loss intervention were obtained at baseline and post-intervention. Measures of volumetric BMD (vBMD) and variable cortical thickness were derived from each subject CT scan and directly mapped to baseline and post-intervention models. Subject-specific FE models were developed using morphing techniques. Bone strength was estimated through simulation of a single-limb stance and sideways fall configuration. Results After weight loss intervention, there were significant decreases from baseline to 18 months in vBMD (total hip: -0.024 ± 0.013 g/cm3; femoral neck: -0.012 ± 0.014 g/cm3), cortical thickness (total hip: -0.044 ± 0.032 mm; femoral neck: -0.026 ± 0.039 mm), and estimated strength (stance: -0.15 ± 0.12 kN; fall: -0.04 ± 0.06 kN). Adjusting for baseline bone measures, body mass, and gender, correlations were found between weight change and change in total hip and femoral neck cortical thickness (all p<0.05). For every 1 kilogram of body mass lost cortical thickness in the total hip and femoral neck decreased by 0.003 mm and 0.004 mm, respectively. No significant correlations were present for the vBMD or strength data. Conclusion The developed subject-specific FE models could be used to better understand the effects of intentional weight loss on bone health.
Collapse
Affiliation(s)
- S L Schoell
- Department of Biomedical Engineering, Wake Forest School of Medicine, USA
| | - A A Weaver
- Department of Biomedical Engineering, Wake Forest School of Medicine, USA
| | - D P Beavers
- Department of Biostatistical Sciences, Wake Forest School of Medicine, USA
| | - Leon Lenchik
- Department of Radiology, Wake Forest School of Medicine, USA
| | - A P Marsh
- Department of Health and Exercise Science, Wake Forest University, USA
| | - W J Rejeski
- Department of Health and Exercise Science, Wake Forest University, USA
| | - J D Stitzel
- Department of Biomedical Engineering, Wake Forest School of Medicine, USA
| | - K M Beavers
- Department of Health and Exercise Science, Wake Forest University, USA
| |
Collapse
|
43
|
Danesi V, Erani P, Brandolini N, Juszczyk MM, Cristofolini L. Effect of the In Vitro Boundary Conditions on the Surface Strain Experienced by the Vertebral Body in the Elastic Regime. J Biomech Eng 2017; 138:2543312. [PMID: 27496676 DOI: 10.1115/1.4034383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 11/08/2022]
Abstract
The vertebral strength and strain can be assessed in vitro by both using isolated vertebrae and sets of three adjacent vertebrae (the central one is loaded through the disks). Our goal was to elucidate if testing single-vertebra-specimens in the elastic regime provides different surface strains to three-vertebrae-segments. Twelve three-vertebrae sets were extracted from thoracolumbar human spines. To measure the principal strains, the central vertebra of each segment was prepared with eight strain-gauges. The sets were tested mechanically, allowing comparison of the surface strains between the two boundary conditions: first when the same vertebra was loaded through the disks (three-vertebrae-segment) and then with the endplates embedded in cement (single-vertebra). They were all subjected to four nondestructive tests (compression, traction, torsion clockwise, and counterclockwise). The magnitude of principal strains differed significantly between the two boundary conditions. For axial loading, the largest principal strains (along vertebral axis) were significantly higher when the same vertebra was tested isolated compared to the three-vertebrae-segment. Conversely, circumferential strains decreased significantly in the single vertebrae compared to the three-vertebrae-segment, with some variations exceeding 100% of the strain magnitude, including changes from tension to compression. For torsion, the differences between boundary conditions were smaller. This study shows that, in the elastic regime, when the vertebra is loaded through a cement pot, the surface strains differ from when it is loaded through the disks. Therefore, when single vertebrae are tested, surface strain should be taken with caution.
