1
|
Cooper RJ, Day GA, Wijayathunga VN, Yao J, Mengoni M, Wilcox RK, Jones AC. The role of high-resolution cartilage thickness distribution for contact mechanics predictions in the tibiofemoral joint. Proc Inst Mech Eng H 2025; 239:18-28. [PMID: 39785359 PMCID: PMC11894913 DOI: 10.1177/09544119241307793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025]
Abstract
Subject-specific finite element models of knee joint contact mechanics are used in assessment of interventions and disease states. Cartilage thickness distribution is one factor influencing the distribution of pressure. Precision of cartilage geometry capture varies between imaging protocols. This work evaluated the cartilage thickness distribution precision needed for contact mechanics prediction in models of the tibiofemoral joint by comparing model outputs to experimental measurements for three cadaveric specimens. Models with location-specific cartilage thickness were compared to those with a uniform thickness, for a fixed relative orientation of the femur and tibia and with tibial freedom of movement. Under constrained conditions, the advantage of including location-specific cartilage thickness was clear. Models with location-specific thickness predicted the proportion of force through each condyle with an average error of 5% (compared to 27% with uniform thickness) and predicted the experimental contact area with an error of 21 mm2 (compared to 98 mm2 with uniform thickness). With tibial freedom, the advantage of location-specific cartilage thickness not clear. The attempt to allow three degrees of relative freedom at the tibiofemoral joint resulted in a high degree of experimental and computational uncertainty. It is therefore recommended that researchers avoid this level of freedom. This work provides some evidence that highly constrained conditions make tibiofemoral contact mechanics predictions more sensitive to cartilage thickness and should perhaps be avoided in studies where the means to generate subject-specific cartilage thickness are not available.
Collapse
Affiliation(s)
- Robert J Cooper
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK
| | - Gavin A Day
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK
| | | | - Jiacheng Yao
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK
| | - Marlène Mengoni
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK
| | - Ruth K Wilcox
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK
| | - Alison C Jones
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Ristaniemi A, Tuppurainen J, Jäntti J, Nippolainen E, Afara IO, Mononen ME, Korhonen RK, Mäkelä JTA. Comparison of site-specific tensile, compressive, and friction properties of human tibiofemoral joint cartilage and their relationship to degeneration. J Biomech 2024; 177:112386. [PMID: 39492148 DOI: 10.1016/j.jbiomech.2024.112386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Site-specific differences in the compressive properties of tibiofemoral joint articular cartilage are well-documented, while exploration of tensile and frictional properties in humans remains limited. Thus, this study aimed to characterize and compare the tensile, compressive and frictional properties of articular cartilage across different sites of the tibiofemoral joint, and to establish relationships between these properties and cartilage degeneration. We cut human tibiofemoral joint (N = 5) cartilage surfaces into tensile testing samples (n = 155) and osteochondral plugs (n = 40) to determine the tensile, friction and compressive properties, as well as OARSI grades. We performed comparisons between sites using a linear mixed model and analyzed relationships with OARSI grade using Spearman's rank correlation. Cartilage samples were mostly healthy: 56 % were grade 0 or 1, 26 % grade 2, and 18 % grade 3 or higher. In tension, the medial femur was more compliant and viscous compared to the lateral femur (p < 0.05). In compression, the lateral tibia exhibited a lower equilibrium modulus than both femoral condyles (p < 0.05), while the initial friction coefficient was higher in the medial tibia compared to both femoral condyles (p < 0.05). We found no significant correlation between tensile or friction properties and OARSI grade, while compressive properties deteriorated with increasing OARSI grade. The observed site-specific differences in cartilage properties in tension, compression, and friction, demonstrate adaptations to different loading experienced by the surfaces. The comprehensive set of properties presented in this study are valuable for improving future computational knee joint models and serving as a reference for tissue engineering and prosthetic implants.
