1
|
Liao C, Wang P, Zeng Q, Yan G, Gao J, Liu J, Yan J, Zhang G, Liu Y, Wang X. Piezo1-Mediated Calcium Flux Transfers Mechanosignal to Yes-Associated Protein to Stimulate Matrix Production in Keloid. J Invest Dermatol 2025:S0022-202X(25)00415-4. [PMID: 40254148 DOI: 10.1016/j.jid.2025.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/17/2025] [Accepted: 03/29/2025] [Indexed: 04/22/2025]
Abstract
Keloids are fibroproliferative diseases affecting millions of people worldwide, but curing keloids remains challenging. Mechanical force is a common initiator and driver of keloids, and blocking the proadhesive signaling pathways is expected to cure keloids. This study found higher levels of Piezo1 in human keloid fibroblasts than in normal skin fibroblasts. Single-cell transcriptome analysis revealed a correlation of Piezo1 with Yes-associated protein (YAP) in keloid fibroblasts. Knockdown of Piezo1/YAP in keloid fibroblasts versus fibroblasts decreased CCN2 and CCN1 expression and fibrosis-related cell behaviors, identifying Piezo1 and YAP as upstream signals of proadhesive signaling loop in keloids. Treatment of patient-derived keloid xenograft model with Piezo1 inhibitor GsMTx4 and YAP inhibitor verteporfin reduced keloid volume and decreased type I/III collagen ratio. Atomic force microscopy further confirmed the biomechanical improvements of keloids in elasticity, viscoelasticity, and roughness ex vivo. In addition, the calcium ion-sensitive fluorescent indicator Fluo-3/AM and double-labeling immunofluorescence stains showed that Piezo1 transferred mechanosignal to increase YAP nuclear translocation through calcium flux. Finally, transcriptomics revealed target genes of the Piezo1/YAP signaling pathway, such as TBX3, SESN2, SMAD7, FOSB, JARID2, and HAS2. Consequently, the Piezo1/calcium flux/YAP signaling axis contributes to the mechanically induced proadhesive signaling pathway, and thus, Piezo1 and YAP are promising targets for keloid treatment.
Collapse
Affiliation(s)
- Caihe Liao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiawen Gao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yeqiang Liu
- Department of Pathology at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Batan D, Tseropoulos G, Kirkpatrick BE, Bishop C, Bera K, Khang A, Weiser-Evans M, Anseth KS. PTEN Regulates Myofibroblast Activation in Valvular Interstitial Cells Based on Subcellular Localization. Adv Biol (Weinh) 2025:e2400540. [PMID: 40229965 DOI: 10.1002/adbi.202400540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/03/2025] [Indexed: 04/16/2025]
Abstract
Aortic valve stenosis (AVS) is characterized by altered mechanics of the valve leaflets, which disrupts blood flow through the aorta and can cause left ventricle hypotrophy. These changes in the valve tissue result in the activation of resident valvular interstitial cells (VICs) into myofibroblasts, which have increased levels of αSMA in their stress fibers. The persistence of VIC myofibroblast activation is a hallmark of AVS. In recent years, the tumor suppressor gene phosphatase and tensin homolog (PTEN) has emerged as an important player in the regulation of fibrosis in various tissues (e.g., lung, skin), which motivated to investigate PTEN as a potential protective factor against matrix-induced myofibroblast activation in VICs. In aortic valve samples from humans, high levels of PTEN are found in healthy tissue and low levels of PTEN in diseased tissue. Then, using pharmacological inducers to treat VIC cultures, it is observed that PTEN overexpression prevented stiffness-induced myofibroblast activation, whereas genetic and pharmacological inhibition of PTEN further activated myofibroblasts. The increased nuclear PTEN localization is also observed in VICs cultured on stiff matrices, and nuclear PTEN also correlated with smaller nuclei, altered expression of histones, and a quiescent fibroblast phenotype. Together, these results suggest that PTEN not only suppresses VIC activation, but functions to promote quiescence, and can serve as a potential pharmacological target for the treatment of AVS.
Collapse
Affiliation(s)
- Dilara Batan
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80303, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado, 80303, USA
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80303, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado, 80303, USA
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80303, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Colorado, 80045, USA
| | - Carrie Bishop
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80303, USA
| | - Kaustav Bera
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80303, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado, 80303, USA
| | - Alex Khang
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80303, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado, 80303, USA
| | - Mary Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Medical Campus, 12700 East 19th Avenue, C281, Research Complex 2, Room 7101, Aurora, Colorado, 80045, USA
- Center for Fibrosis Research and Translation, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, 80045, USA
- Department of Medicine, Cardiovascular Pulmonary Research Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80303, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado, 80303, USA
| |
Collapse
|
3
|
Xie R, Li C, Zhao T, Zhang S, Zhong A, Chen N, Li Z, Chen J. Integration of Flow Cytometry and Single-Cell RNA Sequencing Analysis to Explore the Fibroblast Subpopulations in Keloid that Correlate with Recurrence. Adv Wound Care (New Rochelle) 2025. [PMID: 40177712 DOI: 10.1089/wound.2024.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Objective: Fibroblasts (FBs) are the cytological basis of keloid (KD) formation. This study aimed to identify the key pathogenic target cell subpopulation involved in KD recurrence. Approach: Single-cell RNA sequencing data were retrieved from public databases, revealing distinct gene expression patterns in FB subpopulations. Flow cytometry (FCM) was used to identify the surface molecular phenotypes of FBs that affect KD recurrence. Simultaneously, logistic regression analysis was performed to assess the predictive value of changes in FB subpopulation percentages for clinical KD recurrence. Results: The percentage of keloid fibroblasts was significantly greater than that in normal tissues. Through further clustering analysis of the FB population, we obtained four subpopulations, FB1-FB4, in which the percentages of FB1 subpopulation were increased, and functional enrichment analysis suggested that the FB1 subpopulation may play a greater role in extracellular matrix collagen oversynthesis in KD. In addition, the gene expression of CD26 (DPP4), CD117 (c-KIT), and CD34 in the FB1 subpopulation was significantly higher than that in FB2-4 subpopulations. Moreover, the percentage of CD26+/CD117+/CD34+ cell subpopulations in the FCM data of patients with KD recurrence was significantly increased. Regression analysis confirmed that the CD26+/CD117+/CD34+ FB subpopulation was a risk factor for relapse. Innovation: We demonstrated that the molecular phenotypic and functional heterogeneity of FBs influences KD recurrence. Conclusion: We identified key pathogenic FB subpopulations that may affect KD development, which can be used as potential markers to predict recurrence and provide potential target cell populations for future clinical treatment.
Collapse
Affiliation(s)
- Ruxin Xie
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Chenyu Li
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Tian Zhao
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Shiwei Zhang
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Ai Zhong
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Nengbin Chen
- Cosmetic Burn and Plastic Surgery, The People's Hospital of Leshan, Leshan, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Junjie Chen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Prat-Duran J, Merrild C, Juste N, Pinilla E, Simonsen U, Nørregaard R, Buus NH. The antifibrotic potential of transglutaminase 2 inhibition beyond TGFβ1 release in human kidney tissue and isolated cell cultures. Life Sci 2025; 366-367:123503. [PMID: 39983822 DOI: 10.1016/j.lfs.2025.123503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
AIMS The open conformation of the enzyme transglutaminase 2 (TG2) contributes to kidney fibrosis through transamidase activity by cross-linking extracellular matrix fibres and releasing transforming growth factor β1 (TGFβ1), a key driver of fibrogenesis. We investigated the antifibrotic potential of TG2 inhibition downstream of TGFβ1 using two TG2 inhibitors, LDN27219 and Z-DON, which modulate TG2 into the closed and open state, respectively. MATERIALS AND METHODS The TG2 inhibitors were studied in human precision-cut kidney slices (PCKS) and in cell cultures of primary renal cell types: endothelial and epithelial cells, and fibroblasts. PCKS and cell cultures were stimulated with TGFβ1 (10 ng/ml) for 48 h with or without LDN27219 (10 μmol/l) or Z-DON (40 μmol/l). We evaluated mRNA and protein expression of TG2 and fibrosis markers (fibronectin, α-smooth muscle actin and collagens), and TG2 transamidase activity. KEY FINDINGS In PCKS, TG2 was unaffected by TGFβ1, but mRNA levels of fibrosis markers increased with the stimulation and decreased in most LDN27219-treated PCKS compared to the control. No changes in protein expression of fibrosis markers were achieved with TGFβ1. In endothelial and epithelial cells, but not fibroblasts, fibronectin expression was increased with TG2 inhibition. Conversely, collagen 3α1 decreased by TG2 inhibition, further amplified by the closed conformation. SIGNIFICANCE The antifibrotic effects of TG2 inhibition extend beyond the release of TGFβ1, specifically in the closed conformation, although this varies among cell types. Our results indicate that the closed conformation of TG2 has an active antifibrotic potential in humans, in addition to blocking transamidase activity.
Collapse
Affiliation(s)
| | - Camilla Merrild
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nina Juste
- Department of Biomedicine, Health, Aarhus University, Denmark
| | | | - Ulf Simonsen
- Department of Biomedicine, Health, Aarhus University, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Henrik Buus
- Department of Biomedicine, Health, Aarhus University, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Griffin MF, Parker JB, Tevlin R, Liang NE, Valencia C, Morgan A, Kuhnert M, Downer M, Meany EL, Guo JL, Henn D, Navarro RS, Shefren K, Nguyen D, Gurtner GC, Heilshorn SC, Chan CKF, Januszyk M, Appel EA, Momeni A, Wan DC, Longaker MT. Osteopontin attenuates the foreign-body response to silicone implants. Nat Biomed Eng 2025:10.1038/s41551-025-01361-4. [PMID: 40128393 DOI: 10.1038/s41551-025-01361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/28/2025] [Indexed: 03/26/2025]
Abstract
The inflammatory process resulting in the fibrotic encapsulation of implants has been well studied. However, how acellular dermal matrix (ADM) used in breast reconstruction elicits an attenuated foreign-body response (FBR) remains unclear. Here, by leveraging single-cell RNA-sequencing and proteomic data from pairs of fibrotically encapsulated specimens (bare silicone and silicone wrapped with ADM) collected from individuals undergoing breast reconstruction, we show that high levels of the extracellular-matrix protein osteopontin are associated with the use of ADM as a silicone wrapping. In mice with osteopontin knocked out, FBR attenuation by ADM-coated implants was abrogated. In wild-type mice, the sustained release of recombinant osteopontin from a hydrogel placed adjacent to a silicone implant attenuated the FBR in the absence of ADM. Our findings suggest strategies for the further minimization of the FBR.
Collapse
Affiliation(s)
- Michelle F Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer B Parker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruth Tevlin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Norah E Liang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Caleb Valencia
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Annah Morgan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Maxwell Kuhnert
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mauricio Downer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily L Meany
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jason L Guo
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Renato S Navarro
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Kerry Shefren
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Dung Nguyen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Charles K F Chan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Arash Momeni
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Derrick C Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Yang X, Yang Y, Zhao M, Bai H, Fu C. Identification of DYRK2 and TRIM32 as keloids programmed cell death-related biomarkers: insights from bioinformatics and machine learning in multiple cohorts. Comput Methods Biomech Biomed Engin 2025:1-15. [PMID: 40127455 DOI: 10.1080/10255842.2025.2482129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/26/2025]
Abstract
This study aims to explore the expression patterns and mechanisms of programmed cell death-related genes in keloids and identify molecular targets for early diagnosis and treatment. We first explored the expression, immune, and biological function profiles of keloids. Using various machine learning methods, two key genes, DYRK2 and TRIM32, were identified, with ROC curves demonstrating their diagnostic potential. Further analyses, including GSEA, immune cell profiling, competing endogenous RNA network, and single-cell analysis, revealed their mechanism of action and regulatory network. Finally, SB-431542 was identified as a potential therapeutic agent for keloids through CMap and molecular docking.
