1
|
Godivier J, Lawrence EA, Wang M, Hammond CL, Nowlan NC. Compressive stress gradients direct mechanoregulation of anisotropic growth in the zebrafish jaw joint. PLoS Comput Biol 2024; 20:e1010940. [PMID: 38330044 PMCID: PMC10880962 DOI: 10.1371/journal.pcbi.1010940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/21/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Mechanical stimuli arising from fetal movements are critical factors underlying joint growth. Abnormal fetal movements negatively affect joint shape features with important implications for joint health, but the mechanisms by which mechanical forces from fetal movements influence joint growth are still unclear. In this research, we quantify zebrafish jaw joint growth in 3D in free-to-move and immobilised fish larvae between four and five days post fertilisation. We found that the main changes in size and shape in normally moving fish were in the ventrodorsal axis, while growth anisotropy was lost in the immobilised larvae. We next sought to determine the cell level activities underlying mechanoregulated growth anisotropy by tracking individual cells in the presence or absence of jaw movements, finding that the most dramatic changes in growth rates due to jaw immobility were in the ventrodorsal axis. Finally, we implemented mechanobiological simulations of joint growth with which we tested hypotheses relating specific mechanical stimuli to mechanoregulated growth anisotropy. Different types of mechanical stimulation were incorporated into the simulation to provide the mechanoregulated component of growth, in addition to the baseline (non-mechanoregulated) growth which occurs in the immobilised animals. We found that when average tissue stress over the opening and closing cycle of the joint was used as the stimulus for mechanoregulated growth, joint morphogenesis was not accurately predicted. Predictions were improved when using the stress gradients along the rudiment axes (i.e., the variation in magnitude of compression to magnitude of tension between local regions). However, the most accurate predictions were obtained when using the compressive stress gradients (i.e., the variation in compressive stress magnitude) along the rudiment axes. We conclude therefore that the dominant biophysical stimulus contributing to growth anisotropy during early joint development is the gradient of compressive stress experienced along the growth axes under cyclical loading.
Collapse
Affiliation(s)
- Josepha Godivier
- Department of Bioengineering, Imperial College London, London, United Kingdom
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Elizabeth A. Lawrence
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Mengdi Wang
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, United Kingdom
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Modina SC, Aidos L, Millar VRH, Pallaoro M, Polito U, Veronesi MC, Peretti GM, Mangiavini L, Carnevale L, Boschetti F, Abbate F, Di Giancamillo A. Postnatal morpho-functional development of a dog's meniscus. Ann Anat 2023; 250:152141. [PMID: 37499701 DOI: 10.1016/j.aanat.2023.152141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
This study evaluates the morpho-functional modifications that characterize meniscal development from neonatal to adult dogs. Even if menisci are recognized as essential structures for the knee joint, poor information is available about their morphogenesis, in particular in dog models. Menisci from a group of Dobermann Pinchers aged 0, 10, 30 days, and 4 years (T0, T10, T30, adult, respectively) were analyzed by SEM, histochemistry (Safranin O and Picro Sirius Red Staining analyzed under a polarized light microscope), immunofluorescences (collagen type I and II), biomechanical (compression) and biochemical analyses (glycosaminoglycans, GAGs, and DNA content). SEM analyses revealed that the T0 meniscus is a bulgy structure that during growth tends to flatten, firstly in the inner zone (T10) and then even in the outer zone (T30), until the achievement of the completely smooth adult final shape. These results were further supported by the histochemistry analyses in which the deposition of GAGs started from T30, and the presence of type I birefringent collagen fibers was observed from T0 to T30, while poorly refringent type III collagen fibers were observed in the adult dogs. Double immunofluorescence analyses also evidenced that the neonatal meniscus contains mainly type I collagen fibers, as well as the T10 meniscus, and demonstrated a more evident regionalization and crimping in the T30 and adult meniscus. Young's elastic modulus of the meniscus in T0 and T10 animals was lower than the T30 animals, and this last group was also lower than adult ones (T0-T10 vs T30 vs adult). Biochemical analysis confirmed that cellularity decreases over time from neonatal to adult (p < 0.01). The same decreasing trend was observed in GAGs deposition. These results may suggest that the postnatal development of canine meniscus may be related to the progressive functional locomotory development: after birth, the meniscus acquires its functionality over time, through movement, load, and growth itself.
Collapse
Affiliation(s)
- Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Lucia Aidos
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | | | - Margherita Pallaoro
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Umberto Polito
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Maria Cristina Veronesi
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Giuseppe Maria Peretti
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli, 31, 20133 Milan, Italy; IRCCS, Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| | - Laura Mangiavini
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli, 31, 20133 Milan, Italy; IRCCS, Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| | - Liliana Carnevale
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Federica Boschetti
- IRCCS, Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy; Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Polytechnic University of Milan, 20133 Milan, Italy
| | - Francesco Abbate
- Department of Veterinary Sciences, University of Messina, Polo Universitario S.S. Annunziata, 98168 Messina, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli, 31, 20133 Milan, Italy.
| |
Collapse
|
3
|
Sadeghian SM, Lewis CL, Shefelbine SJ. Can pelvic tilt cause cam morphology? A computational model of proximal femur development mechanobiology. J Biomech 2023; 157:111707. [PMID: 37441913 DOI: 10.1016/j.jbiomech.2023.111707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Cam deformity of the proximal femur is a risk factor for early osteoarthritis. While cam morphology is related to mechanical force at a formative time in skeletal growth, the specific problematic forces contributing to the development of cam morphology remain unknown. Individuals with femoroacetabular impingement syndrome exhibit an increased anterior pelvic tilt during walking, which alters their hip joint forces. This study aims to investigate the influence of altered joint force caused by anterior pelvic tilt on proximal femur epiphyseal growth and the potential association between increased anterior pelvic tilt and the development of cam morphology. A computational model is utilized to simulate the endochondral ossification in the proximal femur and predict cam formation. Cartilage growth and ossification patterns for a gait cycle with and without anterior pelvic tilt were modeled. The simulated growth results indicated an increased alpha angle (53° for typically developing to 68° for anterior pelvic tilt) and aspherical femoral head in the model with anterior pelvic tilt. We conclude that anterior pelvic tilt may be sufficient to cause the formation of the cam morphology. Identifying the critical mechanical conditions that increase the risk of cam deformity could help prevent this condition by adjusting the physical activities before skeletal maturity.
Collapse
Affiliation(s)
- S Mahsa Sadeghian
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Cara L Lewis
- Department of Physical Therapy, College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, USA
| | - Sandra J Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA; Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
4
|
Yokoyama Y, Kameo Y, Adachi T. Development of continuum-based particle models of cell growth and proliferation for simulating tissue morphogenesis. J Mech Behav Biomed Mater 2023; 142:105828. [PMID: 37104898 DOI: 10.1016/j.jmbbm.2023.105828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023]
Abstract
Biological tissues acquire various characteristic shapes through morphogenesis. Tissue shapes result from the spatiotemporally heterogeneous cellular activities influenced by mechanical and biochemical environments. To investigate multicellular tissue morphogenesis, this study aimed to develop a novel multiscale method that can connect each cellular activity to the mechanical behaviors of the whole tissue by constructing continuum-based particle models of cellular activities. This study proposed mechanical models of cell growth and proliferation that are expressed as volume expansion and cell division by extending the material point method. By simulating cell hypertrophy and proliferation under both free and constraint conditions, the proposed models demonstrated potential for evaluating the mechanical state and tracing cells throughout tissue morphogenesis. Moreover, the effect of a cell size checkpoint was incorporated into the cell proliferation model to investigate the mechanical behaviors of the whole tissue depending on the condition of cellular activities. Consequently, the accumulation of strain energy density was suppressed because of the influence of the checkpoint. In addition, the whole tissues acquired different shapes depending on the influence of the checkpoint. Thus, the models constructed herein enabled us to investigate the change in the mechanical behaviors of the whole tissue according to each cellular activity depending on the mechanical state of the cells during morphogenesis.
Collapse
Affiliation(s)
- Yuka Yokoyama
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
| | - Yoshitaka Kameo
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan.
| |
Collapse
|
5
|
Alonso MG, Yawny A, Bertolino G. A numerical study towards shape memory alloys application in orthotic management of pediatric knee lateral deviations. Sci Rep 2023; 13:2134. [PMID: 36747043 PMCID: PMC9902535 DOI: 10.1038/s41598-023-29254-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Exerting a constant load would likely improve orthosis effectiveness in treating knee lateral deviations during childhood and early adolescence. Shape memory alloys are potential candidates for such applications due to their so called pseudoelastic effect. The present study aims to quantitatively define the applicable mechanical loads, in order to reduce treatment duration while avoiding tissular damage and patient discomfort. This is essential for performing a more efficient design of correction devices. We use a patient-specific finite elements model of a pediatric knee to determine safe loading levels. The achievable correction rates are estimated using a stochastic three-dimensional growth model. Results are compared against those obtained for a mechanical stimulus decreasing in proportion to the achieved correction, emulating the behavior of conventional orthoses. A constant flexor moment of 1.1 Nm is estimated to change femorotibial angle at a rate of (7.4 ± 4.6) deg/year (mean ± std). This rate is similar to the achieved by more invasive growth modulation methods, and represents an improvement in the order of 25% in the necessary time for reducing deformities of (10 ± 5) deg by half, as compared with conventional orthoses.
Collapse
Affiliation(s)
- M G Alonso
- División Física de Metales, CNEA, 8400, Bariloche, Argentina.
- Instituto Balseiro, Universidad Nacional de Cuyo, Bariloche, Argentina.
| | - A Yawny
- División Física de Metales, CNEA, 8400, Bariloche, Argentina
- Instituto Balseiro, Universidad Nacional de Cuyo, Bariloche, Argentina
- CONICET, Patagonia Norte, 8400, Bariloche, Argentina
| | - G Bertolino
- División Física de Metales, CNEA, 8400, Bariloche, Argentina
- Instituto Balseiro, Universidad Nacional de Cuyo, Bariloche, Argentina
- CONICET, Patagonia Norte, 8400, Bariloche, Argentina
| |
Collapse
|
6
|
Comellas E, Shefelbine SJ. The role of computational models in mechanobiology of growing bone. Front Bioeng Biotechnol 2022; 10:973788. [PMID: 36466331 PMCID: PMC9715592 DOI: 10.3389/fbioe.2022.973788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/09/2022] [Indexed: 11/09/2023] Open
Abstract
Endochondral ossification, the process by which long bones grow in length, is regulated by mechanical forces. Computational models, specifically finite element models, have been used for decades to understand the role of mechanical loading on endochondral ossification. This perspective outlines the stages of model development in which models are used to: 1) explore phenomena, 2) explain pathologies, 3) predict clinical outcomes, and 4) design therapies. As the models progress through the stages, they increase in specificity and biofidelity. We give specific examples of models of endochondral ossification and expect models of other mechanobiological systems to follow similar development stages.