Collapse
Affiliation(s)
- Aapo Ristaniemi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - Juuso Tuppurainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - Jiri Jäntti
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - Ervin Nippolainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| | - Isaac O Afara
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| | - Mika E Mononen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| | - Janne T A Mäkelä
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
3
|
Yamakawa S, Fu FH, Musahl V, Debski RE. Effect of the Material Properties and Knee Position to the Bone Bruise Pattern in Skeletally Mature and Immature Subjects. J Biomech Eng 2024; 146:104501. [PMID: 39024093 DOI: 10.1115/1.4066006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
A bone bruise is generated by a bony collision that could occur when the anterior cruciate ligament (ACL) is injured, and its pattern reflects the injury mechanism and skeletal maturity. Thus, the bone bruise pattern is useful to predict a subject-specific injury mechanism, although the sensitivity and/or effect of the material property and the knee position at injury is still unclear. The objective of the present study was to determine the effect of the material property and knee position on the bone bruise pattern in skeletally mature and immature subjects using finite element analysis. Finite element models were created from a magnetic resonance (MR) image in the sagittal plane of a skeletally mature (25 y. o.) and immature (9 y. o.) male subject. The femur and tibia were collided at 2 m/s to simulate the impact trauma and determine the maximum principal stress. The analysis was performed at 15, 30, and 45 deg of knee flexion, and neutral, 10 mm anterior and posterior translated position at each knee flexion angle. Although high stress was distributed toward the metaphysis area in the mature model, the stress did not cross the growth plate in the immature model. The size of the stress area was larger in the mature model than those in the immature model. The location of the stress area changed depending on the joint position. Young's modulus of cartilage and trabecular bone also affected the location of the stress area. The Young's modulus for the cartilage affected peak stress during impact, while the size of the stress area had almost no change. These results indicate that the bone bruise pattern is strongly associated with subject-specific parameters. In addition, the bone bruise pattern was affected not only by knee position but also by tissue qualities. In conclusion, although the bone bruise distribution was generally called footprint of the injury, the combined evaluation of the quality of the structure and the bone bruise distribution is necessary for properly diagnosing tissue injury based on the MR imaging.
Collapse
Affiliation(s)
- Satoshi Yamakawa
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260
| | - Freddie H Fu
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260
| | - Volker Musahl
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260
| | - Richard E Debski
- Department of Bioengineering, Swanson School of Engineering, University of Pitsburgh, Pittsburgh, PA 15260; Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
4
|
Milakovic L, Dandois F, Fehervary H, Scheys L. Calibration of Holzapfel-Gasser-Ogden collateral ligament properties in a hybrid post-arthroplasty knee joint model for laxity testing. Comput Methods Biomech Biomed Engin 2024; 27:1680-1690. [PMID: 37668078 DOI: 10.1080/10255842.2023.2253950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Knee collateral ligaments play a vital role in providing frontal-plane stability in post-total knee arthroplasty (TKA) knees. Finite element models can utilize computationally efficient one-dimensional springs or more physiologically accurate three-dimensional continuum elements like the Holzapfel-Gasser-Ogden (HGO) formulation. However, there is limited literature defining subject-specific mechanical properties, particularly for the HGO model. In this study, we propose a co-simulation framework to obtain subject-specific material parameters for an HGO-based finite element ligament model integrated into a rigid-body model of the post-TKA knee. Our approach achieves comparable accuracy to spring formulations while significantly reducing coefficient calibration time and demonstrating improved correlation with reference knee kinematics and ligament strains throughout the tested loading range.