Collapse
Affiliation(s)
- Xi Yang
- Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yao Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mingjian Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - He Bai
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chongyang Fu
- Department of Hand and Microsurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
7
|
Sun Z, Sun J, Su G, Wang R, Zhai Z, Yu F, Li Y. A comparative study of the established methods and evaluation of rat trauma models. Animal Model Exp Med 2025; 8:501-510. [PMID: 39439109 PMCID: PMC11904095 DOI: 10.1002/ame2.12479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Scientific animal models are indispensable for studying trauma repair. This work aimed at establishing a more scientific rat trauma model by studying different rat trauma models caused by different trauma numbers, locations, and trauma attachment tension unloaders and rat age. METHODS A four-trauma self-upper, lower, left and right control model; a two-trauma self-trauma bare and ring control model; and a young and old rat trauma model were created to evaluate the condition of these traumas. RESULTS In the four-trauma self-control model, the healing status of the upper proximal cephalic trauma was better than that of the lower proximal caudal trauma, whereas there was no significant difference between the left and right trauma. The healing rate and postwound condition of the trauma with a ring control in the two-trauma model were better than those of the bare side. The healing speed of the old rats was slower, and the amount of extracellular matrix in the subcutaneous tissue after healing was significantly lower than that of the young rats. CONCLUSION The double trauma with a ring is a more scientific and reasonable experimental model. There is a significant difference between young and old rats in the wound healing process. Therefore, the appropriate age of the rats should be selected according to the main age range of the patients with similar conditions in the clinical setting being mimicked.
Collapse
Affiliation(s)
- Zhenmin Sun
- Qingdao HospitalUniversity of Health and Rehabilitation Sciences, Qingdao Municipal HospitalQingdaoChina
- Shandong Second Medical UniversityWeifangChina
| | - Jia Sun
- Shandong Second Medical UniversityWeifangChina
| | - Gang Su
- Shandong Second Medical UniversityWeifangChina
| | - Ruohan Wang
- Shandong Second Medical UniversityWeifangChina
| | | | - Feng Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si‐Zr‐Ti Resources, College of Materials Science and EngineeringHainan UniversityHaikouChina
| | - Yuli Li
- Qingdao HospitalUniversity of Health and Rehabilitation Sciences, Qingdao Municipal HospitalQingdaoChina
| |
Collapse
|
8
|
Allen RS, Seifert AW. Spiny mice (Acomys) have evolved cellular features to support regenerative healing. Ann N Y Acad Sci 2025; 1544:5-26. [PMID: 39805008 PMCID: PMC11830558 DOI: 10.1111/nyas.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Spiny mice (Acomys spp.) are warm-blooded (homeothermic) vertebrates whose ability to restore missing tissue through regenerative healing has coincided with the evolution of unique cellular and physiological adaptations across different tissue types. This review seeks to explore how these bizarre rodents deploy unique or altered injury response mechanisms to either enhance tissue repair or fully regenerate excised tissue compared to closely related, scar-forming mammals. First, we examine overall trends in healing Acomys tissues, including the cellular stress response, the ability to activate and maintain cell cycle progression, and the expression of certain features in reproductive adults that are normally associated with embryos. Second, we focus on specific cell types that exhibit precisely regulated proliferation to restore missing tissue. While Acomys utilize many of the same cell types involved in scar formation, these cells exhibit divergent activation profiles during regenerative healing. Considered together, current lines of evidence support sustained deployment of proregenerative pathways in conjunction with transient activation of fibrotic pathways to facilitate regeneration and improve tissue repair in Acomys.
Collapse
Affiliation(s)
- Robyn S. Allen
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Ashley W. Seifert
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
- The Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky, USA
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
9
|
Doci RSA, Carvalho FFD, Gomes RC, Gianini RJ, Fanelli C, Noronha IDL, Santos NBD, Hausen MDA, Komatsu D, Randazzo-Moura P. Pharmacological effects of triamcinolone associated with surgical glue on cutaneous wound healing in rats. Acta Cir Bras 2024; 39:e399624. [PMID: 39661810 DOI: 10.1590/acb399624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 12/13/2024] Open
Abstract
PURPOSE The surgical glue is widely used in closing cutaneous surgical wounds. Corticosteroids are indicated for their anti-inflammatory and immunomodulatory properties. The present work evaluated the pharmacological effects of triamcinolone (AT) incorporated into surgical glue (C) on the initial phase of the wound healing process in Wistar rats. METHODS Through in-vivo studies, the effects of the healing process, C or C+AT in the same rat were evaluated for seven and 14 days post-surgery. RESULTS The C+AT association did not change the physicochemical properties of the polymer. This association in wound healing confirmed the anti-inflammatory and immunomodulatory effects of the corticosteroid, with less neovascularization and fibrosis, in addition to the remodeling of the extracellular matrix carried out by the balance of myofibroblasts and less dense collagen fibers, culminating in tissue regeneration and possible reduction of side effects. CONCLUSION This association is a powerful and innovative pharmacological tool, promising in translational medicine.
Collapse
Affiliation(s)
- Rosana Soares Araújo Doci
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| | - Filipe Feitosa de Carvalho
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| | - Rodrigo César Gomes
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Biomaterials Laboratory - São Paulo (SP) - Brazil
| | - Reinaldo José Gianini
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| | - Camilla Fanelli
- Universidade de São Paulo - Medical School - Laboratory of Cellular, Genetic, and Molecular Nephrology - São Paulo (SP) - Brazil
| | - Irene de Lourdes Noronha
- Universidade de São Paulo - Medical School - Laboratory of Cellular, Genetic, and Molecular Nephrology - São Paulo (SP) - Brazil
| | - Nelson Brancaccio Dos Santos
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Pathology Laboratory - São Paulo (SP) - Brazil
| | - Moema de Alencar Hausen
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| | - Daniel Komatsu
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| | - Priscila Randazzo-Moura
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| |
Collapse
|
10
|
Walker M, Morton JP. Hydrogel models of pancreatic adenocarcinoma to study cell mechanosensing. Biophys Rev 2024; 16:851-870. [PMID: 39830124 PMCID: PMC11735828 DOI: 10.1007/s12551-024-01265-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is the predominant form of pancreatic cancer and one of the leading causes of cancer-related death worldwide, with an extremely poor prognosis after diagnosis. High mortality from PDAC arises partly due to late diagnosis resulting from a lack of early-stage biomarkers and due to chemotherapeutic drug resistance, which arises from a highly fibrotic stromal response known as desmoplasia. Desmoplasia alters tissue mechanics, which triggers changes in cell mechanosensing and leads to dysregulated transcriptional activity and disease phenotypes. Hydrogels are effective in vitro models to mimic mechanical changes in tissue mechanics during PDAC progression and to study the influence of these changes on mechanosensitive cell responses. Despite the complex biophysical changes that occur within the PDAC microenvironment, carefully designed hydrogels can very closely recapitulate these properties during PDAC progression. Hydrogels are relatively inexpensive, highly reproducible and can be designed in a humanised manner to increase their relevance for human PDAC studies. In vivo models have some limitations, including species-species differences, high variability, expense and legal/ethical considerations, which make hydrogel models a promising alternative. Here, we comprehensively review recent advancements in hydrogel bioengineering for developing our fundamental understanding of mechanobiology in PDAC, which is critical for informing advanced therapeutics.
Collapse
Affiliation(s)
- M Walker
- Centre for the Cellular Microenvironment, Advanced Research Centre, 11 Chapel Lane, James Watt School of Engineering, University of Glasgow, Glasgow, G11 6EW UK
| | - JP Morton
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Rd, Glasgow, G61 1BD UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Rd, Glasgow, G61 1QH UK
| |
Collapse
|
11
|
Batan D, Tseropoulos G, Kirkpatrick BE, Bera K, Khang A, Weiser-Evans M, Anseth KS. PTEN Regulates Myofibroblast Activation in Valvular Interstitial Cells based on Subcellular Localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601424. [PMID: 39005262 PMCID: PMC11244890 DOI: 10.1101/2024.06.30.601424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Aortic valve stenosis (AVS) is characterized by altered mechanics of the valve leaflets, which disrupts blood flow through the aorta and can cause left ventricle hypotrophy. These changes in the valve tissue result in activation of resident valvular interstitial cells (VICs) into myofibroblasts, which have increased levels of αSMA in their stress fibers. The persistence of VIC myofibroblast activation is a hallmark of AVS. In recent years, the tumor suppressor gene phosphatase and tensin homolog (PTEN) has emerged as an important player in the regulation of fibrosis in various tissues (e.g., lung, skin), which motivated us to investigate PTEN as a potential protective factor against matrix-induced myofibroblast activation in VICs. In aortic valve samples from humans, we found high levels of PTEN in healthy tissue and low levels of PTEN in diseased tissue. Then, using pharmacological inducers to treat VIC cultures, we observed PTEN overexpression prevented stiffness-induced myofibroblast activation, whereas genetic and pharmacological inhibition of PTEN further activated myofibroblasts. We also observed increased nuclear PTEN localization in VICs cultured on stiff matrices, and nuclear PTEN also correlated with smaller nuclei, altered expression of histones and a quiescent fibroblast phenotype. Together, these results suggest that PTEN not only suppresses VIC activation, but functions to promote quiescence, and could serve as a potential pharmacological target for the treatment of AVS.
Collapse
|
12
|
Xu Y, Wang Y, Yang Y, Fang X, Wu L, Hu J, Li J, Mei S. Piezo1: the key regulators in central nervous system diseases. Front Cell Neurosci 2024; 18:1441806. [PMID: 39539343 PMCID: PMC11557416 DOI: 10.3389/fncel.2024.1441806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The occurrence and development of central nervous system (CNS) diseases is a multi-factor and multi-gene pathological process, and their diagnosis and treatment have always posed a serious challenge in the medical field. Therefore, exploring the relevant factors in the pathogenesis of CNS and improving the diagnosis and treatment rates has become an urgent problem. Piezo1 is a recently discovered mechanosensitive ion channel that opens in response to mechanical stimuli. A number of previous studies have shown that the Piezo channel family plays a crucial role in CNS physiology and pathology, especially in diseases related to CNS development and mechanical stimulation. This article comprehensively describes the biological properties of Piezo1, focuses on the potential association between Piezo1 and CNS disorders, and explores the pharmacological roles of Piezo1 agonists and inhibitors in treating CNS disorders.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuheng Wang
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanling Yang
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaowei Fang
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jin Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shuchong Mei
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Jang JW, Capaldi E, Smith T, Verma P, Varga J, Ho KJ. Trimethylamine N-oxide: a meta-organismal axis linking the gut and fibrosis. Mol Med 2024; 30:128. [PMID: 39180015 PMCID: PMC11344357 DOI: 10.1186/s10020-024-00895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Tissue fibrosis is a common pathway to failure in many organ systems and is the cellular and molecular driver of myriad chronic diseases that are incompletely understood and lack effective treatment. Recent studies suggest that gut microbe-dependent metabolites might be involved in the initiation and progression of fibrosis in multiple organ systems. MAIN BODY OF THE MANUSCRIPT In a meta-organismal pathway that begins in the gut, gut microbiota convert dietary precursors such as choline, phosphatidylcholine, and L-carnitine into trimethylamine (TMA), which is absorbed and subsequently converted to trimethylamine N-oxide (TMAO) via the host enzyme flavin-containing monooxygenase 3 (FMO3) in the liver. Chronic exposure to elevated TMAO appears to be associated with vascular injury and enhanced fibrosis propensity in diverse conditions, including chronic kidney disease, heart failure, metabolic dysfunction-associated steatotic liver disease, and systemic sclerosis. CONCLUSION Despite the high prevalence of fibrosis, little is known to date about the role of gut dysbiosis and of microbe-dependent metabolites in its pathogenesis. This review summarizes recent important advances in the understanding of the complex metabolism and functional role of TMAO in pathologic fibrosis and highlights unanswered questions.
Collapse
Affiliation(s)
- Jae Woong Jang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Emma Capaldi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Tracy Smith
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Priyanka Verma
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - John Varga
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - Karen J Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA.
| |
Collapse
|
14
|
Cheruvathur P, Palani T, Kamalakaran AK, Krishnamoorthy T, Lakshminarasimhan L. Post-surgical Hypertrophic Scar in a Patient With Unilateral Temporomandibular Joint Ankylosis. Cureus 2024; 16:e67344. [PMID: 39310394 PMCID: PMC11412937 DOI: 10.7759/cureus.67344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Wound healing is nature's response to injury. It is a complex and dynamic process involving multiple biological systems aimed at restoring the integrity of damaged tissue. The temporomandibular joint (TMJ) is a critical anatomical structure that facilitates jaw movement and function. TMJ ankylosis is a pathological condition characterized by fusion of the mandibular condyle to the glenoid fossa resulting in severe restriction in mouth opening and significantly reduced mandibular movements. This condition affects the patient's quality of life by deteriorating major functions such as mastication, speech, oral hygiene, breathing, facial growth, and esthetics. Gap arthroplasty is the mainstay of treatment. There are various surgical approaches to TMJ such as Al-Kayat Bramley, Popowich's modification, Blair's inverted hockey stick, Dingman's, Thoma's, endaural, postauricular, and rhytidectomy incisions. Wound healing in the TMJ region poses unique challenges due to its complex anatomy and the high level of mechanical stress it endures. Following trauma to TMJ, hematomas are organized by fibrous granulation tissues and mesenchymal stem cells are recruited from adjacent bone by cytokines and chemokines such as bone morphogenetic proteins, transforming growth factor-beta and stromal cell-derived factor 1. These recruited mesenchymal cells differentiate into osteoprogenitors and osteoblasts to form new bone and fibroblasts to form a scar. In humans, scarring is the final outcome of the wound healing process, which has evolved to rapidly repair injuries. Scarring from injuries, surgeries, and burns places a significant burden on the healthcare system. Patients with major scars, especially children and adolescents, often experience long-term functional and psychological issues. This article aims to present a case of post-surgical hypertrophic scar in a patient after gap arthroplasty through Al-Kayat Bramley incision and the role of a multi-professional team to treat such wounds.
