1
|
Liu X, Lin Z, Zhao S, Li F, Gao Q. Stress analysis method for ascending aortic aneurysm based on unloaded geometry with non-uniform thickness distribution. Biomech Model Mechanobiol 2025:10.1007/s10237-025-01949-4. [PMID: 40195244 DOI: 10.1007/s10237-025-01949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Using finite element method (FEM) to compute wall stress is now a common way to assess ascending thoracic aortic aneurysms (ATAA) severity. Medical images can provide aortic geometry for FEM, but thickness information is lacked and the geometry is at loaded state. Therefore, in this study, an unloaded geometry with a non-uniform thickness distribution is reconstructed. Measurements of wall thickness are taken from resected tissue to accurately replicate the thickness distribution. Subsequently, a novel method, derived from the existing fixed-point iterative (FPI) approach, is developed and applied to estimate the unloaded aortic geometry. This new method involves updating the relaxation factor at each iteration to improve robustness by constraining it within a threshold and normalizing it. Compared to the traditional FPI method, this novel approach is better tailored to the aortic geometries examined in this study. The study compares stress results obtained from models with uniform and non-uniform aortic wall thickness, both with and without assuming unloaded conditions. Findings indicate that stress distribution of non-uniform geometry matches better to the measured damage extent. Stress distribution of unloaded geometry is similar to that of loaded geometry, while the use of unloaded geometry enhances the stress gradient. The stress analysis reveals variations across different directions and regions, with the second principal stress (SPS) magnitude that is more sensitive to the circumferential region than the first principal stress (FPS) and von Mises stress (VMS). There is an overlap area between the high SPS region and the most expanded region. The most dilated area usually matched with high SPS region for loaded and unloaded geometry or uniform and non-uniform geometry. Thus, although magnitude of SPS is smaller than that of FPS and of VMS, it is suggested to pay more attention to SPS in severity assessment of ATAA aneurysm.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou, China
| | - Zhihong Lin
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou, China
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Li
- Heart Valve and Atrial Fibrillation Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Qi Gao
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Rolf-Pissarczyk M, Schussnig R, Fries TP, Fleischmann D, Elefteriades JA, Humphrey JD, Holzapfel GA. Mechanisms of aortic dissection: From pathological changes to experimental and in silico models. PROGRESS IN MATERIALS SCIENCE 2025; 150:101363. [PMID: 39830801 PMCID: PMC11737592 DOI: 10.1016/j.pmatsci.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aortic dissection continues to be responsible for significant morbidity and mortality, although recent advances in medical data assimilation and in experimental and in silico models have improved our understanding of the initiation and progression of the accumulation of blood within the aortic wall. Hence, there remains a pressing necessity for innovative and enhanced models to more accurately characterize the associated pathological changes. Early on, experimental models were employed to uncover mechanisms in aortic dissection, such as hemodynamic changes and alterations in wall microstructure, and to assess the efficacy of medical implants. While experimental models were once the only option available, more recently they are also being used to validate in silico models. Based on an improved understanding of the deteriorated microstructure of the aortic wall, numerous multiscale material models have been proposed in recent decades to study the state of stress in dissected aortas, including the changes associated with damage and failure. Furthermore, when integrated with accessible patient-derived medical data, in silico models prove to be an invaluable tool for identifying correlations between hemodynamics, wall stresses, or thrombus formation in the deteriorated aortic wall. They are also advantageous for model-guided design of medical implants with the aim of evaluating the deployment and migration of implants in patients. Nonetheless, the utility of in silico models depends largely on patient-derived medical data, such as chosen boundary conditions or tissue properties. In this review article, our objective is to provide a thorough summary of medical data elucidating the pathological alterations associated with this disease. Concurrently, we aim to assess experimental models, as well as multiscale material and patient data-informed in silico models, that investigate various aspects of aortic dissection. In conclusion, we present a discourse on future perspectives, encompassing aspects of disease modeling, numerical challenges, and clinical applications, with a particular focus on aortic dissection. The aspiration is to inspire future studies, deepen our comprehension of the disease, and ultimately shape clinical care and treatment decisions.
Collapse
Affiliation(s)
| | - Richard Schussnig
- High-Performance Scientific Computing, University of Augsburg, Germany
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Thomas-Peter Fries
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Dominik Fleischmann
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, USA
| | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
3
|
Lu J, Zambetti B, Plant J, Gupta A, Nagarsheth K, Toursavadkohi S. Simultaneous Endovascular Aortic Repair Expands Transcatheter Aortic Valve Replacement Eligibility to Patients With Hostile Aortic Pathology. Vasc Endovascular Surg 2025; 59:257-265. [PMID: 39392929 DOI: 10.1177/15385744241292122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
BACKGROUND In recent years, Transcatheter Aortic Valve Replacement (TAVR) has become a primary modality of therapy in moderate-high risk patients with symptomatic aortic stenosis. Although clinicians remain vigilant about screening for both aortic stenosis, many patients still, nevertheless, often present only when they are symptomatic. Unfortunately, when isolated TAVR is performed in the context of hostile aortic pathology, it has been reported that patients suffer from higher rates of complications such as rupture, dissection, or death post-operatively. OBJECTIVES To explore the utility of a simultaneous TAVR and endovascular aortic repair in addressing symptomatic aortic stenosis in challenging patients with hostile aortic pathology. METHODS Retrospective case series within a tertiary care hospital between May 2017 and December 2023. RESULTS A total of 11 patients underwent simultaneous endovascular aortic repair and TAVR. TAVR was performed first in 9/11 (82%) of the procedures while endovascular aortic repair was performed first in 2/11 procedures (18%). The median age was 84 years old (IQR = 77-86 years old). The median LOS was 3 days (IQR = 2-10 days). The median procedure time was 155 minutes (IQR = 111-202 minutes) and the median contrast amount was 100 CC (IQR = 65-139 CC). 2 patients (18%) experienced post-operative complications. Both of these patients required re-intervention. This cohort of patients did not experience any mortality at 30 days related to pertinent complications or adverse MACE events. All patients were transferred to the PACU and ultimately discharged home. CONCLUSIONS Extending TAVR eligibility to high-risk patients with hostile aortic pathology through the implementation of simultaneous endovascular aortic repair, performed via the same access site, is an effective strategy for management of symptomatic aortic stenosis in the context of extensive cardiovascular co-morbidities.
Collapse
Affiliation(s)
- Jeffrey Lu
- Division of Vascular Surgery, Department of Surgery, University of Maryland, Baltimore, MD, USA
| | - Benjamin Zambetti
- Division of Vascular Surgery, Department of Surgery, University of Maryland, Baltimore, MD, USA
| | - Joshua Plant
- Division of Vascular Surgery, Department of Surgery, University of Maryland, Baltimore, MD, USA
| | - Anuj Gupta
- Division of Vascular Surgery, Department of Surgery, University of Maryland, Baltimore, MD, USA
| | - Khanjan Nagarsheth
- Division of Vascular Surgery, Department of Surgery, University of Maryland, Baltimore, MD, USA
| | - Shahab Toursavadkohi
- Division of Vascular Surgery, Department of Surgery, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
4
|
Catalano C, Crascì F, Puleo S, Scuoppo R, Pasta S, Raffa GM. Computational fluid dynamics in cardiac surgery and perfusion: A review. Perfusion 2025; 40:362-370. [PMID: 38850015 DOI: 10.1177/02676591241239277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Cardiovascular diseases persist as a leading cause of mortality and morbidity, despite significant advances in diagnostic and surgical approaches. Computational Fluid Dynamics (CFD) represents a branch of fluid mechanics widely used in industrial engineering but is increasingly applied to the cardiovascular system. This review delves into the transformative potential for simulating cardiac surgery procedures and perfusion systems, providing an in-depth examination of the state-of-the-art in cardiovascular CFD modeling. The study first describes the rationale for CFD modeling and later focuses on the latest advances in heart valve surgery, transcatheter heart valve replacement, aortic aneurysms, and extracorporeal membrane oxygenation. The review underscores the role of CFD in better understanding physiopathology and its clinical relevance, as well as the profound impact of hemodynamic stimuli on patient outcomes. By integrating computational methods with advanced imaging techniques, CFD establishes a quantitative framework for understanding the intricacies of the cardiac field, providing valuable insights into disease progression and treatment strategies. As technology advances, the evolving synergy between computational simulations and clinical interventions is poised to revolutionize cardiovascular care. This collaboration sets the stage for more personalized and effective therapeutic strategies. With its potential to enhance our understanding of cardiac pathologies, CFD stands as a promising tool for improving patient outcomes in the dynamic landscape of cardiovascular medicine.
Collapse
Affiliation(s)
- Chiara Catalano
- Department of Engineering, Università degli Studi di Palermo, Palermo, Italy
| | - Fabrizio Crascì
- Department of Engineering, Università degli Studi di Palermo, Palermo, Italy
- Department of Research, IRCCS-ISMETT, Palermo, Italy
| | - Silvia Puleo
- Department of Engineering, Università degli Studi di Palermo, Palermo, Italy
| | - Roberta Scuoppo
- Department of Engineering, Università degli Studi di Palermo, Palermo, Italy
| | - Salvatore Pasta
- Department of Engineering, Università degli Studi di Palermo, Palermo, Italy
- Department of Research, IRCCS-ISMETT, Palermo, Italy
| | - Giuseppe M Raffa
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| |
Collapse
|
5
|
Mourato A, Valente R, Xavier J, Brito M, Avril S, Tomás AC, Fragata J. Comparative analysis of Zero Pressure Geometry and prestress methods in cardiovascular Fluid-Structure Interaction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108475. [PMID: 39499982 DOI: 10.1016/j.cmpb.2024.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Modelling patient-specific aortic biomechanics with advanced computational techniques, such as Fluid-Structure Interaction (FSI), can be crucial to provide effective decision-making indices to enhance current clinical practices. To effectively simulate Ascending Thoracic Aortic Aneurysms (ATAA), the stress-free configuration must be defined. The Zero Pressure Geometry (ZPG) and the Prestress Tensor (PT) are two of the main approaches to tackle this issue. However, their impact on the numerical results is yet to be analysed. Computed Tomography Angiography (CTA) and Magnetic Resonance Imaging (MRI) data were used to develop patient-specific 2-way FSI frameworks. METHODS Three models were developed considering different tissue prestressing approaches to account for the reference configuration and their numerical results were compared. The selected approaches were: (i) ZPG, (ii) PT and (iii) a combination of the PT approach with a regional mapping of material properties (PTCAL). RESULTS The pressure fields estimated by all models were equivalent. The estimation of Wall Shear Stress (WSS) based metrics revealed good correspondence between all models except the Relative Residence Time (RRT). Regarding ATAA wall mechanics, the proposed extension to the PT approach presented a closer agreement with the ZPG model than its counterpart. Additionally, the PT and PTCAL approaches required around 60% fewer iterations to achieve cycle-to-cycle convergence than the ZPG algorithm. CONCLUSION Using a regional mapping of material properties in combination with the PT method presented a better correspondence with the ZPG approach. The outcomes of this study can pave the way for advancing the accuracy and convergence of ATAA numerical models using the PT methodology.
Collapse
Affiliation(s)
- André Mourato
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, Caparica 2829-516, Portugal; Intelligent Systems Associate Laboratory, Campus Azurém, Guimarães 4800-058, Portugal.
| | - Rodrigo Valente
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, Caparica 2829-516, Portugal; Intelligent Systems Associate Laboratory, Campus Azurém, Guimarães 4800-058, Portugal.
| | - José Xavier
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, Caparica 2829-516, Portugal; Intelligent Systems Associate Laboratory, Campus Azurém, Guimarães 4800-058, Portugal.
| | - Moisés Brito
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, Caparica 2829-516, Portugal; Intelligent Systems Associate Laboratory, Campus Azurém, Guimarães 4800-058, Portugal.
| | - Stéphane Avril
- École des Mines de Saint-Étienne, University of Lyon, Inserm, Sainbiose U1059, Centre Ingénierie et Santé 10, rue de la Marandière, Saint-Etienne F-42270, France.
| | - António C Tomás
- Department of Cardiothoracic Surgery, Santa Marta Hospital, Rua de Santa Marta 50, Lisboa 1169-024, Portugal.
| | - José Fragata
- Department of Cardiothoracic Surgery, Santa Marta Hospital, Rua de Santa Marta 50, Lisboa 1169-024, Portugal; Department of Surgery and Human Morphology, NOVA Medical School, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal.
| |
Collapse
|
6
|
Kara R, Vergara C. Assessing turbulent effects in ascending aorta in presence of bicuspid aortic valve. Comput Methods Biomech Biomed Engin 2024; 27:2349-2361. [PMID: 37950490 DOI: 10.1080/10255842.2023.2279938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Aortic valves with bicuspids have two rather than three leaflets, which is a congenital heart condition. About 0.5-2% of people have a bicuspid aortic valve. Blood flow through the aorta is commonly believed to be laminar, although aortic valve disorders can cause turbulent transitions. Understanding the impact of turbulence is crucial for foreseeing how the disease will progress. The study's objective was use large eddy simulation to provide a thorough analysis of the turbulence in bicuspid aortic valve dysfunction. Using a large eddy simulation, the blood flow patterns of the bicuspid and tricuspid aortic valves were compared, and significant discrepancies were found. The velocity field in flow in bicuspid configurations was asymmetrically distributed toward the ascending aorta. In tricuspid aortic valve (TAV) the flow, on the other hand, was symmetrical within the same aortic segment. Moreover, we looked into standard deviation, Q-criterion, viscosity ratio and wall shear stresses for each cases to understand transition to turbulence. Our findings indicate that in the bicuspid aortic valve (BAV) case, the fluid-dynamic abnormalities increase. The global turbulent kinetic energy and time-averaged wall shear stress for the TAV and BAV scenarios were also examined. We discovered that the global turbulent kinetic energy was higher in the BAV case compared to TAV, in addition to the increased wall shear stress induced by the BAV in the ascending aorta.