Collapse
Affiliation(s)
- Ester Comellas
- Serra Húnter Fellow, Department of Physics, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Sandra J. Shefelbine
- Department of Mechanical and Industrial Engineering and Department of Bioengineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
7
|
Godivier J, Lawrence EA, Wang M, Hammond CL, Nowlan NC. Growth orientations, rather than heterogeneous growth rates, dominate jaw joint morphogenesis in the larval zebrafish. J Anat 2022; 241:358-371. [PMID: 35510779 PMCID: PMC9296026 DOI: 10.1111/joa.13680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
In early limb embryogenesis, synovial joints acquire specific shapes which determine joint motion and function. The process by which the opposing cartilaginous joint surfaces are moulded into reciprocal and interlocking shapes, called joint morphogenesis, is one of the least understood aspects of joint formation and the cell-level dynamics underlying it are yet to be unravelled. In this research, we quantified key cellular dynamics involved in growth and morphogenesis of the zebrafish jaw joint and synthesised them in a predictive computational simulation of joint development. Cells in larval zebrafish jaw joints labelled with cartilage markers were tracked over a 48-h time window using confocal imaging. Changes in distance and angle between adjacent cell centroids resulting from cell rearrangement, volume expansion and extracellular matrix (ECM) deposition were measured and used to calculate the rate and direction of local tissue deformations. We observed spatially and temporally heterogeneous growth patterns with marked anisotropy over the developmental period assessed. There was notably elevated growth at the level of the retroarticular process of the Meckel's cartilage, a feature known to undergo pronounced shape changes during zebrafish development. Analysis of cell dynamics indicated a dominant role for cell volume expansion in growth, with minor influences from ECM volume increases and cell intercalation. Cell proliferation in the joint was minimal over the timeframe of interest. Synthesising the dynamic cell data into a finite element model of jaw joint development resulted in accurate shape predictions. Our biofidelic computational simulation demonstrated that zebrafish jaw joint growth can be reasonably approximated based on cell positional information over time, where cell positional information derives mainly from cell orientation and cell volume expansion. By modifying the input parameters of the simulation, we were able to assess the relative contributions of heterogeneous growth rates and of growth orientation. The use of uniform rather than heterogeneous growth rates only minorly impacted the shape predictions, whereas isotropic growth fields resulted in altered shape predictions. The simulation results suggest that growth anisotropy is the dominant influence on joint growth and morphogenesis. This study addresses the gap of the cellular processes underlying joint morphogenesis, with implications for understanding the aetiology of developmental joint disorders such as developmental dysplasia of the hip and arthrogryposis.
Collapse
Affiliation(s)
| | | | | | | | - Niamh C. Nowlan
- Imperial College LondonLondonUnited Kingdom,University College DublinDublinIreland
| |
Collapse
|
8
|
Alonso G, Yawny A, Bertolino G. How do bones grow? A mathematical description of the mechanobiological behavior of the epiphyseal plate. Biomech Model Mechanobiol 2022; 21:1585-1601. [PMID: 35882677 DOI: 10.1007/s10237-022-01608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
Growth modulation is an emerging method for the treatment of skeletal deformities originating in the long bones or the vertebral bodies. It requires the controlled application of mechanical loads to the affected bone, causing an alteration of the growth and ossification process occurring in a cartilaginous region called epiphyseal growth plate or physis. In order to avoid the possibility of under- or over-correction, quantification of the applied forces is necessary. Pursuing this goal, here we propose a phenomenological model of mechanobiological effects on the epiphyseal growth plate, based on the observed similarity between the mechanobiologically induced growth and viscoelastic material behavior. The model incorporates mechanical loading effects on growth direction, growth rate and ossification speed; it also allows to evaluate the occurrence of transient effects. Model consistency was tested against a rather large set of experiments existing in the literature. A generic simplified geometrical model of bones was established for this. Analytical solutions for growth and ossification evolution were obtained for different loading conditions, allowing to test the ability of the model to describe bone growth under various kinds of mechanical loading conditions. Model-predicted changes regarding epiphyseal growth plate thickness as well as longitudinal growth speed are consistent with experiments in which static tension or compression were applied to long bones. Results suggest that when the mechanical load is sinusoidally variable, conflicting data existing in the literature could be explained by a previously unconsidered effect of the the applied load initial phase. The model can accurately fit data regarding torsional loads effects on growth. Mechanobiological data for humans is very scarce. For this reason, when possible, the model parameters values were estimated, for the proposed generic geometry, after growth measurements in animal models available in the literature. Although it is not possible to assert their validity for humans, the proposed model along with the obtained parameters values give a rational foundation to be used in more advanced computational studies.
Collapse
Affiliation(s)
- Gastón Alonso
- División Física de Metales, CNEA, Centro Atómico Bariloche, Bariloche, 8400, Río Negro, Argentina. .,Instituto Balseiro, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Alejandro Yawny
- División Física de Metales, CNEA, Centro Atómico Bariloche, Bariloche, 8400, Río Negro, Argentina.,CONICET, Buenos Aires, Argentina.,Instituto Balseiro, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Graciela Bertolino
- División Física de Metales, CNEA, Centro Atómico Bariloche, Bariloche, 8400, Río Negro, Argentina.,CONICET, Buenos Aires, Argentina.,Instituto Balseiro, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
9
|
Volz M, Wyse-Sookoo KR, Travascio F, Huang CY, Best TM. MECHANOBIOLOGICAL APPROACHES FOR STIMULATING CHONDROGENESIS OF STEM CELLS. Stem Cells Dev 2022; 31:460-487. [PMID: 35615879 DOI: 10.1089/scd.2022.0049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chondrogenesis is the process of differentiation of stem cells into mature chondrocytes. Such a process consists of chemical, functional, and structural changes which are initiated and mediated by the host environment of the cells. To date, the mechanobiology of chondrogenesis has not been fully elucidated. Hence, experimental activity is focused on recreating specific environmental conditions for stimulating chondrogenesis, and to look for a mechanistic interpretation of the mechanobiological response of cells in the cartilaginous tissues. There are a large number of studies on the topic that vary considerably in their experimental protocols used for providing environmental cues to cells for differentiation, making generalizable conclusions difficult to ascertain. The main objective of this contribution is to review the mechanobiological stimulation of stem cell chondrogenesis and methodological approaches utilized to date to promote chondrogenesis of stem cells in-vitro. In-vivo models will also be explored, but this area is currently limited. An overview of the experimental approaches used by different research groups may help the development of unified testing methods that could be used to overcome existing knowledge gaps, leading to an accelerated translation of experimental findings to clinical practice.
Collapse
Affiliation(s)
- Mallory Volz
- University of Miami, 5452, Biomedical Engineering, Coral Gables, Florida, United States;
| | | | - Francesco Travascio
- University of Miami, 5452, Mechanical and Aerospace Engineering, 1251 Memorial Drive, MEB 217B, Coral Gables, Florida, United States, 33146;
| | - Chun-Yuh Huang
- University of Miami, 5452, Biomedical Engineering, Coral Gables, Florida, United States;
| | - Thomas M Best
- University of Miami Miller School of Medicine, 12235, School of Medicine, Miami, Florida, United States;
| |
Collapse
|
10
|
Comellas E, Farkas JE, Kleinberg G, Lloyd K, Mueller T, Duerr TJ, Muñoz JJ, Monaghan JR, Shefelbine SJ. Local mechanical stimuli correlate with tissue growth in axolotl salamander joint morphogenesis. Proc Biol Sci 2022; 289:20220621. [PMID: 35582804 PMCID: PMC9114971 DOI: 10.1098/rspb.2022.0621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 01/04/2023] Open
Abstract
Movement-induced forces are critical to correct joint formation, but it is unclear how cells sense and respond to these mechanical cues. To study the role of mechanical stimuli in the shaping of the joint, we combined experiments on regenerating axolotl (Ambystoma mexicanum) forelimbs with a poroelastic model of bone rudiment growth. Animals either regrew forelimbs normally (control) or were injected with a transient receptor potential vanilloid 4 (TRPV4) agonist during joint morphogenesis. We quantified growth and shape in regrown humeri from whole-mount light sheet fluorescence images of the regenerated limbs. Results revealed significant differences in morphology and cell proliferation between groups, indicating that TRPV4 desensitization has an effect on joint shape. To link TRPV4 desensitization with impaired mechanosensitivity, we developed a finite element model of a regenerating humerus. Local tissue growth was the sum of a biological contribution proportional to chondrocyte density, which was constant, and a mechanical contribution proportional to fluid pressure. Computational predictions of growth agreed with experimental outcomes of joint shape, suggesting that interstitial pressure driven from cyclic mechanical stimuli promotes local tissue growth. Predictive computational models informed by experimental findings allow us to explore potential physical mechanisms involved in tissue growth to advance our understanding of the mechanobiology of joint morphogenesis.