Collapse
Affiliation(s)
- Prasad Cheruvathur
- Department of Oral and Maxillofacial Surgery, Tamil Nadu Government Dental College and Hospital, Chennai, IND
| | - Triveni Palani
- Department of Oral and Maxillofacial Surgery, Tamil Nadu Government Dental College and Hospital, Chennai, IND
| | - Arun Kumar Kamalakaran
- Department of Oral and Maxillofacial Surgery, Tamil Nadu Government Dental College and Hospital, Chennai, IND
| | - Taranitha Krishnamoorthy
- Department of Oral and Maxillofacial Surgery, Tamil Nadu Government Dental College and Hospital, Chennai, IND
| | - Lavanya Lakshminarasimhan
- Department of Oral and Maxillofacial Surgery, Tamil Nadu Government Dental College and Hospital, Chennai, IND
| |
Collapse
|
15
|
Berry CE, Kendig CB, An N, Fazilat AZ, Churukian AA, Griffin M, Pan PM, Longaker MT, Dixon SJ, Wan DC. Role of ferroptosis in radiation-induced soft tissue injury. Cell Death Discov 2024; 10:313. [PMID: 38969638 PMCID: PMC11226648 DOI: 10.1038/s41420-024-02003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 07/07/2024] Open
Abstract
Ionizing radiation has been pivotal in cancer therapy since its discovery. Despite its therapeutic benefits, IR causes significant acute and chronic complications due to DNA damage and the generation of reactive oxygen species, which harm nucleic acids, lipids, and proteins. While cancer cells are more vulnerable to ionizing radiation due to their inefficiency in repairing damage, healthy cells in the irradiated area also suffer. Various types of cell death occur, including apoptosis, necrosis, pyroptosis, autophagy-dependent cell death, immunogenic cell death, and ferroptosis. Ferroptosis, driven by iron-dependent lipid peroxide accumulation, has been recognized as crucial in radiation therapy's therapeutic effects and complications, with extensive research across various tissues. This review aims to summarize the pathways involved in radiation-related ferroptosis, findings in different organs, and drugs targeting ferroptosis to mitigate its harmful effects.
Collapse
Affiliation(s)
- Charlotte E Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Carter B Kendig
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas An
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Z Fazilat
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew A Churukian
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Phoebe M Pan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
16
|
He Q, He W, Dong H, Guo Y, Yuan G, Shi X, Wang D, Lu F. Role of liver sinusoidal endothelial cell in metabolic dysfunction-associated fatty liver disease. Cell Commun Signal 2024; 22:346. [PMID: 38943171 PMCID: PMC11214243 DOI: 10.1186/s12964-024-01720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that represent the interface between blood cells on one side and hepatocytes on the other side. LSECs not only form a barrier within the hepatic sinus, but also play important physiological functions such as regulating hepatic vascular pressure, anti-inflammatory and anti-fibrotic. Pathologically, pathogenic factors can induce LSECs capillarization, that is, loss of fenestra and dysfunction, which are conducive to early steatosis, lay the foundation for the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), and accelerate metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. The unique localization, phenotype, and function of LSECs make them potential candidates for reducing liver injury, inflammation, and preventing or reversing fibrosis in the future.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Yuan
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Zavvarian MM, Modi AD, Sadat S, Hong J, Fehlings MG. Translational Relevance of Secondary Intracellular Signaling Cascades Following Traumatic Spinal Cord Injury. Int J Mol Sci 2024; 25:5708. [PMID: 38891894 PMCID: PMC11172219 DOI: 10.3390/ijms25115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a life-threatening and life-altering condition that results in debilitating sensorimotor and autonomic impairments. Despite significant advances in the clinical management of traumatic SCI, many patients continue to suffer due to a lack of effective therapies. The initial mechanical injury to the spinal cord results in a series of secondary molecular processes and intracellular signaling cascades in immune, vascular, glial, and neuronal cell populations, which further damage the injured spinal cord. These intracellular cascades present promising translationally relevant targets for therapeutic intervention due to their high ubiquity and conservation across eukaryotic evolution. To date, many therapeutics have shown either direct or indirect involvement of these pathways in improving recovery after SCI. However, the complex, multifaceted, and heterogeneous nature of traumatic SCI requires better elucidation of the underlying secondary intracellular signaling cascades to minimize off-target effects and maximize effectiveness. Recent advances in transcriptional and molecular neuroscience provide a closer characterization of these pathways in the injured spinal cord. This narrative review article aims to survey the MAPK, PI3K-AKT-mTOR, Rho-ROCK, NF-κB, and JAK-STAT signaling cascades, in addition to providing a comprehensive overview of the involvement and therapeutic potential of these secondary intracellular pathways following traumatic SCI.
Collapse
Affiliation(s)
- Mohammad-Masoud Zavvarian
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Akshat D. Modi
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Department of Biological Sciences, University of Toronto, Scarborough, ON M1C 1A4, Canada
- Department of Human Biology, University of Toronto, Toronto, ON M5S 3J6, Canada
| | - Sarah Sadat
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - James Hong
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
| | - Michael G. Fehlings
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
18
|
Cardoso CS, de Carvalho FF, Gomes RC, Gianini RJ, Fanelli C, Noronha IDL, Dos Santos NB, Komatsu D, Randazzo-Moura P. New approaches to second-degree burn healing: Polyvinyl alcohol membrane loaded to arnica combined to laser therapy. J Biomater Appl 2024; 38:1058-1072. [PMID: 38470813 DOI: 10.1177/08853282241238609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Second-degree burns require greater care, as the damage is more extensive and worrisome and the use of a biomaterial can help in the cell repair process, with better planning, low cost, and better accessibility. Arnica has anti-inflammatory and analgesic properties in skin lesions treatments and laser therapy is another therapeutic alternative for burns. Evaluate the effects of arnica incorporated into PVA associated or not with low intensity laser on burns in rats. PVA and PVA with arnica (PVA+A) were obtained and characterized physicochemically. Through in vivo studies, the effects of PVA and PVA+A with or without the application of laser on the lesions allowed histological and immunohistochemical analyzes. PVA+A was biocompatible and with sustained release of the active, being a promising pharmacological tool and confirmed that laser therapy was effective in accelerating the healing process, due to its potential biomodulator, improving inflammatory aspects, promoting rapid healing in skin lesions.
Collapse
Affiliation(s)
- Carolina Silva Cardoso
- Program of Postgraduate in Biomaterials and Regenerative Medicine, Faculty of Medical and Health Sciences, Pontifical Catholic University of São Paulo (PUC-SP), São Paulo, Brazil
| | - Filipe Feitosa de Carvalho
- Program of Postgraduate in Biomaterials and Regenerative Medicine, Faculty of Medical and Health Sciences, Pontifical Catholic University of São Paulo (PUC-SP), São Paulo, Brazil
| | - Rodrigo César Gomes
- Biomaterials Laboratory, Faculty of Medical and Health Sciences, Pontifical Catholic University of São Paulo (PUC-SP), São Paulo, Brazil
| | - Reinaldo José Gianini
- Program of Postgraduate in Biomaterials and Regenerative Medicine, Faculty of Medical and Health Sciences, Pontifical Catholic University of São Paulo (PUC-SP), São Paulo, Brazil
| | - Camilla Fanelli
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo Medical School (USP), São Paulo, Brazil
| | - Irene de Lourdes Noronha
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo Medical School (USP), São Paulo, Brazil
| | - Nelson Brancaccio Dos Santos
- Biomaterials Laboratory, Faculty of Medical and Health Sciences, Pontifical Catholic University of São Paulo (PUC-SP), São Paulo, Brazil
| | - Daniel Komatsu
- Program of Postgraduate in Biomaterials and Regenerative Medicine, Faculty of Medical and Health Sciences, Pontifical Catholic University of São Paulo (PUC-SP), São Paulo, Brazil
| | - Priscila Randazzo-Moura
- Program of Postgraduate in Biomaterials and Regenerative Medicine, Faculty of Medical and Health Sciences, Pontifical Catholic University of São Paulo (PUC-SP), São Paulo, Brazil
| |
Collapse
|
19
|
Chitturi P, Leask A. The role of positional information in determining dermal fibroblast diversity. Matrix Biol 2024; 128:31-38. [PMID: 38423396 DOI: 10.1016/j.matbio.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The largest mammalian organ, skin, consisting of a dermal connective tissue layer that underlies and supports the epidermis, acts as a protective barrier that excludes external pathogens and disseminates sensory signals emanating from the local microenvironment. Dermal connective tissue is comprised of a collagen-rich extracellular matrix (ECM) that is produced by connective tissue fibroblasts resident within the dermis. When wounded, a tissue repair program is induced whereby fibroblasts, in response to alterations in the microenvironment, produce new ECM components, resulting in the formation of a scar. Failure to terminate the normal tissue repair program causes fibrotic conditions including: hypertrophic scars, keloids, and the systemic autoimmune connective tissue disease scleroderma (systemic sclerosis, SSc). Histological and single-cell RNA sequencing (scRNAseq) studies have revealed that fibroblasts are heterogeneous and highly plastic. Understanding how this diversity contributes to dermal homeostasis, wounding, fibrosis, and cancer may ultimately result in novel anti-fibrotic therapies and personalized medicine. This review summarizes studies supporting this concept.
Collapse
Affiliation(s)
- Pratyusha Chitturi
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, Canada
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, Canada.
| |
Collapse
|
20
|
Bu Q, Zhu H, Cao G, Gong G, Su Y, Ge Q, Zhu W, Li Z, Pan X. Targeting mechanics-induced trabecular meshwork dysfunction through YAP-TGFβ Ameliorates high myopia-induced ocular hypertension. Exp Eye Res 2024; 241:109853. [PMID: 38453038 DOI: 10.1016/j.exer.2024.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
High myopia is a risk factor for primary open angle glaucoma (POAG). The pathological mechanism of high myopia induced POAG occurrence is not fully understood. In this study, we successfully established the guinea pig model of ocular hypertension with high myopia, and demonstrated the susceptibility of high myopia for the occurrence of microbead-induced glaucoma compared with non-myopia group and the effect of YAP/TGF-β signaling pathway in TM pathogenesis induced by high myopia. Moreover, we performed stretching treatment on primary trabecular meshwork (TM) cells to simulate the mechanical environment of high myopia. It was found that stretching treatment disrupted the cytoskeleton, decreased phagocytic function, enhanced ECM remodeling, and promoted cell apoptosis. The experiments of mechanics-induced human TM cell lines appeared the similar trend. Mechanically, the differential expressed genes of TM cells caused by stretch treatment enriched YAP/TGF-β signaling pathway. To inhibit YAP/TGF-β signaling pathway effectively reversed mechanics-induced TM damage. Together, this study enriches mechanistic insights of high myopia induced POAG susceptibility and provides a potential target for the prevention of POAG with high myopia.
