1
|
Falcinelli C, Cheong VS, Ellingsen LM, Helgason B. Segmentation methods for quantifying X-ray Computed Tomography based biomarkers to assess hip fracture risk: a systematic literature review. Front Bioeng Biotechnol 2024; 12:1446829. [PMID: 39506973 PMCID: PMC11537876 DOI: 10.3389/fbioe.2024.1446829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Background The success of using bone mineral density and/or FRAX to predict femoral osteoporotic fracture risk is modest since they do not account for mechanical determinants that affect bone fracture risk. Computed Tomography (CT)-based geometric, densitometric, and finite element-derived biomarkers have been developed and used as parameters for assessing fracture risk. However, to quantify these biomarkers, segmentation of CT data is needed. Doing this manually or semi-automatically is labor-intensive, preventing the adoption of these biomarkers into clinical practice. In recent years, fully automated methods for segmenting CT data have started to emerge. Quantifying the accuracy, robustness, reproducibility, and repeatability of these segmentation tools is of major importance for research and the potential translation of CT-based biomarkers into clinical practice. Methods A comprehensive literature search was performed in PubMed up to the end of July 2024. Only segmentation methods that were quantitatively validated on human femurs and/or pelvises and on both clinical and non-clinical CT were included. The accuracy, robustness, reproducibility, and repeatability of these segmentation methods were investigated, reporting quantitatively the metrics used to evaluate these aspects of segmentation. The studies included were evaluated for the risk of, and sources of bias, that may affect the results reported. Findings A total of 54 studies fulfilled the inclusion criteria. The analysis of the included papers showed that automatic segmentation methods led to accurate results, however, there may exist a need to standardize reporting of accuracy across studies. Few works investigated robustness to allow for detailed conclusions on this aspect. Finally, it seems that the bone segmentation field has only addressed the concept of reproducibility and repeatability to a very limited extent, which entails that most of the studies are at high risk of bias. Interpretation Based on the studies analyzed, some recommendations for future studies are made for advancing the development of a standardized segmentation protocol. Moreover, standardized metrics are proposed to evaluate accuracy, robustness, reproducibility, and repeatability of segmentation methods, to ease comparison between different approaches.
Collapse
Affiliation(s)
- Cristina Falcinelli
- Department of Engineering and Geology, University “G. D’Annunzio” of Chieti-Pescara, Pescara, Italy
| | - Vee San Cheong
- Institute for Biomechanics, ETH-Zurich, Zurich, Switzerland
- Future Health Technologies Programme, Singapore-ETH Centre, CREATE campus, Singapore, Singapore
| | - Lotta Maria Ellingsen
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| | - Benedikt Helgason
- Institute for Biomechanics, ETH-Zurich, Zurich, Switzerland
- Future Health Technologies Programme, Singapore-ETH Centre, CREATE campus, Singapore, Singapore
| |
Collapse
|
2
|
Zojaji M, Ferasat K, Klei MV, Sun H, Beloglowka K, Kunath B, Rainbow R, Ploeg HL, Béland LK. Elastic response of trabecular bone under compression calculated using the firm and floppy boundary lattice element method. J Biomech 2024; 172:112209. [PMID: 38986274 DOI: 10.1016/j.jbiomech.2024.112209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Micro-Finite Element analysis (μFEA) has become widely used in biomechanical research as a reliable tool for the prediction of bone mechanical properties within its microstructure such as apparent elastic modulus and strength. However, this method requires substantial computational resources and processing time. Here, we propose a computationally efficient alternative to FEA that can provide an accurate estimation of bone trabecular mechanical properties in a fast and quantitative way. A lattice element method (LEM) framework based on the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) open-source software package is employed to calculate the elastic response of trabecular bone cores. A novel procedure to handle pore-material boundaries is presented, referred to as the Firm and Floppy Boundary LEM (FFB-LEM). Our FFB-LEM calculations are compared to voxel- and geometry-based FEA benchmarks incorporating bovine and human trabecular bone cores imaged by micro Computed Tomography (μCT). Using 14 computer cores, the apparent elastic modulus calculation of a trabecular bone core from a μCT-based input with FFB-LEM required about 15 min, including conversion of the μCT data into a LAMMPS input file. In contrast, the FEA calculations on the same system including the mesh generation, required approximately 30 and 50 min for voxel- and geometry-based FEA, respectively. There were no statistically significant differences between FFB-LEM and voxel- or geometry-based FEA apparent elastic moduli (+24.3% or +7.41%, and +0.630% or -5.29% differences for bovine and human samples, respectively).
Collapse
Affiliation(s)
- Mahsa Zojaji
- Department of Mechanical and Materials Engineering, Smith Engineering, Queen's University, Kingston, Ontario, Canada; Centre for Health Innovation, Kingston Health Sciences Centre, Queen's University, Kingston, Ontario, Canada
| | - Keyvan Ferasat
- Department of Mechanical and Materials Engineering, Smith Engineering, Queen's University, Kingston, Ontario, Canada
| | - McKinley Van Klei
- Department of Mechanical and Materials Engineering, Smith Engineering, Queen's University, Kingston, Ontario, Canada; Centre for Health Innovation, Kingston Health Sciences Centre, Queen's University, Kingston, Ontario, Canada
| | - Hao Sun
- Department of Mechanical and Materials Engineering, Smith Engineering, Queen's University, Kingston, Ontario, Canada
| | - Kail Beloglowka
- Department of Mechanical and Materials Engineering, Smith Engineering, Queen's University, Kingston, Ontario, Canada; Centre for Health Innovation, Kingston Health Sciences Centre, Queen's University, Kingston, Ontario, Canada
| | - Brian Kunath
- Department of Mechanical and Materials Engineering, Smith Engineering, Queen's University, Kingston, Ontario, Canada; Centre for Health Innovation, Kingston Health Sciences Centre, Queen's University, Kingston, Ontario, Canada
| | - Roshni Rainbow
- Department of Mechanical and Materials Engineering, Smith Engineering, Queen's University, Kingston, Ontario, Canada; Centre for Health Innovation, Kingston Health Sciences Centre, Queen's University, Kingston, Ontario, Canada
| | - Heidi-Lynn Ploeg
- Department of Mechanical and Materials Engineering, Smith Engineering, Queen's University, Kingston, Ontario, Canada; Centre for Health Innovation, Kingston Health Sciences Centre, Queen's University, Kingston, Ontario, Canada
| | - Laurent Karim Béland
- Department of Mechanical and Materials Engineering, Smith Engineering, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
3
|
Murakami S, Zhao Y, Mizuno K, Yamada M, Yokoyama Y, Yamada Y, Jinzaki M. Finite element analysis of hip fracture risk in elderly female: The effects of soft tissue shape, fall direction, and interventions. J Biomech 2024; 172:112199. [PMID: 38959821 DOI: 10.1016/j.jbiomech.2024.112199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
This study investigates the effects of fall configurations on hip fracture risk with a focus on pelvic soft tissue shape. This was done by employing a whole-body finite element (FE) model. Soft tissue thickness around the pelvis was measured using a standing CT system, revealing a trend of increased trochanteric soft tissue thickness with higher BMI and younger age. In the lateroposterior region from the greater trochanter, the soft tissues of elderly females were thin with a concave shape. Based on the THUMS 5F model, an elderly female FE model with a low BMI was developed by morphing the soft tissue shape around the pelvis based on the CT data. FE simulation results indicated that the lateroposterior fall led to a higher femoral neck force for the elderly female model compared to the lateral fall. One reason may be related to the thin soft tissue of the pelvis in the lateroposterior region. Additionally, the effectiveness of interventions that can help mitigating hip fractures in lateroposterior falls on the thigh-hip and hip region was assessed using the elderly female model. The attenuation rate of the femoral neck force by the hip protector was close to zero in the thigh-hip fall and high in the hip fall, whereas the attenuation rate of the compliant floor was high in both falls. This study highlights age-related changes in the soft tissue shape of the pelvis in females, particularly in the lateroposterior regions, which may influence force mitigation for the hip joint during lateroposterior falls.
Collapse
Affiliation(s)
- Sotaro Murakami
- Nagoya University, Department of Mechanical Systems Engineering, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Yuqing Zhao
- Nagoya University, Department of Mechanical Systems Engineering, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Koji Mizuno
- Nagoya University, Department of Mechanical Systems Engineering, Furo-cho, Chikusa-ku, Nagoya, Japan.
| | - Minoru Yamada
- Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yoichi Yokoyama
- Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yoshitake Yamada
- Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Masahiro Jinzaki
- Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
4
|
Chen X, Tang M, Zhang X, Zhang Y, Wang Y, Xiong C, Ji Y, Wang Y, Zhang D. A Novel Internal Fixation Design for the Treatment of AO/OTA-31A3.3 Intertrochanteric Fractures: Finite Element Analysis. Orthop Surg 2024; 16:1684-1694. [PMID: 38784971 PMCID: PMC11216835 DOI: 10.1111/os.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE AO/OTA 31-A3.3 intertrochanteric fracture is the most unstable type of intertrochanteric fracture, with a high rate of postoperative complications and implant failure. We have designed a new intramedullary fixation, proximal femoral totally bionic nail (PFTBN), for the treatment of A3.3 intertrochanteric fracture. To test its biomechanical performance, we adopted the method of finite element analysis and compared PFTBN with proximal femoral nail antirotation (PFNA) and proximal femoral bionic nail (PFBN, another internal fixation we previously designed for stable intertrochanteric fractures). METHODS Mimics, 3-matic, ANSYS, and other software were used to construct a highly precise and realistic 3D digital model of the human femur. An AO/OTA 31-A3.3 intertrochanteric fracture of the femur was constructed according to the 2018 classification of AO/OTA, and then assembled with PFNA, PFBN and PFTBN models, respectively. The stress distribution and displacement distribution of the three groups of constructs were tested under three times the body weight load and one-foot standing configuration. RESULTS In terms of maximum stress and maximum displacement, the PFTBN group outperforms the PFBN group, and the PFBN group, in turn, surpasses the PFNA group. The maximum stress of PFTBN group was 408.5 Mpa, that of PFBN group was 525.4 MPa, and that of PFNA group was 764.3 Mpa. Comparatively, the maximum stress in the PFTBN group was reduced by 46.6% when contrasted with the PFNA group. Moreover, the stress dispersion within the PFTBN group was more evenly distributed than PFNA group. Regarding maximum displacement, the PFTBN group displayed the least displacement at 5.15 mm, followed by the PFBN group at 7.32 mm, and the PFNA group at 7.73 mm. Notably, the maximum displacement of the PFTBN group was 33.4% less than that observed in the PFNA group. Additionally, the relative displacement between the fragment and implant at the tip of pressure screw or helical blade was 0.22 mm in the PFTBN group, 0.34 mm in the PFBN group, and substantially higher 0.51 mm in the PFNA group. CONCLUSION The "lever-reconstruction-balance" theory provides a new perspective for us to understand the mechanical conduction of the proximal femur. Compared with PFNA, in treating A3.3 intertrochanteric fractures PFTBN can better reconstruct the function of lateral wall, restore physiological mechanical conduction, increase postoperative stability, and finally reduce the risk of postoperative cut-out and implant failure. It might be a better alternative for the treatment of A3.3 intertrochanteric fracture.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Trauma and OrthopedicsPeking University People's HospitalBeijingChina
| | - Miaotian Tang
- Department of Trauma and OrthopedicsPeking University People's HospitalBeijingChina
| | - Xiaomeng Zhang
- Department of Trauma and OrthopedicsPeking University People's HospitalBeijingChina
| | - Yichong Zhang
- Department of Trauma and OrthopedicsPeking University People's HospitalBeijingChina
| | - Yilin Wang
- Department of Trauma and OrthopedicsPeking University People's HospitalBeijingChina
| | - Chen Xiong
- Department of Trauma and OrthopedicsPeking University People's HospitalBeijingChina
| | - Yun Ji
- Department of Trauma and OrthopedicsPeking University People's HospitalBeijingChina
| | - Yanhua Wang
- Department of Trauma and OrthopedicsPeking University People's HospitalBeijingChina
| | - Dianying Zhang
- Department of Trauma and OrthopedicsPeking University People's HospitalBeijingChina
| |
Collapse
|
5
|
Awal R, Faisal T. QCT-based 3D finite element modeling to assess patient-specific hip fracture risk and risk factors. J Mech Behav Biomed Mater 2024; 150:106299. [PMID: 38088011 DOI: 10.1016/j.jmbbm.2023.106299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/12/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024]
Abstract
Early assessment of hip fracture risk may play a critical role in designing preventive mechanisms to reduce the occurrence of hip fracture in geriatric people. The loading direction, clinical, and morphological variables play a vital role in hip fracture. Analyzing the effects of these variables helps predict fractures risk more accurately; thereby suggesting the critical variable that needs to be considered. Hence, this work considered the fall postures by varying the loading direction on the coronal plane (α) and on the transverse plane (β) along with the clinical variables-age, sex, weight, and bone mineral density, and morphological variables-femoral neck axis length, femoral neck width, femoral neck angle, and true moment arm. The strain distribution obtained via finite element analysis (FEA) shows that the angle of adduction (α) during a fall increases the risk of fracture at the greater trochanter and femoral neck, whereas with an increased angle of rotation (β) during the fall, the FRI increases by ∼1.35 folds. The statistical analysis of clinical, morphological, and loading variables (αandβ) delineates that the consideration of only one variable is not enough to realistically predict the possibility of fracture as the correlation between individual variables and FRI is less than 0.1, even though they are shown to be significant (p<0.01). On the contrary, the correlation (R2=0.48) increases as all variables are considered, suggesting the need for considering different variables fork predicting FRI. However, the effect of each variable is different. While loading, clinical, and morphological variables are considered together, the loading direction on transverse plane (β) has high significance, and the anatomical variabilities have no significance.