Collapse
Affiliation(s)
- Lucas Milakovic
- Department of Development and Regeneration, Institute for Orthopaedic Research and Training, Leuven, KU, Belgium
| | - Félix Dandois
- Department of Development and Regeneration, Institute for Orthopaedic Research and Training, Leuven, KU, Belgium
| | - Heleen Fehervary
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
- FIBEr, KU Leuven Core Facility for Biomechanical Experimentation, Leuven, Belgium
| | - Lennart Scheys
- Department of Development and Regeneration, Institute for Orthopaedic Research and Training, Leuven, KU, Belgium
- Division of Orthopaedics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Day GA, Jones AC, Mengoni M, Wilcox RK. A Finite Element Model to Investigate the Stability of Osteochondral Grafts Within a Human Tibiofemoral Joint. Ann Biomed Eng 2024; 52:1393-1402. [PMID: 38446329 PMCID: PMC10995060 DOI: 10.1007/s10439-024-03464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
Osteochondral grafting has demonstrated positive outcomes for treating articular cartilage defects by replacing the damaged region with a cylindrical graft consisting of bone with a layer of cartilage. However, factors that cause graft subsidence are not well understood. The aim of this study was to develop finite element (FE) models of osteochondral grafts within a tibiofemoral joint, suitable for an investigation of parameters affecting graft stability. Cadaveric femurs were used to experimentally calibrate the bone properties and graft-bone frictional forces for use in corresponding image-based FE models, generated from µCT scan data. Effects of cartilage defects and osteochondral graft repair were measured by examining contact pressure changes using further in vitro tests. Here, six defects were created in the femoral condyles, which were subsequently treated with osteochondral autografts or metal pins. Matching image-based FE models were created, and the contact patches were compared. The bone material properties and graft-bone frictional forces were successfully calibrated from the initial tests with good resulting levels of agreement (CCC = 0.87). The tibiofemoral joint experiment provided a range of cases that were accurately described in the resultant pressure maps and were well represented in the FE models. Cartilage defects and repair quality were experimentally measurable with good agreement in the FE model pressure maps. Model confidence was built through extensive validation and sensitivity testing. It was found that specimen-specific properties were required to accurately represent graft behaviour. The final models produced are suitable for a range of parametric testing to investigate immediate graft stability.
Collapse
Affiliation(s)
- Gavin A Day
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, Leeds, UK.
| | - Alison C Jones
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, Leeds, UK
| | - Marlène Mengoni
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, Leeds, UK
| | - Ruth K Wilcox
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Yan M, Liang T, Zhao H, Bi Y, Wang T, Yu T, Zhang Y. Model Properties and Clinical Application in the Finite Element Analysis of Knee Joint: A Review. Orthop Surg 2024; 16:289-302. [PMID: 38174410 PMCID: PMC10834231 DOI: 10.1111/os.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The knee is the most complex joint in the human body, including bony structures like the femur, tibia, fibula, and patella, and soft tissues like menisci, ligaments, muscles, and tendons. Complex anatomical structures of the knee joint make it difficult to conduct precise biomechanical research and explore the mechanism of movement and injury. The finite element model (FEM), as an important engineering analysis technique, has been widely used in many fields of bioengineering research. The FEM has advantages in the biomechanical analysis of objects with complex structures. Researchers can use this technology to construct a human knee joint model and perform biomechanical analysis on it. At the same time, finite element analysis can effectively evaluate variables such as stress, strain, displacement, and rotation, helping to predict injury mechanisms and optimize surgical techniques, which make up for the shortcomings of traditional biomechanics experimental research. However, few papers introduce what material properties should be selected for each anatomic structure of knee FEM to meet different research purposes. Based on previous finite element studies of the knee joint, this paper summarizes various modeling strategies and applications, serving as a reference for constructing knee joint models and research design.
Collapse
Affiliation(s)
- Mingyue Yan
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
| | - Ting Liang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
| | - Haibo Zhao
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
| | - Yanchi Bi
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
| | - Tianrui Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Yingze Zhang
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Simkheada T, Orozco GA, Korhonen RK, Tanska P, Mononen ME. Comparison of constitutive models for meniscus and their effect on the knee joint biomechanics during gait. Comput Methods Biomech Biomed Engin 2023; 26:2008-2021. [PMID: 36645841 DOI: 10.1080/10255842.2022.2163587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
Mechanical behavior of meniscus can be modeled using constitutive material models of varying complexity, such as isotropic elastic or fibril reinforced poroelastic (FRPE). However, the FRPE material is complex to implement, computationally demanding in 3D geometries, and simulation is time-consuming. Hence, we aimed to quantify the most suitable and efficient constitutive model of meniscus for simulation of cartilage responses in the knee joint during walking. We showed that simpler constitutive material models can reproduce similar cartilage responses to a knee model with the FRPE meniscus, but only knee models that consider orthotropic elastic meniscus can also reproduce meniscus responses adequately.