Collapse
Affiliation(s)
- Rukiye Kara
- Department of Mathematics, Mimar Sinan Fine Arts University, Istanbul, Turkey
| | - Christian Vergara
- LABS - Dipartimento di Chimica, Materiali e Ingegneria Chimica" Giulio Natta" - Politecnico di Milano, Milan, Italy
| |
Collapse
|
7
|
Zamirpour S, Xuan Y, Wang Z, Gomez A, Leach JR, Mitsouras D, Saloner DA, Guccione JM, Ge L, Tseng EE. Height and body surface area versus wall stress for stratification of mid-term outcomes in ascending aortic aneurysm. IJC HEART & VASCULATURE 2024; 51:101375. [PMID: 38435381 PMCID: PMC10909604 DOI: 10.1016/j.ijcha.2024.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Objectives Current diameter-based guidelines for ascending thoracic aortic aneurysms (aTAA) do not consistently predict risk of dissection/rupture. ATAA wall stresses may enhance risk stratification independent of diameter. The relation of wall stresses and diameter indexed to height and body surface area (BSA) is unknown. Our objective was to compare aTAA wall stresses with indexed diameters in relation to all-cause mortality at 3.75 years follow-up. Methods Finite element analyses were performed in a veteran population with aortas ≥ 4.0 cm. Three-dimensional geometries were reconstructed from computed tomography with models accounting for pre-stress geometries. A fiber-embedded hyperelastic material model was applied to obtain wall stress distributions under systolic pressure. Peak wall stresses were compared across guideline thresholds for diameter/BSA and diameter/height. Hazard ratios for all-cause mortality and surgical aneurysm repair were estimated using cause-specific Cox proportional hazards models. Results Of 253 veterans, 54 (21 %) had aneurysm repair at 3.75 years. Indexed diameter alone would have prompted repair at baseline in 17/253 (6.7 %) patients, including only 4/230 (1.7 %) with diameter < 5.5 cm. Peak wall stresses did not significantly differ across guideline thresholds for diameter/BSA (circumferential: p = 0.15; longitudinal: p = 0.18), but did differ for diameter/height (circumferential: p = 0.003; longitudinal: p = 0.048). All-cause mortality was independently associated with peak longitudinal stresses (p = 0.04). Peak longitudinal stresses were best predicted by diameter (c-statistic = 0.66), followed by diameter/height (c-statistic = 0.59), and diameter/BSA (c-statistic = 0.55). Conclusions Diameter/height improved stratification of peak wall stresses compared to diameter/BSA. Peak longitudinal stresses predicted all-cause mortality independent of age and indexed diameter and may aid risk stratification for aTAA adverse events.
Collapse
Affiliation(s)
- Siavash Zamirpour
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
- School of Medicine, University of California, San Francisco, USA
| | - Yue Xuan
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| | - Zhongjie Wang
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| | - Axel Gomez
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| | - Joseph R. Leach
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| | - Dimitrios Mitsouras
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| | - David A. Saloner
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| | - Julius M. Guccione
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| | - Liang Ge
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| | - Elaine E. Tseng
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, USA
| |
Collapse
|
8
|
Zamirpour S, Xuan Y, Wang Z, Gomez A, Leach J, Mitsouras D, Saloner DA, Guccione JM, Ge L, Tseng EE. Aortic area/height ratio, peak wall stresses, and outcomes in veterans with tricuspid versus bicuspid aortic valve-associated ascending thoracic aortic aneurysms. J Thorac Cardiovasc Surg 2023; 166:1583-1593.e2. [PMID: 37295642 DOI: 10.1016/j.jtcvs.2023.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND In ascending thoracic aortic aneurysm risk stratification, aortic area/height ratio is a reasonable alternative to maximum diameter. Biomechanically, aortic dissection may be initiated by wall stress exceeding wall strength. Our objective was to evaluate the association between aortic area/height and peak aneurysm wall stresses in relation to valve morphology and 3-year all-cause mortality. METHODS Finite element analysis was performed on 270 ascending thoracic aortic aneurysms (46 associated with bicuspid and 224 with tricuspid aortic valves) in veterans. Three-dimensional aneurysm geometries were reconstructed from computed tomography and models developed accounting for prestress geometries. Fiber-embedded hyperelastic material model was applied to obtain aneurysm wall stresses during systole. Correlations of aortic area/height ratio and peak wall stresses were compared across valve types. Area/height ratio was evaluated across peak wall stress thresholds obtained from proportional hazards models of 3-year all-cause mortality, with aortic repair treated as a competing risk. RESULTS Aortic area/height 10 cm2/m or greater coincided with 23/34 (68%) 5.0 to 5.4 cm and 20/24 (83%) 5.5 cm or greater aneurysms. Area/height correlated weakly with peak aneurysm stresses: for tricuspid valves, r = 0.22 circumferentially and r = 0.24 longitudinally; and for bicuspid valves, r = 0.42 circumferentially and r = 0.14 longitudinally. Age and peak longitudinal stress, but not area/height, were independent predictors of all-cause mortality (age: hazard ratio, 2.20 per 9-year increase, P = .013; peak longitudinal stress: hazard ratio, 1.78 per 73-kPa increase, P = .035). CONCLUSIONS Area/height was more predictive of high circumferential stresses in bicuspid than tricuspid valve aneurysms, but similarly less predictive of high longitudinal stresses in both valve types. Peak longitudinal stress, not area/height, independently predicted all-cause mortality. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Siavash Zamirpour
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif; Joint Medical Program, School of Public Health, University of California Berkeley, Berkeley, Calif, and School of Medicine, University of California, San Francisco, San Francisco, Calif
| | - Yue Xuan
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif
| | - Zhongjie Wang
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif
| | - Axel Gomez
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif
| | - Joseph Leach
- Department of Radiology and Biomedical Imaging, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif
| | - Dimitrios Mitsouras
- Department of Radiology and Biomedical Imaging, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif
| | - David A Saloner
- Department of Radiology and Biomedical Imaging, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif
| | - Julius M Guccione
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif
| | - Liang Ge
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif
| | - Elaine E Tseng
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, Calif.
| |
Collapse
|
9
|
Salmasi MY, Pirola S, Mahuttanatan S, Fisichella SM, Sengupta S, Jarral OA, Oo A, O'Regan D, Xu XY, Athanasiou T. Geometry and flow in ascending aortic aneurysms are influenced by left ventricular outflow tract orientation: Detecting increased wall shear stress on the outer curve of proximal aortic aneurysms. J Thorac Cardiovasc Surg 2023; 166:11-21.e1. [PMID: 34217540 DOI: 10.1016/j.jtcvs.2021.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The geometrical characterization of ascending thoracic aortic aneurysms in clinical practice is limited to diameter measurements. Despite growing interest in hemodynamic assessment, its relationship with ascending thoracic aortic aneurysm pathogenesis is poorly understood. This study examines the relationship between geometry of the ventriculo-aortic junction and blood flow patterns in ascending thoracic aortic aneurysm disease. METHODS Thirty-three patients with ascending thoracic aortic aneurysms (exclusions: bicuspid aortic valves, connective tissue disease) underwent 4-dimensional flow magnetic resonance imaging. After image segmentation, geometrical parameters were measured, including aortic curvature, tortuosity, length, and diameter. A unique angular measurement made by the trajectory of the left ventricular outflow tract axis and the proximal aorta was also conducted. Velocity profiles were quantitatively and qualitatively analyzed. In addition, 11 patients (33%) underwent wall shear stress mapping of the ascending thoracic aortic aneurysm region using computational fluid dynamics simulation. RESULTS Greater left ventricular outflow tract aortic angles were associated with larger aortic diameters at the levels of the sinus (coefficient = 0.387, P = .014) and ascending aorta (coefficient = 0.284, P = .031). Patients with left ventricular outflow tract aortic angles greater than 60° had marked asymmetric flow acceleration on the outer curvature in the proximal aorta, ascertained from 4-dimensional flow analysis. For patients undergoing computational fluid dynamics assessment, regression analysis found that higher left ventricular outflow tract aortic angles were associated with significantly higher wall shear stress values in the outer curve of the aorta (coefficient 0.07, 95% confidence interval 0.04-0.11, P = .002): Angles greater than 50° yielded time-averaged wall shear stress values greater than 2.5 Pa, exhibiting a linear relationship. CONCLUSIONS Our findings strengthen the hypothesis of flow-mediated ascending thoracic aortic aneurysm disease progression and that left ventricular outflow tract aortic angle may be a predictor of disease severity.
Collapse
Affiliation(s)
- M Yousuf Salmasi
- Department of Surgery, Imperial College London, London, United Kingdom.
| | - Selene Pirola
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Suchaya Mahuttanatan
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Serena M Fisichella
- Department of Chemical Engineering, Imperial College London, London, United Kingdom; Politecnico di Milano, Milan, Italy
| | - Sampad Sengupta
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Omar A Jarral
- Department of Surgery, Imperial College London, London, United Kingdom
| | - Aung Oo
- Barts Heart Centre, London, United Kingdom
| | - Declan O'Regan
- London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Thanos Athanasiou
- Department of Surgery, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Ban E, Kalogerakos PD, Khosravi R, Ziganshin BA, Ellauzi H, Ramachandra AB, Zafar MA, Humphrey JD, Elefteriades JA. Extended law of laplace for measurement of the cloverleaf anatomy of the aortic root. Int J Cardiovasc Imaging 2023; 39:1345-1356. [PMID: 37046157 PMCID: PMC10250276 DOI: 10.1007/s10554-023-02847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
The cross-sectional shape of the aortic root is cloverleaf, not circular, raising controversy regarding how best to measure its radiographic "diameter" for aortic event prediction. We mathematically extended the law of Laplace to estimate aortic wall stress within this cloverleaf region, simultaneously identifying a new metric of aortic root dimension that can be applied to clinical measurement of the aortic root and sinuses of Valsalva on clinical computerized tomographic scans. Enforcing equilibrium between blood pressure and wall stress, finite element computations were performed to evaluate the mathematical derivation. The resulting Laplace diameter was compared with existing methods of aortic root measurement across four patient groups: non-syndromic aneurysm, bicuspid aortic valve, Marfan syndrome, and non-dilated root patients (total 106 patients, 62 M, 44 F). (1) Wall stress: Mean wall stress at the depth of the sinuses followed this equation: Wall stress = BP × Circumscribing circle diameter/(2 × Aortic wall thickness). Therefore, the diameter of the circle enclosing the root cloverleaf, that is, twice the distance between the center, where the sinus-to-commissure lines coincide, and the depth of the sinuses, may replace diameter in the Laplace relation for a cloverleaf cross-section (or any shaped cross-section with two or more planes of symmetry). This mathematically derived result was verified by computational finite element analyses. (2) Diameters: CT scan measurements showed a significant difference between this new metric, the Laplace diameter, and the sinus-to-commissure, mid-sinus-to-mid-sinus, and coronal measurements in all four groups (p-value < 0.05). The average Laplace diameter measurements differed significantly from the other measurements in all patient groups. Among the various possible measurements within the aortic root, the diameter of the circumscribing circle, enclosing the cloverleaf, represents the diameter most closely related to wall stress. This diameter is larger than the other measurements, indicating an underestimation of wall stress by prior measurements, and otherwise provides an unbiased, convenient, consistent, physics-based measurement for clinical use. "Diameter" applies to circles. Our mathematical derivation of an extension of the law of Laplace, from circular to cloverleaf cross-sectional geometries of the aortic root, has implications for measurement of aortic root "diameter." The suggested method is as follows: (1) the "center" of the aortic root is identified by drawing three sinus-to-commissure lines. The intersection of these three lines identifies the "center" of the cloverleaf. (2) The largest radius from this center point to any of the sinuses is identified as the "radius" of the aortic root. (3) This radius is doubled to give the "diameter" of the aortic root. We find that this diameter best corresponds to maximal wall stress in the aortic root. Please note that this diameter defines the smallest circle that completely encloses the cloverleaf shape, touching the depths of all three sinuses.