Collapse
Affiliation(s)
- Rabina Awal
- Department of Mechanical Engineering, University of Louisiana at Lafayette, Louisiana, USA
| | - Tanvir Faisal
- Department of Mechanical Engineering, University of Louisiana at Lafayette, Louisiana, USA.
| |
Collapse
|
6
|
Turbucz M, Pokorni AJ, Bigdon SF, Hajnal B, Koch K, Szoverfi Z, Lazary A, Eltes PE. Patient-specific bone material modelling can improve the predicted biomechanical outcomes of sacral fracture fixation techniques: A comparative finite element study. Injury 2023; 54:111162. [PMID: 37945416 DOI: 10.1016/j.injury.2023.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To evaluate and compare the biomechanical efficacy of six iliosacral screw fixation techniques for treating unilateral AO Type B2 (Denis Type II) sacral fractures using literature-based and QCT-based bone material properties in finite element (FE) models. METHODS Two FE models of the intact pelvis were constructed: the literature-based model (LBM) with bone material properties taken from the literature, and the patient-specific model (PSM) with QCT-derived bone material properties. Unilateral transforaminal sacral fracture was modelled to assess different fixation techniques: iliosacral screw (ISS) at the first sacral vertebra (S1) (ISS1), ISS at the second sacral vertebra (S2) (ISS2), ISS at S1 and S2 (ISS12), transverse iliosacral screws (TISS) at S1 (TISS1), TISS at S2 (TISS2), and TISS at S1 and S2 (TISS12). A 600 N vertical load with both acetabula fixed was applied. Vertical stiffness (VS), relative interfragmentary displacement (RID), and the von Mises stress values in the screws and fracture interface were analysed. RESULTS The lowest and highest normalised VS was given by ISS1 and TISS12 techniques for LBM and PSM, with 137 % and 149 %, and 375 % and 472 %, respectively. In comparison with the LBM, the patient-specific bone modelling increased the maximum screw stress values by 19.3, 16.3, 27.8, 2.3, 24.4 and 7.8 % for ISS1, ISS2, ISS12, TISS1, TISS2 and TISS12, respectively. The maximum RID values were between 0.10 mm and 0.47 mm for all fixation techniques in both models. The maximum von Mises stress results on the fracture interface show a substantial difference between the two models, as PSM (mean ± SD of 15.76 ± 8.26 MPa) gave lower stress values for all fixation techniques than LBM (mean ± SD of 28.95 ± 6.91 MPa). CONCLUSION The differences in stress distribution underline the importance of considering locally defined bone material properties when investigating internal mechanical parameters. Based on the results, all techniques demonstrated clinically sufficient stability, with TISS12 being superior from a biomechanical standpoint. Both LBM and PSM models indicated a consistent trend in ranking the fixation techniques based on stability. However, long-term clinical trials are recommended to confirm the findings of the study.
Collapse
Affiliation(s)
- Mate Turbucz
- School of PhD Studies, Semmelweis University, Budapest, Hungary; In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
| | - Agoston Jakab Pokorni
- School of PhD Studies, Semmelweis University, Budapest, Hungary; In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
| | - Sebastian Frederick Bigdon
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University Hospital, University of Bern, Switzerland
| | - Benjamin Hajnal
- School of PhD Studies, Semmelweis University, Budapest, Hungary; In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
| | - Kristof Koch
- School of PhD Studies, Semmelweis University, Budapest, Hungary; National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
| | - Zsolt Szoverfi
- National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary; Department of Spine Surgery, Department of Orthopaedics, Semmelweis University, Budapest, Hungary
| | - Aron Lazary
- National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary; Department of Spine Surgery, Department of Orthopaedics, Semmelweis University, Budapest, Hungary
| | - Peter Endre Eltes
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary; National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary; Department of Spine Surgery, Department of Orthopaedics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Biomechanical properties and clinical significance of cancellous bone in proximal femur: A review. Injury 2023:S0020-1383(23)00251-6. [PMID: 36922271 DOI: 10.1016/j.injury.2023.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Trabecular bone plays an important role in the load-bearing capacity of the femur. Understanding the structural characteristics, biomechanics, and mechanical conduction of the trabecular bone is of great value in studying the mechanism of fractures and formulating surgical plans. The past decade has witnessed unprecedented progress in imaging, biomechanics and finite element analysis techniques, translating into a better understanding of trabecular bone. This article reviews the research progress achieved over the years regarding femoral trabecular bone, especially on factors influencing the strength of the proximal femoral cancellous bone and cancellous bone microfractures and provides a comprehensive overview of the latest findings on proximal femoral trabecular bone and their clinical significance.
Collapse
|
8
|
Tran TN, Baltaci Y, Winter P, Tschernig T, Landgraeber S. Optimal drilling at femoral head-neck junction for treatment of the femoral head necrosis: Experimental and numerical evaluation. Ann Anat 2023; 248:152081. [PMID: 36871868 DOI: 10.1016/j.aanat.2023.152081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Advanced core decompression (ACD) is a relative new technique for treatment of early stages of avascular femoral head necrosis. Although it is a promising treatment option, there is a need to modify this technique for achieving higher hip survival rates. An idea was to combine this technique with the lightbulb procedure in order to get a complete removal of the necrosis. This study aimed at evaluating the fracture risk of the femora treated by the combined Lightbulb-ACD technique as the basis for clinical application. METHODS Subject-specific models were generated from CT scan data of five intact femora. Several treated models were then created from each intact bone and simulated during normal walking activity. Biomechanical testing was additionally performed on 12 pairs of cadaver femora to confirm the simulation results. FINDINGS The finite element results revealed that the risk factor of the treated models with a 8 mm-drill increased, but was not significantly greater than that of their corresponding intact models. However, for the femur treated with a 10 mm-drill, the risk factor increased significantly. Fracture always initiated on the femoral neck, i.e. it was either subcapital or transcervical fracture. Our biomechanical testing results correlated well with the simulation data which confirmed the usefulness and effectiveness of the bone models. INTERPRETATION The combined Lightbulb-ACD technique using a 10 mm drill increased the fracture risk of femur postoperatively. A drill of up to 8 mm at the anterior head-neck junction did not however lead to the weakening of the femur so that full load bearing may be possible.
Collapse
Affiliation(s)
- Thanh Ngoc Tran
- Department of Orthopaedic Surgery, University of Saarland, Kirrberger Straße, 66421 Homburg, Germany.
| | - Yeliz Baltaci
- Department of Pediatric Oncology and Hematology, University of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Philipp Winter
- Department of Orthopaedic Surgery, University of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Thomas Tschernig
- Institute of Anatomy, University of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Stefan Landgraeber
- Department of Orthopaedic Surgery, University of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| |
Collapse
|
9
|
The Influence of Static Load and Sideways Impact Fall on Extramedullary Bone Plates Used to Treat Intertrochanteric Femoral Fracture: A Preclinical Strength Assessment. Ann Biomed Eng 2022; 50:1923-1940. [PMID: 35821164 DOI: 10.1007/s10439-022-03013-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022]
Abstract
Hip fracture accounts for a large number of hospitalizations, thereby causing substantial economic burden. Majority (> 90%) of all hip fractures are associated to sideways fall. Studies on sideways fall usually involve loading at quasi-static or at constant displacement rate, which neglects the physics of actual fall. Understanding femur resonance frequency and associated mode shapes excited by dynamic loads is also critical. Two commercial extramedullary implants, proximal femoral locking plate (PFLP) and variable angle dynamic hip screw (VA-DHS), were chosen to carry out the preclinical assessments on a simulated Evans-I type intertrochanteric fracture. In this study, we hypothesized that the behavior of the implant depends on the loading types-axial static and transverse impact-and a rigid implanted construct will absorb less impact energy for sideways fall. The in silico models were validated using experimental measurements of full-field strain data obtained from a 2D digital image correlation (DIC) study. Under peak axial load of 3 kN, PFLP construct predicted greater axial stiffness (1.07 kN/mm) as opposed to VA-DHS (0.85 kN/mm), although the former predicted slightly higher proximal stress shielding. Further, with greater mode 2 frequency, PFLP predicted improved performance in resisting bending due to sideways fall as compared to the other implant. Overall, the PFLP implanted femur predicted the least propensity to adverse stress intensities, suggesting better structural rigidity and higher capacity in protecting the fractured femur against fall.
Collapse
|
10
|
Hoffseth KF, Busse E, Lacey M, Sammarco MC. Evaluating differences in Young's Modulus of regenerated and uninjured mouse digit bone through microCT density-based calculation and nanoindentation testing. J Biomech 2022; 143:111271. [PMID: 36095912 PMCID: PMC9947921 DOI: 10.1016/j.jbiomech.2022.111271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/12/2022] [Accepted: 08/21/2022] [Indexed: 02/05/2023]
Abstract
The mouse digit tip amputation model is an excellent model of bone regeneration, but its size and shape present an obstacle for biomechanical testing. As a result, assessing the structural quality of the regenerated bone in this model has focused on mineral density and bone architecture analysis. Here we describe an image-processing based method for assessment of mechanical properties in the regenerated digit by using micro-computed tomography mineral density data to calculate spatially discrete Young's modulus values throughout the entire distal third phalange. Further, we validate this method through comparison to nanoindentation-measured values for Young's modulus. Application to a set of regenerated and unamputated digits shows that regenerated bone has a lower Young's modulus compared to the uninjured digit, with a similar trend for experimental hardness values. Importantly, this method heightens the utility of the digit regeneration model, allows for more impactful treatment evaluation using the model, and introduces an analysis platform that can be used for other bones that do not conform to a standard long-bone model.