Collapse
|
44
|
MacLeod AR, Rose H, Gill HS. A Validated Open-Source Multisolver Fourth-Generation Composite Femur Model. J Biomech Eng 2017; 138:2552969. [PMID: 27618586 DOI: 10.1115/1.4034653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Indexed: 11/08/2022]
Abstract
Synthetic biomechanical test specimens are frequently used for preclinical evaluation of implant performance, often in combination with numerical modeling, such as finite-element (FE) analysis. Commercial and freely available FE packages are widely used with three FE packages in particular gaining popularity: abaqus (Dassault Systèmes, Johnston, RI), ansys (ANSYS, Inc., Canonsburg, PA), and febio (University of Utah, Salt Lake City, UT). To the best of our knowledge, no study has yet made a comparison of these three commonly used solvers. Additionally, despite the femur being the most extensively studied bone in the body, no freely available validated model exists. The primary aim of the study was primarily to conduct a comparison of mesh convergence and strain prediction between the three solvers (abaqus, ansys, and febio) and to provide validated open-source models of a fourth-generation composite femur for use with all the three FE packages. Second, we evaluated the geometric variability around the femoral neck region of the composite femurs. Experimental testing was conducted using fourth-generation Sawbones® composite femurs instrumented with strain gauges at four locations. A generic FE model and four specimen-specific FE models were created from CT scans. The study found that the three solvers produced excellent agreement, with strain predictions being within an average of 3.0% for all the solvers (r2 > 0.99) and 1.4% for the two commercial codes. The average of the root mean squared error against the experimental results was 134.5% (r2 = 0.29) for the generic model and 13.8% (r2 = 0.96) for the specimen-specific models. It was found that composite femurs had variations in cortical thickness around the neck of the femur of up to 48.4%. For the first time, an experimentally validated, finite-element model of the femur is presented for use in three solvers. This model is freely available online along with all the supporting validation data.
Collapse
Affiliation(s)
- Alisdair R MacLeod
- Centre for Biomechanics, Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK e-mail:
| | - Hannah Rose
- Centre for Biomechanics, Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK e-mail:
| | - Harinderjit S Gill
- Centre for Biomechanics, Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK e-mail:
| |
Collapse
|
45
|
Cilla M, Checa S, Duda GN. Strain shielding inspired re-design of proximal femoral stems for total hip arthroplasty. J Orthop Res 2017; 35:2534-2544. [PMID: 28176355 DOI: 10.1002/jor.23540] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/27/2017] [Indexed: 02/04/2023]
Abstract
A large number of hip prosthesis with different designs have been developed. However, the influence of hip implant design changes on the strains induced in the bone remains unclear. The purpose of this study is to better understand the mechanics of short stem total hip arthroplasty. Specifically, it investigates whether strain shielding can be avoided by changing implant shape and/or material properties. It is hypothesized that the re-design of existing implant designs can result in further reduction of strain shielding and thus keep bone loss minimal following total hip replacement. Finite element methods were used to compare healthy and implanted models. The local mechanics strains/stresses in the intact and implanted femurs were determined under patient-specific muscle and joint contact forces. Results suggest that small changes in implant geometry and material properties have no major effect on strain shielding. Furthermore, it was found that improvement depends on a dramatic re-design of the original implant design. Whereas the benefit of this strategy of modification of the original geometry of a given short-stemmed hip consists in reduced bone remodeling, care should be taken with regard to long-term bone anchorage and implant fatigue strength. It is also shown that geometrical and material changes have a limited potential in avoiding strain shielding even in short-stemmed implants. Finally, it is suggested that an understanding of the influence of these changes on the strain distribution within the bone can guide in the process of optimizing the current stem designs toward minimal strain shielding effects. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2534-2544, 2017.