Collapse
Affiliation(s)
- Ester Comellas
- Serra Húnter Fellow, Department of Physics, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA USA
| | | | - Giona Kleinberg
- Department of Bioengineering, Northeastern University, Boston, MA USA
| | - Katlyn Lloyd
- Department of Bioengineering, Northeastern University, Boston, MA USA
| | - Thomas Mueller
- Department of Bioengineering, Northeastern University, Boston, MA USA
| | | | - Jose J. Muñoz
- Department of Mathematics, Laboratori de Càlcul Numeric (LaCàN), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain
- Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
| | - James R. Monaghan
- Department of Biology, Northeastern University, Boston, MA USA
- Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, MA USA
| | - Sandra J. Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA USA
- Department of Bioengineering, Northeastern University, Boston, MA USA
| |
Collapse
|
11
|
Aidos L, Modina SC, Millar VRH, Peretti GM, Mangiavini L, Ferroni M, Boschetti F, Di Giancamillo A. Meniscus Matrix Structural and Biomechanical Evaluation: Age-Dependent Properties in a Swine Model. Bioengineering (Basel) 2022; 9:bioengineering9030117. [PMID: 35324808 PMCID: PMC8945511 DOI: 10.3390/bioengineering9030117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022] Open
Abstract
The analysis of the morphological, structural, biochemical, and mechanical changes of the Extracellular Matrix (ECM), which occur during meniscus development, represents the goal of the present study. Medial fully developed menisci (FD, 9-month-old pigs), partially developed menisci (PD, 1-month-old piglets), and not developed menisci (ND, from stillbirths) were collected. Cellularity and glycosaminoglycans (GAGs) deposition were evaluated by ELISA, while Collagen 1 and aggrecan were investigated by immunohistochemistry and Western blot analyses in order to be compared to the biomechanical properties of traction and compression tensile forces, respectively. Cellularity decreased from ND to FD and GAGs showed the opposite trend (p < 0.01 both). Collagen 1 decreased from ND to FD, as well as the ability to resist to tensile traction forces (p < 0.01), while aggrecan showed the opposite trend, in accordance with the biomechanics: compression test showed that FD meniscus greatly resists to deformation (p < 0.01). This study demonstrated that in swine meniscus, clear morphological and biomechanical changes follow the meniscal maturation and specialization during growth, starting with an immature pattern (ND) to the mature organized meniscus of the FD, and they could be useful to understand the behavior of this structure in the light of its tissue bioengineering.
Collapse
Affiliation(s)
- Lucia Aidos
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (L.A.); (V.R.H.M.); (G.M.P.); (L.M.)
| | - Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy;
| | - Valentina Rafaela Herrera Millar
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (L.A.); (V.R.H.M.); (G.M.P.); (L.M.)
| | - Giuseppe Maria Peretti
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (L.A.); (V.R.H.M.); (G.M.P.); (L.M.)
- IRCCS, Istituto Ortopedico Galeazzi, 20161 Milano, Italy;
| | - Laura Mangiavini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (L.A.); (V.R.H.M.); (G.M.P.); (L.M.)
- IRCCS, Istituto Ortopedico Galeazzi, 20161 Milano, Italy;
| | - Marco Ferroni
- Department of Chemistry, Material and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milano, Italy;
| | - Federica Boschetti
- IRCCS, Istituto Ortopedico Galeazzi, 20161 Milano, Italy;
- Department of Chemistry, Material and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milano, Italy;
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (L.A.); (V.R.H.M.); (G.M.P.); (L.M.)
- Correspondence: ; Tel.: +39-02503-34606
| |
Collapse
|
12
|
Howe D, Dixit NN, Saul KR, Fisher MB. A Direct Comparison of Node and Element-Based Finite Element Modeling Approaches to Study Tissue Growth. J Biomech Eng 2022; 144:011001. [PMID: 34227653 PMCID: PMC8420794 DOI: 10.1115/1.4051661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 06/25/2021] [Indexed: 01/03/2023]
Abstract
Finite element analysis is a useful tool to model growth of biological tissues and predict how growth can be impacted by stimuli. Previous work has simulated growth using node-based or element-based approaches, and this implementation choice may influence predicted growth, irrespective of the applied growth model. This study directly compared node-based and element-based approaches to understand the isolated impact of implementation method on growth predictions by simulating growth of a bone rudiment geometry, and determined what conditions produce similar results between the approaches. We used a previously reported node-based approach implemented via thermal expansion and an element-based approach implemented via osmotic swelling, and we derived a mathematical relationship to relate the growth resulting from these approaches. We found that material properties (modulus) affected growth in the element-based approach, with growth completely restricted for high modulus values relative to the growth stimulus, and no restriction for low modulus values. The node-based approach was unaffected by modulus. Node- and element-based approaches matched marginally better when the conversion coefficient to relate the approaches was optimized based on the results of initial simulations, rather than using the theoretically predicted conversion coefficient (median difference in node position 0.042 cm versus 0.052 cm, respectively). In summary, we illustrate here the importance of the choice of implementation approach for modeling growth, provide a framework for converting models between implementation approaches, and highlight important considerations for comparing results in prior work and developing new models of tissue growth.
Collapse
Affiliation(s)
- Danielle Howe
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695
| | - Nikhil N. Dixit
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695
| | - Katherine R. Saul
- Department of Mechanical and Aerospace Engineering, North Carolina State University, 3162 Engineering Building III, 1840 Entrepreneur Dr, CB 7910, Raleigh, NC 27695
| | - Matthew B. Fisher
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 4130 Engineering Building III, 1840 Entrepreneur Drive, CB 7115, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695; Department of Orthopaedics, University of North Carolina at Chapel Hill, NC 27599
| |
Collapse
|
13
|
Sadeghian SM, Shapiro FD, Shefelbine SJ. Computational model of endochondral ossification: Simulating growth of a long bone. Bone 2021; 153:116132. [PMID: 34329814 DOI: 10.1016/j.bone.2021.116132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/04/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022]
Abstract
Mechanical loading is a crucial factor in joint and bone development. Using a computational model, we investigated the role of mechanics on cartilage growth rate, ossification of the secondary center, formation of the growth plate, and overall bone shape. A computational algorithm was developed and implemented into finite element models to simulate the endochondral ossification for symmetric and asymmetric motion in a generic diarthrodial joint. Under asymmetric loading condition the secondary center ossifies asymmetrically leaning toward the external load and results in tilted growth plate. Also the mechanics seems to have greater influence in the early onset of the ossification of the secondary center rather than later progression of the center. While previous models have simulated select stages of skeletal development, our model can simulate growth and ossification during the entirety of post-natal development. Such computational models of skeletal development may provide insight into specific loading conditions that cause bone and joint deformities, and the required timing for rehabilitative repair.
Collapse
Affiliation(s)
- S Mahsa Sadeghian
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | | | - Sandra J Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA; Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
14
|
Alonso MG, Yawny A, Bertolino G. A tool for solving bone growth related problems using finite elements adaptive meshes. J Mech Behav Biomed Mater 2021; 126:104946. [PMID: 34876369 DOI: 10.1016/j.jmbbm.2021.104946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022]
Abstract
Long bones geometry changes in response to longitudinal growth in the epiphyseal plates and hydroxyapatite apposition in the periosteum. Due to its relevance for growth modulation and orthotics performance, researchers have extensively modeled these phenomena, using the finite elements method for it almost since the introduction of modern computers. This is a rather complex task that, besides the inherent difficulty of solving the models equations, requires considering a moving boundary. Here, the development of a new computational tool for its resolution is described. A generalized formulation of these problems is established based on the most common approaches taken in the literature and a novel finite elements algorithm is proposed for its resolution. The later allows a significant reduction of the spatial discretization requirements, the computational cost and the numerical errors associated with more classical approaches. The potentiality of the method is demonstrated by its application to three cases of practical interest, namely, hemiepiphysiodesis treatment, growth in the distal femur and bone remodeling around hip prosthesis. Eight relevant cases of study and an open source implementation of the proposed algorithm are also provided as supplementary material.
Collapse
Affiliation(s)
- M G Alonso
- División Física de Metales, Centro Atómico Bariloche, CNEA, (8400) Bariloche, Argentina; CONICET, Argentina; Universidad Nacional de Cuyo, Instituto Balseiro, Argentina.
| | - A Yawny
- División Física de Metales, Centro Atómico Bariloche, CNEA, (8400) Bariloche, Argentina; CONICET, Argentina; Universidad Nacional de Cuyo, Instituto Balseiro, Argentina
| | - G Bertolino
- División Física de Metales, Centro Atómico Bariloche, CNEA, (8400) Bariloche, Argentina; CONICET, Argentina; Universidad Nacional de Cuyo, Instituto Balseiro, Argentina
| |
Collapse
|
15
|
Dixit NN, McCormick CM, Cole JH, Saul KR. Influence of Brachial Plexus Birth Injury Location on Glenohumeral Joint Morphology. J Hand Surg Am 2021; 46:512.e1-512.e9. [PMID: 33358583 PMCID: PMC8180483 DOI: 10.1016/j.jhsa.2020.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/12/2020] [Accepted: 10/20/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE Patient presentation after brachial plexus birth injury (BPBI) is influenced by nerve injury location; more contracture and bone deformity occur at the shoulder in postganglionic injuries. Although bone deformity after postganglionic injury is well-characterized, the extent of glenohumeral deformity after preganglionic BPBI is unclear. METHODS Twenty Sprague-Dawley rat pups received preganglionic or postganglionic neurectomy on a single forelimb at postnatal days 3 to 4. Glenohumeral joints on affected and unaffected sides were analyzed using micro-computed tomography scans after death at 8 weeks after birth. Glenoid version, glenoid inclination, glenoid and humeral head radius of curvature, and humeral head thickness and width were measured bilaterally. RESULTS The glenoid was significantly more declined in affected compared with unaffected shoulders after postganglionic (-17.7° ± 16.9°) but not preganglionic injury. Compared with the preganglionic group, the affected shoulder in the postganglionic group exhibited significantly greater declination and increased glenoid radius of curvature. In contrast, the humeral head was only affected after preganglionic but not postganglionic injury, with a significantly smaller humeral head radius of curvature (-0.2 ± 0.2 mm), thickness (-0.2 ± 0.3 mm), and width (-0.3 ± 0.4 mm) on the affected side compared with the unaffected side; changes in these metrics were significantly associated with each other. CONCLUSIONS These findings suggest that glenoid deformities occur after postganglionic BPBI but not after preganglionic BPBI, whereas the humeral head is smaller after preganglionic injury, possibly suggesting an overall decreased biological growth rate in this group. CLINICAL RELEVANCE This study expands understanding of the altered glenoid and humeral head morphologies after preganglionic BPBI and its comparisons with morphologies after postganglionic BPBI.