Collapse
Affiliation(s)
- Kevin F. Hoffseth
- Department of Biological & Agricultural Engineering, Louisiana State University, 149 E.B. Doran Building, Baton Rouge, LA 70803, USA,Corresponding authors. (K.F. Hoffseth), (M.C. Sammarco)
| | - Emily Busse
- Department of Surgery, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Michelle Lacey
- Department of Mathematics, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Mimi C. Sammarco
- Department of Surgery, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA,Corresponding authors. (K.F. Hoffseth), (M.C. Sammarco)
| |
Collapse
|
11
|
Awal R, Ben Hmida J, Luo Y, Faisal T. Study of the significance of parameters and their interaction on assessing femoral fracture risk by quantitative statistical analysis. Med Biol Eng Comput 2022; 60:843-854. [PMID: 35119555 DOI: 10.1007/s11517-022-02516-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
Early assessment of hip fracture helps develop therapeutic and preventive mechanisms that may reduce the occurrence of hip fracture. An accurate assessment of hip fracture risk requires proper consideration of the loads, the physiological and morphological parameters, and the interactions between these parameters. Hence, this study aims at analyzing the significance of parameters and their interactions by conducting a quantitative statistical analysis. A multiple regression model was developed considering different loading directions during a sideways fall (angle [Formula: see text] and [Formula: see text] on the coronal and transverse planes, respectively), age, gender, patient weight, height, and femur morphology as independent parameters and Fracture Risk Index (FRI) as a dependent parameter. Strain-based criteria were used for the calculation of FRI with the maximum principal strain obtained from quantitative computed tomography-based finite element analysis. The statistical result shows that [Formula: see text] [Formula: see text], age [Formula: see text], true moment length [Formula: see text], gender [Formula: see text], FNA [Formula: see text], height [Formula: see text], and FSL [Formula: see text] significantly affect FRI where [Formula: see text] is the most influential parameter. The significance of two-level interaction [Formula: see text] and three-level interaction [Formula: see text] shows that the effect of parameters is dissimilar and depends on other parameters suggesting the variability of FRI from person to person.
Collapse
Affiliation(s)
- Rabina Awal
- Department of Mechanical Engineering, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Jalel Ben Hmida
- Department of Mechanical Engineering, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Tanvir Faisal
- Department of Mechanical Engineering, University of Louisiana at Lafayette, Lafayette, LA, USA.
| |
Collapse
|
12
|
Hennicke NS, Saemann M, Kluess D, Bader R, Sander M. Subject specific finite element modelling of periprosthetic femoral fractures in different load cases. J Mech Behav Biomed Mater 2021; 126:105059. [PMID: 34995835 DOI: 10.1016/j.jmbbm.2021.105059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 11/19/2022]
Abstract
Periprosthetic femoral fractures (PFF) around total hip replacements are one of the biggest challenges for orthopaedic surgeons. To understand the risk factors and formation of these fractures, the development of a reliable finite element (FE) model incorporating bone failure is essential. Due to the anisotropic and complex hierarchical structure of bone, the mechanical behaviour under large strains is difficult to predict. In this study, a state-of-the-art subject specific FE modelling technique for bone is utilised to generate and investigate PFF. A bilinear constitutive law is applied to bone tissue in subject specific FE models of five human femurs which are virtually implanted with a straight hip stem to numerically analyse PFF. The material parameters of the models are expressed as a function of bone ash density and mapped node wise to the FE mesh. In this way the subject specific, heterogeneous structure of bone is mimicked. For material mapping of the parameters, computed tomography (CT) images of the original fresh-frozen femurs are used. Periprosthetic fractures are generated by deleting elements on the basis of a critical plastic strain failure criterion. The models are analysed under physiological and clinically relevant conditions in two different load cases re-enacting stumbling and a sideways fall on the hip. The results of the analyses are quantified with experimental data from previous work. With regard to fracture pattern, stiffness and failure load the simulations of the load case stumbling delivered the most stable and accurate results. In general, mapping of material properties was found to be an appropriate way to reproduce PFF with finite element models.
Collapse
Affiliation(s)
- N S Hennicke
- Institute of Structural Mechanics, University of Rostock, Albert-Einstein-Str. 2, 18059, Rostock, Germany.
| | - M Saemann
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - D Kluess
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - R Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - M Sander
- Institute of Structural Mechanics, University of Rostock, Albert-Einstein-Str. 2, 18059, Rostock, Germany
| |
Collapse
|
13
|
Irarrázaval S, Ramos-Grez JA, Pérez LI, Besa P, Ibáñez A. Finite element modeling of multiple density materials of bone specimens for biomechanical behavior evaluation. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04760-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AbstractThe finite elements method allied with the computerized axial tomography (CT) is a mathematical modeling technique that allows constructing computational models for bone specimens from CT data. The objective of this work was to compare the experimental biomechanical behavior by three-point bending tests of porcine femur specimens with different types of computational models generated through the finite elements’ method and a multiple density materials assignation scheme. Using five femur specimens, 25 scenarios were created with differing quantities of materials. This latter was applied to computational models and in bone specimens subjected to failure. Among the three main highlights found, first, the results evidenced high precision in predicting experimental reaction force versus displacement in the models with larger number of assigned materials, with maximal results being an R2 of 0.99 and a minimum root-mean-square error of 3.29%. Secondly, measured and computed elastic stiffness values follow same trend with regard to specimen mass, and the latter underestimates stiffness values a 6% in average. Third and final highlight, this model can precisely and non-invasively assess bone tissue mechanical resistance based on subject-specific CT data, particularly if specimen deformation values at fracture are considered as part of the assessment procedure.
Collapse
|
14
|
Michalski AS, Besler BA, Burt LA, Boyd SK. Opportunistic CT screening predicts individuals at risk of major osteoporotic fracture. Osteoporos Int 2021; 32:1639-1649. [PMID: 33566138 DOI: 10.1007/s00198-021-05863-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
UNLABELLED Millions of CT scans are performed annually and could be also used to opportunistically assess musculoskeletal health; however, it is unknown how well this secondary assessment relates to osteoporotic fracture. This study demonstrates that opportunistic CT screening is a promising tool to predict individuals with previous osteoporotic fracture. INTRODUCTION Opportunistic computed tomography (oCT) screening for osteoporosis and fracture risk determination complements current dual X-ray absorptiometry (DXA) diagnosis. This study determined major osteoporotic fracture prediction by oCT at the spine and hip from abdominal CT scans. METHODS Initial 1158 clinical abdominal CT scans were identified from administrative databases and were the basis to generate a cohort of 490 men and women with suitable abdominal CT scans. Participant CT scans met the following criteria: over 50 years of age, the scan had no image artifacts, and the field-of-view included the L4 vertebra and proximal femur. A total of 123 participants were identified as having previously suffered a fracture within 5 years of CT scan date. Fracture cause was identified from clinical data and used to create a low-energy fracture sub-cohort. At each skeletal site, bone mineral density (BMD) and finite element (FE)-estimated bone strength were determined. Logistic regression predicted fracture and receiver-operator characteristic curves analyzed prediction capabilities. RESULTS In participants with a fracture, low-energy fractures occurred in 88% of women and 79% of men. Fracture prediction by combining both BMD and FE-estimated bone strength was not statistically different than using either BMD or FE-estimated bone strength alone. Predicting low-energy fractures in women determined the greatest AUC of 0.710 by using both BMD and FE-estimated bone strength. CONCLUSIONS oCT screening using abdominal CT scans is effective at predicting individuals with previous fracture at major osteoporotic sites and offers a promising screening tool for skeletal health assessment.
Collapse
Affiliation(s)
- A S Michalski
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - B A Besler
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - L A Burt
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - S K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
15
|
Knowles NK, Whittier DE, Besler BA, Boyd SK. Proximal Tibia Bone Stiffness and Strength in HR-pQCT- and QCT-Based Finite Element Models. Ann Biomed Eng 2021; 49:2389-2398. [PMID: 33977411 DOI: 10.1007/s10439-021-02789-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/03/2021] [Indexed: 11/25/2022]
Abstract
Injury to the ACL significantly increases the risk of developing post-traumatic osteoarthritis. Following injury, considerable focus is placed on visualizing soft tissue changes using MRI, but there is less emphasis on the alterations to the underlying bone. It has recently been shown using high-resolution peripheral quantitative computed tomography (HR-pQCT) that significant reductions in bone quality occur in the knee post ACL-injury. Despite the ability of HR-pQCT to show these changes, the availability of scanners and computational time requirements required to assess bone stiffness and strength with HR-pQCT limit its widespread clinical use. As such, the objective of this study was to determine if clinical quantitative CT (QCT) finite element models (QCT-FEMs) can accurately replicate HR-pQCT FEM proximal tibial stiffness and strength. From FEMs of 30 participants who underwent both QCT and HR-pQCT bilateral imaging, QCT-FEMs were strongly correlated with HR-pQCT FEM stiffness (R2 = 0.79). When QCT-FEM bone strength was estimated using the reaction force at 1% apparent strain, strong correlations were observed (R2 = 0.81), with no bias between HR-pQCT FEMs and non-linear QCT-FEMs. These results indicate that QCT-FEMs can accurately replicate HR-pQCT FEM stiffness and strength in the proximal tibia. Although these models are not able to replicate the trabecular structure or tissue-level strains, they require significantly reduced computational time and use widely available clinical-CT images as input, which make them an attractive choice to monitor bone density, stiffness and strength alterations, such as those that occur post ACL-injury.
Collapse
Affiliation(s)
- Nikolas K Knowles
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Danielle E Whittier
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Bryce A Besler
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Steven K Boyd
- Department of Radiology, University of Calgary, Calgary, AB, Canada. .,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
16
|
QCT-FE modeling of the proximal tibia: Effect of mapping strategy on convergence time and model accuracy. Med Eng Phys 2021; 88:41-46. [PMID: 33485512 DOI: 10.1016/j.medengphy.2020.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 11/21/2022]
Abstract
Quantitative computed tomography (QCT) based finite element (FE) modeling, referred to as QCT-FE, has seen rapid growth and application for modeling bone mechanics. With this approach, varying bone material properties are set via experimentally-derived density-modulus equations. One challenge though associated with QCT-FE is to identify the appropriate mapping strategy for assigning elastic moduli to elements. The goal of this study was to evaluate different QCT-FE mapping strategies to identify the optimum approach with fastest convergence rate and highest accuracy. Four proximal tibial medial compartments were imaged using QCT and experimentally tested to characterize proximal tibial subchondral bone stiffness at four surface points, resulting in a total of 16 indentation measures. Three material mapping methods were analyzed: (1) constant-E where an average elastic modulus was assigned to each element; (2) node-based where the material properties were first mapped on nodes then interpolated to Gaussian integration points; and (3) element-based in which the material properties were directly assigned to Gaussian integration points. Different element sizes were assessed with edge-lengths ranging from 0.9 to 3 mm. Results indicated that all converged models showed similar coefficient-of-determination (R2) and normalized root-mean-square errors (RMSE%). Though, the constant-E and node-based methods converged with the element edge-length of 1.5 mm (prediction error of 4.8% and 2.5%, respectively) whereas the element-based method converged with a larger element having an edge-length 2.5 mm (error = 4.9%). In conclusion, the element-based method, with a larger element size, resulted in similar predictive accuracy, faster convergence and shorter run-times relative to the constant-E and node-based approaches. As such, we recommend the element-based method for future subject-specific QCT-FE modeling.
Collapse
|
17
|
Zimmermann Y, Mustafy T, Villemure I. Nondestructive Assessment of Growing Rat Tibial Mechanical Properties Under Three-Point Bending: A Microcomputed Tomography Based Finite Element Study. J Biomech Eng 2020; 142:121001. [PMID: 32747943 DOI: 10.1115/1.4047991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Indexed: 11/08/2022]
Abstract
Microcomputed tomography (micro-CT) based finite element models (FEM) are efficient tools to assess bone mechanical properties. Although they have been developed for different animal models, there is still a lack of data for growing rat long bone models. This study aimed at developing and calibrating voxel-based FEMs using micro-CT scans and experimental data. Twenty-four tibiae were extracted from rats aged 28, 56, and 84 days old (d.o.) (n = 8/group), and their stiffness values were evaluated using three-point bending tests. Prior to testing, tibiae were scanned, reconstructed, and converted into FEM composed of heterogeneous bone properties based on pixel grayscales. Three element material laws (one per group) were calibrated using back-calculation process based on experimental bending data. Two additional specimens per group were used for model verification. The calibrated rigidity-density (E-ρ) relationships were different for each group: E28 = 10,320·ρash3.45; E56 = 43,620·ρash4.41; E84 = 20,090·ρash2.0. Obtained correlations between experimental and FEM stiffness values were 0.43, 0.10, and 0.66 with root-mean-square error (RMSE) of 14.4%, 17.4%, and 15.2% for 28, 56, and 84 d.o. groups, respectively. Prediction errors were less than 13.5% for 28 and 84 d.o. groups but reached 57.1% for the 56 d.o. group. Relationships between bone physical and mechanical properties were found to change during the growth, similarly to bending stiffness values, which increased with bone development. The reduced correlation observed for the 56 d.o. group may be related to the pubescent transition at that age group. These FE models will be useful for investigation of bone behavior in growing rats.