Collapse
Affiliation(s)
- Myriam Cilla
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Campus - Virchow Klinikum, Augustenburger Platz 1, Institutsgebäude Süd,13353 Berlin, Germany.,Centro Universitario de la Defensa, Academia General Militar, Ctra. Huesca s/n, 50090 Zaragoza, Spain.,Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Sara Checa
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Campus - Virchow Klinikum, Augustenburger Platz 1, Institutsgebäude Süd,13353 Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Campus - Virchow Klinikum, Augustenburger Platz 1, Institutsgebäude Süd,13353 Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
46
|
Effects of Scan Resolutions and Element Sizes on Bovine Vertebral Mechanical Parameters from Quantitative Computed Tomography-Based Finite Element Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:5707568. [PMID: 29065624 PMCID: PMC5474284 DOI: 10.1155/2017/5707568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/02/2017] [Indexed: 11/17/2022]
Abstract
Quantitative computed tomography-based finite element analysis (QCT/FEA) has been developed to predict vertebral strength. However, QCT/FEA models may be different with scan resolutions and element sizes. The aim of this study was to explore the effects of scan resolutions and element sizes on QCT/FEA outcomes. Nine bovine vertebral bodies were scanned using the clinical CT scanner and reconstructed from datasets with the two-slice thickness, that is, 0.6 mm (PA resolution) and 1 mm (PB resolution). There were significantly linear correlations between the predicted and measured principal strains (R2 > 0.7, P < 0.0001), and the predicted vertebral strength and stiffness were modestly correlated with the experimental values (R2 > 0.6, P < 0.05). Two different resolutions and six different element sizes were combined in pairs, and finite element (FE) models of bovine vertebral cancellous bones in the 12 cases were obtained. It showed that the mechanical parameters of FE models with the PB resolution were similar to those with the PA resolution. The computational accuracy of FE models with the element sizes of 0.41 × 0.41 × 0.6 mm3 and 0.41 × 0.41 × 1 mm3 was higher by comparing the apparent elastic modulus and yield strength. Therefore, scan resolution and element size should be chosen optimally to improve the accuracy of QCT/FEA.
Collapse
|
47
|
Faisal TR, Luo Y. Study of the variations of fall induced hip fracture risk between right and left femurs using CT-based FEA. Biomed Eng Online 2017; 16:116. [PMID: 28974207 PMCID: PMC5627442 DOI: 10.1186/s12938-017-0407-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/22/2017] [Indexed: 01/23/2023] Open
Abstract
Background Hip fracture of elderly people—suffering from osteoporosis—is a severe public health concern, which can be reduced by providing a prior assessment of hip fracture risk. Image-based finite element analysis (FEA) has been considered an effective computational tool to assess the hip fracture risk. Considering the femoral neck region is the weakest, fracture risk indicators (FRI) are evaluated for both single-legged stance and sideways fall configurations and are compared between left and right femurs of each subject. Quantitative Computed Tomography (QCT) scan datasets of thirty anonymous patients’ left and right femora have been considered for the FE models, which have been simulated with an equal magnitude of load applied to the aforementioned configurations. The requirement of bilateral hip assessment in predicting the fracture risk has been explored in this study. Results Comparing the sideways fall and single-legged stance, the FRI varies by 64 to 74% at the superior aspects and by 14 to 19% at the inferior surfaces of both the femora. The results of this in vivo analysis clearly substantiate that the fracture is expected to initiate at the superior surface of femoral neck region if a patient falls from his/her standing height. The distributions of FRI between the femurs vary considerably, and the variability is significant at the superior aspects. The p value (= 0.02) obtained from paired sample t-Test yields p value ≤ 0.05, which shows the evidence of variability of the FRI distribution between left and right femurs. Moreover, the comparison of FRIs between the left and right femur of men and women shows that women are more susceptible to hip fracture than men. Conclusions The results and statistical variation clearly signify a need for bilateral hip scanning in predicting hip fracture risk, which is clinically conducted, at present, based on one hip chosen randomly and may lead to inaccurate fracture prediction. This study, although preliminary, may play a crucial role in assessing the hip fractures of the geriatric population and thereby, reducing the cost of treatment by taking predictive measure.