Collapse
Affiliation(s)
- Qianwen Bu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 271016, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong, 266071, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong, 266071, China
| | - Guangliang Cao
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 271016, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong, 266071, China
| | - Ganyu Gong
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 271016, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong, 266071, China
| | - Ying Su
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong, 266071, China
| | - Qingshu Ge
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong, 266071, China
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, 266021, China
| | - Zongyi Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong, 266071, China.
| | - Xiaojing Pan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
21
|
Leong E, Al-Bitar H, Marshall JS, Bezuhly M. Ketotifen directly modifies the fibrotic response of human skin fibroblasts. Sci Rep 2024; 14:7076. [PMID: 38528089 DOI: 10.1038/s41598-024-57776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Fibrosis is a destructive, end-stage disease process. In the skin, it is associated with systemic sclerosis and scarring with considerable health burden. Ketotifen is a clinical antihistamine and mast cell stabilizer. Studies have demonstrated mast cell-dependent anti-fibrotic effects of ketotifen but direct effects on fibroblasts have not been determined. Human dermal fibroblasts were treated with pro-fibrotic transforming growth factor-β1 (TGFβ) followed by ketotifen or control treatments to determine direct effects on fibrotic fibroblasts. Ketotifen impaired TGFβ-induced α-smooth muscle actin gene and protein responses and decreased cytoskeletal- and contractility-associated gene responses associated with fibrosis. Ketotifen reduced Yes-associated protein phosphorylation, transcriptional coactivator with PDZ binding motif transcript and protein levels, and phosphorylation of protein kinase B. In a fibroblast-populated collagen gel contraction assay, ketotifen reduced the contractile activity of TGFβ-activated fibroblasts. In a murine model of bleomycin-induced skin fibrosis, collagen density and dermal thickness were significantly decreased in ketotifen-treated mice supporting in vitro findings. These results support a novel, direct anti-fibrotic activity of ketotifen, reducing pro-fibrotic phenotypic changes in fibroblasts and reducing collagen fibres in fibrotic mouse skin. Together, these findings suggest novel therapeutic potential and a novel mechanism of action for ketotifen in the context of fibrosis.
Collapse
Affiliation(s)
- Edwin Leong
- Department of Pathology, Dalhousie University, 5850 College Street, Room 7-C, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
| | - Haya Al-Bitar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | - Jean S Marshall
- Department of Pathology, Dalhousie University, 5850 College Street, Room 7-C, PO BOX 15000, Halifax, NS, B3H 4R2, Canada.
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada.
- Beatrice Hunter Cancer Research Institute, Halifax, Canada.
| | - Michael Bezuhly
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada.
- Beatrice Hunter Cancer Research Institute, Halifax, Canada.
- Division of Plastic Surgery, Izaak Walton Killam Health Centre, 5850/5980 University Avenue, PO Box 9700, Halifax, NS, B3K 6R8, Canada.
- Department of Surgery, Dalhousie University, Halifax, Canada.
| |
Collapse
|
22
|
Thomasy SM, Leonard BC, Greiner MA, Skeie JM, Raghunathan VK. Squishy matters - Corneal mechanobiology in health and disease. Prog Retin Eye Res 2024; 99:101234. [PMID: 38176611 PMCID: PMC11193890 DOI: 10.1016/j.preteyeres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.
Collapse
Affiliation(s)
- Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States; California National Primate Research Center, Davis, CA, United States.
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States
| | - Mark A Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | - Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | | |
Collapse
|
23
|
Chen G, Li Y, Zhang H, Xie H. [Role of Piezo mechanosensitive ion channels in the osteoarticular system]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:240-248. [PMID: 38385239 PMCID: PMC10882244 DOI: 10.7507/1002-1892.202310092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Objective To summarize the role of Piezo mechanosensitive ion channels in the osteoarticular system, in order to provide reference for subsequent research. Methods Extensive literature review was conducted to summarize the structural characteristics, gating mechanisms, activators and blockers of Piezo ion channels, as well as their roles in the osteoarticular systems. Results The osteoarticular system is the main load-bearing and motor tissue of the body, and its ability to perceive and respond to mechanical stimuli is one of the guarantees for maintaining normal physiological functions of bones and joints. The occurrence and development of many osteoarticular diseases are closely related to abnormal mechanical loads. At present, research shows that Piezo mechanosensitive ion channels differentiate towards osteogenesis by responding to stretching stimuli and regulating cellular Ca 2+ influx signals; and it affects the proliferation and migration of osteoblasts, maintaining bone homeostasis through cellular communication between osteoblasts-osteoclasts. Meanwhile, Piezo1 protein can indirectly participate in regulating the formation and activity of osteoclasts through its host cells, thereby regulating the process of bone remodeling. During mechanical stimulation, the Piezo1 ion channel maintains bone homeostasis by regulating the expressions of Akt and Wnt1 signaling pathways. The sensitivity of Piezo1/2 ion channels to high strain mechanical signals, as well as the increased sensitivity of Piezo1 ion channels to mechanical transduction mediated by Ca 2+ influx and inflammatory signals in chondrocytes, is expected to become a new entry point for targeted prevention and treatment of osteoarthritis. But the specific way mechanical stimuli regulate the physiological/pathological processes of bones and joints still needs to be clarified. Conclusion Piezo mechanosensitive ion channels give the osteoarticular system with important abilities to perceive and respond to mechanical stress, playing a crucial mechanical sensing role in its cellular fate, bone development, and maintenance of bone and cartilage homeostasis.
Collapse
Affiliation(s)
- Guohui Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Yaxing Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Hui Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Huiqi Xie
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| |
Collapse
|
24
|
Sopel M, Kuberka I, Szczuka I, Taradaj J, Rosińczuk J, Dymarek R. Can Shockwave Treatment Elicit a Molecular Response to Enhance Clinical Outcomes in Pressure Ulcers? The SHOck Waves in wouNds Project. Biomedicines 2024; 12:359. [PMID: 38397961 PMCID: PMC10887019 DOI: 10.3390/biomedicines12020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Wound healing requires the coordinated interaction of dermis cells, the proper deposition of extracellular matrix, re-epithelialization, and angiogenesis. Extracorporeal shock wave (ESW) is a promising therapeutic modality for chronic wounds. This study determined the biological mechanisms activated under ESW, facilitating the healing of pressure ulcers (PUs). A group of 10 patients with PUs received two sessions of radial ESW (300 + 100 pulses, 2.5 bars, 0.15 mJ/mm2, 5 Hz). Histomorphological and immunocytochemical assessments were performed on tissue sections obtained from the wound edges before the ESW (M0) and after the first (M1) and second (M2) ESW. The proliferation index of keratinocytes and fibroblasts (Ki-67), the micro-vessels' density (CD31), and the number of myofibroblasts (α-SMA) were evaluated. The involvement of the yes-associated protein (YAP1) in sensing mechanical strain, and whether the nuclear localization of YAP1, was shown. The increased proliferative activity of epidermal cells and skin fibroblasts and the increased number of myofibroblasts, often visible as integrated cell bands, were also demonstrated as an effect of wound exposure to an ESW. The results indicate that the major skin cells, keratinocytes, and fibroblasts are mechanosensitive. They intensify proliferation and extracellular matrix remodeling in response to mechanical stress. A significant improvement in clinical wound parameters was also observed.
Collapse
Affiliation(s)
- Mirosław Sopel
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland;
| | - Izabela Kuberka
- Department of Anaesthetic and Surgical Nursing, Faculty of Health Sciences, Wroclaw Medical University, 51-618 Wroclaw, Poland;
| | - Izabela Szczuka
- Laboratory of Cells Propagation and Modification, Lower Silesian Oncology Hematology and Pulmonology Center, 53-413 Wroclaw, Poland;
| | - Jakub Taradaj
- Institute of Physiotherapy and Health Sciences, Academy of Physical Education in Katowice, 40-065 Katowice, Poland;
| | - Joanna Rosińczuk
- Department of Internal Medicine Nursing, Faculty of Health Sciences, Wroclaw Medical University, 51-618 Wroclaw, Poland;
| | - Robert Dymarek
- Department of Physiotherapy, Faculty of Health Sciences, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
25
|
Madir A, Grgurevic I, Tsochatzis EA, Pinzani M. Portal hypertension in patients with nonalcoholic fatty liver disease: Current knowledge and challenges. World J Gastroenterol 2024; 30:290-307. [PMID: 38313235 PMCID: PMC10835535 DOI: 10.3748/wjg.v30.i4.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Portal hypertension (PH) has traditionally been observed as a consequence of significant fibrosis and cirrhosis in advanced non-alcoholic fatty liver disease (NAFLD). However, recent studies have provided evidence that PH may develop in earlier stages of NAFLD, suggesting that there are additional pathogenetic mechanisms at work in addition to liver fibrosis. The early development of PH in NAFLD is associated with hepatocellular lipid accumulation and ballooning, leading to the compression of liver sinusoids. External compression and intra-luminal obstacles cause mechanical forces such as strain, shear stress and elevated hydrostatic pressure that in turn activate mechanotransduction pathways, resulting in endothelial dysfunction and the development of fibrosis. The spatial distribution of histological and functional changes in the periportal and perisinusoidal areas of the liver lobule are considered responsible for the pre-sinusoidal component of PH in patients with NAFLD. Thus, current diagnostic methods such as hepatic venous pressure gradient (HVPG) measurement tend to underestimate portal pressure (PP) in NAFLD patients, who might decompensate below the HVPG threshold of 10 mmHg, which is traditionally considered the most relevant indicator of clinically significant portal hypertension (CSPH). This creates further challenges in finding a reliable diagnostic method to stratify the prognostic risk in this population of patients. In theory, the measurement of the portal pressure gradient guided by endoscopic ultrasound might overcome the limitations of HVPG measurement by avoiding the influence of the pre-sinusoidal component, but more investigations are needed to test its clinical utility for this indication. Liver and spleen stiffness measurement in combination with platelet count is currently the best-validated non-invasive approach for diagnosing CSPH and varices needing treatment. Lifestyle change remains the cornerstone of the treatment of PH in NAFLD, together with correcting the components of metabolic syndrome, using nonselective beta blockers, whereas emerging candidate drugs require more robust confirmation from clinical trials.
Collapse
Affiliation(s)
- Anita Madir
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Zagreb 10000, Croatia
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and University College London, London NW3 2PF, United Kingdom
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
26
|
Sumey JL, Harrell AM, Johnston PC, Caliari SR. Serial Passaging Affects Stromal Cell Mechanosensitivity on Hyaluronic Acid Hydrogels. Macromol Biosci 2024; 24:e2300110. [PMID: 37747449 PMCID: PMC11968172 DOI: 10.1002/mabi.202300110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/15/2023] [Indexed: 09/26/2023]
Abstract
There is a tremendous interest in developing hydrogels as tunable in vitro cell culture platforms to study cell response to mechanical cues in a controlled manner. However, little is known about how common cell culture techniques, such as serial expansion on tissue culture plastic, affect subsequent cell behavior when cultured on hydrogels. In this work, a methacrylated hyaluronic acid hydrogel platform is leveraged to study stromal cell mechanotransduction. Hydrogels are first formed through thiol-Michael addition to model normal soft tissue (e.g., lung) stiffness (E ≈ 1 kPa). Secondary cross-linking via radical photopolymerization of unconsumed methacrylates allows matching of early- (E ≈ 6 kPa) and late-stage fibrotic tissue (E ≈ 50 kPa). Early passage (P1) human bone marrow mesenchymal stromal cells (hMSCs) display increased spreading, myocardin-related transcription factor-A (MRTF-A) nuclear localization, and focal adhesion size with increasing hydrogel stiffness. However, late passage (P5) hMSCs show reduced sensitivity to substrate mechanics with lower MRTF-A nuclear translocation and smaller focal adhesions on stiffer hydrogels compared to early passage hMSCs. Similar trends are observed in an immortalized human lung fibroblast line. Overall, this work highlights the implications of standard cell culture practices on investigating cell response to mechanical signals using in vitro hydrogel models.