Collapse
Affiliation(s)
- Tulashi Simkheada
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Gustavo A Orozco
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
8
|
Zheng Z, Liu Y, Zhang A, Chen H, Wan Q, Zhong L, Wang X, Han Q, Wang J. Medial-lateral translational malalignment of the prosthesis on tibial stress distribution in total knee arthroplasty: A finite element analysis. Front Bioeng Biotechnol 2023; 11:1119204. [PMID: 36937745 PMCID: PMC10017773 DOI: 10.3389/fbioe.2023.1119204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Poor prosthesis alignment during total knee arthroplasty could cause problems such as polyethylene spacer wear, leading to surgical failure and revision surgery. The problems caused by the malalignment of the tibial plateau prosthesis in the medial and lateral planes are unclear. We aimed to investigate the stress distribution and micromotion of the tibia when the tibial plateau prosthesis is translated 1 and 2 mm medially and laterally, respectively, using finite element analysis (FEA). Method: A non-homogeneous tibia model was created and load conditions when standing on two legs were applied using FEA to simulate the misaligned prosthesis. The stresses, stress distribution, and micromotion of the proximal tibia were analyzed in five positions of the tibial plateau prosthesis: Lateral-2 mm; Lateral-1 mm; Medium; Medial-2 mm; Medial-1 mm. Result: The maximum stress in the five groups with different misalignments of the platform was 47.29 MPa (Lateral-2 mm). The maximum micromotion among the five groups in different positions was 7.215 μm (Lateral-2 mm). Conclusion: When placing the tibial plateau prosthesis during total knee arthroplasty, an error of 2 mm or less is acceptable as long as it does not overhang.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qing Han
- *Correspondence: Qing Han, ; Jincheng Wang,
| | | |
Collapse
|
9
|
Day GA, Cooper RJ, Jones AC, Mengoni M, Wilcox RK. Development of robust finite element models to investigate the stability of osteochondral grafts within porcine femoral condyles. J Mech Behav Biomed Mater 2022; 134:105411. [PMID: 36037705 DOI: 10.1016/j.jmbbm.2022.105411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 07/21/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
Osteoarthritis (OA) is the most prevalent chronic rheumatic disease worldwide with knee OA having an estimated lifetime risk of approximately 14%. Autologous osteochondral grafting has demonstrated positive outcomes in some patients, however, understanding of the biomechanical function and how treatments can be optimised remains limited. Increased short-term stability of the grafts allows cartilage surfaces to remain congruent prior to graft integration. In this study methods for generating specimen specific finite element (FE) models of osteochondral grafts were developed, using parallel experimental data for calibration and validation. Experimental testing of the force required to displace osteochondral grafts by 2 mm was conducted on three porcine knees, each with four grafts. Specimen specific FE models of the hosts and grafts were created from registered μCT scans captured from each knee (pre- and post-test). Material properties were based on the μCT background with a conversion between μCT voxel brightness and Young's modulus. This conversion was based on the results of the separate testing of eight porcine condyles and optimization of specimen specific FE models. The comparison between the experimental and computational push-in forces gave a strong agreement with a concordance correlation coefficient (CCC) = 0.75, validating the modelling approach. The modelling process showed that homogenous material properties based on whole bone BV/TV calculations are insufficient for accurate modelling and that an intricate description of the density distribution is required. The robust methodology can provide a method of testing different treatment options and can be used to investigate graft stability in full tibiofemoral joints.