Collapse
Affiliation(s)
- Yann Zimmermann
- Department of Mechanical Engineering, Polytechnique Montréal, Station Centre-Ville, P.O. Box 6079, Montreal, QC H3C 3A7, Canada
| | - Tanvir Mustafy
- Department of Mechanical Engineering, Polytechnique Montréal, Station Centre-Ville, P.O. Box 6079, Montreal, QC H3C 3A7, Canada
| | - Isabelle Villemure
- Department of Mechanical Engineering, Polytechnique Montréal, Station Centre-Ville, P.O. Box 6079, Montreal, QC H3C 3A7, Canada
| |
Collapse
|
18
|
Horbach AJ, Staat M, Pérez-Viana D, Simmen HP, Neuhaus V, Pape HC, Prescher A, Ciritsis B. Biomechanical in vitro examination of a standardized low-volume tubular femoroplasty. Clin Biomech (Bristol, Avon) 2020; 80:105104. [PMID: 32712527 DOI: 10.1016/j.clinbiomech.2020.105104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/03/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Osteoporosis is associated with the risk of fractures near the hip. Age and comorbidities increase the perioperative risk. Due to the ageing population, fracture of the proximal femur also proves to be a socio-economic problem. Preventive surgical measures have hardly been used so far. METHODS 10 pairs of human femora from fresh cadavers were divided into control and low-volume femoroplasty groups and subjected to a Hayes fall-loading fracture test. The results of the respective localization and classification of the fracture site, the Singh index determined by computed tomography (CT) examination and the parameters in terms of fracture force, work to fracture and stiffness were evaluated statistically and with the finite element method. In addition, a finite element parametric study with different position angles and variants of the tubular geometry of the femoroplasty was performed. FINDINGS Compared to the control group, the work to fracture could be increased by 33.2%. The fracture force increased by 19.9%. The used technique and instrumentation proved to be standardized and reproducible with an average poly(methyl methacrylate) volume of 10.5 ml. The parametric study showed the best results for the selected angle and geometry. INTERPRETATION The cadaver studies demonstrated the biomechanical efficacy of the low-volume tubular femoroplasty. The numerical calculations confirmed the optimal choice of positioning as well as the inner and outer diameter of the tube in this setting. The standardized minimally invasive technique with the instruments developed for it could be used in further comparative studies to confirm the measured biomechanical results.
Collapse
Affiliation(s)
- Andreas J Horbach
- FH Aachen University of Applied Sciences, Institute of Bioengineering, Biomechanics Lab., Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
| | - Manfred Staat
- FH Aachen University of Applied Sciences, Institute of Bioengineering, Biomechanics Lab., Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
| | - Daniel Pérez-Viana
- FH Aachen University of Applied Sciences, Institute of Bioengineering, Biomechanics Lab., Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
| | - Hans-Peter Simmen
- Universitätsspital Zürich, Trauma Unit, Rämistrasse 100, 8091 Zürich, Switzerland.
| | - Valentin Neuhaus
- Universitätsspital Zürich, Trauma Unit, Rämistrasse 100, 8091 Zürich, Switzerland.
| | - Hans-Christoph Pape
- Universitätsspital Zürich, Trauma Unit, Rämistrasse 100, 8091 Zürich, Switzerland.
| | - Andreas Prescher
- Institute of Anatomy and Cell Biology, Rheinisch-Westfälische Technische Hochschule Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Bernhard Ciritsis
- Ente Ospedaliero Cantonale Ospedale di Bellinzona e Valli, Trauma Unit, Via Ospedale 12, 6500 Bellinzona, Switzerland; Centro Ortopedico di Quadrante, Lungolago Buozzi 25, 28887 Omegna (VB), Italy.
| |
Collapse
|
19
|
Besler BA, Michalski AS, Kuczynski MT, Abid A, Forkert ND, Boyd SK. Bone and joint enhancement filtering: Application to proximal femur segmentation from uncalibrated computed tomography datasets. Med Image Anal 2020; 67:101887. [PMID: 33181434 DOI: 10.1016/j.media.2020.101887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/14/2020] [Accepted: 10/22/2020] [Indexed: 01/22/2023]
Abstract
Methods for reliable femur segmentation enable the execution of quality retrospective studies and building of robust screening tools for bone and joint disease. An enhance-and-segment pipeline is proposed for proximal femur segmentation from computed tomography datasets. The filter is based on a scale-space model of cortical bone with properties including edge localization, invariance to density calibration, rotation invariance, and stability to noise. The filter is integrated with a graph cut segmentation technique guided through user provided sparse labels for rapid segmentation. Analysis is performed on 20 independent femurs. Rater proximal femur segmentation agreement was 0.21 mm (average surface distance), 0.98 (Dice similarity coefficient), and 2.34 mm (Hausdorff distance). Manual segmentation added considerable variability to measured failure load and volume (CVRMS > 5%) but not density. The proposed algorithm considerably improved inter-rater reproducibility for all three outcomes (CVRMS < 0.5%). The algorithm localized the periosteal surface accurately compared to manual segmentation but with a slight bias towards a smaller volume. Hessian-based filtering and graph cut segmentation localizes the periosteal surface of the proximal femur with comparable accuracy and improved precision compared to manual segmentation.
Collapse
Affiliation(s)
- Bryce A Besler
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Radiology, University of Calgary, Calgary, Canada
| | - Andrew S Michalski
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Radiology, University of Calgary, Calgary, Canada
| | - Michael T Kuczynski
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Radiology, University of Calgary, Calgary, Canada
| | - Aleena Abid
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Radiology, University of Calgary, Calgary, Canada
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Radiology, University of Calgary, Calgary, Canada.
| |
Collapse
|
20
|
Subject-specific FE models of the human femur predict fracture path and bone strength under single-leg-stance loading. J Mech Behav Biomed Mater 2020; 113:104118. [PMID: 33125949 DOI: 10.1016/j.jmbbm.2020.104118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/25/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
Hip fractures are a major health problem with high socio-economic costs. Subject-specific finite element (FE) models have been suggested to improve the fracture risk assessment, as compared to clinical tools based on areal bone mineral density, by adding an estimate of bone strength. Typically, such FE models are limited to estimate bone strength and possibly the fracture onset, but do not model the fracture process itself. The aim of this study was to use a discrete damage approach to simulate the full fracture process in subject-specific femur models under stance loading conditions. A framework based on the partition of unity finite element method (PUFEM), also known as XFEM, was used. An existing PUFEM framework previously used on a homogeneous generic femur model was extended to include a heterogeneous material description together with a strain-based criterion for crack initiation. The model was tested on two femurs, previously mechanically tested in vitro. Our results illustrate the importance of implementing a subject-specific material distribution to capture the experimental fracture pattern under stance loading. Our models accurately predicted the fracture pattern and bone strength (1% and 5% error) in both investigated femurs. This is the first study to simulate complete fracture paths in subject-specific FE femur models and it demonstrated how discrete damage models can provide a more complete picture of fracture risk by considering both bone strength and fracture toughness in a subject-specific fashion.
Collapse
|
21
|
Stiffness and Strength Predictions From Finite Element Models of the Knee are Associated with Lower-Limb Fractures After Spinal Cord Injury. Ann Biomed Eng 2020; 49:769-779. [PMID: 32929557 DOI: 10.1007/s10439-020-02606-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is associated with bone fragility and fractures around the knee. The purpose of this investigation was to validate a computed tomography (CT) based finite element (FE) model of the proximal tibia and distal femur under biaxial loading, and to retrospectively quantify the relationship between model predictions and fracture incidence. Twenty-six cadaveric tibiae and femora (n = 13 each) were loaded to 300 N of compression, then internally rotated until failure. FE predictions of torsional stiffness (K) and strength (Tult) explained 74% (n = 26) and 93% (n = 7) of the variation in experimental measurements, respectively. Univariate analysis and logistic regression were subsequently used to determine if FE predictions and radiographic measurements from CT and dual energy X-ray absorptiometry (DXA) were associated with prevalent lower-limb fracture in 50 individuals with SCI (n = 14 fractures). FE and CT measures, but not DXA, were lower in individuals with fracture. FE predictions of Tult at the tibia demonstrated the highest odds ratio (4.98; p = 0.006) and receiver operating characteristic (0.84; p = 0.008) but did not significantly outperform other metrics. In conclusion, CT-based FE model predictions were associated with prevalent fracture risk after SCI; this technique could be a powerful tool in future clinical research.
Collapse
|
22
|
Gujar RA, Warhatkar HN. Estimation of mass apparent density and Young's modulus of femoral neck-head region. J Med Eng Technol 2020; 44:378-388. [PMID: 32885998 DOI: 10.1080/03091902.2020.1799093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The purpose of this study is to estimate mass apparent density and Young's modulus to investigate biomechanical properties of the proximal femur bone. In this study eleven specimens of sheep femur bone having age between 1-1.25 years and human femur bone having age between 14 and 81years are used. In the present study, the first technique attempts to estimate the density from the image-based Hounsfield unit which is obtained directly from a computed tomography image. The modulus of elasticity is estimated from density-elasticity relation which is available in the literature. Another technique is used to develop a correlation between computed apparent density and greyscale based coefficient obtained by material mapping method using commercial Simpleware ScanIP software. Estimated mean deviation in apparent mass density and Young's modulus is 4.34% and 4.69% in sheep bone and 4.35% and 4.94% in human bone respectively. It is found that apparent density and Young's modulus obtained shows close agreement with values reported in the literature. Moreover, the study attempts to build up a new material model between human and sheep for orthopaedics clinical trials and research in Indian context. In addition, it is also observed that bone mass density of sheep is 1.60 times human. This method can also be useful to study and analyse biomechanical properties of the human femur bone.
Collapse
Affiliation(s)
- Rahul A Gujar
- Department of Mechanical Engineering, Dr. Babasaheb Ambedkar Technological University, Lonere (Raigad), India
| | - Hemant N Warhatkar
- Department of Mechanical Engineering, Dr. Babasaheb Ambedkar Technological University, Lonere (Raigad), India
| |
Collapse
|
23
|
Falcinelli C, Whyne C. Image-based finite-element modeling of the human femur. Comput Methods Biomech Biomed Engin 2020; 23:1138-1161. [PMID: 32657148 DOI: 10.1080/10255842.2020.1789863] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fracture is considered a critical clinical endpoint in skeletal pathologies including osteoporosis and bone metastases. However, current clinical guidelines are limited with respect to identifying cases at high risk of fracture, as they do not account for many mechanical determinants that contribute to bone fracture. Improving fracture risk assessment is an important area of research with clear clinical relevance. Patient-specific numerical musculoskeletal models generated from diagnostic images are widely used in biomechanics research and may provide the foundation for clinical tools used to quantify fracture risk. However, prior to clinical translation, in vitro validation of predictions generated from such numerical models is necessary. Despite adopting radically different models, in vitro validation of image-based finite element (FE) models of the proximal femur (predicting strains and failure loads) have shown very similar, encouraging levels of accuracy. The accuracy of such in vitro models has motivated their application to clinical studies of osteoporotic and metastatic fractures. Such models have demonstrated promising but heterogeneous results, which may be explained by the lack of a uniform strategy with respect to FE modeling of the human femur. This review aims to critically discuss the state of the art of image-based femoral FE modeling strategies, highlighting principal features and differences among current approaches. Quantitative results are also reported with respect to the level of accuracy achieved from in vitro evaluations and clinical applications and are used to motivate the adoption of a standardized approach/workflow for image-based FE modeling of the femur.