Collapse
Affiliation(s)
- Ehsan Ban
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | | | - Ramak Khosravi
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Bulat A Ziganshin
- Aortic Institute, Yale School of Medicine, CB-3, 789 Howard Ave., New Haven, CT, 06510, USA
| | - Hesham Ellauzi
- Aortic Institute, Yale School of Medicine, CB-3, 789 Howard Ave., New Haven, CT, 06510, USA
| | | | - Mohammad A Zafar
- Aortic Institute, Yale School of Medicine, CB-3, 789 Howard Ave., New Haven, CT, 06510, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | - John A Elefteriades
- Aortic Institute, Yale School of Medicine, CB-3, 789 Howard Ave., New Haven, CT, 06510, USA.
| |
Collapse
|
11
|
Jabagi H, Levine D, Gharibeh L, Camillo C, Castillero E, Ferrari G, Takayama H, Grau JB. Implications of Bicuspid Aortic Valve Disease and Aortic Stenosis/Insufficiency as Risk Factors for Thoracic Aortic Aneurysm. Rev Cardiovasc Med 2023; 24:178. [PMID: 39077527 PMCID: PMC11264121 DOI: 10.31083/j.rcm2406178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 07/31/2024] Open
Abstract
Bicuspid Aortic Valves (BAV) are associated with an increased incidence of thoracic aortic aneurysms (TAA). TAA are a common aortic pathology characterized by enlargement of the aortic root and/or ascending aorta, and may become life threatening when left untreated. Typically occurring as the sole pathology in a patient, TAA are largely asymptomatic. However, in some instances, they are accompanied by aortic valve (AV) diseases: either congenital BAV or acquired in the form of Aortic Insufficiency (AI) or aortic stenosis (AS). When TAA are associated with aortic valve disease, determining an accurate and predictable prognosis becomes especially challenging. Patients with AV disease and concomitant TAA lack a widely accepted diagnostic approach, one that integrates our knowledge on aortic valve pathophysiology and encompasses multi-modality imaging approaches. This review summarizes the most recent scientific knowledge regarding the association between AV diseases (BAV, AI, AS) and ascending aortopathies (dilatation, aneurysm, and dissection). We aimed to pinpoint the gaps in monitoring practices and prediction of disease progression in TAA patients with concomitant AV disease. We propose that a morphological and functional analysis of the AV with multi-modality imaging should be included in aortic surveillance programs. This strategy would allow for improved risk stratification of these patients, and possibly new AV phenotypic-specific guidelines with more vigilant surveillance and earlier prophylactic surgery to improve patient outcomes.
Collapse
Affiliation(s)
- Habib Jabagi
- Division of Cardiothoracic Surgery, The Valley Hospital, NJ 07450, USA
- Department of Cardiovascular Surgery, Mt. Sinai Hospital, Icahn School of Medicine, New York, NY 10029, USA
| | - Dov Levine
- Department of Surgery, Columbia University, New York, NY 10027, USA
| | - Lara Gharibeh
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Chiara Camillo
- Department of Surgery, Columbia University, New York, NY 10027, USA
| | | | - Giovanni Ferrari
- Department of Surgery, Columbia University, New York, NY 10027, USA
| | - Hiroo Takayama
- Department of Surgery, Columbia University, New York, NY 10027, USA
| | - Juan B. Grau
- Division of Cardiothoracic Surgery, The Valley Hospital, NJ 07450, USA
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| |
Collapse
|
12
|
Wang X, Ghayesh MH, Kotousov A, Zander AC, Dawson JA, Psaltis PJ. Fluid-structure interaction study for biomechanics and risk factors in Stanford type A aortic dissection. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023:e3736. [PMID: 37258411 DOI: 10.1002/cnm.3736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Aortic dissection is a life-threatening condition with a rising prevalence in the elderly population, possibly as a consequence of the increasing population life expectancy. Untreated aortic dissection can lead to myocardial infarction, aortic branch malperfusion or occlusion, rupture, aneurysm formation and death. This study aims to assess the potential of a biomechanical model in predicting the risks of a non-dilated thoracic aorta with Stanford type A dissection. To achieve this, a fully coupled fluid-structure interaction model was developed under realistic blood flow conditions. This model of the aorta was developed by considering three-dimensional artery geometry, multiple artery layers, hyperelastic artery wall, in vivo-based physiological time-varying blood velocity profiles, and non-Newtonian blood behaviours. The results demonstrate that in a thoracic aorta with Stanford type A dissection, the wall shear stress (WSS) is significantly low in the ascending aorta and false lumen, leading to potential aortic dilation and thrombus formation. The results also reveal that the WSS is highly related to blood flow patterns. The aortic arch region near the brachiocephalic and left common carotid artery is prone to rupture, showing a good agreement with the clinical reports. The results have been translated into their potential clinical relevance by revealing the role of the stress state, WSS and flow characteristics as the main parameters affecting lesion progression, including rupture and aneurysm. The developed model can be tailored for patient-specific studies and utilised as a predictive tool to estimate aneurysm growth and initiation of wall rupture inside the human thoracic aorta.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Mergen H Ghayesh
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Andrei Kotousov
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Anthony C Zander
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Joseph A Dawson
- Department of Vascular & Endovascular Surgery, Royal Adelaide Hospital, Adelaide, Australia
- Trauma Surgery Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Peter J Psaltis
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Vascular Research Centre, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
13
|
Right versus left coronary artery involvement in patients with type A acute aortic dissection. Int J Cardiol 2023; 371:49-53. [PMID: 36257475 DOI: 10.1016/j.ijcard.2022.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/31/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Type A acute aortic dissection (AAD) complicated by coronary malperfusion is a life-threatening disease. In the present study, we compared the clinical characteristics and prognostic impact of treatment strategies including surgical treatment and percutaneous coronary intervention (PCI) in type A AAD patients with RCA and LCA involvement. METHODS This multicenter registry included 220 patients with type A AAD and either RCA or LCA involvement. Treatment strategies were left to treating physicians. The primary endpoint was in-hospital death. RESULTS Of 220 patients, 115 (52.3%) and 105 (47.7%) had RCA and LCA involvement. Patients with LCA involvement were more1 likely to present with Killip class IV on admission than those with RCA involvement. Coronary angiography was performed in 52 of 220 (23.6%) patients, among whom 39 (75.0%) underwent subsequent PCI. During the hospitalization, 93 (42.3%) patients died. Patients with LCA involvement had an increased risk of in-hospital mortality compared to those with RCA involvement (54.3% vs. 31.3%, p < 0.001). In patients with RCA involvement, multivariable analysis identified Killip class IV and no surgical treatment as predictors of in-hospital death, while PCI and surgical treatment were indicated as factors associated with lower in-hospital mortality in patients with LCA involvement. CONCLUSIONS The rates of RCA and LCA involvement were similar in type A AAD. Immediate PCI as a bridge to subsequent surgical treatment might improve survival in patients with type A AAD complicated by coronary malperfusion, especially in those with LCA involvement.
Collapse
|
14
|
Gomez A, Wang Z, Xuan Y, Hope MD, Saloner DA, Guccione JM, Ge L, Tseng EE. Association of diameter and wall stresses of tricuspid aortic valve ascending thoracic aortic aneurysms. J Thorac Cardiovasc Surg 2022; 164:1365-1375. [PMID: 34275618 PMCID: PMC8716675 DOI: 10.1016/j.jtcvs.2021.05.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Ascending thoracic aortic aneurysms carry a risk of acute type A dissection. Elective repair guidelines are designed around size thresholds, but the 1-dimensional parameter of maximum diameter cannot predict acute events in small aneurysms. Biomechanically, dissection can occur when wall stress exceeds strength. Patient-specific ascending thoracic aortic aneurysm wall stresses may be a better predictor of dissection. Our aim was to compare wall stresses in tricuspid aortic valve-associated ascending thoracic aortic aneurysms based on diameter. METHODS Patients with tricuspid aortic valve-associated ascending thoracic aortic aneurysm and diameter 4.0 cm or greater (n = 221) were divided into groups by 0.5-cm diameter increments. Three-dimensional geometries were reconstructed from computed tomography images, and finite element models were developed taking into account prestress geometries. A fiber-embedded hyperelastic material model was applied to obtain longitudinal and circumferential wall stress distributions under systolic pressure. Median stresses with interquartile ranges were determined. The Kruskal-Wallis test was used for comparisons between size groups. RESULTS Peak longitudinal wall stresses for tricuspid aortic valve-associated ascending thoracic aortic aneurysm were 290 (265-323) kPa for size 4.0 to 4.4 cm versus 330 (296-359) kPa for 4.5 to 4.9 cm versus 339 (320-373) kPa for 5.0 to 5.4 cm versus 318 (293-351) kPa for 5.5 to 5.9 cm versus 373 (363-449) kPa for 6.0 cm or greater (P = 8.7e-8). Peak circumferential wall stresses were 460 (421-543) kPa for size 4.0 to 4.4 cm versus 503 (453-569) kPa for 4.5 to 4.9 cm versus 549 (430-588) kPa for 5.0 to 5.4 cm versus 540 (471-608) kPa for 5.5 to 5.9 cm versus 596 (506-649) kPa for 6.0 cm or greater (P = .0007). CONCLUSIONS Circumferential and longitudinal wall stresses are higher as diameter increases, but size groups had large overlap of stress ranges. Wall stress thresholds based on aneurysm wall strength may be a better predictor of patient-specific risk of dissection than diameter in small ascending thoracic aortic aneurysms.
Collapse
Affiliation(s)
- Axel Gomez
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, Calif
| | - Zhongjie Wang
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, Calif
| | - Yue Xuan
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, Calif
| | - Michael D Hope
- Department of Radiology & Biomedical Imaging, University of California San Francisco and San Francisco VA Medical Center, San Francisco, Calif
| | - David A Saloner
- Department of Radiology & Biomedical Imaging, University of California San Francisco and San Francisco VA Medical Center, San Francisco, Calif
| | - Julius M Guccione
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, Calif
| | - Liang Ge
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, Calif
| | - Elaine E Tseng
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, Calif.
| |
Collapse
|
15
|
Taheri RA, Razaghi R, Bahramifar A, Morshedi M, Mafi M, Karimi A. Interaction of the Blood Components with Ascending Thoracic Aortic Aneurysm Wall: Biomechanical and Fluid Analyses. Life (Basel) 2022; 12:1296. [PMID: 36143333 PMCID: PMC9503674 DOI: 10.3390/life12091296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Ascending thoracic aortic aneurysm (ATAA) is an asymptomatic localized dilation of the aorta that is prone to rupture with a high rate of mortality. While diameter is the main risk factor for rupture assessment, it has been shown that the peak wall stress from finite element (FE) simulations may contribute to refinement of clinical decisions. In FE simulations, the intraluminal boundary condition is a single-phase blood flow that interacts with the thoracic aorta (TA). However, the blood is consisted of red blood cells (RBCs), white blood cells (WBCs), and plasma that interacts with the TA wall, so it may affect the resultant stresses and strains in the TA, as well as hemodynamics of the blood. METHODS In this study, discrete elements were distributed in the TA lumen to represent the blood components and mechanically coupled using fluid-structure interaction (FSI). Healthy and aneurysmal human TA tissues were subjected to axial and circumferential tensile loadings, and the hyperelastic mechanical properties were assigned to the TA and ATAA FE models. RESULTS The ATAA showed larger tensile and shear stresses but smaller fluid velocity compared to the ATA. The blood components experienced smaller shear stress in interaction with the ATAA wall compared to TA. The computational fluid dynamics showed smaller blood velocity and wall shear stress compared to the FSI. CONCLUSIONS This study is a first proof of concept, and future investigations will aim at validating the novel methodology to derive a more reliable ATAA rupture risk assessment considering the interaction of the blood components with the TA wall.