Collapse
Affiliation(s)
- Gavin A Day
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, UK.
| | - Robert J Cooper
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, UK
| | - Alison C Jones
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, UK
| | - Marlène Mengoni
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, UK
| | - Ruth K Wilcox
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, UK
| |
Collapse
|
10
|
Orava H, Huang L, Ojanen SP, Mäkelä JT, Finnilä MA, Saarakkala S, Herzog W, Korhonen RK, Töyräs J, Tanska P. Changes in subchondral bone structure and mechanical properties do not substantially affect cartilage mechanical responses – A finite element study. J Mech Behav Biomed Mater 2022; 128:105129. [DOI: 10.1016/j.jmbbm.2022.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/19/2021] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
11
|
Liu Y, Chen B, Wang C, Chen H, Zhang A, Yin W, Wu N, Han Q, Wang J. Design of Porous Metal Block Augmentation to Treat Tibial Bone Defects in Total Knee Arthroplasty Based on Topology Optimization. Front Bioeng Biotechnol 2021; 9:765438. [PMID: 34820364 PMCID: PMC8606634 DOI: 10.3389/fbioe.2021.765438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Metal block augmentation, which is used for the treatment of tibial bone defects in total knee arthroplasty, with high stiffness will cause significant alteration in stress distribution, and its solid structure is not suitable for osseointegration. This study aimed to design a porous block to reduce weight, promote bone ingrowth, and improve its biomechanical performance. The metal block augmentation technique was applied to finite element models of tibial bone defects. Minimum compliance topology optimization subject to volume fraction combined with the porous architecture was adopted to redesign the block. Biomechanical changes compared with the original block were analyzed by finite element analysis. The stress distribution of the block and proximal tibia was recorded. The strain energy density of the proximal tibia was obtained. The newly designed block realized 40% weight reduction. The maximum stress in the optimized block decreased by 11.6% when compared with the solid one. The maximum stress of the proximal tibia in the optimized group increased by 18.6%. The stress of the anterior, medial, and posterior parts of the proximal medial tibia in the optimized group was significantly greater than that in the original group (all p < 0.05). The optimized block could effectively improve the biomechanical performance between the block and the bone. The presented method might provide a reference for the design of customized three-dimensional printed prostheses.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Bingpeng Chen
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Chenyu Wang
- Department of Plastic and Reconstructive Surgery, First Bethune Hospital of Jilin University, Changchun, China
| | - Hao Chen
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Aobo Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Weihuang Yin
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Naichao Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Qing Han
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Non-anatomical placement adversely affects the functional performance of the meniscal implant: a finite element study. Biomech Model Mechanobiol 2021; 20:1167-1185. [PMID: 33661440 DOI: 10.1007/s10237-021-01440-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/17/2021] [Indexed: 01/14/2023]
Abstract
Non-anatomical placement may occur during the surgical implantation of the meniscal implant, and its influence on the resulting biomechanics of the knee joint has not been systematically studied. The purpose of this study was to evaluate the biomechanical effects of non-anatomical placement of the meniscal implant on the knee joint during a complete walking cycle. Three-dimensional finite element (FE) analyses of the knee joint were performed, based on the model developed from magnetic resonance images and the loading conditions derived from the gait pattern of a healthy male subject, for the following physiological conditions: (i) knee joint with intact native meniscus, (ii) medial meniscectomized knee joint, (iii) knee joint with anatomically placed meniscal implant, and (iv) knee joint with the meniscal implant placed in four different in vitro determined non-anatomical locations. While the native menisci were modeled using the nonlinear hyperelastic Holzapfel-Gasser-Ogden (HGO) constitutive model, the meniscal implant was modeled using the isotropic hyperelastic neo-Hookean model. Placement of the meniscal implant in the non-anatomical lateral-posterior and lateral-anterior locations significantly increased the peak contact pressure in the medial compartment. Placement of the meniscal implant in non-anatomical locations significantly altered the tibial rotational kinematics and increased the total force acting at the meniscal horns. Results suggest that placement of the meniscal implant in non-anatomical locations may restrain its ability to be chondroprotective and may initiate or accelerate cartilage degeneration. In conclusion, clinicians should endeavor to place the implant as closest as possible to the anatomical location to restore the normal knee biomechanics.