Collapse
Affiliation(s)
- Cristina Falcinelli
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Cari Whyne
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
24
|
Fleps I, Bahaloo H, Zysset PK, Ferguson SJ, Pálsson H, Helgason B. Empirical relationships between bone density and ultimate strength: A literature review. J Mech Behav Biomed Mater 2020; 110:103866. [PMID: 32957183 DOI: 10.1016/j.jmbbm.2020.103866] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Ultimate strength-density relationships for bone have been reported with widely varying results. Reliable bone strength predictions are crucial for many applications that aim to assess bone failure. Bone density and bone morphology have been proposed to explain most of the variance in measured bone strength. If this holds true, it could lead to the derivation of a single ultimate strength-density-morphology relationship for all anatomical sites. METHODS All relevant literature was reviewed. Ultimate strength-density relationships derived from mechanical testing of human bone tissue were included. The reported relationships were translated to ultimate strength-apparent density relationships and normalized with respect to strain rate. Results were grouped based on bone tissue type (cancellous or cortical), anatomical site, and loading mode (tension vs. compression). When possible, the relationships were compared to existing ultimate strength-density-morphology relationships. RESULTS Relationships that considered bone density and morphology covered the full spectrum of eight-fold inter-study difference in reported compressive ultimate strength-density relationships for trabecular bone. This was true for studies that tested specimens in different loading direction and tissue from different anatomical sites. Sparse data was found for ultimate strength-density relationships in tension and for cortical bone properties transverse to the main loading axis of the bone. CONCLUSIONS Ultimate strength-density-morphology relationships could explain measured strength across anatomical sites and loading directions. We recommend testing of bone specimens in other directions than along the main trabecular alignment and to include bone morphology in studies that investigate bone material properties. The lack of tensile strength data did not allow for drawing conclusions on ultimate strength-density-morphology relationships. Further studies are needed. Ideally, these studies would investigate both tensile and compressive strength-density relationships, including morphology, to close this gap and lead to more accurate evaluation of bone failure.
Collapse
Affiliation(s)
- Ingmar Fleps
- Institute for Biomechanics, ETH-Zürich, Zürich, Switzerland.
| | - Hassan Bahaloo
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Philippe K Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | | | - Halldór Pálsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | |
Collapse
|
25
|
Kleiven S. Hip fracture risk functions for elderly men and women in sideways falls. J Biomech 2020; 105:109771. [PMID: 32423538 DOI: 10.1016/j.jbiomech.2020.109771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 11/30/2022]
Abstract
Falls among the elderly cause a huge number of hip fractures world-wide. The objective is to generate hip fracture force risk functions for elderly women and men in sideways falls which can be used for determining effectiveness of fall prevention measures as well as for individual assessment of fracture risk at the clinics. A literature survey was performed and ten publications were identified who contained several hundred individual femoral neck fracture forces in sideways fall for both elderly women and men. Theoretical distributions were tested for goodness of fit against the pooled dataset with the Anderson-Darling test (AD-test) and root mean square errors (RMSE) were extracted. According to the AD-test, a Weibull distribution is a plausible model for the distribution of hip fracture forces. A simple, exponential two-parameter Weibull function was therefore proposed, having a RMSE below 2.2% compared to the experimental distribution for both men and women. It was demonstrated that elderly women only can endure nearly half the proximal femur force for 5 and 10% fracture risk as elderly men. It should be noted though, that women were found to have significantly lesser body height and body weight which would produce less impact force during falls from standing height. The proposed sex-specific hip fracture risk functions can be used for biomechanically optimizing hip protectors and safety floors and for determining their effectiveness as a fall prevention measure.
Collapse
Affiliation(s)
- Svein Kleiven
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
26
|
Iori G, Peralta L, Reisinger A, Heyer F, Wyers C, van den Bergh J, Pahr D, Raum K. Femur strength predictions by nonlinear homogenized voxel finite element models reflect the microarchitecture of the femoral neck. Med Eng Phys 2020; 79:60-66. [PMID: 32291201 DOI: 10.1016/j.medengphy.2020.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
In the human femoral neck, the contribution of the cortical and trabecular architecture to mechanical strength is known to depend on the load direction. In this work, we investigate if QCT-derived homogenized voxel finite element (hvFE) simulations of varying hip loading conditions can be used to study the architecture of the femoral neck. The strength of 19 pairs of human femora was measured ex vivo using nonlinear hvFE models derived from high-resolution peripheral QCT scans (voxel size: 30.3 µm). Standing and side-backwards falling loads were modeled. Quasi-static mechanical tests were performed on 20 bones for comparison. Associations of femur strength with volumetric bone mineral density (vBMD) or microstructural parameters of the femoral neck obtained from high-resolution QCT were compared between mechanical tests and simulations and between standing and falling loads. Proximal femur strength predictions by hvFE models were positively associated with the vBMD of the femoral neck (R² > 0.61, p < 0.001), as well as with its cortical thickness (R² > 0.27, p < 0.001), trabecular bone volume fraction (R² = 0.42, p < 0.001) and with the first two principal components of the femoral neck architecture (R² > 0.38, p < 0.001). Associations between femur strength and femoral neck microarchitecture were stronger for one-legged standing than for side-backwards falling. For both loading directions, associations between structural parameters and femur strength from hvFE models were in good agreement with those from mechanical tests. This suggests that hvFE models can reflect the load-direction-specific contribution of the femoral neck microarchitecture to femur strength.
Collapse
Affiliation(s)
- Gianluca Iori
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Laura Peralta
- Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, INSERM UMR S 1146, CNRS UMR, 7371, Paris, France; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Andreas Reisinger
- Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Frans Heyer
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Caroline Wyers
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Joop van den Bergh
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Dieter Pahr
- Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria; Institute for Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Kay Raum
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
27
|
Michalski AS, Besler BA, Michalak GJ, Boyd SK. CT-based internal density calibration for opportunistic skeletal assessment using abdominal CT scans. Med Eng Phys 2020; 78:55-63. [DOI: 10.1016/j.medengphy.2020.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 01/22/2023]
|
28
|
Bouxsein ML, Zysset P, Glüer CC, McClung M, Biver E, Pierroz DD, Ferrari SL. Perspectives on the non-invasive evaluation of femoral strength in the assessment of hip fracture risk. Osteoporos Int 2020; 31:393-408. [PMID: 31900541 DOI: 10.1007/s00198-019-05195-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
UNLABELLED We reviewed the experimental and clinical evidence that hip bone strength estimated by BMD and/or finite element analysis (FEA) reflects the actual strength of the proximal femur and is associated with hip fracture risk and its changes upon treatment. INTRODUCTION The risk of hip fractures increases exponentially with age due to a progressive loss of bone mass, deterioration of bone structure, and increased incidence of falls. Areal bone mineral density (aBMD), measured by dual-energy X-ray absorptiometry (DXA), is the most used surrogate marker of bone strength. However, age-related declines in bone strength exceed those of aBMD, and the majority of fractures occur in those who are not identified as osteoporotic by BMD testing. With hip fracture incidence increasing worldwide, the development of accurate methods to estimate bone strength in vivo would be very useful to predict the risk of hip fracture and to monitor the effects of osteoporosis therapies. METHODS We reviewed experimental and clinical evidence regarding the association between aBMD and/orCT-finite element analysis (FEA) estimated femoral strength and hip fracture risk as well as their changes with treatment. RESULTS Femoral aBMD and bone strength estimates by CT-FEA explain a large proportion of femoral strength ex vivo and predict hip fracture risk in vivo. Changes in femoral aBMD are strongly associated with anti-fracture efficacy of osteoporosis treatments, though comparable data for FEA are currently not available. CONCLUSIONS Hip aBMD and estimated femoral strength are good predictors of fracture risk and could potentially be used as surrogate endpoints for fracture in clinical trials. Further improvements of FEA may be achieved by incorporating trabecular orientations, enhanced cortical modeling, effects of aging on bone tissue ductility, and multiple sideway fall loading conditions.
Collapse
Affiliation(s)
- M L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - P Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - C C Glüer
- Section of Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - M McClung
- Oregon Osteoporosis Center, Portland, OR, USA
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - E Biver
- Division of Bone Disease, Department of Internal Medicine Specialties, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - D D Pierroz
- International Osteoporosis Foundation (IOF), Nyon, Switzerland
| | - S L Ferrari
- Division of Bone Disease, Department of Internal Medicine Specialties, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland.
| | | |
Collapse
|
29
|
Yang P, Fan H, Wang X, Xu S, Yang L, Chen G. The association between anterior femoroacetabular impingement and femoral neck fractures: An observational study. Medicine (Baltimore) 2020; 99:e19068. [PMID: 32028429 PMCID: PMC7015654 DOI: 10.1097/md.0000000000019068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The impact between acetabulum and femoral neck is another possible mechanism of femoral neck fracture.Direct trauma of the greater trochanter may not be able to fully explain the mechanism underlying femoral neck fracture. In this study, we sought to investigate whether anterior femoroacetabular impingement are associated with femoral neck fractures.A total of 36 patients with femoral neck fracture who had undergone total hip arthroplasty or hemiarthroplasty were included in this study. These patients were divided into 2 groups: labrum tear group and normal labrum group. Patients' age, gender, body mass index, muscle injury, injury pattern, trauma severity, femoral head-neck offset, femoral head-neck ratio, Cam deformity alpha angle, acetabular anteversion, femoral head diameter, acetabular index, cortical index, hip axis length, and neck stem angle were recorded and analyzed. SPSS 18.0 software was used for statistical analyses.According to intraoperative findings, 22 patients exhibited a labrum tear. Magnetic resonance imaging examination revealed bone contusion on the anterolateral margin of the acetabulum with muscle damage surrounding the hip. Among 14 cases without a labrum tear, no bone contusion and obvious muscle injury were found on the anterolateral margin of the acetabulum. Notably, muscle injury, injury pattern, trauma severity and femoral head-neck offset differed significantly (P < .05) between labrum tear and normal labrum groups.Previous studies have focused more on direct lateral trauma. In this study, the impact between acetabulum and femoral neck is another possible mechanism besides lateral impact. Specifically, the abnormal anatomy of the hip, such as femoral head-neck offset, may promote the fracturing process.
Collapse
Affiliation(s)
| | - Huaquan Fan
- Centre for Joint Surgery, Southwest Hospital
| | - Xin Wang
- Radiology Department, Southwest Hospital
| | - Senlin Xu
- Pathology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Yang
- Centre for Joint Surgery, Southwest Hospital
| | | |
Collapse
|
30
|
Jiang H, Robinson DL, Yates CJ, Lee PVS, Wark JD. Peripheral quantitative computed tomography (pQCT)-based finite element analysis provides enhanced diagnostic performance in identifying non-vertebral fracture patients compared with dual-energy X-ray absorptiometry. Osteoporos Int 2020; 31:141-151. [PMID: 31720708 DOI: 10.1007/s00198-019-05213-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
Abstract
UNLABELLED Due to limitations of the predominant clinical method for diagnosing osteoporosis, an engineering model based on a dedicated CT scanner for bone density and structure was applied in fracture patients and controls. Improved diagnostic performance was observed, which supports its potential use in future research and clinical practice. INTRODUCTION Dual-energy X-ray absorptiometry (DXA), the predominant clinical method for diagnosing osteoporosis, has limitations in identifying individuals with increased fracture risk. Peripheral quantitative computed tomography (pQCT) provides additional information and can be used to generate finite element (FE) models from which bone strength properties can be estimated. We investigated the ability of pQCT-FE properties to distinguish peripheral low-trauma fracture patients from healthy controls, by comparison with DXA and standard pQCT. METHODS One hundred and eight fracture patients (77 females aged 67.7 ± 7.9 years, 31 males aged 69.7 ± 8.9 years) were recruited from a hospital fracture liaison service. One hundred and twenty healthy community controls (85 females aged 69.8 ± 8.5 years, 35 males aged 68.9 ± 7.2 years) were recruited. RESULTS Significant differences between groups were observed in pQCT-FE properties, especially at the 4% tibia site. Fracture odds increased most per standard deviation decrease in pQCT-FE at this location [shear stiffness estimate, kshear, in females, OR = 10.34, 95% CI (1.91, 43.98); bending stiffness estimate, kbend, in males, OR = 8.32, 95% CI (4.15, 33.84)]. Area under the receiver operating characteristics curve (AUROC) was observed to be highest with pQCT-FE properties at 4% the tibia site. In females, this was 0.83 for the pQCT-FE variable kshear, compared with 0.72 for DXA total hip bone density (TH aBMD) and 0.76 for pQCT tibia trabecular density (Trb vBMD); in males, this was 0.81 for the pQCT-FE variable kbend at the 4% tibia site, compared with 0.62 for TH aBMD and 0.71 for Trb vBMD. There were significant differences in AUROC between DXA and pQCT-FE variables in both females (p = 0.02) and males (p = 0.03), while no difference was observed in AUROC between primary pQCT and pQCT-FE variables. CONCLUSIONS pQCT-FE modeling can provide enhanced diagnostic performance compared with DXA and, given its moderate cost, may be useful in clinical settings.