Collapse
Affiliation(s)
| | - Carolyn M. McCormick
- North Carolina State University, Raleigh, NC,University of North Carolina, Chapel Hill, NC
| | - Jacqueline H. Cole
- North Carolina State University, Raleigh, NC,University of North Carolina, Chapel Hill, NC
| | | |
Collapse
|
16
|
Yadav P, Fernández MP, Gutierrez-Farewik EM. Influence of loading direction due to physical activity on proximal femoral growth tendency. Med Eng Phys 2021; 90:83-91. [PMID: 33781483 DOI: 10.1016/j.medengphy.2021.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/20/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Longitudinal bone growth is regulated by mechanical forces arising from physical activity, whose directions and magnitudes depend on activity kinematics and intensity. This study aims to investigate the influence of common physical activities on proximal femoral morphological tendency due to growth at the femoral head growth plate. A subject-specific femur model based on magnetic resonance images of one able-bodied 6-year old child was developed, and the directions of hip contact force were described as load samples at a constant magnitude. Finite element analysis was performed to predict growth rate and growth direction, and expected changes in neck-shaft angle and femoral anteversion were computed corresponding to circa 4 months of growth. For most loading conditions, neck-shaft angle and femoral anteversion decreased during growth, corresponding to the femur's natural course during normal growth. The largest reduction in neck-shaft angle and femoral anteversion was approximately 0.25° and 0.15°. Our results suggest that most common physical activities induce the expected morphological changes in normal growth in able-bodied children. Understanding the influence of contact forces during less common activities on proximal femoral development might provide improved guidelines and treatment planning for children who have or are at risk of developing a femoral deformity.
Collapse
Affiliation(s)
- Priti Yadav
- KTH MoveAbility Lab, Department of Engineering Mechanics, School of Engineering Sciences, KTH Royal Institute of Technology, Osquars Backe 18, 10044 Stockholm, Sweden; KTH BioMEx Center, Royal Institute of Technology, Stockholm, Sweden
| | - Marta Peña Fernández
- KTH MoveAbility Lab, Department of Engineering Mechanics, School of Engineering Sciences, KTH Royal Institute of Technology, Osquars Backe 18, 10044 Stockholm, Sweden; KTH BioMEx Center, Royal Institute of Technology, Stockholm, Sweden
| | - Elena M Gutierrez-Farewik
- KTH MoveAbility Lab, Department of Engineering Mechanics, School of Engineering Sciences, KTH Royal Institute of Technology, Osquars Backe 18, 10044 Stockholm, Sweden; KTH BioMEx Center, Royal Institute of Technology, Stockholm, Sweden; Department of Women's & Children's Health, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
Aprile P, Kelly DJ. Hydrostatic Pressure Regulates the Volume, Aggregation and Chondrogenic Differentiation of Bone Marrow Derived Stromal Cells. Front Bioeng Biotechnol 2021; 8:619914. [PMID: 33520969 PMCID: PMC7844310 DOI: 10.3389/fbioe.2020.619914] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/15/2020] [Indexed: 01/17/2023] Open
Abstract
The limited ability of articular cartilage to self-repair has motivated the development of tissue engineering strategies that aim to harness the regenerative potential of mesenchymal stem/marrow stromal cells (MSCs). Understanding how environmental factors regulate the phenotype of MSCs will be central to unlocking their regenerative potential. The biophysical environment is known to regulate the phenotype of stem cells, with factors such as substrate stiffness and externally applied mechanical loads known to regulate chondrogenesis of MSCs. In particular, hydrostatic pressure (HP) has been shown to play a key role in the development and maintenance of articular cartilage. Using a collagen-alginate interpenetrating network (IPN) hydrogel as a model system to tune matrix stiffness, this study sought to investigate how HP and substrate stiffness interact to regulate chondrogenesis of MSCs. If applied during early chondrogenesis in soft IPN hydrogels, HP was found to downregulate the expression of ACAN, COL2, CDH2 and COLX, but to increase the expression of the osteogenic factors RUNX2 and COL1. This correlated with a reduction in SMAD 2/3, HDAC4 nuclear localization and the expression of NCAD. It was also associated with a reduction in cell volume, an increase in the average distance between MSCs in the hydrogels and a decrease in their tendency to form aggregates. In contrast, the delayed application of HP to MSCs grown in soft hydrogels was associated with increased cellular volume and aggregation and the maintenance of a chondrogenic phenotype. Together these findings demonstrate how tailoring the stiffness and the timing of HP exposure can be leveraged to regulate chondrogenesis of MSCs and opens alternative avenues for developmentally inspired strategies for cartilage tissue regeneration.
Collapse
Affiliation(s)
- Paola Aprile
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Dixit NN, McCormick CM, Warren E, Cole JH, Saul KR. Preganglionic and Postganglionic Brachial Plexus Birth Injury Effects on Shoulder Muscle Growth. J Hand Surg Am 2021; 46:146.e1-146.e9. [PMID: 32919794 PMCID: PMC7864858 DOI: 10.1016/j.jhsa.2020.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 05/22/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Brachial plexus birth injury can differ in presentation, depending on whether the nerve ruptures distal to, or avulses proximal to, the dorsal root ganglion. More substantial contracture and bone deformity at the shoulder is typical in postganglionic injuries. However, changes to the underlying muscle structure that drive these differences in presentation are unclear. METHODS Seventeen Sprague-Dawley rats received preganglionic or postganglionic neurectomy on a single limb on postnatal days 3 and 4. Muscles crossing the shoulder were retrieved once the rats were sacrificed at 8 weeks after birth. External rotation range of motion, muscle mass, muscle length, muscle sarcomere length, and calculated optimal muscle length were measured bilaterally. RESULTS Average shoulder range of motion in the postganglionic group was 61.8% and 56.2% more restricted at 4 and 8 weeks, respectively, compared with that in the preganglionic group, but affected muscles after preganglionic injury were altered more severely (compared with the unaffected limb) than after postganglionic injury. Optimal muscle length in preganglionic injury was shorter in the affected limb (compared with the unaffected limb: -18.2% ± 9.2%) and to a greater extent than in postganglionic injury (-5.1% ± 6.2%). Muscle mass in preganglionic injury was lower in the affected limb (relative to the unaffected limb: -57.2% ± 24.1%) and to a greater extent than in postganglionic injury (-28.1% ± 17.7%). CONCLUSIONS The findings suggest that the presence of contracture does not derive from restricted longitudinal muscle growth alone, but also depends on the extent of muscle mass loss occurring simultaneously after the injury. CLINICAL RELEVANCE This study expands our understanding of differences in muscle architecture and the role of muscle structure in contracture formation for preganglionic and postganglionic brachial plexus birth injury.
Collapse
Affiliation(s)
- Nikhil N. Dixit
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh
| | - Carolyn M. McCormick
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh;,the Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC
| | - Eric Warren
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh
| | - Jacqueline H. Cole
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh;,the Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC
| | - Katherine R. Saul
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh
| |
Collapse
|
19
|
Zhang Z, Sui D, Qin H, Li H, Zhang Z. Contact pressure distribution of the hip joint during closed reduction of developmental dysplasia of the hip: a patient-specific finite element analysis. BMC Musculoskelet Disord 2020; 21:600. [PMID: 32900362 PMCID: PMC7487652 DOI: 10.1186/s12891-020-03602-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH) is the most common deformity of the lower extremity in children. The biomechanical change during closed reduction (CR) focused on cartilage contact pressure (CCP) has not been studied. Thereby, we try to provide insight into biomechanical factors potentially responsible for the success of CR treatment sand complications by using finite element analysis (FEA) for the first time. METHODS Finite element models of one patient with DDH were established based on the data of MRI scan on which cartilage contact pressure was measured. During CR, CCP between the femoral head and acetabulum in different abduction and flexion angles were tested to estimate the efficacy and potential risk factors of avascular necrosis (AVN) following CR. RESULTS A 3D reconstruction by the FEA method was performed on a 16 months of age girl with DDH on the right side. The acetabulum of the involved side showed a long, narrow, and "flat-shaped" deformity, whereas the femoral head was smaller and irregular compared with the contralateral side. With increased abduction angle, the stress of the posterior acetabulum increased significantly, and the stress on the lateral part of the femoral head increased as well. The changes of CCP in the superior acetabulum were not apparent during CR. There were no detectable differences in terms of pressure on the femoral head. CONCLUSIONS Severe dislocation (IHDI grade III and IV) in children showed a high mismatch between the femoral head and acetabulum. Increased abduction angle corresponded with high contact pressure, which might relate to AVN, whereas increased flexion angle was not. Enhanced pressure on the lateral part of the femoral head might increase the risk of AVN.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Orthopedics, National Children’s Medical Center & Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Dashan Sui
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 1954 Huashan Rd, Shanghai, 200030 China
| | - Haiyi Qin
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 1954 Huashan Rd, Shanghai, 200030 China
| | - Hai Li
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092 China
| | - Ziming Zhang
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092 China
| |
Collapse
|
20
|
Mechanobiological based long bone growth model for the design of limb deformities correction devices. J Biomech 2020; 109:109905. [PMID: 32807336 DOI: 10.1016/j.jbiomech.2020.109905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 11/23/2022]
Abstract
A mechanobiological model of bone growth aimed for the design of medical devices for the treatment of limb deformities during childhood and adolescence was developed. Dimensional analysis was introduced as a tool for the systematic evaluation of the influence attributed to different factors that might modify the bone growth process. Simplifications were proposed, allowing the reduction of bone growth relevant parameters to four non-dimensional numbers, representing the chondrocyte sensitivity to stress, the epiphyseal plate geometry, the bone rigidity and the time. Benchmark situations considered for model validation were bone growth under normal conditions and an epiphyseal stapling treatment. A finite elements approach was used to analyze bone growth in the distal portion of the femur. Results are shown to be consistent with corresponding clinical data published in the literature, which indicates the potential of the here proposed method for the design of specific devices and treatments.