Collapse
|
13
|
Myller KAH, Korhonen RK, Töyräs J, Tanska P, Väänänen SP, Jurvelin JS, Saarakkala S, Mononen ME. Clinical Contrast-Enhanced Computed Tomography With Semi-Automatic Segmentation Provides Feasible Input for Computational Models of the Knee Joint. J Biomech Eng 2020; 142:051001. [PMID: 31647541 DOI: 10.1115/1.4045279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 11/08/2022]
Abstract
Computational models can provide information on joint function and risk of tissue failure related to progression of osteoarthritis (OA). Currently, the joint geometries utilized in modeling are primarily obtained via manual segmentation, which is time-consuming and hence impractical for direct clinical application. The aim of this study was to evaluate the applicability of a previously developed semi-automatic method for segmenting tibial and femoral cartilage to serve as input geometry for finite element (FE) models. Knee joints from seven volunteers were first imaged using a clinical computed tomography (CT) with contrast enhancement and then segmented with semi-automatic and manual methods. In both segmentations, knee joint models with fibril-reinforced poroviscoelastic (FRPVE) properties were generated and the mechanical responses of articular cartilage were computed during physiologically relevant loading. The mean differences in the absolute values of maximum principal stress, maximum principal strain, and fibril strain between the models generated from semi-automatic and manual segmentations were <1 MPa, <0.72% and <0.40%, respectively. Furthermore, contact areas, contact forces, average pore pressures, and average maximum principal strains were not statistically different between the models (p >0.05). This semi-automatic method speeded up the segmentation process by over 90% and there were only negligible differences in the results provided by the models utilizing either manual or semi-automatic segmentations. Thus, the presented CT imaging-based segmentation method represents a novel tool for application in FE modeling in the clinic when a physician needs to evaluate knee joint function.
Collapse
Affiliation(s)
- Katariina A H Myller
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029, Finland; School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia Qld, Brisbane 4072, Australia
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Sami P Väänänen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029, Finland; Central Finland Central Hospital, Department of Physics, Keskussairaalantie 19, Jyväskylä FI-40620, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Simo Saarakkala
- Department of Diagnostic Radiology, Oulu University Hospital, Kajaanintie 50, Oulu FI-90220, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, P.O. Box 5000, Oulu FI-90014, Finland
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| |
Collapse
|
14
|
Development of robust finite element models of porcine tibiofemoral joints loaded under varied flexion angles and tibial freedoms. J Mech Behav Biomed Mater 2020; 109:103797. [PMID: 32347215 DOI: 10.1016/j.jmbbm.2020.103797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/20/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022]
Abstract
The successful development of cartilage repair treatments for the knee requires understanding of the biomechanical environment within the joint. Computational finite element models play an important role in non-invasively understanding knee mechanics, but it is important to compare model findings to experimental data. The purpose of this study was to develop a methodology for generating subject-specific finite element models of porcine tibiofemoral joints that was robust and valid over multiple different constraint scenarios. Computational model predictions of two knees were compared to experimental studies on corresponding specimens loaded under several different constraint scenarios using a custom designed experimental rig, with variations made to the femoral flexion angle and level of tibial freedom. For both in vitro specimens, changing the femoral flexion angle had a marked effect on the contact distribution observed experimentally. With the tibia fixed, the majority of the contact region shifted to the medial plateau as flexion was increased. This did not occur when the tibia was free to displace and rotate in response to applied load. These trends in contact distribution across the medial and lateral plateaus were replicated in the computational models. In an additional model with the meniscus removed, contact pressures were elevated by a similar magnitude to the increase seen when the meniscus was removed experimentally. Overall, the models were able to capture specimen-specific trends in contact distribution under a variety of different loads, providing the potential to investigate subject-specific outcomes for knee interventions.