Collapse
Affiliation(s)
- Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ali Bahramifar
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Mahdi Morshedi
- Department of Surgery, Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Majid Mafi
- Biomedical Engineering Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
16
|
Stejskal V, Karalko M, Smolak P, Hanusova M, Steiner I. Medial degeneration and atherosclerosis show discrete variance around the circumference of ascending aorta aneurysms. Virchows Arch 2022; 481:731-738. [PMID: 35982277 DOI: 10.1007/s00428-022-03397-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/06/2022] [Accepted: 08/14/2022] [Indexed: 11/28/2022]
Abstract
Medial degeneration is the most common histological finding in ascending aortic aneurysms with lesser but significant involvement by atherosclerosis. The overall extent and severity can be potentially underrated because of their uneven distribution and macroscopic inconspicuousness of medial degeneration. This study aims to compare the distribution of degenerative and atherosclerotic lesions around ascending aorta circumference, also considering aortic valve cuspidity. We evaluated 88 cases of resected ascending aortae, 25 with a tricuspid aortic valve and 63 with a malformed aortic valve, oriented by a cardiac surgeon and sent for pathological examination. We applied the consensus documents from 2015 and 2016 for microscopic evaluation of aortic specimens. The medial degeneration and atherosclerosis were graded semi-quantitatively for each aortic quadrant: convexity, anterior wall, concavity, and posterior wall. Nearly all quadrants showed at least mild medial degeneration; more severe findings of medial degeneration and atherosclerosis were in the aneurysms associated with the tricuspid valve. In the aneurysms with the tricuspid aortic valve, there was more frequent and more severe atherosclerosis at the concavity than at the anterior wall (p = .046); the frequency and severity of medial degeneration did not differ significantly. The aneurysms with a malformed aortic valve showed more severe medial degeneration at the concavity compared to the convexity (p = .011); atherosclerosis was less common and did not show any significant differences. More than half of the samples also revealed at least a one-grade (mostly one-grade) difference among the quadrants in individual cases for both atherosclerosis and medial degeneration. Extreme differences were rare except for atherosclerosis in the tricuspid group. The results revealed only slight overall differences around the aortic circumference, with concavity being the most susceptible. Still, thanks to occurring inter- and intraindividual variability, the examination of all quadrants seems meaningful not to miss the most severe changes and to underscore the findings.
Collapse
Affiliation(s)
- Vaclav Stejskal
- The Fingerland Department of Pathology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| | - Mikita Karalko
- The Department of Cardiosurgery, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Petr Smolak
- The Department of Cardiosurgery, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Michaela Hanusova
- The Department of Forensic Medicine, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ivo Steiner
- The Fingerland Department of Pathology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
17
|
Ng E, Looi LJC. Numerical analysis of biothermal-fluids and cardiac thermal pulse of abdominal aortic aneurysm. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:10213-10251. [PMID: 36031992 DOI: 10.3934/mbe.2022479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Abdominal aortic aneurysms are serious and difficult to detect, conditions can be deadly if they rupture. In this study, the heat transfer and flow physics of Abdominal Aortic Aneurysm (AAA) were discussed and associated with cardiac cycle to illustrate the cardiac thermal pulse (CTP) of AAA. A CTP and infrared thermography (IRT) evaluation-based on AAA and abdomen skin surface detection method was proposed, respectively. Infrared thermography (IRT) is a promising imaging technique that may detect AAA quicker and cheaper than other imaging techniques (as biomarker). From CFD rigid-wall and FSI Analysis, the transient bioheat transfer effect resulted in a distinct thermal signature (circular thermal elevation) on the temperature profile of midriff skin surface, at both regular body temperature and supine position, under normal clinical temperature. However, it is important to note that thermography is not a perfect technology, and it does have some limitations, such as lack of clinical trials. There is still work to be done to improve this imaging technique and make it a more viable and accurate method for detecting abdominal aortic aneurysms. However, thermography is currently one of the most convenient technologies in this field, and it has the potential to detect abdominal aortic aneurysms earlier than other techniques. CTP, on the other hand, was used to examine the thermal physics of AAA. In CFD rigid-wall Analysis, AAA had a CTP that only responded to systolic phase at regular body temperature. In contrast, a healthy abdominal aorta displayed a CTP that responded to the full cardiac cycle, including diastolic phase at all simulated cases. Besides, the findings from FSI Analysis suggest the influence of numerical simulation techniques on the prediction of thermal physics behaviours of AAA and abdominal skin surface. Lastly, this study correlated the relationship between natural convective heat transfer coefficient with AAA and provided reference for potential clinical diagnostic using IRT in clinical implications.
Collapse
Affiliation(s)
- Eyk Ng
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Leonard Jun Cong Looi
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
18
|
Zamirpour S, Xuan Y, Wang Z, Gomez A, Hope MD, Leach J, Mitsouras D, Saloner DA, Guccione JM, Ge L, Tseng EE. Association of 3-Year All-Cause Mortality and Peak Wall Stresses of Ascending Thoracic Aortic Aneurysms in Veterans. Semin Thorac Cardiovasc Surg 2022; 35:447-456. [PMID: 35690227 DOI: 10.1053/j.semtcvs.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/11/2022]
Abstract
Risk of aortic dissection in ascending thoracic aortic aneurysms is not sufficiently captured by size-based metrics. From a biomechanical perspective, dissection may be initiated when wall stress exceeds wall strength. Our objective was to assess the association between aneurysm peak wall stresses and 3-year all-cause mortality. Finite element analysis was performed in 273 veterans with chest computed tomography for surveillance of ascending thoracic aortic aneurysms. Three-dimensional geometries were reconstructed and models developed accounting for prestress geometries. A fiber-embedded hyperelastic material model was applied to obtain circumferential and longitudinal wall stresses under systolic pressure. Patients were followed up to 3 years following the scan to assess aneurysm repair and all-cause mortality. Fine-Gray subdistribution hazards were estimated for all-cause mortality based on age, aortic diameter, and peak wall stresses, treating aneurysm repair as a competing risk. When accounting for age, subdistribution hazard of mortality was not significantly increased by peak circumferential stresses (p = 0.30) but was significantly increased by peak longitudinal stresses (p = 0.008). Aortic diameter did not significantly increase subdistribution hazard of mortality in either model (circumferential model: p = 0.38; longitudinal model: p = 0.30). The effect of peak longitudinal stresses on subdistribution hazard of mortality was maximized at a binary threshold of 355kPa, which captured 34 of 212(16%) patients with diameter <5 cm, 11 of 36(31%) at 5.0-5.4 cm, and 11 of 25(44%) at ≥5.5 cm. Aneurysm peak longitudinal stresses stratified by age and diameter were associated with increased hazard of 3-year all-cause mortality in a veteran cohort. Risk prediction may be enhanced by considering peak longitudinal stresses.
Collapse
Affiliation(s)
- Siavash Zamirpour
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, CA, USA; Joint Medical Program, School of Public Health, University of California, Berkeley, and School of Medicine, University of California, San Francisco, CA, USA
| | - Yue Xuan
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, CA, USA
| | - Zhongjie Wang
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, CA, USA
| | - Axel Gomez
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, CA, USA
| | - Michael D Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, CA, USA
| | - Joseph Leach
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, CA, USA
| | - Dimitrios Mitsouras
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, CA, USA
| | - David A Saloner
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, CA, USA
| | - Julius M Guccione
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, CA, USA
| | - Liang Ge
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, CA, USA
| | - Elaine E Tseng
- Department of Surgery, Division of Adult Cardiothoracic Surgery, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, CA, USA.
| |
Collapse
|
19
|
Gomez A, Wang Z, Xuan Y, Hope MD, Saloner DA, Guccione JM, Ge L, Tseng EE. Regional wall stress differences on tricuspid aortic valve-associated ascending aortic aneurysms. Interact Cardiovasc Thorac Surg 2022; 34:1115-1123. [PMID: 34718581 PMCID: PMC10634398 DOI: 10.1093/icvts/ivab269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/15/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Ascending thoracic aortic aneurysms (aTAAs) carry a risk of acute type A dissection. Elective repair guidelines are based on diameter, but complications often occur below diameter threshold. Biomechanically, dissection can occur when wall stress exceeds wall strength. Aneurysm wall stresses may better capture dissection risk. Our aim was to investigate patient-specific aTAA wall stresses associated with a tricuspid aortic valve (TAV) by anatomic region. METHODS Patients with aneurysm diameter ≥4.0 cm underwent computed tomography angiography. Aneurysm geometries were reconstructed and loaded to systemic pressure while taking prestress into account. Finite element analyses were conducted to obtain wall stress distributions. The 99th percentile longitudinal and circumferential stresses were determined at systole. Wall stresses between regions were compared using one-way analysis of variance with post hoc Tukey HSD for pairwise comparisons. RESULTS Peak longitudinal wall stresses on aneurysms (n = 204) were 326 [standard deviation (SD): 61.7], 246 (SD: 63.4) and 195 (SD: 38.7) kPa in sinuses of Valsalva, sinotubular junction (STJ) and ascending aorta (AscAo), respectively, with significant differences between AscAo and both sinuses (P < 0.001) and STJ (P < 0.001). Peak circumferential wall stresses were 416 (SD: 85.1), 501 (SD: 119) and 340 (SD: 57.6) kPa for sinuses, STJ and AscAo, respectively, with significant differences between AscAo and both sinuses (P < 0.001) and STJ (P < 0.001). CONCLUSIONS Circumferential and longitudinal wall stresses were greater in the aortic root than AscAo on aneurysm patients with a TAV. Aneurysm wall stress magnitudes and distribution relative to respective regional wall strength could improve understanding of aortic regions at greater risk of dissection in a particular patient.
Collapse
Affiliation(s)
- Axel Gomez
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA
| | - Zhongjie Wang
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA
| | - Yue Xuan
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA
| | - Michael D Hope
- Department of Radiology, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA
| | - David A Saloner
- Department of Radiology, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA
| | - Julius M Guccione
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA
| | - Liang Ge
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA
| | - Elaine E Tseng
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
20
|
He Y, Northrup H, Le H, Cheung AK, Berceli SA, Shiu YT. Medical Image-Based Computational Fluid Dynamics and Fluid-Structure Interaction Analysis in Vascular Diseases. Front Bioeng Biotechnol 2022; 10:855791. [PMID: 35573253 PMCID: PMC9091352 DOI: 10.3389/fbioe.2022.855791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/08/2022] [Indexed: 01/17/2023] Open
Abstract
Hemodynamic factors, induced by pulsatile blood flow, play a crucial role in vascular health and diseases, such as the initiation and progression of atherosclerosis. Computational fluid dynamics, finite element analysis, and fluid-structure interaction simulations have been widely used to quantify detailed hemodynamic forces based on vascular images commonly obtained from computed tomography angiography, magnetic resonance imaging, ultrasound, and optical coherence tomography. In this review, we focus on methods for obtaining accurate hemodynamic factors that regulate the structure and function of vascular endothelial and smooth muscle cells. We describe the multiple steps and recent advances in a typical patient-specific simulation pipeline, including medical imaging, image processing, spatial discretization to generate computational mesh, setting up boundary conditions and solver parameters, visualization and extraction of hemodynamic factors, and statistical analysis. These steps have not been standardized and thus have unavoidable uncertainties that should be thoroughly evaluated. We also discuss the recent development of combining patient-specific models with machine-learning methods to obtain hemodynamic factors faster and cheaper than conventional methods. These critical advances widen the use of biomechanical simulation tools in the research and potential personalized care of vascular diseases.
Collapse
Affiliation(s)
- Yong He
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, United States
| | - Hannah Northrup
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Ha Le
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Alfred K. Cheung
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, United States
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, United States
- Vascular Surgery Section, Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, United States
| | - Yan Tin Shiu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, United States
- *Correspondence: Yan Tin Shiu,
| |
Collapse
|
21
|
Phillippi JA. On vasa vasorum: A history of advances in understanding the vessels of vessels. SCIENCE ADVANCES 2022; 8:eabl6364. [PMID: 35442731 PMCID: PMC9020663 DOI: 10.1126/sciadv.abl6364] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/01/2022] [Indexed: 05/09/2023]
Abstract
The vasa vasorum are a vital microvascular network supporting the outer wall of larger blood vessels. Although these dynamic microvessels have been studied for centuries, the importance and impact of their functions in vascular health and disease are not yet fully realized. There is now rich knowledge regarding what local progenitor cell populations comprise and cohabitate with the vasa vasorum and how they might contribute to physiological and pathological changes in the network or its expansion via angiogenesis or vasculogenesis. Evidence of whether vasa vasorum remodeling incites or governs disease progression or is a consequence of cardiovascular pathologies remains limited. Recent advances in vasa vasorum imaging for understanding cardiovascular disease severity and pathophysiology open the door for theranostic opportunities. Approaches that strive to control angiogenesis and vasculogenesis potentiate mitigation of vasa vasorum-mediated contributions to cardiovascular diseases and emerging diseases involving the microcirculation.