Collapse
|
21
|
Dixit NN, McFarland DC, Fisher MB, Cole JH, Saul KR. Integrated iterative musculoskeletal modeling predicts bone morphology following brachial plexus birth injury (BPBI). J Biomech 2020; 103:109658. [PMID: 32089271 PMCID: PMC7141945 DOI: 10.1016/j.jbiomech.2020.109658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/05/2023]
Abstract
Brachial plexus birth injury (BPBI) is the most common nerve injury among children. The glenohumeral joint of affected children can undergo severe osseous deformation and altered muscle properties, depending on location of the injury relative to the dorsal root ganglion (preganglionic or postganglionic). Preganglionic injury results in lower muscle mass and shorter optimal muscle length compared to postganglionic injury. We investigated whether these changes to muscle properties over time following BPBI provide a mechanically-driven explanation for observed differences in bone deformity between preganglionic and postganglionic BPBI. We developed a computational framework integrating musculoskeletal modeling to represent muscle changes over time and finite element modeling to simulate bone growth in response to mechanical and biological stimuli. The simulations predicted that the net glenohumeral joint loads in the postganglionic injury case were nearly 10.5% greater than in preganglionic. Predicted bone deformations were more severe in the postganglionic case, with the glenoid more declined (pre: -43.8°, post: -51.0°), flatter with higher radius of curvature (pre: 3.0 mm, post: 3.7 mm), and anteverted (pre: 2.53°, post: 4.93°) than in the preganglionic case. These simulated glenoid deformations were consistent with previous experimental studies. Thus, we concluded that the differences in muscle mass and length between the preganglionic and postganglionic injuries are critical mechanical drivers of the altered glenohumeral joint shape.
Collapse
Affiliation(s)
- Nikhil N Dixit
- North Carolina State University, Raleigh, NC, United States
| | | | - Matthew B Fisher
- North Carolina State University, Raleigh, NC, United States; University of North Carolina, Chapel Hill, NC, United States
| | - Jacqueline H Cole
- North Carolina State University, Raleigh, NC, United States; University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
22
|
Carrera-Pinzón AF, Márquez-Flórez K, Kraft RH, Ramtani S, Garzón-Alvarado DA. Computational model of a synovial joint morphogenesis. Biomech Model Mechanobiol 2019; 19:1389-1402. [PMID: 31863216 DOI: 10.1007/s10237-019-01277-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/08/2019] [Indexed: 11/30/2022]
Abstract
Joints enable the relative movement between the connected bones. The shape of the joint is important for the joint movements since they facilitate and smooth the relative displacement of the joint's parts. The process of how the joints obtain their final shape is yet not well understood. Former models have been developed in order to understand the joint morphogenesis leaning only on the mechanical environment; however, the obtained final anatomical shape does not match entirely with a realistic geometry. In this study, a computational model was developed with the aim of explaining how the morphogenesis of joints and shaping of ossification structures are achieved. For this model, both the mechanical and biochemical environments were considered. It was assumed that cartilage growth was controlled by cyclic hydrostatic stress and inhibited by octahedral shear stress. In addition, molecules such as PTHrP and Wnt promote chondrocyte proliferation and therefore cartilage growth. Moreover, the appearance of the primary and secondary ossification centers was also modeled, for which the osteogenic index and PTHrP-Ihh concentrations were taken into account. The obtained results from this model show a coherent final shape of an interphalangeal joint, which suggest that the mechanical and biochemical environments are crucial for the joint morphogenesis process.
Collapse
Affiliation(s)
| | - Kalenia Márquez-Flórez
- Department of Mechanical and Mechatronic Engineering, Universidad Nacional de Colombia, Bogotá, Colombia. .,Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia. .,Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Reuben H Kraft
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, USA.,Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA
| | - Salah Ramtani
- Laboratoire CSPBAT, équipe LBPS, CNRS (UMR 7244), Université Paris 13, Villetaneuse, France
| | - Diego Alexander Garzón-Alvarado
- Department of Mechanical and Mechatronic Engineering, Universidad Nacional de Colombia, Bogotá, Colombia.,Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia.,Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
23
|
Verbruggen SW, Kainz B, Shelmerdine SC, Hajnal JV, Rutherford MA, Arthurs OJ, Phillips ATM, Nowlan NC. Stresses and strains on the human fetal skeleton during development. J R Soc Interface 2019; 15:rsif.2017.0593. [PMID: 29367236 PMCID: PMC5805961 DOI: 10.1098/rsif.2017.0593] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/18/2017] [Indexed: 01/11/2023] Open
Abstract
Mechanical forces generated by fetal kicks and movements result in stimulation of the fetal skeleton in the form of stress and strain. This stimulation is known to be critical for prenatal musculoskeletal development; indeed, abnormal or absent movements have been implicated in multiple congenital disorders. However, the mechanical stress and strain experienced by the developing human skeleton in utero have never before been characterized. Here, we quantify the biomechanics of fetal movements during the second half of gestation by modelling fetal movements captured using novel cine-magnetic resonance imaging technology. By tracking these movements, quantifying fetal kick and muscle forces, and applying them to three-dimensional geometries of the fetal skeleton, we test the hypothesis that stress and strain change over ontogeny. We find that fetal kick force increases significantly from 20 to 30 weeks' gestation, before decreasing towards term. However, stress and strain in the fetal skeleton rises significantly over the latter half of gestation. This increasing trend with gestational age is important because changes in fetal movement patterns in late pregnancy have been linked to poor fetal outcomes and musculoskeletal malformations. This research represents the first quantification of kick force and mechanical stress and strain due to fetal movements in the human skeleton in utero, thus advancing our understanding of the biomechanical environment of the uterus. Further, by revealing a potential link between fetal biomechanics and skeletal malformations, our work will stimulate future research in tissue engineering and mechanobiology.
Collapse
Affiliation(s)
| | - Bernhard Kainz
- Department of Computing, Imperial College London, London, UK
| | | | - Joseph V Hajnal
- Department of Biomedical Engineering & Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, Kings College London, London, UK
| | - Mary A Rutherford
- Department of Perinatal Imaging and Health & Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, Kings College London, London, UK
| | - Owen J Arthurs
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Andrew T M Phillips
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
24
|
Dixit NN, McFarland DC, Saul KR. Computational analysis of glenohumeral joint growth and morphology following a brachial plexus birth injury. J Biomech 2019; 86:48-54. [PMID: 30797561 DOI: 10.1016/j.jbiomech.2019.01.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/29/2018] [Accepted: 01/21/2019] [Indexed: 02/02/2023]
Abstract
Children affected with brachial plexus birth injury (BPBI) undergo muscle paralysis. About 33% of affected children experience permanent osseous deformities of the glenohumeral joint. Recent evidence suggests that some cases experience restricted muscle longitudinal growth in addition to paralysis and reduced range of motion at the shoulder and elbow. It is unknown whether altered loading due to paralysis, muscle growth restriction and contracture, or static loading due to disuse is the primary driver of joint deformity after BPBI. This study uses a computational framework integrating finite element analysis and musculoskeletal modeling to examine the mechanical factors contributing to changes in bone growth and morphometry following BPBI. Simulations of 8 weeks of glenohumeral growth in a rat model of BPBI predicted that static loading of the joint is primarily responsible for joint deformation consistent with experimental measures of bone morphology, whereas dynamic loads resulted in normal bone growth. Under dynamic loading, glenoid version angle (GVA), glenoid inclination angle (GIA), and glenoid radius of curvature (GRC) (-1.3°, 38.2°, 2.5 mm respectively) were similar to the baseline values (-1.8°, -38°, 2.1 mm respectively). In the static case with unrestricted muscle growth, these measures increased in magnitude (5.2°, -48°, 3.5 mm respectively). More severe joint deformations were observed in GIA and GRC when muscle growth was restricted (GVA: 3.6°, GIA: -55°, GRC: 4.0 mm). Predicted morphology was consistent with literature reports of in vivo glenoid morphology following postganglionic BPBI. This growth model provides a framework for understanding the most influential mechanical factors driving glenohumeral deformity following BPBI.
Collapse
Affiliation(s)
- Nikhil N Dixit
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Daniel C McFarland
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Katherine R Saul
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
25
|
Pattappa G, Johnstone B, Zellner J, Docheva D, Angele P. The Importance of Physioxia in Mesenchymal Stem Cell Chondrogenesis and the Mechanisms Controlling Its Response. Int J Mol Sci 2019; 20:E484. [PMID: 30678074 PMCID: PMC6387316 DOI: 10.3390/ijms20030484] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Articular cartilage covers the surface of synovial joints and enables joint movement. However, it is susceptible to progressive degeneration with age that can be accelerated by either previous joint injury or meniscectomy. This degenerative disease is known as osteoarthritis (OA) and it greatly affects the adult population. Cell-based tissue engineering provides a possible solution for treating OA at its earliest stages, particularly focal cartilage lesions. A candidate cell type for treating these focal defects are Mesenchymal Stem Cells (MSCs). However, present methods for differentiating these cells towards the chondrogenic lineage lead to hypertrophic chondrocytes and bone formation in vivo. Environmental stimuli that can stabilise the articular chondrocyte phenotype without compromising tissue formation have been extensively investigated. One factor that has generated intensive investigation in MSC chondrogenesis is low oxygen tension or physioxia (2⁻5% oxygen). In vivo articular cartilage resides at oxygen tensions between 1⁻4%, and in vitro results suggest that these conditions are beneficial for MSC expansion and chondrogenesis, particularly in suppressing the cartilage hypertrophy. This review will summarise the current literature regarding the effects of physioxia on MSC chondrogenesis with an emphasis on the pathways that control tissue formation and cartilage hypertrophy.
Collapse
Affiliation(s)
- Girish Pattappa
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany.
| | - Brian Johnstone
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Johannes Zellner
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany.
| | - Denitsa Docheva
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany.
| | - Peter Angele
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany.