Collapse
|
15
|
Marchi BC, Arruda EM, Coleman RM. The Effect of Articular Cartilage Focal Defect Size and Location in Whole Knee Biomechanics Models. J Biomech Eng 2020; 142:021002. [PMID: 31201745 DOI: 10.1115/1.4044032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 07/25/2024]
Abstract
Articular cartilage focal defects are common soft tissue injuries potentially linked to osteoarthritis (OA) development. Although several defect characteristics likely contribute to osteoarthritis, their relationship to local tissue deformation remains unclear. Using finite element models with various femoral cartilage geometries, we explore how defects change cartilage deformation and joint kinematics assuming loading representative of the maximum joint compression during the stance phase of gait. We show how defects, in combination with location-dependent cartilage mechanics, alter deformation in affected and opposing cartilages, as well as joint kinematics. Small and average sized defects increased maximum compressive strains by approximately 50% and 100%, respectively, compared to healthy cartilage. Shifts in the spatial locations of maximum compressive strains of defect containing models were also observed, resulting in loading of cartilage regions with reduced initial stiffnesses supporting the new, elevated loading environments. Simulated osteoarthritis (modeled as a global reduction in mean cartilage stiffness) did not significantly alter joint kinematics, but exacerbated tissue deformation. Femoral defects were also found to affect healthy tibial cartilage deformations. Lateral femoral defects increased tibial cartilage maximum compressive strains by 25%, while small and average sized medial defects exhibited decreases of 6% and 15%, respectively, compared to healthy cartilage. Femoral defects also affected the spatial distributions of deformation across the articular surfaces. These deviations are especially meaningful in the context of cartilage with location-dependent mechanics, leading to increases in peak contact stresses supported by the cartilage of between 11% and 34% over healthy cartilage.
Collapse
Affiliation(s)
- Benjamin C Marchi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Ellen M Arruda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Program in Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Rhima M Coleman
- Department of Mechanical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109; Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109
| |
Collapse
|
16
|
Cooper RJ, Wilcox RK, Jones AC. Finite element models of the tibiofemoral joint: A review of validation approaches and modelling challenges. Med Eng Phys 2019; 74:1-12. [DOI: 10.1016/j.medengphy.2019.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
|
17
|
Hosseini Kalajahi SM, Nazemi SM, Johnston JD. Separate modeling of cortical and trabecular bone offers little improvement in FE predictions of local structural stiffness at the proximal tibia. Comput Methods Biomech Biomed Engin 2019; 22:1258-1268. [DOI: 10.1080/10255842.2019.1661386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - S. Majid Nazemi
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - James D. Johnston
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
18
|
Myller KAH, Korhonen RK, Töyräs J, Salo J, Jurvelin JS, Venäläinen MS. Computational evaluation of altered biomechanics related to articular cartilage lesions observed in vivo. J Orthop Res 2019; 37:1042-1051. [PMID: 30839123 DOI: 10.1002/jor.24273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/17/2019] [Indexed: 02/04/2023]
Abstract
Chondral lesions provide a potential risk factor for development of osteoarthritis. Despite the variety of in vitro studies on lesion degeneration, in vivo studies that evaluate relation between lesion characteristics and the risk for the possible progression of OA are lacking. Here, we aimed to characterize different lesions and quantify biomechanical responses experienced by surrounding cartilage tissue. We generated computational knee joint models with nine chondral injuries based on clinical in vivo arthrographic computed tomography images. Finite element models with fibril-reinforced poro(visco)elastic cartilage and menisci were constructed to simulate physiological loading. Systematically, the lesions experienced increased peak values of maximum principal strain, maximum shear strain, and minimum principal strain in the surrounding chondral tissue (p < 0.01) compared with intact tissue. Depth, volume, and area of the lesion correlated with the maximum shear strain (p < 0.05, Spearman rank correlation coefficient ρ = 0.733-0.917). Depth and volume of the lesion correlated also with the maximum principal strain (p < 0.05, ρ = 0.767, and ρ = 0.717, respectively). However, the lesion area had non-significant correlation with this strain parameter (p = 0.06, ρ = 0.65). Potentially, the introduced approach could be developed for clinical evaluation of biomechanical risks of a chondral lesion and planning an intervention. Statement of Clinical Relevance: In this study, we computationally characterized different in vivo chondral lesions and evaluated their risk of cartilage degeneration. This information is vital in decision-making for intervention in order to prevent post-traumatic osteoarthritis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Katariina A H Myller