Collapse
Affiliation(s)
- Julie A. Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Petit C, Karkhaneh Yousefi AA, Guilbot M, Barnier V, Avril S. AFM Stiffness Mapping in Human Aortic Smooth Muscle Cells. J Biomech Eng 2022; 144:1133331. [DOI: 10.1115/1.4053657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 11/08/2022]
Abstract
Abstract
Aortic Smooth Muscle Cells (SMCs) play a vital role in maintaining mechanical homeostasis in the aorta. We recently found that SMCs of aneurysmal aortas apply larger traction forces than SMCs of healthy aortas. This result was explained by the significant increase of hypertrophic SMCs abundance in aneurysms. In the present study, we investigate whether the cytoskeleton stiffness of SMCs may also be altered in aneurysmal aortas. For that, we use Atomic Force Microscopy (AFM) nanoindentation with a specific mode that allows subcellular-resolution mapping of the local stiffness across a specified region of interest of the cell. Aortic SMCs from a commercial human lineage (AoSMCs, Lonza) and primary aneurysmal SMCs (AnevSMCs) are cultured in conditions promoting the development of their contractile apparatus, and seeded on hydrogels with stiffness properties of 12kPa and 25kPa. Results show that all SMC exhibit globally a lognormal stiffness distribution, with medians in the range 10-30 kPa. The mean of stiffness distributions is slightly higher in aneurysmal SMCs than in healthy cells (16 kPa versus 12 kPa) but the differences are not statistically significant due to the large dispersion of AFM nanoindentation stiffness. We conclude that the possible alterations previously found in aneurysmal SMCs do not affect significantly the AFM nanoindentation stiffness of their cytoskeleton.
Collapse
Affiliation(s)
- Claudie Petit
- Mines Saint-Etienne, Université de Lyon, INSERM, U 1059 SAINBIOSE, F - 42023 Saint-Etienne France
| | | | - Marine Guilbot
- Mines Saint-Etienne, Université de Lyon, INSERM, U 1059 SAINBIOSE, F - 42023 Saint-Etienne France
| | - Vincent Barnier
- Mines Saint-Etienne, Université de Lyon, CNRS, UMR 5307 LGF, F - 42023 Saint-Etienne France
| | - Stephane Avril
- Mines Saint-Etienne, Université de Lyon, INSERM, U 1059 SAINBIOSE, F - 42023 Saint-Etienne France
| |
Collapse
|
23
|
Patient-Specific Analysis of Ascending Thoracic Aortic Aneurysm with the Living Heart Human Model. Bioengineering (Basel) 2021; 8:bioengineering8110175. [PMID: 34821741 PMCID: PMC8615119 DOI: 10.3390/bioengineering8110175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 01/11/2023] Open
Abstract
In ascending thoracic aortic aneurysms (ATAAs), aneurysm kinematics are driven by ventricular traction occurring every heartbeat, increasing the stress level of dilated aortic wall. Aortic elongation due to heart motion and aortic length are emerging as potential indicators of adverse events in ATAAs; however, simulation of ATAA that takes into account the cardiac mechanics is technically challenging. The objective of this study was to adapt the realistic Living Heart Human Model (LHHM) to the anatomy and physiology of a patient with ATAA to assess the role of cardiac motion on aortic wall stress distribution. Patient-specific segmentation and material parameter estimation were done using preoperative computed tomography angiography (CTA) and ex vivo biaxial testing of the harvested tissue collected during surgery. The lumped-parameter model of systemic circulation implemented in the LHHM was refined using clinical and echocardiographic data. The results showed that the longitudinal stress was highest in the major curvature of the aneurysm, with specific aortic quadrants having stress levels change from tensile to compressive in a transmural direction. This study revealed the key role of heart motion that stretches the aortic root and increases ATAA wall tension. The ATAA LHHM is a realistic cardiovascular platform where patient-specific information can be easily integrated to assess the aneurysm biomechanics and potentially support the clinical management of patients with ATAAs.
Collapse
|
24
|
Wang Z, Flores N, Lum M, Wisneski AD, Xuan Y, Inman J, Hope MD, Saloner DA, Guccione JM, Ge L, Tseng EE. Wall stress analyses in patients with ≥5 cm versus <5 cm ascending thoracic aortic aneurysm. J Thorac Cardiovasc Surg 2021; 162:1452-1459. [PMID: 32178922 PMCID: PMC8589466 DOI: 10.1016/j.jtcvs.2020.02.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Current guidelines for elective surgery of ascending thoracic aortic aneurysms (aTAAs) use aneurysm size as primary determinant for risk stratification of adverse events. Biomechanically, dissection may occur when wall stress exceeds wall strength. Determining patient-specific aTAA wall stresses by finite element analysis can potentially predict patient-specific risk of dissection. This study compared peak wall stresses in patients with ≥5.0 cm versus <5.0 cm aTAAs to determine correlation between diameter and wall stress. METHODS Patients with aTAA ≥5.0 cm (n = 47) and <5.0 cm (n = 53) were studied. Patient-specific aneurysm geometries obtained from echocardiogram-gated computed tomography were meshed and prestress geometries determined. Peak wall stresses and stress distributions were determined using LS-DYNA finite element analysis software (LSTC Inc, Livermore, Calif), with user-defined fiber-embedded material models under systolic pressure. RESULTS Peak circumferential stresses at systolic pressure were 530 ± 83 kPa for aTAA ≥5.0 cm versus 486 ± 87 kPa for aTAA <5.0 cm (P = .07), whereas peak longitudinal stresses were 331 ± 57 kPa versus 310 ± 54 kPa (P = .08), respectively. For aTAA ≥5.0 cm, correlation between peak circumferential stresses and size was 0.41, whereas correlation between peak longitudinal wall stresses and size was 0.33. However, for aTAA <5.0 cm, correlation between peak circumferential stresses and size was 0.23, whereas correlation between peak longitudinal stresses and size was 0.14. CONCLUSIONS Peak patient-specific aTAA wall stresses overall were larger for ≥5.0 cm than aTAA <5.0 cm. Although some correlation between size and peak wall stresses was found in aTAA ≥5.0 cm, poor correlation existed between size and peak wall stresses in aTAA <5.0 cm. Patient-specific wall stresses are particularly important in determining patient-specific risk of dissection for aTAA <5.0 cm.
Collapse
Affiliation(s)
- Zhongjie Wang
- Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Medical Centers, San Francisco, Calif
| | - Nick Flores
- Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Medical Centers, San Francisco, Calif
| | - Matthew Lum
- Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Medical Centers, San Francisco, Calif
| | - Andrew D Wisneski
- Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Medical Centers, San Francisco, Calif
| | - Yue Xuan
- Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Medical Centers, San Francisco, Calif
| | - Justin Inman
- Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Medical Centers, San Francisco, Calif
| | - Michael D Hope
- Department of Radiology, University of California San Francisco and San Francisco Veterans Affairs Medical Centers, San Francisco, Calif
| | - David A Saloner
- Department of Radiology, University of California San Francisco and San Francisco Veterans Affairs Medical Centers, San Francisco, Calif
| | - Julius M Guccione
- Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Medical Centers, San Francisco, Calif
| | - Liang Ge
- Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Medical Centers, San Francisco, Calif
| | - Elaine E Tseng
- Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Medical Centers, San Francisco, Calif.
| |
Collapse
|
25
|
Vessel structural stress mediates aortic media degeneration in bicuspid aortopathy: New insights based on patient-specific fluid-structure interaction analysis. J Biomech 2021; 129:110805. [PMID: 34678623 DOI: 10.1016/j.jbiomech.2021.110805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022]
Abstract
This study aimed to assess the relationship between local mechanical stimuli and regional aortic tissue degeneration using fluid-structure interaction (FSI) analysis in patients with bicuspid aortic valve (BAV) disease. Nine patients underwent ascending aortic replacement were recruited. Tissues were collected to evaluate the pathology features in four regions, greater curvature (GC-region), posterior (P-region), anterior (A-region), and lesser curvature (LC-region). FSI analysis was performed to quantify vessel structural stress (VSS) and flow-induced parameters, including wall shear stress (WSS), oscillatory shear index (OSI), and particle relative residence time (RRT). The correlation between these biomechanical metrics and tissue degeneration was analyzed. Elastin in the medial layer and media thickness were thinnest and the gap between fibers was biggest in the GC-region, followed by the P-region and A-region, while the elastin and media thickness were thickest and the gap smallest in the LC-region. The collagen deposition followed a pattern with the biggest in the GC-region and least in the LC-region. There is a strong negative correlation between mean or peak VSS and elastin thickness in the arterial wall in the GC-region (r = -0.917; p = 0.001 and r = -0.899; p = 0.001), A-region (r = -0.748; p = 0.020 and r = -0.700; p = 0.036) and P-region (r = -0.773; p = 0.014 and r = -0.769; p = 0.015), and between mean VSS and fiber distance in the A-region (r = -0.702, p = 0.035). Moreover, strong negative correlation between mean or peak VSS and media thickness was also observed. No correlation was found between WSS, OSI, and RRT and aortic tissue degeneration in these four regions. These findings indicate that increased VSS correlated with local elastin degradation and aortic media degeneration, implying that it could be a potential biomechanical parameter for a refined risk stratification for patients with BAV.
Collapse
|
26
|
Regulatory variants in TCF7L2 are associated with thoracic aortic aneurysm. Am J Hum Genet 2021; 108:1578-1589. [PMID: 34265237 DOI: 10.1016/j.ajhg.2021.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023] Open
Abstract
Thoracic aortic aneurysm (TAA) is characterized by dilation of the aortic root or ascending/descending aorta. TAA is a heritable disease that can be potentially life threatening. While 10%-20% of TAA cases are caused by rare, pathogenic variants in single genes, the origin of the majority of TAA cases remains unknown. A previous study implicated common variants in FBN1 with TAA disease risk. Here, we report a genome-wide scan of 1,351 TAA-affected individuals and 18,295 control individuals from the Cardiovascular Health Improvement Project and Michigan Genomics Initiative at the University of Michigan. We identified a genome-wide significant association with TAA for variants within the third intron of TCF7L2 following replication with meta-analysis of four additional independent cohorts. Common variants in this locus are the strongest known genetic risk factor for type 2 diabetes. Although evidence indicates the presence of different causal variants for TAA and type 2 diabetes at this locus, we observed an opposite direction of effect. The genetic association for TAA colocalizes with an aortic eQTL of TCF7L2, suggesting a functional relationship. These analyses predict an association of higher expression of TCF7L2 with TAA disease risk. In vitro, we show that upregulation of TCF7L2 is associated with BCL2 repression promoting vascular smooth muscle cell apoptosis, a key driver of TAA disease.
Collapse
|
27
|
Transcatheter Heart Valve Implantation in Bicuspid Patients with Self-Expanding Device. Bioengineering (Basel) 2021; 8:bioengineering8070091. [PMID: 34356198 PMCID: PMC8301021 DOI: 10.3390/bioengineering8070091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022] Open
Abstract
Bicuspid aortic valve (BAV) patients are conventionally not treated by transcathether aortic valve implantation (TAVI) because of anatomic constraint with unfavorable outcome. Patient-specific numerical simulation of TAVI in BAV may predict important clinical insights to assess the conformability of the transcathether heart valves (THV) implanted on the aortic root of members of this challenging patient population. We aimed to develop a computational approach and virtually simulate TAVI in a group of n.6 stenotic BAV patients using the self-expanding Evolut Pro THV. Specifically, the structural mechanics were evaluated by a finite-element model to estimate the deformed THV configuration in the oval bicuspid anatomy. Then, a fluid–solid interaction analysis based on the smoothed-particle hydrodynamics (SPH) technique was adopted to quantify the blood-flow patterns as well as the regions at high risk of paravalvular leakage (PVL). Simulations demonstrated a slight asymmetric and elliptical expansion of the THV stent frame in the BAV anatomy. The contact pressure between the luminal aortic root surface and the THV stent frame was determined to quantify the device anchoring force at the level of the aortic annulus and mid-ascending aorta. At late diastole, PVL was found in the gap between the aortic wall and THV stent frame. Though the modeling framework was not validated by clinical data, this study could be considered a further step towards the use of numerical simulations for the assessment of TAVI in BAV, aiming at understanding patients not suitable for device implantation on an anatomic basis.