- Sporthopaedicum Regensburg, Hildegard von Bingen Strasse 1, 93053 Regensburg, Germany.
| |
Collapse
|
26
|
Giorgi M, Sotiriou V, Fanchini N, Conigliaro S, Bignardi C, Nowlan NC, Dall’Ara E. Prenatal growth map of the mouse knee joint by means of deformable registration technique. PLoS One 2019; 14:e0197947. [PMID: 30605480 PMCID: PMC6317797 DOI: 10.1371/journal.pone.0197947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/09/2018] [Indexed: 11/24/2022] Open
Abstract
Joint morphogenesis is the process during which distinct and functional joint shapes emerge during pre- and post-natal joint development. In this study, a repeatable semi-automatic protocol capable of providing a 3D realistic developmental map of the prenatal mouse knee joint was designed by combining Optical Projection Tomography imaging (OPT) and a deformable registration algorithm (Sheffield Image Registration toolkit, ShIRT). Eleven left limbs of healthy murine embryos were scanned with OPT (voxel size: 14.63μm) at two different stages of development: Theiler stage (TS) 23 (approximately 14.5 embryonic days) and 24 (approximately 15.5 embryonic days). One TS23 limb was used to evaluate the precision of the displacement predictions for this specific case. The remaining limbs were then used to estimate Developmental Tibia and Femur Maps. Acceptable uncertainties of the displacement predictions computed from repeated images were found for both epiphyses (between 1.3μm and 1.4μm for the proximal tibia and between 0.7μm and 1.0μm for the femur, along all directions). The protocol was found to be reproducible with maximum Modified Housdorff Distance (MHD) differences equal to 1.9 μm and 1.5 μm for the tibial and femoral epiphyses respectively. The effect of the initial shape of the rudiment affected the developmental maps with MHD of 21.7 μm and 21.9 μm for the tibial and femoral epiphyses respectively, which correspond to 1.4 and 1.5 times the voxel size. To conclude, this study proposes a repeatable semi-automatic protocol capable of providing mean 3D realistic developmental map of a developing rudiment allowing researchers to study how growth and adaptation are directed by biological and mechanobiological factors.
Collapse
Affiliation(s)
- Mario Giorgi
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kindom
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kindom
- Certara QSP, Certara UK Limited, Simcyp Division, Sheffield, United Kindom
- * E-mail:
| | - Vivien Sotiriou
- Department of Bioengineering, Imperial College London, London, United Kindom
| | | | | | | | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, United Kindom
| | - Enrico Dall’Ara
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kindom
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kindom
| |
Collapse
|
27
|
Killian ML, Locke RC, James MG, Atkins PR, Anderson AE, Clohisy JC. Novel model for the induction of postnatal murine hip deformity. J Orthop Res 2019; 37:151-160. [PMID: 30259572 PMCID: PMC6393179 DOI: 10.1002/jor.24146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/12/2018] [Indexed: 02/04/2023]
Abstract
Acetabular dysplasia is a common, multi-etiological, pre-osteoarthritic (OA) feature that can lead to pain and instability of the young adult hip. Despite the clinical significance of acetabular dysplasia, there is a paucity of small animal models to investigate structural and functional changes that mediate morphology of the dysplastic hip and drive the subsequent OA cascade. Utilizing a novel murine model developed in our laboratory, this study investigated the role of surgically induced unilateral instability of the postnatal hip on the initiation and progression of acetabular dysplasia and impingement up to 8-weeks post-injury. C57BL6 mice were used to develop titrated levels of hip instability (i.e., mild, moderate, and severe instabillity or femoral head resection) at weaning. Joint shape, acetabular coverage, histomorphology, and statistical shape modeling were used to assess quality of the hip following 8 weeks of destabilization. Acetabular coverage was reduced following severe, but not moderate, instability. Moderate instability induced lateralization of the femur without dislocation, whereas severe instability led to complete dislocation and pseudoacetabulae formation. Mild instability did not result in morphological changes to the hip. Removal of the femoral head led to reduced hip joint space volume. These data support the notion that hip instability, driven by mechanical loss-of-function of soft connective tissue, can induce morphometric changes in the growing mouse hip. This work developed a new mouse model to study hip health in the murine adolescent hip and is a useful tool for investigating the mechanical and structural adaptations to hip instability during growth. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Megan L. Killian
- Department of Biomedical Engineering, University of Delaware, 5 Innovation Way, Suite 200, Newark, Delaware 19716,,Department of Orthopaedic Surgery, Washington University School of Medicine, 425 S. Euclid Avenue, Saint Louis, Missouri 63110
| | - Ryan C. Locke
- Department of Biomedical Engineering, University of Delaware, 5 Innovation Way, Suite 200, Newark, Delaware 19716
| | - Michael G. James
- Department of Orthopaedic Surgery, Washington University School of Medicine, 425 S. Euclid Avenue, Saint Louis, Missouri 63110
| | - Penny R. Atkins
- Department of Bioengineering, University of Utah, James LeVoy Sorenson Molecular Biotechnology Building, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, Utah 84112,,Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, Utah 84108
| | - Andrew E. Anderson
- Department of Bioengineering, University of Utah, James LeVoy Sorenson Molecular Biotechnology Building, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, Utah 84112,,Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, Utah 84108
| | - John C. Clohisy
- Department of Orthopaedic Surgery, Washington University School of Medicine, 425 S. Euclid Avenue, Saint Louis, Missouri 63110
| |
Collapse
|
28
|
Lipphaus A, Witzel U. Biomechanical Study of the Development of Long Bones: Finite Element Structure Synthesis of the Human Second Proximal Phalanx Under Growth Conditions. Anat Rec (Hoboken) 2018; 302:1389-1398. [PMID: 30369073 DOI: 10.1002/ar.24006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/21/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
Torsional loads are a possible mechanical explanation for the architecture of long bone. Finite element structure synthesis (FESS) has previously successfully been used as a deductive technique using Wolff's Law by applying expected loads to an unspecific homogeneous solid and eliminating stress free parts to verify muscle forces. The extended approach presented in this article includes further mechanobiological rules to model the development from a cartilage model to a finger bone. In contrast to former computational models, simulation of processes leading to both external growth and internal differentiation are included. Combined axial and torsional loads synthesize a complete human secondary proximal phalanx model comparable to form and internal structure to that observed in vivo. While the computational model is very sensitive to initial alterations of loads, changes after growth have a minor effect as observed in animal models. Predictions of cartilage growth and ossification during FESS showed significant similarities to ontogeny indicating the importance of mechanical factors for the morphogenesis of bone during growth. Anat Rec, 302:1389-1398, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andreas Lipphaus
- Research Group of Biomechanics, Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Universitätstr, 150, Bochum, DE 44801, Germany
| | - Ulrich Witzel
- Research Group of Biomechanics, Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Universitätstr, 150, Bochum, DE 44801, Germany
| |
Collapse
|
29
|
Márquez-Flórez KM, Monaghan JR, Shefelbine SJ, Ramirez-Martínez A, Garzón-Alvarado DA. A computational model for the joint onset and development. J Theor Biol 2018; 454:345-356. [DOI: 10.1016/j.jtbi.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 11/28/2022]
|
30
|
Variability in strain distribution in the mice tibia loading model: A preliminary study using digital volume correlation. Med Eng Phys 2018; 62:7-16. [PMID: 30243888 DOI: 10.1016/j.medengphy.2018.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/28/2018] [Accepted: 09/02/2018] [Indexed: 01/27/2023]
Abstract
It is well known that bone has an enormous adaptive capacity to mechanical loadings, and to this extent, several in vivo studies on mouse tibia use established cyclic compressive loading protocols to investigate the effects of mechanical stimuli. In these experiments, the applied axial load is well controlled but the positioning of the hind-limb between the loading endcaps may dramatically affect the strain distribution induced on the tibia. In this study, the full field strain distribution induced by a typical in vivo setup on mouse tibiae was investigated through a combination of in situ compressive testing, µCT scanning and a global digital volume correlation (DVC) approach. The precision of the DVC method and the effect of repositioning on the strain distributions were evaluated. Acceptable uncertainties of the DVC approach for the analysis of loaded tibiae (411 ± 58µɛ) were found for nodal spacing of approximately 50 voxels (520 µm). When pairs of in situ preloaded and loaded images were registered, low variability of the strain distributions within the tibia were seen (range of mean differences in principal strains: 585-1800µɛ). On contrary, larger differences were seen after repositioning (range of mean differences in principal strains: 2500-5500µɛ). To conclude, these preliminary results on thee specimens showed that the DVC approach applied to the mouse tibia can be precise enough to evaluate local strain distributions under loads, and that repositioning of the hind-limb within the testing machine can induce large differences in the strain distributions that should be accounted for when modelling this system.
Collapse
|
31
|
Verbruggen SW, Kainz B, Shelmerdine SC, Arthurs OJ, Hajnal JV, Rutherford MA, Phillips ATM, Nowlan NC. Altered biomechanical stimulation of the developing hip joint in presence of hip dysplasia risk factors. J Biomech 2018; 78:1-9. [PMID: 30037582 PMCID: PMC6135936 DOI: 10.1016/j.jbiomech.2018.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/22/2018] [Accepted: 07/04/2018] [Indexed: 12/03/2022]
Abstract
Fetal kicking and movements generate biomechanical stimulation in the fetal skeleton, which is important for prenatal musculoskeletal development, particularly joint shape. Developmental dysplasia of the hip (DDH) is the most common joint shape abnormality at birth, with many risk factors for the condition being associated with restricted fetal movement. In this study, we investigate the biomechanics of fetal movements in such situations, namely fetal breech position, oligohydramnios and primiparity (firstborn pregnancy). We also investigate twin pregnancies, which are not at greater risk of DDH incidence, despite the more restricted intra-uterine environment. We track fetal movements for each of these situations using cine-MRI technology, quantify the kick and muscle forces, and characterise the resulting stress and strain in the hip joint, testing the hypothesis that altered biomechanical stimuli may explain the link between certain intra-uterine conditions and risk of DDH. Kick force, stress and strain were found to be significantly lower in cases of breech position and oligohydramnios. Similarly, firstborn fetuses were found to generate significantly lower kick forces than non-firstborns. Interestingly, no significant difference was observed in twins compared to singletons. This research represents the first evidence of a link between the biomechanics of fetal movements and the risk of DDH, potentially informing the development of future preventative measures and enhanced diagnosis. Our results emphasise the importance of ultrasound screening for breech position and oligohydramnios, particularly later in pregnancy, and suggest that earlier intervention to correct breech position through external cephalic version could reduce the risk of hip dysplasia.