Collapse
Affiliation(s)
- Jenna L Sumey
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| | - Abigail M Harrell
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22903, USA
| | - Peyton C Johnston
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| | - Steven R Caliari
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| |
Collapse
|
27
|
Manole CG, Soare C, Ceafalan LC, Voiculescu VM. Platelet-Rich Plasma in Dermatology: New Insights on the Cellular Mechanism of Skin Repair and Regeneration. Life (Basel) 2023; 14:40. [PMID: 38255655 PMCID: PMC10817627 DOI: 10.3390/life14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The skin's recognised functions may undergo physiological alterations due to ageing, manifesting as varying degrees of facial wrinkles, diminished tautness, density, and volume. Additionally, these functions can be disrupted (patho)physiologically through various physical and chemical injuries, including surgical trauma, accidents, or chronic conditions like ulcers associated with diabetes mellitus, venous insufficiency, or obesity. Advancements in therapeutic interventions that boost the skin's innate regenerative abilities could significantly enhance patient care protocols. The application of Platelet-Rich Plasma (PRP) is widely recognized for its aesthetic and functional benefits to the skin. Yet, the endorsement of PRP's advantages often borders on the dogmatic, with its efficacy commonly ascribed solely to the activation of fibroblasts by the factors contained within platelet granules. PRP therapy is a cornerstone of regenerative medicine which involves the autologous delivery of conditioned plasma enriched by platelets. This is achieved by centrifugation, removing erythrocytes while retaining platelets and their granules. Despite its widespread use, the precise sequences of cellular activation, the specific cellular players, and the molecular machinery that drive PRP-facilitated healing are still enigmatic. There is still a paucity of definitive and robust studies elucidating these mechanisms. In recent years, telocytes (TCs)-a unique dermal cell population-have shown promising potential for tissue regeneration in various organs, including the dermis. TCs' participation in neo-angiogenesis, akin to that attributed to PRP, and their role in tissue remodelling and repair processes within the interstitia of several organs (including the dermis), offer intriguing insights. Their potential to contribute to, or possibly orchestrate, the skin regeneration process following PRP treatment has elicited considerable interest. Therefore, pursuing a comprehensive understanding of the cellular and molecular mechanisms at work, particularly those involving TCs, their temporal involvement in structural recovery following injury, and the interconnected biological events in skin wound healing and regeneration represents a compelling field of study.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
28
|
Mitten EK, Portincasa P, Baffy G. Portal Hypertension in Nonalcoholic Fatty Liver Disease: Challenges and Paradigms. J Clin Transl Hepatol 2023; 11:1201-1211. [PMID: 37577237 PMCID: PMC10412712 DOI: 10.14218/jcth.2023.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 07/03/2023] Open
Abstract
Portal hypertension in cirrhosis is defined as an increase in the portal pressure gradient (PPG) between the portal and hepatic veins and is traditionally estimated by the hepatic venous pressure gradient (HVPG), which is the difference in pressure between the free-floating and wedged positions of a balloon catheter in the hepatic vein. By convention, HVPG≥10 mmHg indicates clinically significant portal hypertension, which is associated with adverse clinical outcomes. Nonalcoholic fatty liver disease (NAFLD) is a common disorder with a heterogeneous clinical course, which includes the development of portal hypertension. There is increasing evidence that portal hypertension in NAFLD deserves special considerations. First, elevated PPG often precedes fibrosis in NAFLD, suggesting a bidirectional relationship between these pathological processes. Second, HVPG underestimates PPG in NAFLD, suggesting that portal hypertension is more prevalent in this condition than currently believed. Third, cellular mechanoresponses generated early in the pathogenesis of NAFLD provide a mechanistic explanation for the pressure-fibrosis paradigm. Finally, a better understanding of liver mechanobiology in NAFLD may aid in the development of novel pharmaceutical targets for prevention and management of this disease.
Collapse
Affiliation(s)
- Emilie K. Mitten
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Piero Portincasa
- Division of Internal Medicine and Department of Precision and Regenerative Medicine and Ionian Area, University ‘Aldo Moro’ Medical School, Bari, Italy
| | - György Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
29
|
Kuehlmann B, Bonham CA, Gurtner GC, Prantl L. Matrix Metalloproteinase-9 as a Potential Biomarker in 631 Human Implant-Induced Fibrotic Capsules: Analysis and Biomarker Study. Plast Reconstr Surg 2023; 152:637e-645e. [PMID: 36735824 DOI: 10.1097/prs.0000000000010262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Capsular fibrosis (CF) often occurs around biomedical devices following implantation causing pain, discomfort, and device failure. Breast implantation remains among the most common medical procedures worldwide. Revealing specific genes that drive fibrotic deposition will help us to garner a better understanding of the pathophysiology of this disease and develop different strategies to combat it. METHODS The authors collected 631 capsules around breast implants and were able to connect clinical baseline characteristics with histopathologic findings. In addition, the authors were able to conduct the first large systematic analysis to identify differentially expressed genes in fibrotic human tissue samples, comparing the lowest form of fibrosis with the most aggravated one. RESULTS The authors identified 2559 differentially expressed genes on which they performed a knowledge-based network generation and pathway association study to identify putative novel biomarkers for CF. The authors were able to show changes of cellular influx during progression of CF and distinguish several genes as potential clinical biomarkers and drug targets. Among these, matrix metalloproteinase-9 was one of the most up-regulated ( P = 0.006) and is attractive because of its wide detectability. CONCLUSIONS Matrix metalloproteinase-9 seems to be a potential biomarker to detect capsular fibrosis. It is a measurable indicator that can easily be detected in blood, sputum, and urine. For the diagnosis of fibrosis, this biomarker might be exceedingly beneficial to developing novel screening methods and prophylaxes. CLINICAL RELEVANCE STATEMENT Discovering biomarkers at the earliest and mildest stages for the diagnosis of fibrosis is clinically important. These results bring new hope for biomarker-based diagnosis for capsular fibrosis. CLINICAL QUESTION/LEVEL OF EVIDENCE Diagnostic, V.
Collapse
Affiliation(s)
- Britta Kuehlmann
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University
- University Center for Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Regensburg and Caritas Hospital St. Josef
| | - Clark Andrew Bonham
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University
| | - Geoffrey C Gurtner
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University
| | - Lukas Prantl
- University Center for Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Regensburg and Caritas Hospital St. Josef
| |
Collapse
|
30
|
Dolivo DM, Rodrigues AE, Galiano RD, Mustoe TA, Hong SJ. Prediction and Demonstration of Retinoic Acid Receptor Agonist Ch55 as an Antifibrotic Agent in the Dermis. J Invest Dermatol 2023; 143:1724-1734.e15. [PMID: 36804965 PMCID: PMC10432574 DOI: 10.1016/j.jid.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023]
Abstract
The prevalence of fibrotic diseases and the lack of pharmacologic modalities to effectively treat them impart particular importance to the discovery of novel antifibrotic therapies. The repurposing of drugs with existing mechanisms of action and/or clinical data is a promising approach for the treatment of fibrotic diseases. One paradigm that pervades all fibrotic diseases is the pathological myofibroblast, a collagen-secreting, contractile mesenchymal cell that is responsible for the deposition of fibrotic tissue. In this study, we use a gene expression paradigm characteristic of activated myofibroblasts in combination with the Connectivity Map to select compounds that are predicted to reverse the pathological gene expression signature associated with the myofibroblast and thus contain the potential for use as antifibrotic compounds. We tested a small list of these compounds in a first-pass screen, applying them to fibroblasts, and identified the retinoic acid receptor agonist Ch55 as a potential hit. Further investigation exhibited and elucidated the antifibrotic effects of Ch55 in vitro as well as showing antiscarring activity upon intradermal application in a preclinical rabbit ear hypertrophic scar model. We hope that similar predictions to uncover antiscarring compounds may yield further preclinical and ultimately clinical success.
Collapse
Affiliation(s)
- David M Dolivo
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Adrian E Rodrigues
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Robert D Galiano
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thomas A Mustoe
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Seok Jong Hong
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
31
|
Caulk AW, Chatterjee M, Barr SJ, Contini EM. Mechanobiological considerations in colorectal stapling: Implications for technology development. Surg Open Sci 2023; 13:54-65. [PMID: 37159635 PMCID: PMC10163679 DOI: 10.1016/j.sopen.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/11/2023] Open
Abstract
Technological advancements in minimally invasive surgery have led to significant improvements in patient outcomes. One such technology is surgical stapling, which has evolved into a key component of many operating rooms by facilitating ease and efficacy in resection and repair of diseased or otherwise compromised tissue. Despite such advancements, adverse post-operative outcomes such as anastomotic leak remain a persistent problem in surgical stapling and its correlates (i.e., hand-sewing), most notably in low colorectal or coloanal procedures. Many factors may drive anastomotic leaks, including tissue perfusion, microbiome composition, and patient factors such as pre-existing disease. Surgical intervention induces complex acute and chronic changes to the mechanical environment of the tissue; however, roles of mechanical forces in post-operative healing remain poorly characterized. It is well known that cells sense and respond to their local mechanical environment and that dysfunction of this "mechanosensing" phenomenon contributes to a myriad of diseases. Mechanosensing has been investigated in wound healing contexts such as dermal incisional and excisional wounds and development of pressure ulcers; however, reports investigating roles of mechanical forces in adverse post-operative gastrointestinal wound healing are lacking. To understand this relationship well, it is critical to understand: 1) the intraoperative material responses of tissue to surgical intervention, and 2) the post-operative mechanobiological response of the tissue to surgically imposed forces. In this review, we summarize the state of the field in each of these contexts while highlighting areas of opportunity for discovery and innovation which can positively impact patient outcomes in minimally invasive surgery.
Collapse
|
32
|
Sumey JL, Johnston PC, Harrell AM, Caliari SR. Hydrogel mechanics regulate fibroblast DNA methylation and chromatin condensation. Biomater Sci 2023; 11:2886-2897. [PMID: 36880435 PMCID: PMC10329270 DOI: 10.1039/d2bm02058k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Cellular mechanotransduction plays a central role in fibroblast activation during fibrotic disease progression, leading to increased tissue stiffness and reduced organ function. While the role of epigenetics in disease mechanotransduction has begun to be appreciated, little is known about how substrate mechanics, particularly the timing of mechanical inputs, regulate epigenetic changes such as DNA methylation and chromatin reorganization during fibroblast activation. In this work, we engineered a hyaluronic acid hydrogel platform with independently tunable stiffness and viscoelasticity to model normal (storage modulus, G' ∼ 0.5 kPa, loss modulus, G'' ∼ 0.05 kPa) to increasingly fibrotic (G' ∼ 2.5 and 8 kPa, G'' ∼ 0.05 kPa) lung mechanics. Human lung fibroblasts exhibited increased spreading and nuclear localization of myocardin-related transcription factor-A (MRTF-A) with increasing substrate stiffness within 1 day, with these trends holding steady for longer cultures. However, fibroblasts displayed time-dependent changes in global DNA methylation and chromatin organization. Fibroblasts initially displayed increased DNA methylation and chromatin decondensation on stiffer hydrogels, but both of these measures decreased with longer culture times. To investigate how culture time affected the responsiveness of fibroblast nuclear remodeling to mechanical signals, we engineered hydrogels amenable to in situ secondary crosslinking, enabling a transition from a compliant substrate mimicking normal tissue to a stiffer substrate resembling fibrotic tissue. When stiffening was initiated after only 1 day of culture, fibroblasts rapidly responded and displayed increased DNA methylation and chromatin decondensation, similar to fibroblasts on static stiffer hydrogels. Conversely, when fibroblasts experienced later stiffening at day 7, they showed no changes in DNA methylation and chromatin condensation, suggesting the induction of a persistent fibroblast phenotype. These results highlight the time-dependent nuclear changes associated with fibroblast activation in response to dynamic mechanical perturbations and may provide mechanisms to target for controlling fibroblast activation.
Collapse
Affiliation(s)
- Jenna L Sumey
- Department of Chemical Engineering, University of Virginia, USA.
| | | | | | - Steven R Caliari
- Department of Chemical Engineering, University of Virginia, USA.
- Department of Biomedical Engineering, University of Virginia, USA
| |
Collapse
|
33
|
Sumey JL, Harrell AM, Johnston PC, Caliari SR. Serial passaging affects stromal cell mechanosensitivity on hyaluronic acid hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532853. [PMID: 36993247 PMCID: PMC10055097 DOI: 10.1101/2023.03.16.532853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
There is tremendous interest in developing hydrogels as tunable in vitro cell culture platforms to study cell response to mechanical cues in a controlled manner. However, little is known about how common cell culture techniques, such as serial expansion on tissue culture plastic, affect subsequent cell behavior when cultured on hydrogels. In this work we leverage a methacrylated hyaluronic acid hydrogel platform to study stromal cell mechanotransduction. Hydrogels are first formed through thiol-Michael addition to model normal soft tissue (e.g., lung) stiffness ( E ~ 1 kPa). Secondary crosslinking via radical photopolymerization of unconsumed methacrylates allows matching of early- ( E ~ 6 kPa) and late-stage fibrotic tissue ( E ~ 50 kPa). Early passage (P1) primary human mesenchymal stromal cells (hMSCs) display increased spreading, myocardin-related transcription factor-A (MRTF-A) nuclear localization, and focal adhesion size with increasing hydrogel stiffness. However, late passage (P5) hMSCs show reduced sensitivity to substrate mechanics with lower MRTF-A nuclear translocation and smaller focal adhesions on stiffer hydrogels compared to early passage hMSCs. Similar trends are observed in an immortalized human lung fibroblast line. Overall, this work highlights the implications of standard cell culture practices on investigating cell response to mechanical signals using in vitro hydrogel models.