Collapse
|
28
|
Nannini G, Caimi A, Palumbo MC, Saitta S, Girardi LN, Gaudino M, Roman MJ, Weinsaft JW, Redaelli A. Aortic hemodynamics assessment prior and after valve sparing reconstruction: A patient-specific 4D flow-based FSI model. Comput Biol Med 2021; 135:104581. [PMID: 34174756 DOI: 10.1016/j.compbiomed.2021.104581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Valve-sparing root replacement (VSRR) of the ascending aorta is a life-saving procedure for the treatment of aortic aneurysms, but patients remain at risk for post-operative events involving the downstream native aorta, the mechanism for which is uncertain. It is possible that proximal graft replacement of the ascending aorta induces hemodynamics alterations in the descending aorta, which could trigger adverse events. Herein, we present a fluid-structure interaction (FSI) protocol, based on patient-specific geometry and boundary conditions, to assess impact of proximal aortic grafts on downstream aortic hemodynamics and distensibility. METHODS Cardiac magnetic resonance (CMR), including MRA, cine-CMR and 4D flow sequences, was performed prior and after VSRR on one subject. Central blood pressure was non-invasively acquired at the time of the CMR: data were used to reconstruct the pre- and post-VSRR model and derive patient-specific boundary conditions for the FSI and a computational fluid dynamic (CFD) analysis with the same settings. Results were validated comparing the predicted velocity field against 4D flow dataset, over four landmarks along the aorta, and the predicted distensibility against the cine-CMR derived value. RESULTS Instantaneous velocity magnitudes extracted from 4D flow and FSI were similar (p > 0.05), while CFD-predicted velocity was significantly higher (p < 0.001), especially in the descending aorta of the pre-VSRR model (vmax was 73 cm/s, 76 cm/s and 99 cm/s, respectively). As measured in cine-CMR, FSI predicted an increase in descending aorta distensibility after grafting (i.e., 4.02 to 5.79 10-3 mmHg-1). In the descending aorta, the post-VSRR model showed increased velocity, aortic distensibility, stress and strain and wall shear stress. CONCLUSIONS Our Results indicate that i) the distensibility of the wall cannot be neglected, and hence the FSI method is necessary to obtain reliable results; ii) graft implantation induces alterations in the hemodynamics and biomechanics along the thoracic aorta, that may trigger adverse vessel remodeling.
Collapse
Affiliation(s)
- Guido Nannini
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Alessandro Caimi
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Maria Chiara Palumbo
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Simone Saitta
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Leonard N Girardi
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Mario Gaudino
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Mary J Roman
- Department of Medicine (Cardiology), Weill Cornell College, New York, NY, USA
| | - Jonathan W Weinsaft
- Department of Medicine (Cardiology), Weill Cornell College, New York, NY, USA
| | - Alberto Redaelli
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
29
|
Ibanez I, de Azevedo Gomes BA, Nieckele AO. Effect of percutaneous aortic valve position on stress map in ascending aorta: A fluid-structure interaction analysis. Artif Organs 2021; 45:O195-O206. [PMID: 33326639 DOI: 10.1111/aor.13883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 11/30/2022]
Abstract
Transcatheter aortic valve implantation (TAVI) is an increasingly widespread procedure. Although this intervention is indicated for high and low surgical risk patients, some issues still remain, such as prosthesis positioning optimization in the aortic annulus. Coaxial positioning of the percutaneous prosthesis influences directly on the aortic wall stress map. The determination of the mechanical stress that acts on the vascular endothelium resulting from blood flow can be considered an important task, since TAVI positioning can lead to unfavorable hemodynamic patterns, resulting in changes in parietal stress, such as those found in post-stenotic dilatation region. This research aims to investigate the influence of the prosthetic valve inclination angle in the mechanical stresses acting in the ascending aortic wall. Aortic compliance and blood flow during cardiac cycle were numerically obtained using fluid structure interaction. The aortic model was developed through segmentation of a computed tomography image of a specific patient submitted to TAVI. When compared to standard position (coaxiality match between the prosthesis and the aortic annulus), the inclination of 4° directed to the left main coronary artery decreased the aortic wall area with high values of wall shear stress and pressure. Coaxial positioning optimization of percutaneous aortic prosthesis may decrease the high mechanical stress area. These changes may be important to reduce the aortic remodeling process, vascular calcification or even the prosthesis half-life. Computational fluid dynamics makes room for personalized medicine, with manufactured prosthesis tailored to each patient.
Collapse
Affiliation(s)
- Ivan Ibanez
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno A de Azevedo Gomes
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Cardiologia - MS, Rio de Janeiro, Brazil
| | - Angela O Nieckele
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
D'Amato AR, Ding X, Wang Y. Using Solution Electrowriting to Control the Properties of Tubular Fibrous Conduits. ACS Biomater Sci Eng 2021; 7:400-407. [PMID: 33464035 DOI: 10.1021/acsbiomaterials.0c01419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple additive manufacturing techniques have been developed in recent years to produce structures with tunable physical, chemical, and mechanical properties and defined architecture. Solution electrospinning, although an older and more established technique, normally cannot achieve the pattern resolution and tunability of these newer manufacturing techniques. In this study, we present solution electrowriting as a method to produce fibrous conduits from various polymers with tunable patterns, dimensions, and scaffold porosity. We demonstrate the importance of solvent selection during solution electrowriting and discuss how solvent polarity and volatility can be exploited to controllably alter the structure of the resulting scaffolds. The technique can be readily implemented with equipment for conventional electrospinning and offers versatility, control, and customization that is uncommon in the solution electrospinning field.
Collapse
Affiliation(s)
- Anthony R D'Amato
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 134 Hollister Drive, 283 Kimball Hall, Ithaca, New York 14853-0001, United States
| | - Xiaochu Ding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 134 Hollister Drive, 283 Kimball Hall, Ithaca, New York 14853-0001, United States
| | - Yadong Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 134 Hollister Drive, 283 Kimball Hall, Ithaca, New York 14853-0001, United States
| |
Collapse
|
31
|
Regulation of SMC traction forces in human aortic thoracic aneurysms. Biomech Model Mechanobiol 2021; 20:717-731. [PMID: 33449277 PMCID: PMC7979631 DOI: 10.1007/s10237-020-01412-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/12/2020] [Indexed: 01/03/2023]
Abstract
Smooth muscle cells (SMCs) usually express a contractile phenotype in the healthy aorta. However, aortic SMCs have the ability to undergo profound changes in phenotype in response to changes in their extracellular environment, as occurs in ascending thoracic aortic aneurysms (ATAA). Accordingly, there is a pressing need to quantify the mechanobiological effects of these changes at single cell level. To address this need, we applied Traction Force Microscopy (TFM) on 759 cells coming from three primary healthy (AoPrim) human SMC lineages and three primary aneurysmal (AnevPrim) human SMC lineages, from age and gender matched donors. We measured the basal traction forces applied by each of these cells onto compliant hydrogels of different stiffness (4, 8, 12, 25 kPa). Although the range of force generation by SMCs suggested some heterogeneity, we observed that: 1. the traction forces were significantly larger on substrates of larger stiffness; 2. traction forces in AnevPrim were significantly higher than in AoPrim cells. We modelled computationally the dynamic force generation process in SMCs using the motor-clutch model and found that it accounts well for the stiffness-dependent traction forces. The existence of larger traction forces in the AnevPrim SMCs were related to the larger size of cells in these lineages. We conclude that phenotype changes occurring in ATAA, which were previously known to reduce the expression of elongated and contractile SMCs (rendering SMCs less responsive to vasoactive agents), tend also to induce stronger SMCs. Future work aims at understanding the causes of this alteration process in aortic aneurysms.
Collapse
|
32
|
Kawamura Y, Murtada SI, Gao F, Liu X, Tellides G, Humphrey JD. Adventitial remodeling protects against aortic rupture following late smooth muscle-specific disruption of TGFβ signaling. J Mech Behav Biomed Mater 2021; 116:104264. [PMID: 33508556 DOI: 10.1016/j.jmbbm.2020.104264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/21/2020] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
Altered signaling through transforming growth factor-beta (TGFβ) increases the risk of aortic dissection in patients, which has been confirmed in mouse models. It is well known that altered TGFβ signaling affects matrix turnover, but there has not been a careful examination of associated changes in structure-function relations. In this paper, we present new findings on the rupture potential of the aortic wall following late postnatal smooth muscle cell (SMC)-specific disruption of type I and II TGFβ receptors in a mouse model with demonstrated dissection susceptibility. Using a combination of custom computer-controlled biaxial tests and quantitative histology and immunohistochemistry, we found that loss of TGFβ signaling in SMCs compromises medial properties but induces compensatory changes in the adventitia that preserve wall strength above that which is needed to resist in vivo values of wall stress. These findings emphasize the different structural defects that lead to aortic dissection and rupture - compromised medial integrity and insufficient adventitial strength, respectively. Relative differences in these two defects, in an individual subject at a particular time, likely reflects the considerable phenotypic diversity that is common in clinical presentations of thoracic aortic dissection and rupture. There is, therefore, a need to move beyond examinations of bulk biological assays and wall properties to cell- and layer-specific studies that delineate pathologic and compensatory changes in wall biology and composition, and thus the structural integrity of the aortic wall that can dictate differences between life and death.
Collapse
Affiliation(s)
- Y Kawamura
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - S-I Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - F Gao
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - X Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - G Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
33
|
Matrix Metalloproteinase-2 Isoforms Differ within the Aortic Wall of Ascending Aortic Aneurysms Associated with Bicuspid Aortic Valve. Cardiol Res Pract 2020; 2020:1306425. [PMID: 33029391 PMCID: PMC7530483 DOI: 10.1155/2020/1306425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of ascending thoracic aortic aneurysm (aTAA) is thought to differ between patients with bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV), and one of the causes is different hemodynamics. Influenced by hemodynamics, the tissue levels of proteins associated with aTAA might differ between aTAAs with BAV and TAV and between different localities within the aortic wall. We therefore analyzed aTAA tissue levels of MMP-2 (matrix metalloproteinase-2) isoforms (Pro-MMP-2, active MMP-2, and total MMP-2) and tissue levels of MMP-14, TIMP-2 (tissue inhibitor of metalloproteinase-2), MMP-9, and TIMP-1 in 19 patients with BAV and 23 patients with TAV via gelatin zymography and enzyme-linked immunosorbent assay (ELISA), respectively. TAV and BAV groups' protein levels did not differ significantly. Whereas the TAV group exhibited no significant differences in protein levels between the aneurysm's anterior and posterior parts, the BAV group revealed significantly higher levels of Pro-MMP-2, total MMP-2, and TIMP-2 in the aneurysm's posterior parts (mean Pro-MMP-2 200.52 arbitrary units (AU) versus 161.12 AU, p=0.007; mean total MMP-2 235.22 AU versus 193.68 AU, p=0.002; mean TIMP-2 26.90 ng/ml versus 25.36 ng/ml, p=0.009), whereas the other proteins did not differ significantly within the aortic wall. Thus, MMPs are distributed more heterogeneously within the aortic wall of aTAAs associated with BAV than in those associated with TAV, which is a new aspect for understanding the underlying pathogenesis. This heterogeneous protein level distribution might be attributable to differences in the underlying pathogenesis, especially hemodynamics. This result is important for further studies as it will be essential to specify the location of samples to ensure data comparability regarding the main goals of understanding the pathogenesis of aTAA, optimizing treatments, and establishing a screening method for its potentially deadly complications.
Collapse
|
34
|
Hemodynamics alteration in patient-specific dilated ascending thoracic aortas with tricuspid and bicuspid aortic valves. J Biomech 2020; 110:109954. [DOI: 10.1016/j.jbiomech.2020.109954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 01/03/2023]
|
35
|
Gomez A, Wang Z, Xuan Y, Wisneski AD, Hope MD, Saloner DA, Guccione JM, Ge L, Tseng EE. Wall Stress Distribution in Bicuspid Aortic Valve-Associated Ascending Thoracic Aortic Aneurysms. Ann Thorac Surg 2020; 110:807-814. [PMID: 32006475 PMCID: PMC8598319 DOI: 10.1016/j.athoracsur.2019.12.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 11/09/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bicuspid aortic valve-associated ascending thoracic aortic aneurysms (BAV-aTAAs) carry a risk of acute type A dissection. Biomechanically, dissection may occur when wall stress exceeds wall strength. Our aim was to develop patient-specific computational models of BAV-aTAAs to determine magnitudes of wall stress by anatomic regions. METHODS Patients with BAV-aTAA diameter greater than 4.5 cm (n = 41) underwent electrocardiogram-gated computed tomography angiography. Three-dimensional aneurysm geometries were reconstructed after accounting for prestress and loaded to systemic pressure. Finite element analyses were performed with fiber-embedded hyperelastic material model using LS-DYNA software (LSTC Inc, Livermore, CA) to obtain wall stress distributions. The 99th percentile longitudinal and circumferential stresses were determined at systole. RESULTS The 99th percentile longitudinal wall stresses for BAV-aTAAs at sinuses of Valsalva, sinotubular junction (STJ), and ascending aorta were 361 ± 59.8 kPa, 295 ± 67.2 kPa, and 224 ± 37.6 kPa, respectively, with significant differences in ascending aorta vs sinuses (P< 1 × 10-13) and STJ (P < 1 × 10-6). The 99th percentile circumferential wall stresses were 474 ± 88.2 kPa, 634 ± 181.9 kPa, and 381 ± 54.0 kPa for sinuses, the STJ, and the ascending aorta, respectively, with significant differences in the ascending aorta vs sinuses (P = .002) and STJ (P < 1 × 10-13). CONCLUSIONS Wall stresses, both circumferential and longitudinal, were greater in the aortic root, sinuses, and STJ than in the ascending aorta on BAV-aTAAs. These results fill a fundamental knowledge gap regarding biomechanical stress distribution in BAV-aTAA patients, which when related to wall strength may provide prognostication of aTAA dissection risk by patient-specific modeling.