Collapse
Affiliation(s)
| | - Bernhard Kainz
- Department of Computing, Imperial College London, London, UK
| | | | - Owen J Arthurs
- Department of Radiology, Great Ormond Street Hospital, London, UK; UCL Great Ormond Street Institute of Child Health, London, UK
| | - Joseph V Hajnal
- Department of Biomedical Engineering & Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, Kings College London, London, UK
| | - Mary A Rutherford
- Department of Perinatal Imaging and Health & Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, Kings College London, London, UK
| | - Andrew T M Phillips
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
32
|
Vafaeian B, Adeeb S, El-Rich M, Zonoobi D, Hareendranathan AR, Jaremko JL. Hip Joint Contact Pressure Distribution During Pavlik Harness Treatment of an Infant Hip: A Patient-Specific Finite Element Model. J Biomech Eng 2018; 140:2677753. [PMID: 29715363 DOI: 10.1115/1.4039827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Indexed: 11/08/2022]
Abstract
Developmental dysplasia of the hip (DDH) in infants under 6 months of age is typically treated by the Pavlik harness (PH). During successful PH treatment, a subluxed/dislocated hip is spontaneously reduced into the acetabulum, and DDH undergoes self-correction. PH treatment may fail due to avascular necrosis (AVN) of the femoral head. An improved understanding of mechanical factors accounting for the success/failure of PH treatment may arise from investigating articular cartilage contact pressure (CCP) within a hip during treatment. In this study, CCP in a cartilaginous infant hip was investigated through patient-specific finite element (FE) modeling. We simulated CCP of the hip equilibrated at 90 deg flexion at abduction angles of 40 deg, 60 deg, and 80 deg. We found that CCP was predominantly distributed on the anterior and posterior acetabulum, leaving the superior acetabulum (mainly superolateral) unloaded. From a mechanobiological perspective, hypothesizing that excessive pressure inhibits growth, our results qualitatively predicted increased obliquity and deepening of the acetabulum under such CCP distribution. This is the desired and observed therapeutic effect in successful PH treatment. The results also demonstrated increase in CCP as abduction increased. In particular, the simulation predicted large magnitude and concentrated CCP on the posterior wall of the acetabulum and the adjacent lateral femoral head at extreme abduction (80 deg). This CCP on lateral femoral head may reduce blood flow in femoral head vessels and contribute to AVN. Hence, this study provides insight into biomechanical factors potentially responsible for PH treatment success and complications.
Collapse
Affiliation(s)
- Behzad Vafaeian
- Department of Civil and Environmental Engineering, University of Alberta, 7-203 Donadeo Innovation Centre for Engineering, 9211-116 Street, Edmonton, AB T6G 1H9, Canada e-mail:
| | - Samer Adeeb
- Associate Professor Department of Civil and Environmental Engineering, University of Alberta, 7-203 Donadeo Innovation Centre for Engineering, , Edmonton, AB T6G 1H9, Canada e-mail:
| | - Marwan El-Rich
- Associate Professor Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE e-mail:
| | - Dornoosh Zonoobi
- Department of Radiology and Diagnostic Imaging, University of Alberta, 2A2.41 WMC, 8440-112 Street, Edmonton, AB T6G 2B7, Canada e-mail:
| | - Abhilash R Hareendranathan
- Department of Radiology and Diagnostic Imaging, University of Alberta, 2A2.41 WMC, 8440-112 Street, Edmonton, AB T6G 2B7, Canada e-mail:
| | - Jacob L Jaremko
- Assistant Professor Department of Radiology and Diagnostic Imaging, University of Alberta, 2A2.41 WMC, 8440-112 Street, Edmonton, AB T6G 2B7, Canada e-mail:
| |
Collapse
|
33
|
Vaca-González JJ, Moncayo-Donoso M, Guevara JM, Hata Y, Shefelbine SJ, Garzón-Alvarado DA. Mechanobiological modeling of endochondral ossification: an experimental and computational analysis. Biomech Model Mechanobiol 2018; 17:853-875. [DOI: 10.1007/s10237-017-0997-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/23/2017] [Indexed: 11/24/2022]
|
34
|
Verbruggen SW, Nowlan NC. Ontogeny of the Human Pelvis. Anat Rec (Hoboken) 2017; 300:643-652. [PMID: 28297183 DOI: 10.1002/ar.23541] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/08/2016] [Accepted: 09/04/2016] [Indexed: 01/20/2023]
Abstract
The human pelvis has evolved over time into a remarkable structure, optimised into an intricate architecture that transfers the entire load of the upper body into the lower limbs, while also facilitating bipedal movement. The pelvic girdle is composed of two hip bones, os coxae, themselves each formed from the gradual fusion of the ischium, ilium and pubis bones. Unlike the development of the classical long bones, a complex timeline of events must occur in order for the pelvis to arise from the embryonic limb buds. An initial blastemal structure forms from the mesenchyme, with chondrification of this mass leading to the first recognisable elements of the pelvis. Primary ossification centres initiate in utero, followed post-natally by secondary ossification at a range of locations, with these processes not complete until adulthood. This cascade of events can vary between individuals, with recent evidence suggesting that fetal activity can affect the normal development of the pelvis. This review surveys the current literature on the ontogeny of the human pelvis. Anat Rec, 300:643-652, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, United Kingdom
| |
Collapse
|
35
|
Cellular scale model of growth plate: An in silico model of chondrocyte hypertrophy. J Theor Biol 2017; 428:87-97. [PMID: 28526527 DOI: 10.1016/j.jtbi.2017.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 03/14/2017] [Accepted: 05/09/2017] [Indexed: 02/03/2023]
Abstract
The growth plate is the responsible for longitudinal bone growth. It is a cartilaginous structure formed by chondrocytes that are continuously undergoing a differentiation process that starts with a highly proliferative state, followed by cellular hypertrophy, and finally tissue ossification. Within the growth plate chondrocytes display a characteristic columnar organization that potentiates longitudinal growth. Both chondrocyte organization and hypertrophy are highly regulated processes influenced by biochemical and mechanical stimuli. These processes have been studied mainly using in vivo models, although there are few computational approaches focused on the rate of ossification rather than events at cellular level. Here, we developed a model of cellular behavior integrating biochemical and structural factors in a single column of cells in the growth plate. In our model proliferation and hypertrophy were controlled by biochemical regulatory loop formed between Ihh and PTHrP (modeled as a set of reaction-diffusion equations), while cell growth was controlled by mechanical loading. We also examined the effects of static loading. The model reproduced the proliferation and hypertrophy of chondrocytes in organized columns. This model constitutes a first step towards the development of mechanobiological models that can be used to study biochemical interactions during endochondral ossification.
Collapse
|
36
|
Ford CA, Nowlan NC, Thomopoulos S, Killian ML. Effects of imbalanced muscle loading on hip joint development and maturation. J Orthop Res 2017; 35:1128-1136. [PMID: 27391299 PMCID: PMC5575772 DOI: 10.1002/jor.23361] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/02/2016] [Indexed: 02/04/2023]
Abstract
The mechanical loading environment influences the development and maturation of joints. In this study, the influence of imbalanced muscular loading on joint development was studied using localized chemical denervation of hip stabilizing muscle groups in neonatal mice. It was hypothesized that imbalanced muscle loading, targeting either gluteal muscles or quadriceps muscles, would lead to bilateral hip joint asymmetry, as measured by acetabular coverage, femoral head volume and bone morphometry, and femoral-acetabular shape. The contralateral hip joints as well as age-matched, uninjected mice were used as controls. Altered bone development was analyzed using micro-computed tomography, histology, and image registration techniques at postnatal days (P) 28, 56, and 120. This study found that unilateral muscle unloading led to reduced acetabular coverage of the femoral head, lower total volume, lower bone volume ratio, and lower mineral density, at all three time points. Histologically, the femoral head was smaller in unloaded hips, with thinner triradiate cartilage at P28 and thinner cortical bone at P120 compared to contralateral hips. Morphological shape changes were evident in unloaded hips at P56. Unloaded hips had lower trabecular thickness and increased trabecular spacing of the femoral head compared to contralateral hips. The present study suggests that decreased muscle loading of the hip leads to altered bone and joint shape and growth during postnatal maturation. Statement of Clinical Significance: Adaptations from altered muscle loading during postnatal growth investigated in this study have implications on developmental hip disorders that result from asymmetric loading, such as patients with limb-length inequality or dysplasia. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1128-1136, 2017.
Collapse
Affiliation(s)
- Caleb A. Ford
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110,Department of Orthopedic Surgery, Columbia University, New York, New York 10027
| | - Megan L. Killian
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110,Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
37
|
Thompson MS, Bajuri MN, Khayyeri H, Isaksson H. Mechanobiological modelling of tendons: Review and future opportunities. Proc Inst Mech Eng H 2017; 231:369-377. [DOI: 10.1177/0954411917692010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tendons are adapted to carry large, repeated loads and are clinically important for the maintenance of musculoskeletal health in an increasing, actively ageing population, as well as in elite athletes. Tendons are known to adapt to mechanical loading. Also, their healing and disease processes are highly sensitive to mechanical load. Computational modelling approaches developed to capture this mechanobiological adaptation in tendons and other tissues have successfully addressed many important scientific and clinical issues. The aim of this review is to identify techniques and approaches that could be further developed to address tendon-related problems. Biomechanical models are identified that capture the multi-level aspects of tendon mechanics. Continuum whole tendon models, both phenomenological and microstructurally motivated, are important to estimate forces during locomotion activities. Fibril-level microstructural models are documented that can use these estimated forces to detail local mechanical parameters relevant to cell mechanotransduction. Cell-level models able to predict the response to such parameters are also described. A selection of updatable mechanobiological models is presented. These use mechanical signals, often continuum tissue level, along with rules for tissue change and have been applied successfully in many tissues to predict in vivo and in vitro outcomes. Signals may include scalars derived from the stress or strain tensors, or in poroelasticity also fluid velocity, while adaptation may be represented by changes to elastic modulus, permeability, fibril density or orientation. So far, only simple analytical approaches have been applied to tendon mechanobiology. With the development of sophisticated computational mechanobiological models in parallel with reporting more quantitative data from in vivo or clinical mechanobiological studies, for example, appropriate imaging, biochemical and histological data, this field offers huge potential for future development towards clinical applications.