Collapse
Affiliation(s)
- H Jiang
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - D L Robinson
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3052, Victoria, Australia
| | - C J Yates
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, 3052, Australia
- Bone and Mineral Medicine, Royal Melbourne Hospital, Melbourne, 3052, Victoria, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, 3052, Victoria, Australia
| | - P V S Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3052, Victoria, Australia
| | - J D Wark
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, 3052, Australia.
- Bone and Mineral Medicine, Royal Melbourne Hospital, Melbourne, 3052, Victoria, Australia.
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, 3052, Victoria, Australia.
| |
Collapse
|
31
|
Alcântara ACS, Assis I, Prada D, Mehle K, Schwan S, Costa-Paiva L, Skaf MS, Wrobel LC, Sollero P. Patient-Specific Bone Multiscale Modelling, Fracture Simulation and Risk Analysis-A Survey. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E106. [PMID: 31878356 PMCID: PMC6981613 DOI: 10.3390/ma13010106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022]
Abstract
This paper provides a starting point for researchers and practitioners from biology, medicine, physics and engineering who can benefit from an up-to-date literature survey on patient-specific bone fracture modelling, simulation and risk analysis. This survey hints at a framework for devising realistic patient-specific bone fracture simulations. This paper has 18 sections: Section 1 presents the main interested parties; Section 2 explains the organzation of the text; Section 3 motivates further work on patient-specific bone fracture simulation; Section 4 motivates this survey; Section 5 concerns the collection of bibliographical references; Section 6 motivates the physico-mathematical approach to bone fracture; Section 7 presents the modelling of bone as a continuum; Section 8 categorizes the surveyed literature into a continuum mechanics framework; Section 9 concerns the computational modelling of bone geometry; Section 10 concerns the estimation of bone mechanical properties; Section 11 concerns the selection of boundary conditions representative of bone trauma; Section 12 concerns bone fracture simulation; Section 13 presents the multiscale structure of bone; Section 14 concerns the multiscale mathematical modelling of bone; Section 15 concerns the experimental validation of bone fracture simulations; Section 16 concerns bone fracture risk assessment. Lastly, glossaries for symbols, acronyms, and physico-mathematical terms are provided.
Collapse
Affiliation(s)
- Amadeus C. S. Alcântara
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| | - Israel Assis
- Department of Integrated Systems, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil;
| | - Daniel Prada
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| | - Konrad Mehle
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, 06217 Merseburg, Germany;
| | - Stefan Schwan
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle/Saale, Germany;
| | - Lúcia Costa-Paiva
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-887, Brazil;
| | - Munir S. Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil;
| | - Luiz C. Wrobel
- Institute of Materials and Manufacturing, Brunel University London, Uxbridge UB8 3PH, UK;
- Department of Civil and Environmental Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| | - Paulo Sollero
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| |
Collapse
|
32
|
Altai Z, Qasim M, Li X, Viceconti M. The effect of boundary and loading conditions on patient classification using finite element predicted risk of fracture. Clin Biomech (Bristol, Avon) 2019; 68:137-143. [PMID: 31202100 DOI: 10.1016/j.clinbiomech.2019.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Osteoporotic proximal femoral fractures associated to falls are a major health burden in the ageing society. Recently, bone strength estimated by finite element models emerged as a feasible alternative to areal bone mineral density as a predictor of fracture risk. However, previous studies showed that the accuracy of patients' classification under their risk of fracture using finite element strength when simulating posterolateral falls is only marginally better than that of areal bone mineral density. Patients tend to fall in various directions: since the predicted strength is sensitive to the fall direction, a prediction based on certain fall directions might not be fully representative of the physical event. Hence, side fall boundary conditions may not be completely representing the physical event. METHODS The effect of different side fall boundary and loading conditions on a retrospective cohort of 98 postmenopausal women was evaluated to test models' ability to discriminate fracture and control cases. Three different boundary conditions (Linear, Multi-point constraints and Contact model) were investigated under various anterolateral and posterolateral falls. FINDINGS The stratification power estimated by the area under the receiver operating characteristic curve was highest for Contact model (0.82), followed by Multi-point constraints and Linear models with 0.80. Both Contact and MPC models predicted high strains in various locations of the proximal femur including the greater trochanter, which has rarely reported previously. INTERPRETATION A full range of fall directions and less restrictive displacement constraints can improve the finite element strength ability to classify patients under their risk of fracture.
Collapse
Affiliation(s)
- Zainab Altai
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Muhammad Qasim
- Faculty of Health, Education, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, UK
| | - Xinshan Li
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
| | - Marco Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Italy; Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
33
|
Fleps I, Fung A, Guy P, Ferguson SJ, Helgason B, Cripton PA. Subject-specific ex vivo simulations for hip fracture risk assessment in sideways falls. Bone 2019; 125:36-45. [PMID: 31071479 DOI: 10.1016/j.bone.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/17/2019] [Accepted: 05/04/2019] [Indexed: 12/18/2022]
Abstract
The risk of hip fracture of a patient due to a fall can be described from a mechanical perspective as the capacity of the femur to withstand the force that it experiences in the event of a fall. So far, impact forces acting on the lateral aspect of the pelvic region and femur strength have been investigated separately. This study used inertia-driven cadaveric impact experiments that mimic falls to the side from standing in order to evaluate the subject-specific force applied to the hip during impact and the fracture outcome in the same experimental model. Eleven fresh-frozen pelvis-femur constructs (6 female, 5 male, age = 77 years (SD = 13 years), BMI = 22.8 kg/m2 (SD = 7.8 kg/m2), total hip aBMD = 0.734 g/cm2 (SD = 0.149 g/cm2)), were embedded into soft tissue surrogate material that matched subject-specific mass and body shape. The specimens were attached to metallic lower-limb constructions with subject-specific masses and subjected to an inverted pendulum motion. Impact forces were recorded with a 6-axis force plate at 10,000 Hz and three dimensional deflections in the pelvic region were tracked with two high-speed cameras at 5000 Hz. Of the 11 specimens, 5 femur fractures and 3 pelvis fractures were observed. Three specimens did not fracture. aBMD alone did not reliably separate femur fractures from non-fractures. However, a mechanical risk ratio, which was calculated as the impact force divided by aBMD, classified specimens reliably into femur fractures and non-fractures. Single degree of freedom models, based on specimen kinetics, were able to predict subject-specific peak impact forces (RMSE = 2.55% for non-fractures). This study provides direct evidence relating subject-specific impact forces and subject-specific strength estimates and improves the assessment of the mechanical risk of hip fracture for a specific femur/pelvis combination in a sideways fall.
Collapse
Affiliation(s)
- Ingmar Fleps
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; Orthopaedics and Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
| | - Anita Fung
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; Orthopaedics and Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Pierre Guy
- Division of Orthopaedic Trauma, Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| | | | | | - Peter A Cripton
- Orthopaedics and Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
34
|
Bone microstructure in finite element modeling: the functional role of trabeculae in the femoral head of Sciurus vulgaris. ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-019-00456-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Benca E, Synek A, Amini M, Kainberger F, Hirtler L, Windhager R, Mayr W, Pahr DH. QCT-based finite element prediction of pathologic fractures in proximal femora with metastatic lesions. Sci Rep 2019; 9:10305. [PMID: 31311994 PMCID: PMC6635505 DOI: 10.1038/s41598-019-46739-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 07/04/2019] [Indexed: 11/17/2022] Open
Abstract
Predicting pathologic fractures in femora with metastatic lesions remains a clinical challenge. Currently used guidelines are inaccurate, especially to predict non-impeding fractures. This study evaluated the ability of a nonlinear quantitative computed tomography (QCT)-based homogenized voxel finite element (hvFE) model to predict patient-specific pathologic fractures. The hvFE model was generated highly automated from QCT images of human femora. The femora were previously loaded in a one-legged stance setup in order to assess stiffness, failure load, and fracture location. One femur of each pair was tested in its intact state, while the contralateral femur included a simulated lesion on either the superolateral- or the inferomedial femoral neck. The hvFE model predictions of the stiffness (0.47 < R2 < 0.94), failure load (0.77 < R2 < 0.98), and exact fracture location (68%) were in good agreement with the experimental data. However, the model underestimated the failure load by a factor of two. The hvFE models predicted significant differences in stiffness and failure load for femora with superolateral- and inferomedial lesions. In contrast, standard clinical guidelines predicted identical fracture risk for both lesion sites. This study showed that the subject-specific QCT-based hvFE model could predict the effect of metastatic lesions on the biomechanical behaviour of the proximal femur with moderate computational time and high level of automation and could support treatment strategy in patients with metastatic bone disease.
Collapse
Affiliation(s)
- Emir Benca
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090, Vienna, Austria.
| | - Alexander Synek
- Institute for Lightweight Design and Structural Biomechanics, TU Wien, 1060, Vienna, Austria
| | - Morteza Amini
- Institute for Lightweight Design and Structural Biomechanics, TU Wien, 1060, Vienna, Austria
| | - Franz Kainberger
- Department of Radiology, Medical University of Vienna, 1090, Vienna, Austria
| | - Lena Hirtler
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Winfried Mayr
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090, Vienna, Austria
| | - Dieter H Pahr
- Institute for Lightweight Design and Structural Biomechanics, TU Wien, 1060, Vienna, Austria
| |
Collapse
|
36
|
Ghouchani A, Rouhi G, Ebrahimzadeh MH. Investigation on distal femoral strength and reconstruction failure following curettage and cementation: In-vitro tests with finite element analyses. Comput Biol Med 2019; 112:103360. [PMID: 31330318 DOI: 10.1016/j.compbiomed.2019.103360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 12/28/2022]
Abstract
Cement augmentation following benign bone tumor surgery, i.e. curettage and cementation, is recommended in patients at high risk of fracture. Nonetheless, identifying appropriate cases and devices for augmentation remains debatable. Our goal was to develop a validated biomechanical tool to: predict the post-surgery strength of a femoral bone, assess the precision and accuracy of the predicted strength, and discover the mechanisms of reconstruction failure, with the aim of finding a safe biomechanical fixation. Tumor surgery was mimicked in quantitative-CT (QCT) scanned cadaveric human distal femora, and subsequently tested in compression to measure bone strength (FExp). Finite element (FE) models considering bone material non-homogeneity and non-linearity were constructed to predict bone strength (FFE). Analyses of contact, damage, and crack initiation at the bone-cement interface (BCI) were completed to investigate critical failure locations. Results of paired t-tests did not show a significant difference between FExp and FFE (P > 0.05); linear regression analysis resulted in good correlation between FExp and FFE (R2 = 0.94). Evaluation of the models precision using linear regression analysis yielded R2 = 0.89, with the slope = 1.08 and intercept = -324.16 N. FE analyses showed the initiation of damage and crack and a larger cement debonding area at the proximal end and most interior part of BCI, respectively. Therefore, we speculated that devices that reinforce critical failure locations offer the most biomechanical advantage. The QCT-based FE method proved to be a reliable tool to predict distal femoral strength, identify some causes of reconstruction failure, and assist in a safer selection of fixation devices to reduce post-operative fracture risk.