Collapse
Affiliation(s)
- Jenna L. Sumey
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Abigail M. Harrell
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903
| | - Peyton C. Johnston
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Steven R. Caliari
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|
34
|
Gong H, Xu HM, Zhang DK. Focusing on discoidin domain receptors in premalignant and malignant liver diseases. Front Oncol 2023; 13:1123638. [PMID: 37007062 PMCID: PMC10050580 DOI: 10.3389/fonc.2023.1123638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Discoidin domain receptors (DDRs) are receptor tyrosine kinases on the membrane surface that bind to extracellular collagens, but they are rarely expressed in normal liver tissues. Recent studies have demonstrated that DDRs participate in and influence the processes underlying premalignant and malignant liver diseases. A brief overview of the potential roles of DDR1 and DDR2 in premalignant and malignant liver diseases is presented. DDR1 has proinflammatory and profibrotic benefits and promotes the invasion, migration and liver metastasis of tumour cells. However, DDR2 may play a pathogenic role in early-stage liver injury (prefibrotic stage) and a different role in chronic liver fibrosis and in metastatic liver cancer. These views are critically significant and first described in detail in this review. The main purpose of this review was to describe how DDRs act in premalignant and malignant liver diseases and their potential mechanisms through an in-depth summary of preclinical in vitro and in vivo studies. Our work aims to provide new ideas for cancer treatment and accelerate translation from bench to bedside.
Collapse
Affiliation(s)
| | | | - De-Kui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
35
|
Berry CE, Downer M, Morgan AG, Griffin M, Liang NE, Kameni L, Laufey Parker JB, Guo J, Longaker MT, Wan DC. The effects of mechanical force on fibroblast behavior in cutaneous injury. Front Surg 2023; 10:1167067. [PMID: 37143767 PMCID: PMC10151708 DOI: 10.3389/fsurg.2023.1167067] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Wound healing results in the formation of scar tissue which can be associated with functional impairment, psychological stress, and significant socioeconomic cost which exceeds 20 billion dollars annually in the United States alone. Pathologic scarring is often associated with exaggerated action of fibroblasts and subsequent excessive accumulation of extracellular matrix proteins which results in fibrotic thickening of the dermis. In skin wounds, fibroblasts transition to myofibroblasts which contract the wound and contribute to remodeling of the extracellular matrix. Mechanical stress on wounds has long been clinically observed to result in increased pathologic scar formation, and studies over the past decade have begun to uncover the cellular mechanisms that underly this phenomenon. In this article, we will review the investigations which have identified proteins involved in mechano-sensing, such as focal adhesion kinase, as well as other important pathway components that relay the transcriptional effects of mechanical forces, such as RhoA/ROCK, the hippo pathway, YAP/TAZ, and Piezo1. Additionally, we will discuss findings in animal models which show the inhibition of these pathways to promote wound healing, reduce contracture, mitigate scar formation, and restore normal extracellular matrix architecture. Recent advances in single cell RNA sequencing and spatial transcriptomics and the resulting ability to further characterize mechanoresponsive fibroblast subpopulations and the genes that define them will be summarized. Given the importance of mechanical signaling in scar formation, several clinical treatments focused on reducing tension on the wound have been developed and are described here. Finally, we will look toward future research which may reveal novel cellular pathways and deepen our understanding of the pathogenesis of pathologic scarring. The past decade of scientific inquiry has drawn many lines connecting these cellular mechanisms that may lead to a map for the development of transitional treatments for patients on the path to scarless healing.
Collapse
Affiliation(s)
- Charlotte E. Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Mauricio Downer
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Annah G. Morgan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Norah E. Liang
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Lionel Kameni
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Jennifer B. Laufey Parker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Jason Guo
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Correspondence: Derrick C. Wan
| |
Collapse
|
36
|
Mitten EK, Baffy G. Mechanotransduction in the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2022; 77:1642-1656. [PMID: 36063966 DOI: 10.1016/j.jhep.2022.08.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Mechanobiology is a domain of interdisciplinary research that aims to explore the impact of physical force, applied externally or internally, on cell and tissue function, including development, growth, and differentiation. Mechanotransduction is a term that describes how cells sense physical forces (such as compression, stretch, and shear stress), convert them into biochemical signals, and mount adaptive responses integrated by the nucleus. There is accumulating evidence that mechanical forces extensively inform the biological behaviour of liver cells in health and disease. Recent research has elucidated many cellular and molecular mechanisms involved in this process including the pleiotropic control and diverse effects of the paralogous transcription co-activators YAP/TAZ, which play a prominent role in mechanotransduction. The liver sinusoids represent a unique microenvironment in which cells are exposed to mechanical cues originating in the cytoskeleton and at interfaces with adjacent cells, the extracellular matrix, and vascular or interstitial fluids. In non-alcoholic fatty liver disease (NAFLD), hepatocellular lipid accumulation and ballooning, activation of inflammatory responses, dysfunction of liver sinusoidal endothelial cells, and transdifferentiation of hepatic stellate cells into a pro-contractile and pro-fibrotic phenotype have been associated with aberrant cycles of mechanosensing and mechanoresponses. The downstream consequences of disrupted mechanical homeostasis likely contribute to the progression of NAFLD and promote the development of portal hypertension, cirrhosis, and hepatocellular carcinoma. Identification of molecular targets involved in pathogenic mechanotransduction will allow for the development of novel strategies to prevent the progression of liver disease in NAFLD.
Collapse
Affiliation(s)
- Emilie K Mitten
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - György Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston MA, USA.
| |
Collapse
|
37
|
Integrin Conformational Dynamics and Mechanotransduction. Cells 2022; 11:cells11223584. [PMID: 36429013 PMCID: PMC9688440 DOI: 10.3390/cells11223584] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The function of the integrin family of receptors as central mediators of cell-extracellular matrix (ECM) and cell-cell adhesion requires a remarkable convergence of interactions and influences. Integrins must be anchored to the cytoskeleton and bound to extracellular ligands in order to provide firm adhesion, with force transmission across this linkage conferring tissue integrity. Integrin affinity to ligands is highly regulated by cell signaling pathways, altering affinity constants by 1000-fold or more, via a series of long-range conformational transitions. In this review, we first summarize basic, well-known features of integrin conformational states and then focus on new information concerning the impact of mechanical forces on these states and interstate transitions. We also discuss how these effects may impact mechansensitive cell functions and identify unanswered questions for future studies.
Collapse
|
38
|
Trotsyuk AA, Chen K, Hyung S, Ma KC, Henn D, Mermin-Bunnell AM, Mittal S, Padmanabhan J, Larson MR, Steele SR, Sivaraj D, Bonham CA, Noishiki C, Rodrigues M, Jiang Y, Jing S, Niu S, Chattopadhyay A, Perrault DP, Leeolou MC, Fischer KS, Gurusankar G, Choi Kussie H, Wan DC, Januszyk M, Longaker MT, Gurtner GC. Inhibiting Fibroblast Mechanotransduction Modulates Severity of Idiopathic Pulmonary Fibrosis. Adv Wound Care (New Rochelle) 2022; 11:511-523. [PMID: 34544267 DOI: 10.1089/wound.2021.0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Objective: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease that affects 63 in every 100,000 Americans. Its etiology remains unknown, although inflammatory pathways appear to be important. Given the dynamic environment of the lung, we examined the significance of mechanotransduction on both inflammatory and fibrotic signaling during IPF. Innovation: Mechanotransduction pathways have not been thoroughly examined in the context of lung disease, and pharmacologic approaches for IPF do not currently target these pathways. The interplay between mechanical strain and inflammation in pulmonary fibrosis remains incompletely understood. Approach: In this study, we used conditional KO mice to block mechanotransduction by knocking out Focal Adhesion Kinase (FAK) expression in fibroblasts, followed by induction of pulmonary fibrosis using bleomycin. We examined both normal human and human IPF fibroblasts and used immunohistochemistry, quantitative real-time polymerase chain reaction, and Western Blot to evaluate the effects of FAK inhibitor (FAK-I) on modulating fibrotic and inflammatory genes. Results: Our data indicate that the deletion of FAK in mice reduces expression of fibrotic and inflammatory genes in lungs. Similarly, mechanical straining in normal human lung fibroblasts activates inflammatory and fibrotic pathways. The FAK inhibition decreases these signals but has a less effect on IPF fibroblasts as compared with normal human fibroblasts. Conclusion: Administering FAK-I at early stages of fibrosis may attenuate the FAK-mediated fibrotic response pathway in IPF, potentially mediating disease progression.
Collapse
Affiliation(s)
- Artem A Trotsyuk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kellen Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sun Hyung
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kun Cathy Ma
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dominic Henn
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Alana M Mermin-Bunnell
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Smiti Mittal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jagannath Padmanabhan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Madelyn R Larson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sydney R Steele
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dharshan Sivaraj
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Clark A Bonham
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Chikage Noishiki
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Melanie Rodrigues
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Serena Jing
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Simiao Niu
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Arhana Chattopadhyay
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - David P Perrault
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Melissa C Leeolou
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Katharina S Fischer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | | | - Hudson Choi Kussie
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Januszyk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, California, USA
| | - Geoffrey C Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
39
|
Short WD, Olutoye OO, Padon BW, Parikh UM, Colchado D, Vangapandu H, Shams S, Chi T, Jung JP, Balaji S. Advances in non-invasive biosensing measures to monitor wound healing progression. Front Bioeng Biotechnol 2022; 10:952198. [PMID: 36213059 PMCID: PMC9539744 DOI: 10.3389/fbioe.2022.952198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 01/09/2023] Open
Abstract
Impaired wound healing is a significant financial and medical burden. The synthesis and deposition of extracellular matrix (ECM) in a new wound is a dynamic process that is constantly changing and adapting to the biochemical and biomechanical signaling from the extracellular microenvironments of the wound. This drives either a regenerative or fibrotic and scar-forming healing outcome. Disruptions in ECM deposition, structure, and composition lead to impaired healing in diseased states, such as in diabetes. Valid measures of the principal determinants of successful ECM deposition and wound healing include lack of bacterial contamination, good tissue perfusion, and reduced mechanical injury and strain. These measures are used by wound-care providers to intervene upon the healing wound to steer healing toward a more functional phenotype with improved structural integrity and healing outcomes and to prevent adverse wound developments. In this review, we discuss bioengineering advances in 1) non-invasive detection of biologic and physiologic factors of the healing wound, 2) visualizing and modeling the ECM, and 3) computational tools that efficiently evaluate the complex data acquired from the wounds based on basic science, preclinical, translational and clinical studies, that would allow us to prognosticate healing outcomes and intervene effectively. We focus on bioelectronics and biologic interfaces of the sensors and actuators for real time biosensing and actuation of the tissues. We also discuss high-resolution, advanced imaging techniques, which go beyond traditional confocal and fluorescence microscopy to visualize microscopic details of the composition of the wound matrix, linearity of collagen, and live tracking of components within the wound microenvironment. Computational modeling of the wound matrix, including partial differential equation datasets as well as machine learning models that can serve as powerful tools for physicians to guide their decision-making process are discussed.
Collapse
Affiliation(s)
- Walker D. Short
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Oluyinka O. Olutoye
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Benjamin W. Padon
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Umang M. Parikh
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Daniel Colchado
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Hima Vangapandu
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Shayan Shams
- Department of Applied Data Science, San Jose State University, San Jose, CA, United States
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, United States
| | - Taiyun Chi
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Swathi Balaji
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Swathi Balaji,
| |
Collapse
|
40
|
Chen K, Henn D, Sivaraj D, Bonham CA, Griffin M, Kussie HC, Padmanabhan J, Trotsyuk AA, Wan DC, Januszyk M, Longaker MT, Gurtner GC. Mechanical Strain Drives Myeloid Cell Differentiation Toward Proinflammatory Subpopulations. Adv Wound Care (New Rochelle) 2022; 11:466-478. [PMID: 34278820 PMCID: PMC9805866 DOI: 10.1089/wound.2021.0036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 01/13/2023] Open
Abstract
Objective: After injury, humans and other mammals heal by forming fibrotic scar tissue with diminished function, and this healing process involves the dynamic interplay between resident cells within the skin and cells recruited from the circulation. Recent studies have provided mounting evidence that external mechanical forces stimulate intracellular signaling pathways to drive fibrotic processes. Innovation: While most studies have focused on studying mechanotransduction in fibroblasts, recent data suggest that mechanical stimulation may also shape the behavior of immune cells, referred to as "mechano-immunomodulation." However, the effect of mechanical strain on myeloid cell recruitment and differentiation remains poorly understood and has never been investigated at the single-cell level. Approach: In this study, we utilized a three-dimensional (3D) in vitro culture system that permits the precise manipulation of mechanical strain applied to cells. We cultured myeloid cells and used single-cell RNA-sequencing to interrogate the effects of strain on myeloid differentiation and transcriptional programming. Results: Our data indicate that myeloid cells are indeed mechanoresponsive, with mechanical stress influencing myeloid differentiation. Mechanical strain also upregulated a cascade of inflammatory chemokines, most notably from the Ccl family. Conclusion: Further understanding of how mechanical stress affects myeloid cells in conjunction with other cell types in the complicated, multicellular milieu of wound healing may lead to novel insights and therapies for the treatment of fibrosis.