Collapse
Affiliation(s)
- Mark S Thompson
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - M Nazri Bajuri
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
- Faculty of Biosciences & Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Hanifeh Khayyeri
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
38
|
Lejeune E, Linder C. Quantifying the relationship between cell division angle and morphogenesis through computational modeling. J Theor Biol 2017; 418:1-7. [PMID: 28119022 DOI: 10.1016/j.jtbi.2017.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/17/2017] [Indexed: 11/24/2022]
Abstract
When biological cells divide, they divide on a given angle. It has been shown experimentally that the orientation of cell division angle for a single cell can be described by a probability density function. However, the way in which the probability density function underlying cell division orientation influences population or tissue scale morphogenesis is unknown. Here we show that a computational approach, with thousands of stochastic simulations modeling growth and division of a population of cells, can be used to investigate this unknown. In this paper we examine two potential forms of the probability density function: a wrapped normal distribution and a binomial distribution. Our results demonstrate that for the wrapped normal distribution the standard deviation of the division angle, potentially interpreted as biological noise, controls the degree of tissue scale anisotropy. For the binomial distribution, we demonstrate a mechanism by which direction and degree of tissue scale anisotropy can be tuned via the probability of each division angle. We anticipate that the method presented in this paper and the results of these simulations will be a starting point for further investigation of this topic.
Collapse
Affiliation(s)
- Emma Lejeune
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Christian Linder
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Vafaeian B, Zonoobi D, Mabee M, Hareendranathan AR, El-Rich M, Adeeb S, Jaremko JL. Finite element analysis of mechanical behavior of human dysplastic hip joints: a systematic review. Osteoarthritis Cartilage 2017; 25:438-447. [PMID: 27836678 DOI: 10.1016/j.joca.2016.10.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 10/20/2016] [Accepted: 10/28/2016] [Indexed: 02/02/2023]
Abstract
Developmental dysplasia of the hip (DDH) is a common condition predisposing to osteoarthritis (OA). Especially since DDH is best identified and treated in infancy before bones ossify, there is surprisingly a near-complete absence of literature examining mechanical behavior of infant dysplastic hips. We sought to identify current practice in finite element modeling (FEM) of DDH, to inform future modeling of infant dysplastic hips. We performed multi-database systematic review using PRISMA criteria. Abstracts (n = 126) fulfilling inclusion criteria were screened for methodological quality, and results were analyzed and summarized for eligible articles (n = 12). The majority of the studies modeled human adult dysplastic hips. Two studies focused on etiology of DDH through simulating mechanobiological growth of prenatal hips; we found no FEM-based studies in infants or children. Finite element models used either patient-specific geometry or idealized average geometry. Diversities in choice of material properties, boundary conditions, and loading scenarios were found in the finite-element models. FEM of adult dysplastic hips demonstrated generally smaller cartilage contact area in dysplastic hips than in normal joints. Contact pressure (CP) may be higher or lower in dysplastic hips depending on joint geometry and mechanical contribution of labrum (Lb). FEM of mechanobiological growth of prenatal hip joints revealed evidence for effects of the joint mechanical environment on formation of coxa valga, asymmetrically shallow acetabulum and malformed femoral head associated with DDH. Future modeling informed by the results of this review may yield valuable insights into optimal treatment of DDH, and into how and why OA develops early in DDH.
Collapse
Affiliation(s)
- B Vafaeian
- Department of Civil and Environmental Engineering, University of Alberta, 7-203 Donadeo Innovation Centre for Engineering, 9211-116 Street, Edmonton, Alberta, T6G 1H9, Canada.
| | - D Zonoobi
- Department of Radiology and Diagnostic Imaging, University of Alberta, 2A2.41 WMC, 8440-112 Street, Edmonton, Alberta, T6G 2B7, Canada.
| | - M Mabee
- Department of Radiology and Diagnostic Imaging, University of Alberta, 2A2.41 WMC, 8440-112 Street, Edmonton, Alberta, T6G 2B7, Canada.
| | - A R Hareendranathan
- Department of Radiology and Diagnostic Imaging, University of Alberta, 2A2.41 WMC, 8440-112 Street, Edmonton, Alberta, T6G 2B7, Canada.
| | - M El-Rich
- Department of Civil and Environmental Engineering, University of Alberta, 7-203 Donadeo Innovation Centre for Engineering, 9211-116 Street, Edmonton, Alberta, T6G 1H9, Canada; Department of Mechanical Engineering at Khalifa University (UAE), United Arab Emirates.
| | - S Adeeb
- Department of Civil and Environmental Engineering, University of Alberta, 7-203 Donadeo Innovation Centre for Engineering, 9211-116 Street, Edmonton, Alberta, T6G 1H9, Canada.
| | - J L Jaremko
- Department of Radiology and Diagnostic Imaging, University of Alberta, 2A2.41 WMC, 8440-112 Street, Edmonton, Alberta, T6G 2B7, Canada.
| |
Collapse
|
40
|
Brunt LH, Roddy KA, Rayfield EJ, Hammond CL. Building Finite Element Models to Investigate Zebrafish Jaw Biomechanics. J Vis Exp 2016. [PMID: 28060270 PMCID: PMC5226340 DOI: 10.3791/54811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Skeletal morphogenesis occurs through tightly regulated cell behaviors during development; many cell types alter their behavior in response to mechanical strain. Skeletal joints are subjected to dynamic mechanical loading. Finite element analysis (FEA) is a computational method, frequently used in engineering that can predict how a material or structure will respond to mechanical input. By dividing a whole system (in this case the zebrafish jaw skeleton) into a mesh of smaller 'finite elements', FEA can be used to calculate the mechanical response of the structure to external loads. The results can be visualized in many ways including as a 'heat map' showing the position of maximum and minimum principal strains (a positive principal strain indicates tension while a negative indicates compression. The maximum and minimum refer the largest and smallest strain). These can be used to identify which regions of the jaw and therefore which cells are likely to be under particularly high tensional or compressional loads during jaw movement and can therefore be used to identify relationships between mechanical strain and cell behavior. This protocol describes the steps to generate Finite Element models from confocal image data on the musculoskeletal system, using the zebrafish lower jaw as a practical example. The protocol leads the reader through a series of steps: 1) staining of the musculoskeletal components, 2) imaging the musculoskeletal components, 3) building a 3 dimensional (3D) surface, 4) generating a mesh of Finite Elements, 5) solving the FEA and finally 6) validating the results by comparison to real displacements seen in movements of the fish jaw.
Collapse
Affiliation(s)
- Lucy H Brunt
- Physiology, Pharmacology and Neuroscience, University of Bristol
| | - Karen A Roddy
- Physiology, Pharmacology and Neuroscience, University of Bristol
| | | | | |
Collapse
|
41
|
Giorgi M, Verbruggen SW, Lacroix D. In silico bone mechanobiology: modeling a multifaceted biological system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:485-505. [PMID: 27600060 PMCID: PMC5082538 DOI: 10.1002/wsbm.1356] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/27/2016] [Accepted: 07/27/2016] [Indexed: 12/04/2022]
Abstract
Mechanobiology, the study of the influence of mechanical loads on biological processes through signaling to cells, is fundamental to the inherent ability of bone tissue to adapt its structure in response to mechanical stimulation. The immense contribution of computational modeling to the nascent field of bone mechanobiology is indisputable, having aided in the interpretation of experimental findings and identified new avenues of inquiry. Indeed, advances in computational modeling have spurred the development of this field, shedding new light on problems ranging from the mechanical response to loading by individual cells to tissue differentiation during events such as fracture healing. To date, in silico bone mechanobiology has generally taken a reductive approach in attempting to answer discrete biological research questions, with research in the field broadly separated into two streams: (1) mechanoregulation algorithms for predicting mechanobiological changes to bone tissue and (2) models investigating cell mechanobiology. Future models will likely take advantage of advances in computational power and techniques, allowing multiscale and multiphysics modeling to tie the many separate but related biological responses to loading together as part of a larger systems biology approach to shed further light on bone mechanobiology. Finally, although the ever‐increasing complexity of computational mechanobiology models will inevitably move the field toward patient‐specific models in the clinic, the determination of the context in which they can be used safely for clinical purpose will still require an extensive combination of computational and experimental techniques applied to in vitro and in vivo applications. WIREs Syst Biol Med 2016, 8:485–505. doi: 10.1002/wsbm.1356 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Mario Giorgi
- Department of Oncology and Metabolism and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | | | - Damien Lacroix
- INSIGNEO Institute for In Silico Medicine, Department of Mechanical Engineering, University of Sheffield, Sheffield, UK.
| |
Collapse
|
42
|
Giorgi M, Carriero A, Shefelbine SJ, Nowlan NC. Effects of normal and abnormal loading conditions on morphogenesis of the prenatal hip joint: application to hip dysplasia. J Biomech 2015; 48:3390-7. [PMID: 26163754 PMCID: PMC4601017 DOI: 10.1016/j.jbiomech.2015.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/04/2015] [Accepted: 06/15/2015] [Indexed: 01/01/2023]
Abstract
Joint morphogenesis is an important phase of prenatal joint development during which the opposing cartilaginous rudiments acquire their reciprocal and interlocking shapes. At an early stage of development, the prenatal hip joint is formed of a deep acetabular cavity that almost totally encloses the head. By the time of birth, the acetabulum has become shallower and the femoral head has lost substantial sphericity, reducing joint coverage and stability. In this study, we use a dynamic mechanobiological simulation to explore the effects of normal (symmetric), reduced and abnormal (asymmetric) prenatal movements on hip joint shape, to understand their importance for postnatal skeletal malformations such as developmental dysplasia of the hip (DDH). We successfully predict the physiological trends of decreasing sphericity and acetabular coverage of the femoral head during fetal development. We show that a full range of symmetric movements helps to maintain some of the acetabular depth and femoral head sphericity, while reduced or absent movements can lead to decreased sphericity and acetabular coverage of the femoral head. When an abnormal movement pattern was applied, a deformed joint shape was predicted, with an opened asymmetric acetabulum and the onset of a malformed femoral head. This study provides evidence for the importance of fetal movements in the prevention and manifestation of congenital musculoskeletal disorders such as DDH.
Collapse
Affiliation(s)
- Mario Giorgi
- Department of Bioengineering, Imperial College London, UK
| | - Alessandra Carriero
- Department of Bioengineering, Imperial College London, UK; Department of Biomedical Engineering, Florida Institute of Technology, USA
| | - Sandra J Shefelbine
- Department of Bioengineering, Imperial College London, UK; Department of Mechanical and Industrial Engineering, Northeastern University, USA
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, UK.
| |
Collapse
|