Collapse
Affiliation(s)
- Azadeh Ghouchani
- Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran.
| | - Gholamreza Rouhi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran.
| | - Mohammad Hosein Ebrahimzadeh
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Sciences, Ahmad Abad Street. Ghaem Hospital, Mashhad, Iran.
| |
Collapse
|
37
|
Michalski AS, Edwards WB, Boyd SK. The Influence of Reconstruction Kernel on Bone Mineral and Strength Estimates Using Quantitative Computed Tomography and Finite Element Analysis. J Clin Densitom 2019; 22:219-228. [PMID: 29054559 DOI: 10.1016/j.jocd.2017.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 11/15/2022]
Abstract
Quantitative computed tomography has been posed as an alternative imaging modality to investigate osteoporosis. We examined the influence of computed tomography convolution back-projection reconstruction kernels on the analysis of bone quantity and estimated mechanical properties in the proximal femur. Eighteen computed tomography scans of the proximal femur were reconstructed using both a standard smoothing reconstruction kernel and a bone-sharpening reconstruction kernel. Following phantom-based density calibration, we calculated typical bone quantity outcomes of integral volumetric bone mineral density, bone volume, and bone mineral content. Additionally, we performed finite element analysis in a standard sideways fall on the hip loading configuration. Significant differences for all outcome measures, except integral bone volume, were observed between the 2 reconstruction kernels. Volumetric bone mineral density measured using images reconstructed by the standard kernel was significantly lower (6.7%, p < 0.001) when compared with images reconstructed using the bone-sharpening kernel. Furthermore, the whole-bone stiffness and the failure load measured in images reconstructed by the standard kernel were significantly lower (16.5%, p < 0.001, and 18.2%, p < 0.001, respectively) when compared with the image reconstructed by the bone-sharpening kernel. These data suggest that for future quantitative computed tomography studies, a standardized reconstruction kernel will maximize reproducibility, independent of the use of a quantitative calibration phantom.
Collapse
Affiliation(s)
- Andrew S Michalski
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - W Brent Edwards
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Steven K Boyd
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
38
|
Katz Y, Dahan G, Sosna J, Shelef I, Cherniavsky E, Yosibash Z. Scanner influence on the mechanical response of QCT-based finite element analysis of long bones. J Biomech 2019; 86:149-159. [DOI: 10.1016/j.jbiomech.2019.01.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 01/30/2023]
|
39
|
Falcinelli C, Di Martino A, Gizzi A, Vairo G, Denaro V. Mechanical behavior of metastatic femurs through patient-specific computational models accounting for bone-metastasis interaction. J Mech Behav Biomed Mater 2019; 93:9-22. [PMID: 30738327 DOI: 10.1016/j.jmbbm.2019.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/21/2022]
Abstract
This paper proposes a computational model based on a finite-element formulation for describing the mechanical behavior of femurs affected by metastatic lesions. A novel geometric/constitutive description is introduced by modelling healthy bone and metastases via a linearly poroelastic constitutive approach. A Gaussian-shaped graded transition of material properties between healthy and metastatic tissues is prescribed, in order to account for the bone-metastasis interaction. Loading-induced failure processes are simulated by implementing a progressive damage procedure, formulated via a quasi-static displacement-driven incremental approach, and considering both a stress- and a strain-based failure criterion. By addressing a real clinical case, left and right patient-specific femur models are geometrically reconstructed via an ad-hoc imaging procedure and embedding multiple distributions of metastatic lesions along femurs. Significant differences in fracture loads, fracture mechanisms, and damage patterns, are highlighted by comparing the proposed constitutive description with a purely elastic formulation, where the metastasis is treated as a pseudo-healthy tissue or as a void region. Proposed constitutive description allows to capture stress/strain localization mechanisms within the metastatic tissue, revealing the model capability in describing possible strain-induced mechano-biological stimuli driving onset and evolution of the lesion. The proposed approach opens towards the definition of effective computational strategies for supporting clinical decision and treatments regarding metastatic femurs, contributing also to overcome some limitations of actual standards and procedures.
Collapse
Affiliation(s)
- Cristina Falcinelli
- Department of Engineering, Campus Bio-Medico University of Rome, Italy; Department of Civil Engineering & Computer Science, University of Rome "Tor Vergata", Italy
| | - Alberto Di Martino
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Italy; Sideny Kimmel Medical College, Thomas Jefferson University (SKMC), Philadelphia, USA
| | - Alessio Gizzi
- Department of Engineering, Campus Bio-Medico University of Rome, Italy
| | - Giuseppe Vairo
- Department of Civil Engineering & Computer Science, University of Rome "Tor Vergata", Italy.
| | - Vincenzo Denaro
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Italy
| |
Collapse
|
40
|
Mirzaei M, Alavi F, Allaveisi F, Naeini V, Amiri P. Linear and nonlinear analyses of femoral fractures: Computational/experimental study. J Biomech 2018; 79:155-163. [DOI: 10.1016/j.jbiomech.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 01/23/2023]
|
41
|
Abstract
PURPOSE OF REVIEW Cortical bone mapping (CBM) is a technique for measuring localised skeletal changes from computed tomography (CT) images. It can provide measurements with accuracy surpassing the underlying imaging resolution. CBM can detect changes in several properties of the cortex, with no prior assumptions about the likely location of said changes. This paper summarises the theory behind CBM, discusses its strengths and limitations, and reviews some studies in which it has been applied. RECENT FINDINGS CBM has revealed associations between fracture risk and cortical properties in specific regions of the proximal femur which present feasible therapeutic targets. Analyses of several pharmaceutical and exercise interventions quantify effects that are distinct both in location and in the nature of the micro-architectural changes. CBM has illuminated age-related changes in the proximal femur and has recently been applied to other bones, as well as to the assessment of cartilage. The CBM processing pipeline is designed primarily for large cohort studies. Its main impact thus far has not been in the realm of clinical practice, but rather to improve our fundamental understanding of localised bone structure and changes.
Collapse
Affiliation(s)
- Graham Treece
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK.
| | - Andrew Gee
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| |
Collapse
|
42
|
Panyasantisuk J, Dall'Ara E, Pretterklieber M, Pahr DH, Zysset PK. Mapping anisotropy improves QCT-based finite element estimation of hip strength in pooled stance and side-fall load configurations. Med Eng Phys 2018; 59:36-42. [PMID: 30131112 DOI: 10.1016/j.medengphy.2018.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/26/2018] [Accepted: 06/24/2018] [Indexed: 02/05/2023]
Abstract
Hip fractures are one of the most severe consequences of osteoporosis. Compared to the clinical standard of DXA-based aBMD at the femoral neck, QCT-based FEA delivers a better surrogate of femoral strength and gains acceptance for the calculation of hip fracture risk when a CT reconstruction is available. Isotropic, homogenised voxel-based, finite element (hvFE) models are widely used to estimate femoral strength in cross-sectional and longitudinal clinical studies. However, fabric anisotropy is a classical feature of the architecture of the proximal femur and the second determinant of the homogenised mechanical properties of trabecular bone. Due to the limited resolution, fabric anisotropy cannot be derived from clinical CT reconstructions. Alternatively, fabric anisotropy can be extracted from HR-pQCT images of cadaveric femora. In this study, fabric anisotropy from HR-pQCT images was mapped onto QCT-based hvFE models of 71 human proximal femora for which both HR-pQCT and QCT images were available. Stiffness and ultimate load computed from anisotropic hvFE models were compared with previous biomechanical tests in both stance and side-fall configurations. The influence of using the femur-specific versus a mean fabric distribution on the hvFE predictions was assessed. Femur-specific and mean fabric enhance the prediction of experimental ultimate force for the pooled, i.e. stance and side-fall, (isotropic: r2=0.81, femur-specific fabric: r2=0.88, mean fabric: r2=0.86,p<0.001) but not for the individual configurations. Fabric anisotropy significantly improves bone strength prediction for the pooled configurations, and mapped fabric provides a comparable prediction to true fabric. The mapping of fabric anisotropy is therefore expected to help generate more accurate QCT-based hvFE models of the proximal femur for personalised or multiple load configurations.
Collapse
Affiliation(s)
- J Panyasantisuk
- Institute for Surgical Technology and Biomechanics, University of Bern, Switzerland
| | - E Dall'Ara
- Department of Oncology and Metabolism and INSIGNEO, Institute for in silico Medicine, University of Sheffield, United Kingdom
| | | | - D H Pahr
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, Austria; Department for Anatomy and Biomechanics, Karl Landsteiner Private University for Health Sciences, Austria
| | - P K Zysset
- Institute for Surgical Technology and Biomechanics, University of Bern, Switzerland.
| |
Collapse
|
43
|
Aldieri A, Terzini M, Osella G, Priola AM, Angeli A, Veltri A, Audenino A, Bignardi C. Osteoporotic hip fracture prediction: is T-score based criterion enough? A Hip Structural Analysis based model. J Biomech Eng 2018; 140:2686533. [PMID: 30029233 DOI: 10.1115/1.4040586] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Indexed: 11/08/2022]
Abstract
At present, the current gold-standard for osteoporosis diagnosis is based on bone mineral density measurement, which, however, has been demonstrated to poorly estimate fracture risk. Further parameters in the hands of the clinicians are represented by the Hip Structural Analysis (HSA) variables, which include geometric information of the proximal femur cross-section. The purpose of this study was to investigate the suitability of HSA parameters as additional hip fracture risk predictors. With this aim, twenty-eight three-dimensional patient-specific models of the proximal femur were built from CT images and a sideways fall condition was reproduced by finite element analyses. A tensile or compressive predominance based on minimum and maximum principal strains was determined at each volume element and a Risk Factor (RF) was calculated. The power of HSA variables combinations to predict the maximum superficial RF values was assessed by multivariate linear regression analysis. The optimal regression model, identified through the Akaike information criterion, only comprises two variables, the buckling ratio and the neck-shaft angle. In order to validate the study, the model was tested on two additional patients who suffered a hip fracture after a fall. The results classified the patients in the high risk level, confirming the prediction power of the adopted model.
Collapse
Affiliation(s)
- Alessandra Aldieri
- Polito Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24 - 10129 Turin, Italy
| | - Mara Terzini
- Polito Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24 - 10129 Turin, Italy
| | - Giangiacomo Osella
- Department of Clinical and Biological Sciences, Internal Medicine, San Luigi Gonzaga University Hospital, Orbassano, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Adriano M Priola
- Department of Diagnostic Imaging, San Luigi Gonzaga University Hospital, Orbassano, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Alberto Angeli
- Department of Internal Medicine, Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, Orbassano, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Andrea Veltri
- Unit of Radiology, Department of Oncology, San Luigi Gonzaga University Hospital, Orbassano, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Alberto Audenino
- Polito Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24 - 10129 Turin, Italy
| | - Cristina Bignardi
- Polito Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24 - 10129 Turin, Italy
| |
Collapse
|
44
|
Abe S, Narra N, Nikander R, Hyttinen J, Kouhia R, Sievänen H. Impact loading history modulates hip fracture load and location: A finite element simulation study of the proximal femur in female athletes. J Biomech 2018; 76:136-143. [PMID: 29921524 DOI: 10.1016/j.jbiomech.2018.05.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/11/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
Abstract
Sideways falls impose high stress on the thin superolateral cortical bone of the femoral neck, the region regarded as a fracture-prone region of the hip. Exercise training is a natural mode of mechanical loading to make bone more robust. Exercise-induced adaptation of cortical bone along the femoral neck has been previously demonstrated. However, it is unknown whether this adaption modulates hip fracture behavior. The purpose of this study was to investigate the influence of specific exercise loading history on fall-induced hip fracture behavior by estimating fracture load and location with proximal femur finite element (FE) models created from magnetic resonance images (MRI) of 111 women with distinct exercise histories: 91 athletes (aged 24.7 ± 6.1 years, >8 years competitive career) and 20 women as controls (aged 23.7 ± 3.8 years). The athletes were divided into five groups based on typical loading patterns of their sports: high-impact (H-I: 9 triple-jumpers and 10 high jumpers), odd-impact (O-I: 9 soccer and 10 squash players), high-magnitude (H-M: 17 power-lifters), repetitive-impact (R-I: 18 endurance runners), and repetitive non-impact (R-NI: 18 swimmers). Compared to the controls, the H-I, O-I, and R-I groups had significantly higher (11-26%, p < 0.05) fracture loads. Also, the fracture location in the H-I and O-I groups was significantly more proximal (7-10%) compared to the controls. These results suggest that an exercise loading history of high impacts, impacts from unusual directions, or repetitive impacts increases the fracture load and may lower the risk of fall-induced hip fracture.