Collapse
Affiliation(s)
- Kellen Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dominic Henn
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dharshan Sivaraj
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Clark A. Bonham
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hudson C. Kussie
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jagannath Padmanabhan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Artem A. Trotsyuk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Januszyk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, California, USA
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
41
|
Greuter T, Yaqoob U, Gan C, Jalan-Sakrikar N, Kostallari E, Lu J, Gao J, Sun L, Liu M, Sehrawat TS, Ibrahim SH, Furuta K, Nozickova K, Huang BQ, Gao B, Simons M, Cao S, Shah VH. Mechanotransduction-induced glycolysis epigenetically regulates a CXCL1-dominant angiocrine signaling program in liver sinusoidal endothelial cells in vitro and in vivo. J Hepatol 2022; 77:723-734. [PMID: 35421427 PMCID: PMC9391258 DOI: 10.1016/j.jhep.2022.03.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Liver sinusoidal endothelial cells (LSECs) are ideally situated to sense stiffness and generate angiocrine programs that potentially regulate liver fibrosis and portal hypertension. We explored how specific focal adhesion (FA) proteins parlay LSEC mechanotransduction into stiffness-induced angiocrine signaling in vitro and in vivo. METHODS Primary human and murine LSECs were placed on gels with incremental stiffness (0.2 kPa vs. 32 kPa). Cell response was studied by FA isolation, actin polymerization assay, RNA-sequencing and electron microscopy. Glycolysis was assessed using radioactive tracers. Epigenetic regulation of stiffness-induced genes was analyzed by chromatin-immunoprecipitation (ChIP) analysis of histone activation marks, ChIP sequencing and circularized chromosome conformation capture (4C). Mice with LSEC-selective deletion of glycolytic enzymes (Hk2fl/fl/Cdh5cre-ERT2) or treatment with the glycolysis inhibitor 3PO were studied in portal hypertension (partial ligation of the inferior vena cava, pIVCL) and early liver fibrosis (CCl4) models. RESULTS Glycolytic enzymes, particularly phosphofructokinase 1 isoform P (PFKP), are enriched in isolated FAs from LSECs on gels with incremental stiffness. Stiffness resulted in PFKP recruitment to FAs, which paralleled an increase in glycolysis. Glycolysis was associated with expansion of actin dynamics and was attenuated by inhibition of integrin β1. Inhibition of glycolysis attenuated a stiffness-induced CXCL1-dominant angiocrine program. Mechanistically, glycolysis promoted CXCL1 expression through nuclear pore changes and increases in NF-kB translocation. Biochemically, this CXCL1 expression was mediated through spatial re-organization of nuclear chromatin resulting in formation of super-enhancers, histone acetylation and NF-kB interaction with the CXCL1 promoter. Hk2fl/fl/Cdh5cre-ERT2 mice showed attenuated neutrophil infiltration and portal hypertension after pIVCL. 3PO treatment attenuated liver fibrosis in a CCl4 model. CONCLUSION Glycolytic enzymes are involved in stiffness-induced angiocrine signaling in LSECs and represent druggable targets in early liver disease. LAY SUMMARY Treatment options for liver fibrosis and portal hypertension still represent an unmet need. Herein, we uncovered a novel role for glycolytic enzymes in promoting stiffness-induced angiocrine signaling, which resulted in inflammation, fibrosis and portal hypertension. This work has revealed new targets that could be used in the prevention and treatment of liver fibrosis and portal hypertension.
Collapse
Affiliation(s)
- Thomas Greuter
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States; Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland; Division of Gastroenterology and Hepatology, University Hospital Lausanne - CHUV, Lausanne, Switzerland
| | - Usman Yaqoob
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Can Gan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Jianwen Lu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Jinhang Gao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Liankang Sun
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Mengfei Liu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Tejasav S Sehrawat
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Samar H Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Kunimaro Furuta
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States; Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katerina Nozickova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Bing Q Huang
- Microscopy and Cell Analysis Core, Mayo Clinic, Rochester, MN, United States
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, United States
| | - Michael Simons
- Cardiovascular Research Center, Yale University, New Haven, CI, United States
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
42
|
Importance of Fibrosis in the Pathogenesis of Uterine Leiomyoma and the Promising Anti-fibrotic Effects of Dipeptidyl Peptidase-4 and Fibroblast Activation Protein Inhibitors in the Treatment of Uterine Leiomyoma. Reprod Sci 2022; 30:1383-1398. [PMID: 35969363 DOI: 10.1007/s43032-022-01064-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Uterine fibroid or leiomyoma is the most common benign uterus tumor. The tumor is primarily composed of smooth muscle (fibroid) cells, myofibroblast, and a significant amount of extracellular matrix components. It mainly affects women of reproductive age. They are uncommon before menarche and usually disappear after menopause. The fibroids have excessive extracellular matrix components secreted by activated fibroblast cells (myofibroblast). Myofibroblast has the characteristics of fibroblast and smooth muscle cells. These cells possess contractile capability due to the expression of contractile proteins which are normally found only in muscle tissues. The rigid nature of the tumor is responsible for many side effects associated with uterine fibroids. The current drug treatment strategies are primarily hormone-driven and not anti-fibrotic. This paper emphasizes the fibrotic background of uterine fibroids and the mechanisms behind the deposition of excessive extracellular matrix components. The transforming growth factor-β, hippo, and focal adhesion kinase-mediated signaling pathways activate the fibroblast cells and deposit excessive extracellular matrix materials. We also exemplify how dipeptidyl peptidase-4 and fibroblast activation protein inhibitors could be beneficial in reducing the fibrotic process in leiomyoma. Dipeptidyl peptidase-4 and fibroblast activation protein inhibitors prevent the fibrotic process in organs such as the kidneys, lungs, liver, and heart. These inhibitors are proven to inhibit the signaling pathways mentioned above at various stages of their activation. Based on literature evidence, we constructed a narrative review on the mechanisms that support the beneficial effects of dipeptidyl peptidase-4 and fibroblast activation protein inhibitors for treating uterine fibroids.
Collapse
|
43
|
Jiang M, Zhang Y, Xiang Q, Luo Q, Wen F, Jiang X, Liu J, Zhang Z, Wu C, Zhang J. Elastic Silicone Occlusive Sheeting Versus Silicone Occlusive Sheeting in the Treatment of Scars: A Randomized Controlled Trial. Dermatol Ther (Heidelb) 2022; 12:1809-1821. [PMID: 35852693 PMCID: PMC9357594 DOI: 10.1007/s13555-022-00763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Hypertrophic scarring caused by conventional open thyroidectomy is prevalent among Asians and published trials have proved that silicone occlusive sheeting is a useful treatment for hypertrophic scarring. However, silicone occlusive sheeting does not effectively prevent scar widening. Here, we report elastic silicone occlusive sheeting as a new type of silicone application. In this study, we compared the effects of elastic silicone occlusive sheeting on scar width and appearance after conventional open thyroidectomy with those of silicone occlusive sheeting. Methods In this prospective, randomized, assessor-blinded study, a total of 74 patients who underwent conventional open thyroidectomy were recruited to undergo elastic silicone occlusive sheeting and silicone occlusive sheeting on the healed wound. Split scar study and scar quality were assessed on the basis of scar width, Vancouver scar scale, pain/itching visual analogue scale, and patients’ subjective degree of satisfaction with the scar, during the patients’ 6-month review. Results A total of 61 patients completed the study. Scar width, Vancouver scar scale score, and patients’ subjective degree of satisfaction indicated that elastic silicone occlusive sheeting was associated with narrower scars and significant improvement in scar appearance. The two methods did not differ significantly with regard to pain/itching visual analogue scale. Conclusions Our findings highlight elastic silicone occlusive sheeting as an effective treatment for scarring, resulting in narrower and better scars after conventional open thyroidectomy. The use of elastic silicone occlusive sheeting after conventional open thyroidectomy may minimize the formation of hypertrophic scars in the early postoperative period. Trial Registration ChiCTR2100049740.
Collapse
Affiliation(s)
- Min Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Zhang
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiang Xiang
- Department of Emergency, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qilin Luo
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengxia Wen
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
44
|
Aschner Y, Correll KA, Beke K, Foster DG, Roybal HM, Nelson MR, Meador CL, Strand M, Anderson KC, Moore CM, Reynolds PR, Kopf KW, Burnham EL, Downey GP. PTPα Promotes Fibroproliferative Responses After Acute Lung Injury. Am J Physiol Lung Cell Mol Physiol 2022; 323:L69-L83. [PMID: 35670474 DOI: 10.1152/ajplung.00436.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Acute Respiratory Distress Syndrome (ARDS) is a major healthcare problem, accounting for significant mortality and long-term disability. Approximately 25% of patients with ARDS will develop an over-exuberant fibrotic response, termed fibroproliferative ARDS (FP-ARDS) that portends a poor prognosis and increased mortality. The cellular pathologic processes that drive FP-ARDS remain incompletely understood. We have previously shown that the transmembrane receptor-type tyrosine phosphatase Protein Tyrosine Phosphatase-a (PTPa) promotes pulmonary fibrosis in preclinical murine models through regulation of TGF-b signaling. In this study, we examine the role of PTPa in the pathogenesis of FP-ARDS in a preclinical murine model of acid (HCl)-induced acute lung injury. We demonstrate that while mice genetically deficient in PTPa (Ptpra-/-) are susceptible to early HCl-induced lung injury, they exhibit markedly attenuated fibroproliferative responses. Additionally, early pro-fibrotic gene expression is reduced in lung tissue after acute lung injury in Ptpra-/- mice, and stimulation of naïve lung fibroblasts with the BAL fluid from these mice results in attenuated fibrotic outcomes compared to wild type littermate controls. Transcriptomic analyses demonstrates reduced Extracellular Matrix (ECM) deposition and remodeling in mice genetically deficient in PTPa. Importantly, human lung fibroblasts modified with a CRISPR-targeted deletion of PTPRA exhibit reduced expression of profibrotic genes in response to TGF-β stimulation, demonstrating the importance of PTPa in human lung fibroblasts. Together, these findings demonstrate that PTPa is a key regulator of fibroproliferative processes following acute lung injury and could serve as a therapeutic target for patients at risk for poor long-term outcomes in ARDS.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, United States.,Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Kelly A Correll
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Keriann Beke
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Daniel G Foster
- Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Helen M Roybal
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Meghan R Nelson
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Carly L Meador
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Matthew Strand
- Division of Biostatistics, National Jewish Health, Denver, CO, United States
| | - Kelsey C Anderson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| | - Camille M Moore
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| | - Paul R Reynolds
- Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Katrina W Kopf
- Office of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, United States.,Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States.,Office of Academic Affairs, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
45
|
Chen K, Henn D, Januszyk M, Barrera JA, Noishiki C, Bonham CA, Griffin M, Tevlin R, Carlomagno T, Shannon T, Fehlmann T, Trotsyuk AA, Padmanabhan J, Sivaraj D, Perrault DP, Zamaleeva AI, Mays CJ, Greco AH, Kwon SH, Leeolou MC, Huskins SL, Steele SR, Fischer KS, Kussie HC, Mittal S, Mermin-Bunnell AM, Diaz Deleon NM, Lavin C, Keller A, Longaker MT, Gurtner GC. Disrupting mechanotransduction decreases fibrosis and contracture in split-thickness skin grafting. Sci Transl Med 2022; 14:eabj9152. [PMID: 35584231 DOI: 10.1126/scitranslmed.abj9152] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Burns and other traumatic injuries represent a substantial biomedical burden. The current standard of care for deep injuries is autologous split-thickness skin grafting (STSG), which frequently results in contractures, abnormal pigmentation, and loss of biomechanical function. Currently, there are no effective therapies that can prevent fibrosis and contracture after STSG. Here, we have developed a clinically relevant porcine model of STSG and comprehensively characterized porcine cell populations involved in healing with single-cell resolution. We identified an up-regulation of proinflammatory and mechanotransduction signaling pathways in standard STSGs. Blocking mechanotransduction with a small-molecule focal adhesion kinase (FAK) inhibitor promoted healing, reduced contracture, mitigated scar formation, restored collagen architecture, and ultimately improved graft biomechanical properties. Acute mechanotransduction blockade up-regulated myeloid CXCL10-mediated anti-inflammation with decreased CXCL14-mediated myeloid and fibroblast recruitment. At later time points, mechanical signaling shifted fibroblasts toward profibrotic differentiation fates, and disruption of mechanotransduction modulated mesenchymal fibroblast differentiation states to block those responses, instead driving fibroblasts toward proregenerative, adipogenic states similar to unwounded skin. We then confirmed these two diverging fibroblast transcriptional trajectories in human skin, human scar, and a three-dimensional organotypic model of human skin. Together, pharmacological blockade of mechanotransduction markedly improved large animal healing after STSG by promoting both early, anti-inflammatory and late, regenerative transcriptional programs, resulting in healed tissue similar to unwounded skin. FAK inhibition could therefore supplement the current standard of care for traumatic and burn injuries.