Collapse
Affiliation(s)
- Axel Gomez
- Department of Surgery, University of California, San Francisco and San Francisco VA Medical Center, San Francisco, California
| | - Zhongjie Wang
- Department of Surgery, University of California, San Francisco and San Francisco VA Medical Center, San Francisco, California
| | - Yue Xuan
- Department of Surgery, University of California, San Francisco and San Francisco VA Medical Center, San Francisco, California
| | - Andrew D Wisneski
- Department of Surgery, University of California, San Francisco and San Francisco VA Medical Center, San Francisco, California
| | - Michael D Hope
- Department of Radiology, University of California, San Francisco and San Francisco VA Medical Center, San Francisco, California
| | - David A Saloner
- Department of Radiology, University of California, San Francisco and San Francisco VA Medical Center, San Francisco, California
| | - Julius M Guccione
- Department of Surgery, University of California, San Francisco and San Francisco VA Medical Center, San Francisco, California
| | - Liang Ge
- Department of Surgery, University of California, San Francisco and San Francisco VA Medical Center, San Francisco, California
| | - Elaine E Tseng
- Department of Surgery, University of California, San Francisco and San Francisco VA Medical Center, San Francisco, California.
| |
Collapse
|
36
|
Miller K, Mufty H, Catlin A, Rogers C, Saunders B, Sciarrone R, Fourneau I, Meuris B, Tavner A, Joldes GR, Wittek A. Is There a Relationship Between Stress in Walls of Abdominal Aortic Aneurysm and Symptoms? J Surg Res 2020; 252:37-46. [DOI: 10.1016/j.jss.2020.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 01/17/2020] [Accepted: 01/31/2020] [Indexed: 10/24/2022]
|
37
|
Martínez-Micaelo N, Ligero C, Antequera-González B, Junza A, Yanes O, Alegret JM. Plasma Metabolomic Profiling Associates Bicuspid Aortic Valve Disease and Ascending Aortic Dilation with a Decrease in Antioxidant Capacity. J Clin Med 2020; 9:jcm9072215. [PMID: 32668689 PMCID: PMC7408840 DOI: 10.3390/jcm9072215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The bicuspid aortic valve (BAV) is the most common cardiac congenital disease and is associated with an increased risk of developing ascending aorta dilation; which can have fatal consequences. Currently; no established risk biomarkers exist to facilitate the diagnosis and prognosis of BAV. METHODS Using an untargeted metabolomic approach; we identified the levels of metabolites in plasma samples and compared them depending on the bicuspid or tricuspid morphology of the aortic valve. Including those patients with ascending aortic dilation and/or aortic stenosis (n = 212), we analyzed the role possibly played by alpha-Tocopherol in BAV disease; considering its association with the pathophysiological characteristics of BAV and biomarkers related to inflammation, oxidative stress and endothelial damage, as well as characteristics related to alpha-Tocopherol functionality and metabolism. RESULTS We found that BAV patients; especially those with ascending aortic dilation; presented lower antioxidant capacity; as determined by decreased plasma levels of alpha-Tocopherol; paraoxonase 1 and high-density lipoprotein (HDL), as well as increased levels of C-reactive protein (CRP; a biomarker of inflammation) and endothelial microparticles (EMPs; an endothelial damage biomarker). By applying random forest analyses; we evaluated the significant screening capacity of alpha-Tocopherol; CRP and EMPs to classify patients depending on the morphology of the aortic valve. DISCUSSION Our findings support the role of decreased antioxidant capacity; increased inflammation and endothelial damage in the pathogenesis of BAV and the progression of aortic dilation. Moreover; determining the plasma levels of alpha-Tocopherol; CRP and EMPs could improve BAV diagnosis in large populations.
Collapse
Affiliation(s)
- Neus Martínez-Micaelo
- Grup de Recerca Cardiovascular, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43201 Reus, Spain; (C.L.); (B.A.-G.)
- Correspondence: (N.M.-M.); (J.M.A.); Tel.: +34-977310300 (N.M.-M.); Fax: +34-977315144 (N.M.-M.)
| | - Carme Ligero
- Grup de Recerca Cardiovascular, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43201 Reus, Spain; (C.L.); (B.A.-G.)
- Servei de Cardiologia, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Borja Antequera-González
- Grup de Recerca Cardiovascular, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43201 Reus, Spain; (C.L.); (B.A.-G.)
| | - Alexandra Junza
- Metabolomics Platform, Institut d’Investigació Sanitària Pere Virgili (IISPV), Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.); (O.Y.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Oscar Yanes
- Metabolomics Platform, Institut d’Investigació Sanitària Pere Virgili (IISPV), Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.); (O.Y.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Josep M. Alegret
- Grup de Recerca Cardiovascular, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43201 Reus, Spain; (C.L.); (B.A.-G.)
- Servei de Cardiologia, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, 43201 Reus, Spain
- Correspondence: (N.M.-M.); (J.M.A.); Tel.: +34-977310300 (N.M.-M.); Fax: +34-977315144 (N.M.-M.)
| |
Collapse
|
38
|
de Oliveira DMC, Abdullah N, Green NC, Espino DM. Biomechanical Assessment of Bicuspid Aortic Valve Phenotypes: A Fluid-Structure Interaction Modelling Approach. Cardiovasc Eng Technol 2020; 11:431-447. [PMID: 32519086 DOI: 10.1007/s13239-020-00469-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Bicuspid aortic valve (BAV) is a congenital heart malformation with phenotypic heterogeneity. There is no prior computational study that assesses the haemodynamic and valve mechanics associated with BAV type 2 against a healthy tricuspid aortic valve (TAV) and other BAV categories. METHODS A proof-of-concept study incorporating three-dimensional fluid-structure interaction (FSI) models with idealised geometries (one TAV and six BAVs, namely type 0 with lateral and anterior-posterior orientations, type 1 with R-L, N-R and N-L leaflet fusion and type 2) has been developed. Transient physiological boundary conditions have been applied and simulations were run using an Arbitrary Lagrangian-Eulerian formulation. RESULTS Our results showed the presence of abnormal haemodynamics in the aorta and abnormal valve mechanics: type 0 BAVs yielded the best haemodynamical and mechanical outcomes, but cusp stress distribution varied with valve orifice orientation, which can be linked to different cusp calcification location onset; type 1 BAVs gave rise to similar haemodynamics and valve mechanics, regardless of raphe position, but this position altered the location of abnormal haemodynamic features; finally, type 2 BAV constricted the majority of blood flow, exhibiting the most damaging haemodynamic and mechanical repercussions when compared to other BAV phenotypes. CONCLUSION The findings of this proof-of-concept work suggest that there are specific differences across haemodynamics and valve mechanics associated with BAV phenotypes, which may be critical to subsequent processes associated with their pathophysiology processes.
Collapse
Affiliation(s)
- Diana M C de Oliveira
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Nazirul Abdullah
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Naomi C Green
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniel M Espino
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
39
|
|
40
|
OLIVEIRA DIANAC, LARANJO SÉRGIO, TIAGO JORGE, PINTO FÁTIMAF, SEQUEIRA ADÉLIA. NUMERICAL SIMULATION OF DILATION PATTERNS OF THE ASCENDING AORTA IN AORTOPATHIES. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519419500684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aortic dilation is associated with congenital bicuspid aortic valve (BAV) disease, and its etiology is still not completely understood. The aim of this study is to provide further insight into aortic hemodynamics in a BAV population with different degrees of aortic dilation and regurgitation in comparison with a patient without pathology. A fluid–structure interaction (FSI) numerical approach is implemented regarding patient-specific geometries, where the aortic valves are defined by analytical orifices. Results show that, while the patient without pathology displays a typical hemodynamic behavior of flows in bends, BAV-related aortas present an accelerated flow along the outer aortic wall. Wall shear stress (WSS) overload in the outer curvature is observed, more marked in more dilated aortas. Moreover, helices in the ascending aorta are present in these patients, enhanced with greater dilation. These findings support the fact that hemodynamic factors play an important role in aortic dilation onset and development in BAV patients, caused by a prolonged exposure of the outer ascending aortic curvature to altered WSS. Besides, our results suggest that greater aortic regurgitation may be associated with abnormal WSS distributions in the ascending aorta during diastole, which can facilitate aortic root dilation.
Collapse
Affiliation(s)
- DIANA C. OLIVEIRA
- Department of Bioengineering and CEMAT, Instituto Superior Técnico, Ulisboa Av. Rovisco Pais, 1 1049-001 Lisboa, Portugal
| | - SÉRGIO LARANJO
- Pediatric Cardiology Department, Congenital Heart Diseases Reference Centre, Hospital de Santa Marta (CHLC), Rua de Santa Marta 50 1169-024 Lisboa, Portugal
| | - JORGE TIAGO
- Department of Mathematics and CEMAT, Instituto Superior Técnico, Ulisboa Av. Rovisco Pais, 1 1049-001 Lisboa, Portugal
| | - FÁTIMA F. PINTO
- Pediatric Cardiology Department, Congenital Heart Diseases Reference Centre, Hospital de Santa Marta (CHLC), Rua de Santa Marta 50 1169-024 Lisboa, Portugal
| | - ADÉLIA SEQUEIRA
- Department of Mathematics and CEMAT, Instituto Superior Técnico, Ulisboa Av. Rovisco Pais, 1 1049-001 Lisboa, Portugal
| |
Collapse
|
41
|
Mozafari H, Wang L, Lei Y, Gu L. Multi-scale modeling of the lamellar unit of arterial media. NANOTECHNOLOGY REVIEWS 2019; 8:539-547. [DOI: 10.1515/ntrev-2019-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
AbstractThe heterogeneity of the lamellar unit (LU) of arterial media plays an important role in the biomechanics of artery. Current two-component (fibrous component and a homogenous matrix) constitutive model is inappropriate for capturing the micro-structural variations in the LU, such as contraction/relaxation of vascular smooth muscle cells (VSMCs), fragmentation of the elastin layer, and deposition/disruption of the collagen network. In this work, we developed a representative volume element (RVE) model with detailed micro-configurations, i.e., VSMCs at various phenotypes, collagen fibers, and elastin laminate embedded in the ground substance. The fiber architecture was generated based on its volume fraction and orientations. Our multi-scale model demonstrated the relation between the arterial expansion and the micro-structural variation of the lamellar unit. The obtained uniaxial response of the LU was validated against the published experimental data. The load sharing capacity of fibrous component and VSMCs of the LU were obtained. We found that the VSMC could take 30% of the circumferential load when contracted until the collagen fibers were recruited, while this value was less than 2% for the relaxed VSMC. In addition, the contribution of collagen fibers at low stretch levels was negligible but became predominant when straightened in high stretches.Moreover, aging effects by collagen deposition was modeled to estimate the arterial stiffening. It was revealed that the aortic stiffness is mainly controlled by collagen fibers, instead of VSMCs. Our findings could shed some light about the contribution of VSMCs in arterial stiffness which has been under debate in recent years.
Collapse
Affiliation(s)
- Hozhabr Mozafari
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Nebraska-LincolnUnited States of America
| | - Lulu Wang
- College of Health Science and environmental Engineering, ShenZhen Technology University, ShenZhenChina
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska-LincolnUnited States of America
| | - Linxia Gu
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, FloridaUnited States of America
| |
Collapse
|
42
|
Gleason TG. Wall shear stress versus wall tensile stress: Two important biomechanical metrics. J Thorac Cardiovasc Surg 2019; 159:e157-e158. [PMID: 31810649 DOI: 10.1016/j.jtcvs.2019.10.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Thomas G Gleason
- Ronald V. Pellegrini Professor and Chief, Division of Cardiac Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| |
Collapse
|
43
|
Borger MA, Fedak PWM, Stephens EH, Gleason TG, Girdauskas E, Ikonomidis JS, Khoynezhad A, Siu SC, Verma S, Hope MD, Cameron DE, Hammer DF, Coselli JS, Moon MR, Sundt TM, Barker AJ, Markl M, Della Corte A, Michelena HI, Elefteriades JA. The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve-related aortopathy: Full online-only version. J Thorac Cardiovasc Surg 2019; 156:e41-e74. [PMID: 30011777 DOI: 10.1016/j.jtcvs.2018.02.115] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/17/2018] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Bicuspid aortic valve disease is the most common congenital cardiac disorder, being present in 1% to 2% of the general population. Associated aortopathy is a common finding in patients with bicuspid aortic valve disease, with thoracic aortic dilation noted in approximately 40% of patients in referral centers. Several previous consensus statements and guidelines have addressed the management of bicuspid aortic valve-associated aortopathy, but none focused entirely on this disease process. The current guidelines cover all major aspects of bicuspid aortic valve aortopathy, including natural history, phenotypic expression, histology and molecular pathomechanisms, imaging, indications for surgery, surveillance, and follow-up, and recommendations for future research. It is intended to provide clinicians with a current and comprehensive review of bicuspid aortic valve aortopathy and to guide the daily management of these complex patients.