Collapse
Affiliation(s)
- Shinya Abe
- Laboratory of Civil Engineering, Tampere University of Technology, Tampere, Finland.
| | - Nathaniel Narra
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Riku Nikander
- Gerontology Research Center, Faculty of Sports Sciences, University of Jyväskylä, Jyväskylä, Finland; Central Hospital of Central Finland, Jyväskylä, Finland; GeroCenter Foundation for Aging Research and Development, Jyväskylä, Finland
| | - Jari Hyttinen
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Reijo Kouhia
- Laboratory of Civil Engineering, Tampere University of Technology, Tampere, Finland
| | - Harri Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland.
| |
Collapse
|
45
|
Ridzwan MIZ, Sukjamsri C, Pal B, van Arkel RJ, Bell A, Khanna M, Baskaradas A, Abel R, Boughton O, Cobb J, Hansen UN. Femoral fracture type can be predicted from femoral structure: A finite element study validated by digital volume correlation experiments. J Orthop Res 2018; 36:993-1001. [PMID: 28762563 DOI: 10.1002/jor.23669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/24/2017] [Indexed: 02/04/2023]
Abstract
Proximal femoral fractures can be categorized into two main types: Neck and intertrochanteric fractures accounting for 53% and 43% of all proximal femoral fractures, respectively. The possibility to predict the type of fracture a specific patient is predisposed to would allow drug and exercise therapies, hip protector design, and prophylactic surgery to be better targeted for this patient rendering fracture preventing strategies more effective. This study hypothesized that the type of fracture is closely related to the patient-specific femoral structure and predictable by finite element (FE) methods. Fourteen femora were DXA scanned, CT scanned, and mechanically tested to fracture. FE-predicted fracture patterns were compared to experimentally observed fracture patterns. Measurements of strain patterns to explain neck and intertrochanteric fracture patterns were performed using a digital volume correlation (DVC) technique and compared to FE-predicted strains and experimentally observed fracture patterns. Although loaded identically, the femora exhibited different fracture types (six neck and eight intertrochanteric fractures). CT-based FE models matched the experimental observations well (86%) demonstrating that the fracture type can be predicted. DVC-measured and FE-predicted strains showed obvious consistency. Neither DXA-based BMD nor any morphologic characteristics such as neck diameter, femoral neck length, or neck shaft angle were associated with fracture type. In conclusion, patient-specific femoral structure correlates with fracture type and FE analyses were able to predict these fracture types. Also, the demonstration of FE and DVC as metrics of the strains in bones may be of substantial clinical value, informing treatment strategies and device selection and design. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:993-1001, 2018.
Collapse
Affiliation(s)
- Mohamad Ikhwan Zaini Ridzwan
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.,School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, 14300, Malaysia
| | - Chamaiporn Sukjamsri
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.,Faculty of Engineering, Department of Biomedical Engineering, Srinakharinwirot University, Nakhonnayok, 26120, Thailand
| | - Bidyut Pal
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.,School of Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, United Kingdom
| | - Richard J van Arkel
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Andrew Bell
- MSC Software Ltd., 4 Archipelago, Lyon Way, Frimley, Surrey, GU16 7ER, United Kingdom
| | - Monica Khanna
- Department of Clinical Imaging, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Aroon Baskaradas
- Trauma and Orthopaedic Surgery, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Richard Abel
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London, W6 8RF, United Kingdom
| | - Oliver Boughton
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London, W6 8RF, United Kingdom
| | - Justin Cobb
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London, W6 8RF, United Kingdom
| | - Ulrich N Hansen
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
46
|
Enns-Bray W, Bahaloo H, Fleps I, Ariza O, Gilchrist S, Widmer R, Guy P, Pálsson H, Ferguson S, Cripton P, Helgason B. Material mapping strategy to improve the predicted response of the proximal femur to a sideways fall impact. J Mech Behav Biomed Mater 2018; 78:196-205. [DOI: 10.1016/j.jmbbm.2017.10.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/25/2017] [Accepted: 10/26/2017] [Indexed: 11/29/2022]
|
47
|
Miura M, Nakamura J, Matsuura Y, Wako Y, Suzuki T, Hagiwara S, Orita S, Inage K, Kawarai Y, Sugano M, Nawata K, Ohtori S. Prediction of fracture load and stiffness of the proximal femur by CT-based specimen specific finite element analysis: cadaveric validation study. BMC Musculoskelet Disord 2017; 18:536. [PMID: 29246133 PMCID: PMC5732520 DOI: 10.1186/s12891-017-1898-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/08/2017] [Indexed: 11/14/2022] Open
Abstract
Background Finite element analysis (FEA) of the proximal femur has been previously validated with large mesh size, but these were insufficient to simulate the model with small implants in recent studies. This study aimed to validate the proximal femoral computed tomography (CT)-based specimen-specific FEA model with smaller mesh size using fresh frozen cadavers. Methods Twenty proximal femora from 10 cadavers (mean age, 87.1 years) were examined. CT was performed on all specimens with a calibration phantom. Nonlinear FEA prediction with stance configuration was performed using Mechanical Finder (mesh,1.5 mm tetrahedral elements; shell thickness, 0.2 mm; Poisson’s coefficient, 0.3), in comparison with mechanical testing. Force was applied at a fixed vertical displacement rate, and the magnitude of the applied load and displacement were continuously recorded. The fracture load and stiffness were calculated from force–displacement curve, and the correlation between mechanical testing and FEA prediction was examined. Results A pilot study with one femur revealed that the equations proposed by Keller for vertebra were the most reproducible for calculating Young’s modulus and the yield stress of elements of the proximal femur. There was a good linear correlation between fracture loads of mechanical testing and FEA prediction (R2 = 0.6187) and between the stiffness of mechanical testing and FEA prediction (R2 = 0.5499). There was a good linear correlation between fracture load and stiffness (R2 = 0.6345) in mechanical testing and an excellent correlation between these (R2 = 0.9240) in FEA prediction. Conclusions CT-based specimen-specific FEA model of the proximal femur with small element size was validated using fresh frozen cadavers. The equations proposed by Keller for vertebra were found to be the most reproducible for the proximal femur in elderly people.
Collapse
Affiliation(s)
- Michiaki Miura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan.
| | - Junichi Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Yusuke Matsuura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Yasushi Wako
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Takane Suzuki
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Shigeo Hagiwara
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Sumihisa Orita
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Kazuhide Inage
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Yuya Kawarai
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Masahiko Sugano
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Kento Nawata
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| |
Collapse
|
48
|
Johannesdottir F, Thrall E, Muller J, Keaveny TM, Kopperdahl DL, Bouxsein ML. Comparison of non-invasive assessments of strength of the proximal femur. Bone 2017; 105:93-102. [PMID: 28739416 DOI: 10.1016/j.bone.2017.07.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022]
Abstract
It is not clear which non-invasive method is most effective for predicting strength of the proximal femur in those at highest risk of fracture. The primary aim of this study was to compare the abilities of dual energy X-ray absorptiometry (DXA)-derived aBMD, quantitative computed tomography (QCT)-derived density and volume measures, and finite element analysis (FEA)-estimated strength to predict femoral failure load. We also evaluated the contribution of cortical and trabecular bone measurements to proximal femur strength. We obtained 76 human cadaveric proximal femurs (50 women and 26 men; age 74±8.8years), performed imaging with DXA and QCT, and mechanically tested the femurs to failure in a sideways fall configuration at a high loading rate. Linear regression analysis was used to construct the predictive model between imaging outcomes and experimentally-measured femoral strength for each method. To compare the performance of each method we used 3-fold cross validation repeated 10 times. The bone strength estimated by QCT-based FEA predicted femoral failure load (R2adj=0.78, 95%CI 0.76-0.80; RMSE=896N, 95%CI 830-961) significantly better than femoral neck aBMD by DXA (R2adj=0.69, 95%CI 0.66-0.72; RMSE=1011N, 95%CI 952-1069) and the QCT-based model (R2adj=0.73, 95%CI 0.71-0.75; RMSE=932N, 95%CI 879-985). Both cortical and trabecular bone contribute to femoral strength, the contribution of cortical bone being higher in femurs with lower trabecular bone density. These findings have implications for optimizing clinical approaches to assess hip fracture risk. In addition, our findings provide new insights that will assist in interpretation of the effects of osteoporosis treatments that preferentially impact cortical versus trabecular bone.
Collapse
Affiliation(s)
- Fjola Johannesdottir
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA.
| | - Erica Thrall
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - John Muller
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA, USA
| | | | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Faisal TR, Luo Y. Study of the variations of fall induced hip fracture risk between right and left femurs using CT-based FEA. Biomed Eng Online 2017; 16:116. [PMID: 28974207 PMCID: PMC5627442 DOI: 10.1186/s12938-017-0407-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/22/2017] [Indexed: 01/23/2023] Open
Abstract
Background Hip fracture of elderly people—suffering from osteoporosis—is a severe public health concern, which can be reduced by providing a prior assessment of hip fracture risk. Image-based finite element analysis (FEA) has been considered an effective computational tool to assess the hip fracture risk. Considering the femoral neck region is the weakest, fracture risk indicators (FRI) are evaluated for both single-legged stance and sideways fall configurations and are compared between left and right femurs of each subject. Quantitative Computed Tomography (QCT) scan datasets of thirty anonymous patients’ left and right femora have been considered for the FE models, which have been simulated with an equal magnitude of load applied to the aforementioned configurations. The requirement of bilateral hip assessment in predicting the fracture risk has been explored in this study. Results Comparing the sideways fall and single-legged stance, the FRI varies by 64 to 74% at the superior aspects and by 14 to 19% at the inferior surfaces of both the femora. The results of this in vivo analysis clearly substantiate that the fracture is expected to initiate at the superior surface of femoral neck region if a patient falls from his/her standing height. The distributions of FRI between the femurs vary considerably, and the variability is significant at the superior aspects. The p value (= 0.02) obtained from paired sample t-Test yields p value ≤ 0.05, which shows the evidence of variability of the FRI distribution between left and right femurs. Moreover, the comparison of FRIs between the left and right femur of men and women shows that women are more susceptible to hip fracture than men. Conclusions The results and statistical variation clearly signify a need for bilateral hip scanning in predicting hip fracture risk, which is clinically conducted, at present, based on one hip chosen randomly and may lead to inaccurate fracture prediction. This study, although preliminary, may play a crucial role in assessing the hip fractures of the geriatric population and thereby, reducing the cost of treatment by taking predictive measure.
Collapse
Affiliation(s)
- Tanvir R Faisal
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, 60610, USA
| | - Yunhua Luo
- Department of Mechanical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
50
|
Understanding Hip Fracture by QCT-Based Finite Element Modeling. J Med Biol Eng 2017. [DOI: 10.1007/s40846-017-0266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|