Collapse
Affiliation(s)
- Tanvir R Faisal
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, 60610, USA
| | - Yunhua Luo
- Department of Mechanical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
48
|
Rossman T, Uthamaraj S, Rezaei A, McEligot S, Giambini H, Jasiuk I, Yaszemski MJ, Lu L, Dragomir-Daescu D. A Method to Estimate Cadaveric Femur Cortical Strains During Fracture Testing Using Digital Image Correlation. J Vis Exp 2017. [PMID: 28994795 DOI: 10.3791/54942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This protocol describes the method using digital image correlation to estimate cortical strain from high speed video images of the cadaveric femoral surface obtained from mechanical testing. This optical method requires a texture of many contrasting fiduciary marks on a solid white background for accurate tracking of surface deformation as loading is applied to the specimen. Immediately prior to testing, the surface of interest in the camera view is painted with a water-based white primer and allowed to dry for several minutes. Then, a black paint is speckled carefully over the white background with special consideration for the even size and shape of the droplets. Illumination is carefully designed and set such that there is optimal contrast of these marks while minimizing reflections through the use of filters. Images were obtained through high speed video capture at up to 12,000 frames/s. The key images prior to and including the fracture event are extracted and deformations are estimated between successive frames in carefully sized interrogation windows over a specified region of interest. These deformations are then used to compute surface strain temporally during the fracture test. The strain data is very useful for identifying fracture initiation within the femur, and for eventual validation of proximal femur fracture strength models derived from Quantitative Computed Tomography-based Finite Element Analysis (QCT/FEA).
Collapse
Affiliation(s)
| | | | - Asghar Rezaei
- Division of Engineering, Mayo Clinic; Department of Physiology and Biomedical Engineering, Mayo Clinic
| | | | | | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign
| | | | - Lichun Lu
- Department of Orthopedic Surgery, Mayo Clinic
| | - Dan Dragomir-Daescu
- Division of Engineering, Mayo Clinic; Department of Physiology and Biomedical Engineering, Mayo Clinic;
| |
Collapse
|
49
|
Amirouche F, Solitro GF, Walia A, Gonzalez M, Bobko A. Segmental acetabular rim defects, bone loss, oversizing, and press fit cup in total hip arthroplasty evaluated with a probabilistic finite element analysis. INTERNATIONAL ORTHOPAEDICS 2017; 41:1527-1533. [PMID: 28012048 DOI: 10.1007/s00264-016-3369-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 12/02/2016] [Indexed: 01/21/2023]
Abstract
PURPOSE Management of segmental rim defects and bone mineral density (BMD) loss in the elderly prior to total hip replacement is unclear within classification systems for acetabular bone loss. In this study, our objectives were (1) to understand how a reduction in BMD in the elderly affects the oversizing of a press-fit cup for primary fixation and (2) to evaluate whether the location of the segmental defect affected cup fixation. METHODS A finite element (FE) model was used to simulate and evaluate cup insertion and fixation in the context of segmental rim defects. We focused on the distribution of patients over age 70 and used BMD (estimated from CT) as a proxy for aging's implications on THR and used probabilistic FE analysis to understand how BMD loss affects oversizing of a press-fit cup. RESULTS A cup oversized by 1.10 ± 0.28 mm provides sufficient fixation and lower stresses at the cup-bone interface for elderly patients. Defects in the anterior column and posterior column both required the same mean insertion force for cup seating of 84% (taken as an average of 2 anterior column and 2 posterior column defects) compared to the control configuration, which was 5% greater than the insertion force for a superior rim defect and 12% greater than the insertion force for an inferior rim defect. CONCLUSIONS A defect along the superior or inferior rim had a minimal effect on cup fixation, while a defect in the columns created cup instability and increased stress at the defect location.
Collapse
Affiliation(s)
- Farid Amirouche
- Department of Orthopaedics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E270, Chicago, IL, 60612, USA.
| | - Giovanni F Solitro
- Department of Orthopaedics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E270, Chicago, IL, 60612, USA
| | - Amit Walia
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark Gonzalez
- Department of Orthopaedics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E270, Chicago, IL, 60612, USA
| | - Aimee Bobko
- Department of Orthopaedics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E270, Chicago, IL, 60612, USA
| |
Collapse
|
50
|
Lopes VM, Neto MA, Amaro AM, Roseiro LM, Paulino M. FE and experimental study on how the cortex material properties of synthetic femurs affect strain levels. Med Eng Phys 2017. [DOI: 10.1016/j.medengphy.2017.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|