Collapse
Affiliation(s)
- Michael A Borger
- Leipzig Heart Center, Cardiac Surgery, University of Leipzig, Leipzig, Germany.
| | - Paul W M Fedak
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Thomas G Gleason
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
| | - John S Ikonomidis
- Division of Cardiothoracic Surgery, University of North Carolina, Chapel Hill, NC
| | - Ali Khoynezhad
- Memorial Care Heart and Vascular Institute, Memorial Care Long Beach Medical Center, Long Beach, Calif
| | - Samuel C Siu
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Subodh Verma
- Department of Cardiac Surgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Michael D Hope
- San Francisco (UCSF) Department of Radiology & Biomedical Imaging, University of California, San Francisco, Calif
| | - Duke E Cameron
- Department of Cardiac Surgery, Massachusetts General Hospital, Boston, Mass
| | - Donald F Hammer
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery, Texas Heart Institute, Baylor College of Medicine, Houston, Tex
| | - Marc R Moon
- Section of Cardiac Surgery, Washington University School of Medicine, St Louis, Mo
| | - Thoralf M Sundt
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, Mass
| | - Alex J Barker
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Michael Markl
- Departments of Radiology and Biomedical Engineering, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | | | | | - John A Elefteriades
- Department of Cardiothoracic Surgery, Yale University School of Medicine, New Haven, Conn
| |
Collapse
|
44
|
Cosentino F, Agnese V, Raffa GM, Gentile G, Bellavia D, Zingales M, Pilato M, Pasta S. On the role of material properties in ascending thoracic aortic aneurysms. Comput Biol Med 2019; 109:70-78. [DOI: 10.1016/j.compbiomed.2019.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/20/2019] [Accepted: 04/20/2019] [Indexed: 12/31/2022]
|
45
|
Cosentino F, Scardulla F, D'Acquisto L, Agnese V, Gentile G, Raffa G, Bellavia D, Pilato M, Pasta S. Computational modeling of bicuspid aortopathy: Towards personalized risk strategies. J Mol Cell Cardiol 2019; 131:122-131. [PMID: 31047985 DOI: 10.1016/j.yjmcc.2019.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/09/2019] [Accepted: 04/26/2019] [Indexed: 11/18/2022]
Abstract
This paper describes current advances on the application of in-silico for the understanding of bicuspid aortopathy and future perspectives of this technology on routine clinical care. This includes the impact that artificial intelligence can provide to develop computer-based clinical decision support system and that wearable sensors can offer to remotely monitor high-risk bicuspid aortic valve (BAV) patients. First, we discussed the benefit of computational modeling by providing tangible examples of in-silico software products based on computational fluid-dynamic (CFD) and finite-element method (FEM) that are currently transforming the way we diagnose and treat cardiovascular diseases. Then, we presented recent findings on computational hemodynamic and structural mechanics of BAV to highlight the potentiality of patient-specific metrics (not-based on aortic size) to support the clinical-decision making process of BAV-associated aneurysms. Examples of BAV-related personalized healthcare solutions are illustrated.
Collapse
Affiliation(s)
- Federica Cosentino
- Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", University of Palermo, Piazza delle Cliniche, n.2, 90128 Palermo, Italy; Fondazione Ri.MED, Via Bandiera n.11, 90133 Palermo, Italy
| | - Francesco Scardulla
- Department of Engineering, University of Palermo, Viale delle Scienze Ed.8, 90128 Palermo, Italy
| | - Leonardo D'Acquisto
- Department of Engineering, University of Palermo, Viale delle Scienze Ed.8, 90128 Palermo, Italy
| | - Valentina Agnese
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Via Tricomi n.5, 90127 Palermo, Italy
| | - Giovanni Gentile
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Via Tricomi n.5, 90127 Palermo, Italy
| | - Giuseppe Raffa
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Via Tricomi n.5, 90127 Palermo, Italy
| | - Diego Bellavia
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Via Tricomi n.5, 90127 Palermo, Italy
| | - Michele Pilato
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Via Tricomi n.5, 90127 Palermo, Italy
| | - Salvatore Pasta
- Fondazione Ri.MED, Via Bandiera n.11, 90133 Palermo, Italy; Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Via Tricomi n.5, 90127 Palermo, Italy.
| |
Collapse
|
46
|
Rahmani S, Jarrahi A, Saed B, Navidbakhsh M, Farjpour H, Alizadeh M. Three-dimensional modeling of Marfan syndrome with elastic and hyperelastic materials assumptions using fluid-structure interaction. Biomed Mater Eng 2019; 30:255-266. [PMID: 30988235 DOI: 10.3233/bme-191049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Marfan syndrome (MFS) is a genetic disorder of the connective tissue. It most prominently influences the skeletal, cardiovascular, and ocular systems, but all fibrous connective tissue throughout the body can be affected as well. OBJECTIVE This study aims to investigate a realistic three-dimensional model of an aorta of a specific patient suffering from MFS by considering elastic and hyperelastic materials for the tissue using fluid-structure interaction (FSI). METHODS Isotropic linear elastic and Mooney-Rivlin hyperelastic assumptions are implemented. Linear and nonlinear mechanical properties of the aneurysmal MFS aortic tissue are derived from an uniaxial experimental test. RESULTS Vortex generation in the vicinity of the aneurysm region in both elastic and hyperelastic models and the maximum blood velocity at peak flow time is calculated as 0.517 and 0.533 m/s for the two materials, respectively. The blood pressure is not significantly different between the two models (±8 Pa) and the blood pressure difference between the points in the horizontal plane of the aneurysm region is obtained as ±10 Pa for both models. The maximum von Mises stress for the hyperelastic model (2.19 MPa) is 27% more than the elastic one (1.72 MPa) and takes place at the inner curvature and upper part of the aorta and somehow far from the aneurysm region. The wall shear stress (WSS) is also considered for the elastic and hyperelastic assumptions, which is 36.7 Pa for both elastic and hyperelastic models. CONCLUSION The aneurysm region in the MFS affects the blood flow and causes the vortex to be generated which consequently affects the blood flow in the downstream by adding some perturbations to the blood flow. The WSS is obtained to be lower in the aneurysm region compared to other regions which indicated vascular remodeling.
Collapse
Affiliation(s)
- Shahrokh Rahmani
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amin Jarrahi
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Behdad Saed
- School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mahdi Navidbakhsh
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Hekmat Farjpour
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mansour Alizadeh
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
47
|
Oliveira D, Rosa SA, Tiago J, Ferreira RC, Agapito AF, Sequeira A. Bicuspid aortic valve aortopathies: An hemodynamics characterization in dilated aortas. Comput Methods Biomech Biomed Engin 2019; 22:815-826. [PMID: 30957542 DOI: 10.1080/10255842.2019.1597860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bicuspid aortic valve (BAV) aortopathy remains of difficult clinical management due to its heterogeneity and further assessment of related aortic hemodynamics is necessary. The aim of this study was to assess systolic hemodynamic indexes and wall stresses in patients with diverse BAV phenotypes and dilated ascending aortas. The aortic geometry was reconstructed from patient-specific images while the aortic valve was generated based on patient-specific measurements. Physiologic material properties and boundary conditions were applied and fully coupled fluid-structure interaction (FSI) analysis were conducted. Our dilated aortic models were characterized by the presence of abnormal hemodynamics with elevated degrees of flow skewness and eccentricity, regardless of BAV morphotype. Retrograde flow was also present. Both features, predicted by flow angle and flow reversal ratios, were consistently higher than those reported for non-dilated aortas. Right-handed helical flow was present, as well as elevated wall shear stress (WSS) on the outer ascending aortic wall. Our results suggest that the abnormal flow associated with BAV may play a role in aortic enlargement and progress it further on already dilated aortas.
Collapse
Affiliation(s)
- Diana Oliveira
- a Department of Mathematics and CEMAT , Instituto Superior Técnico, University of Lisbon , Lisbon , Portugal
| | - Sílvia Aguiar Rosa
- b Cardiology Department , Hospital de Santa Marta (CHLC) , Lisboa , Portugal
| | - Jorge Tiago
- a Department of Mathematics and CEMAT , Instituto Superior Técnico, University of Lisbon , Lisbon , Portugal
| | - Rui Cruz Ferreira
- b Cardiology Department , Hospital de Santa Marta (CHLC) , Lisboa , Portugal
| | | | - Adélia Sequeira
- a Department of Mathematics and CEMAT , Instituto Superior Técnico, University of Lisbon , Lisbon , Portugal
| |
Collapse
|
48
|
Carelli MG, Seco M, Bannon PG, Grieve SM. Is wall shear stress ready to become a prime-time clinical tool?-measurement of post-surgical patterns in patients undergoing aortic valve and thoracic aortic replacement using 4-dimensional flow magnetic resonance imaging. J Thorac Dis 2019; 11:S440-S442. [PMID: 30997242 PMCID: PMC6424770 DOI: 10.21037/jtd.2018.11.62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Matheus G. Carelli
- Department of Cardiothoracic Surgery, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia
| | - Michael Seco
- Department of Cardiothoracic Surgery, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, NSW 2050, Australia
| | - Paul G. Bannon
- Department of Cardiothoracic Surgery, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, NSW 2050, Australia
| | - Stuart M. Grieve
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, NSW 2050, Australia
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- Department of Radiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
49
|
Garoffolo G, Madonna R, de Caterina R, Pesce M. Cell based mechanosensing in vascular patho-biology: More than a simple go-with the flow. Vascul Pharmacol 2018; 111:7-14. [DOI: 10.1016/j.vph.2018.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/10/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022]
|
50
|
Emerel L, Thunes J, Kickliter T, Billaud M, Phillippi JA, Vorp DA, Maiti S, Gleason TG. Predissection-derived geometric and distensibility indices reveal increased peak longitudinal stress and stiffness in patients sustaining acute type A aortic dissection: Implications for predicting dissection. J Thorac Cardiovasc Surg 2018; 158:355-363. [PMID: 30551966 DOI: 10.1016/j.jtcvs.2018.10.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To assess ascending aortic distensibility and build geometry and distensibility-based patient-specific stress distribution maps in patients sustaining type A aortic dissection (TAAD) using predissection noninvasive imaging. METHODS Review of charts from patients undergoing surgical repair of TAAD (n = 351) led to the selection of a subset population (n = 7) with 2 or more predissection computed tomography angiography scans and echocardiograms at least 1 year before dissection. Ascending aortic wall biomechanical properties (aortic strain, distensibility, and stiffness) were compared with age- and size-matched nondissected nonaneurysmal controls. Patient-specific aortic strain served as an input in aortic geometry-based simulated 3-dimensional reconstructions to generate longitudinal and circumferential wall stress maps. Inspection of perioperative dissection scans and intraoperative visual examination confirmed primary tear locations. RESULTS Predissection echocardiography revealed ascending aortas of patients sustaining TAAD to exhibit decreased aortic wall strain (14.50 ± 1.13% vs 8.49 ± 1.08%; P < .01), decreased distensibility (4.26 ± 0.44 vs 2.39 ± 0.33 10-6 cm2·dyne-1; P < .01), increased stiffness (3.84 ± 0.24 vs 7.48 ± 1.05; P < .001), and increased longitudinal wall stress (246 ± 22 vs 172 ± 37 kPa; P < .01). There was no significant difference in circumferential wall stress. Predissection computed tomography angiography models revealed overlap between regions of increased longitudinal wall stress and primary tear sites. CONCLUSIONS Using predissection imaging, we identified increased stiffness and longitudinal wall stress in ascending aortas of patients with dissection. Patient-specific imaging-derived biomechanical property maps like these may be instrumental toward designing better prediction models of aortic dissection potential.
Collapse
Affiliation(s)
- Leonid Emerel
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - James Thunes
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa
| | - Trevor Kickliter
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa
| | - Marie Billaud
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Julie A Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, Pa
| | - David A Vorp
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, Pa; Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pa
| | - Spandan Maiti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa
| | - Thomas G Gleason
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, Pa; Center for Thoracic Aortic Disease, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|