Collapse
Affiliation(s)
- Kellen Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Surgery, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Janos A Barrera
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chikage Noishiki
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Clark A Bonham
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth Tevlin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Theresa Carlomagno
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tara Shannon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Artem A Trotsyuk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jagannath Padmanabhan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dharshan Sivaraj
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David P Perrault
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alsu I Zamaleeva
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chyna J Mays
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Autumn H Greco
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sun Hyung Kwon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melissa C Leeolou
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Savana L Huskins
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sydney R Steele
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katharina S Fischer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hudson C Kussie
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Smiti Mittal
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alana M Mermin-Bunnell
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nestor M Diaz Deleon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher Lavin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Surgery, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
46
|
Ramesh P, Moskwa N, Hanchon Z, Koplas A, Nelson DA, Mills KL, Castracane J, Larsen M, Sharfstein ST, Xie Y. Engineering cryoelectrospun elastin-alginate scaffolds to serve as stromal extracellular matrices. Biofabrication 2022; 14:10.1088/1758-5090/ac6b34. [PMID: 35481854 PMCID: PMC9973022 DOI: 10.1088/1758-5090/ac6b34] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022]
Abstract
Scaffold-based regenerative strategies that emulate physical, biochemical, and mechanical properties of the native extracellular matrix (ECM) of the region of interest can influence cell growth and function. Existing ECM-mimicking scaffolds, including nanofiber (NF) mats, sponges, hydrogels, and NF-hydrogel composites are unable to simultaneously mimic typical composition, topography, pore size, porosity, and viscoelastic properties of healthy soft-tissue ECM. In this work, we used cryoelectrospinning to fabricate 3D porous scaffolds with minimal fibrous backbone, pore size and mechanical properties similar to soft-tissue connective tissue ECM. We used salivary glands as our soft tissue model and found the decellularized adult salivary gland (DSG) matrix to have a fibrous backbone, 10-30μm pores, 120 Pa indentation modulus, and ∼200 s relaxation half time. We used elastin and alginate as natural, compliant biomaterials and water as the solvent for cryoelectrospinning scaffolds to mimic the structure and viscoelasticity of the connective tissue ECM of the DSG. Process parameters were optimized to produce scaffolds with desirable topography and compliance similar to DSG, with a high yield of >100 scaffolds/run. Using water as solvent, rather than organic solvents, was critical to generate biocompatible scaffolds with desirable topography; further, it permitted a green chemistry fabrication process. Here, we demonstrate that cryoelectrospun scaffolds (CESs) support penetration of NIH 3T3 fibroblasts 250-450µm into the scaffold, cell survival, and maintenance of a stromal cell phenotype. Thus, we demonstrate that elastin-alginate CESs mimic many structural and functional properties of ECM and have potential for future use in regenerative medicine applications.
Collapse
Affiliation(s)
- Pujhitha Ramesh
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA
| | - Nicholas Moskwa
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, New York 12222, USA
| | - Zachary Hanchon
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA
| | - Adam Koplas
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, New York 12222, USA
| | - Kristen L. Mills
- Department of Mechanical, Aerospace, and Nuclear Engineering (MANE), Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York, 12180, USA
| | - James Castracane
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA
| | - Melinda Larsen
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA,Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, New York 12222, USA
| | - Susan T. Sharfstein
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA,Corresponding Authors: Yubing Xie, Ph.D., Professor of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA, , Susan Sharfstein, Ph.D., Professor of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA,
| | - Yubing Xie
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA,Corresponding Authors: Yubing Xie, Ph.D., Professor of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA, , Susan Sharfstein, Ph.D., Professor of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA,
| |
Collapse
|
47
|
Batan D, Peters DK, Schroeder ME, Aguado BA, Young MW, Weiss RM, Anseth KS. Hydrogel cultures reveal Transient Receptor Potential Vanilloid 4 regulation of myofibroblast activation and proliferation in valvular interstitial cells. FASEB J 2022; 36:e22306. [PMID: 35385164 PMCID: PMC9009405 DOI: 10.1096/fj.202101863r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022]
Abstract
As aortic valve stenosis develops, valve tissue becomes stiffer. In response to this change in environmental mechanical stiffness, valvular interstitial cells (VICs) activate into myofibroblasts. We aimed to investigate the role of mechanosensitive calcium channel Transient Receptor Potential Vanilloid type 4 (TRPV4) in stiffness induced myofibroblast activation. We verified TRPV4 functionality in VICs using live calcium imaging during application of small molecule modulators of TRPV4 activity. We designed hydrogel biomaterials that mimic mechanical features of healthy or diseased valve tissue microenvironments, respectively, to investigate the role of TRPV4 in myofibroblast activation and proliferation. Our results show that TRPV4 regulates VIC proliferation in a microenvironment stiffness-independent manner. While there was a trend toward inhibiting myofibroblast activation on soft microenvironments during TRPV4 inhibition, we observed near complete deactivation of myofibroblasts on stiff microenvironments. We further identified Yes-activated protein (YAP) as a downstream target for TRPV4 activity on stiff microenvironments. Mechanosensitive TRPV4 channels regulate VIC myofibroblast activation, whereas proliferation regulation is independent of the microenvironmental stiffness. Collectively, the data suggests differential regulation of stiffness-induced proliferation and myofibroblast activation. Our data further suggest a regulatory role for TRPV4 regarding YAP nuclear localization. TRPV4 is an important regulator for VIC myofibroblast activation, which is linked to the initiation of valve fibrosis. Although more validation studies are necessary, we suggest TRPV4 as a promising pharmaceutical target to slow aortic valve stenosis progression.
Collapse
Affiliation(s)
- Dilara Batan
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303 USA
| | - Douglas K. Peters
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Megan E. Schroeder
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Brian A. Aguado
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Mark W. Young
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Robert M. Weiss
- Division of Cardiovascular Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kristi S. Anseth
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
48
|
Van Daele U, Meirte J, Anthonissen M, Vanhullebusch T, Maertens K, Demuynck L, Moortgat P. Mechanomodulation: Physical Treatment Modalities Employ Mechanotransduction to Improve Scarring. EUROPEAN BURN JOURNAL 2022; 3:241-255. [PMID: 39599996 PMCID: PMC11575364 DOI: 10.3390/ebj3020021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2024]
Abstract
Every year, surgical interventions, traumatic wounds, and burn injuries lead to over 80 million scars. These scars often lead to compromised skin function and can result in devastating disfigurement, permanent functional loss, psychosocial problems, and growth retardation. Today, a wide variety of nonsurgical scar management options exist, with only few of them being substantiated by evidence. The working mechanisms of physical anti-scarring modalities remained unclear for many years. Recent evidence underpinned the important role of mechanical forces in scar remodeling, especially the balance between matrix stiffness and cytoskeleton pre-stress. This perspective article aims to translate research findings at the cellular and molecular levels into working mechanisms of physical anti-scarring interventions. Mechanomodulation of scars applied with the right amplitude, frequency, and duration induces ECM remodeling and restores the 'tensile' homeostasis. Depending on the scar characteristics, specific (combinations of) non-invasive physical scar treatments are possible. Future studies should be aimed at investigating the dose-dependent effects of physical scar management to define proper guidelines for these interventions.
Collapse
Affiliation(s)
- Ulrike Van Daele
- OSCARE, Organisation for Burns, Scar Aftercare and Research, 2170 Antwerp, Belgium; (J.M.); (M.A.); (K.M.); (P.M.)
- Research Group MOVANT (Movement Antwerp), Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, 2000 Antwerp, Belgium; (T.V.); (L.D.)
| | - Jill Meirte
- OSCARE, Organisation for Burns, Scar Aftercare and Research, 2170 Antwerp, Belgium; (J.M.); (M.A.); (K.M.); (P.M.)
- Research Group MOVANT (Movement Antwerp), Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, 2000 Antwerp, Belgium; (T.V.); (L.D.)
| | - Mieke Anthonissen
- OSCARE, Organisation for Burns, Scar Aftercare and Research, 2170 Antwerp, Belgium; (J.M.); (M.A.); (K.M.); (P.M.)
- Research Group MOVANT (Movement Antwerp), Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, 2000 Antwerp, Belgium; (T.V.); (L.D.)
- Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium
| | - Tine Vanhullebusch
- Research Group MOVANT (Movement Antwerp), Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, 2000 Antwerp, Belgium; (T.V.); (L.D.)
| | - Koen Maertens
- OSCARE, Organisation for Burns, Scar Aftercare and Research, 2170 Antwerp, Belgium; (J.M.); (M.A.); (K.M.); (P.M.)
- Department of Clinical and Lifespan Psychology, Vrije Universiteit Brussel, 1040 Brussels, Belgium
| | - Lot Demuynck
- Research Group MOVANT (Movement Antwerp), Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, 2000 Antwerp, Belgium; (T.V.); (L.D.)
| | - Peter Moortgat
- OSCARE, Organisation for Burns, Scar Aftercare and Research, 2170 Antwerp, Belgium; (J.M.); (M.A.); (K.M.); (P.M.)
| |
Collapse
|
49
|
Lin C, Zheng X, Lin S, Zhang Y, Wu J, Li Y. Mechanotransduction Regulates the Interplays Between Alveolar Epithelial and Vascular Endothelial Cells in Lung. Front Physiol 2022; 13:818394. [PMID: 35250619 PMCID: PMC8895143 DOI: 10.3389/fphys.2022.818394] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/28/2022] [Indexed: 12/22/2022] Open
Abstract
Mechanical stress plays a critical role among development, functional maturation, and pathogenesis of pulmonary tissues, especially for the alveolar epithelial cells and vascular endothelial cells located in the microenvironment established with vascular network and bronchial-alveolar network. Alveolar epithelial cells are mainly loaded by cyclic strain and air pressure tension. While vascular endothelial cells are exposed to shear stress and cyclic strain. Currently, the emerging evidences demonstrated that non-physiological mechanical forces would lead to several pulmonary diseases, including pulmonary hypertension, fibrosis, and ventilation induced lung injury. Furthermore, a series of intracellular signaling had been identified to be involved in mechanotransduction and participated in regulating the physiological homeostasis and pathophysiological process. Besides, the communications between alveolar epithelium and vascular endothelium under non-physiological stress contribute to the remodeling of the pulmonary micro-environment in collaboration, including hypoxia induced injuries, endothelial permeability impairment, extracellular matrix stiffness elevation, metabolic alternation, and inflammation activation. In this review, we aim to summarize the current understandings of mechanotransduction on the relation between mechanical forces acting on the lung and biological response in mechanical overloading related diseases. We also would like to emphasize the interplays between alveolar epithelium and vascular endothelium, providing new insights into pulmonary diseases pathogenesis, and potential targets for therapy.
Collapse
Affiliation(s)
- Chuyang Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jinlin Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Arthur Mueller KM, Mulderrig S, Najafian S, Hurvitz SB, Sodhani D, Mela P, Stapleton SE. Mesh manipulation for local structural property tailoring of medical warp-knitted textiles. J Mech Behav Biomed Mater 2022; 128:105117. [DOI: 10.1016/j.jmbbm.2022.105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 11/25/2022]
|