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.,Centre of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Jari Salo
- Orthopaedics and Traumatology Clinic, Mehiläinen, Helsinki, Finland.,Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko S Venäläinen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
19
|
Bolcos PO, Mononen ME, Mohammadi A, Ebrahimi M, Tanaka MS, Samaan MA, Souza RB, Li X, Suomalainen JS, Jurvelin JS, Töyräs J, Korhonen RK. Comparison between kinetic and kinetic-kinematic driven knee joint finite element models. Sci Rep 2018; 8:17351. [PMID: 30478347 PMCID: PMC6255758 DOI: 10.1038/s41598-018-35628-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
Use of knee joint finite element models for diagnostic purposes is challenging due to their complexity. Therefore, simpler models are needed for studies where a high number of patients need to be analyzed, without compromising the results of the model. In this study, more complex, kinetic (forces and moments) and simpler, kinetic-kinematic (forces and angles) driven finite element models were compared during the stance phase of gait. Patella and tendons were included in the most complex model, while they were absent in the simplest model. The greatest difference between the most complex and simplest models was observed in the internal-external rotation and axial joint reaction force, while all other rotations, translations and joint reaction forces were similar to one another. In terms of cartilage stresses and strains, the simpler models behaved similarly with the more complex models in the lateral joint compartment, while minor differences were observed in the medial compartment at the beginning of the stance phase. We suggest that it is feasible to use kinetic-kinematic driven knee joint models with a simpler geometry in studies with a large cohort size, particularly when analyzing cartilage responses and failures related to potential overloads.
Collapse
Affiliation(s)
- Paul O Bolcos
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland.
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - Ali Mohammadi
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - Mohammadhossein Ebrahimi
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - Matthew S Tanaka
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, 94158, San Francisco, USA
| | - Michael A Samaan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, 94158, San Francisco, USA
- Dept. of Kinesiology & Health Promotion, University of Kentucky, Lexington, KY, 40506, USA
| | - Richard B Souza
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, 94158, USA
| | - Xiaojuan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, 94158, San Francisco, USA
- Program of Advanced Musculoskeletal Imaging (PAMI), Department of Biomedical Engineering, Cleveland Clinic, OH, 44195, Cleveland, USA
| | - Juha-Sampo Suomalainen
- Diagnostic Imaging Centre, Kuopio University Hospital, POB 100, FI-70029, KUH, Kuopio, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, POB 100, FI-70029, KUH, Kuopio, Finland
- School of Information Technology and Electrical Engineering, The University of Queensland, QLD-4072, Brisbane, Australia
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, POB 100, FI-70029, KUH, Kuopio, Finland
| |
Collapse
|
20
|
Diffo Kaze A, Maas S, Arnoux PJ, Wolf C, Pape D. A finite element model of the lower limb during stance phase of gait cycle including the muscle forces. Biomed Eng Online 2017; 16:138. [PMID: 29212516 PMCID: PMC5719616 DOI: 10.1186/s12938-017-0428-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
Background Results of finite element (FE) analyses can give insight into musculoskeletal diseases if physiological boundary conditions, which include the muscle forces during specific activities of daily life, are considered in the FE modelling. So far, many simplifications of the boundary conditions are currently made. This study presents an approach for FE modelling of the lower limb for which muscle forces were included. Methods The stance phase of normal gait was simulated. Muscle forces were calculated using a musculoskeletal rigid body (RB) model of the human body, and were subsequently applied to a FE model of the lower limb. It was shown that the inertial forces are negligible during the stance phase of normal gait. The contact surfaces between the parts within the knee were modelled as bonded. Weak springs were attached to the distal tibia for numerical reasons. Results Hip joint reaction forces from the RB model and those from the FE model were similar in magnitude with relative differences less than 16%. The forces of the weak spring were negligible compared to the applied muscle forces. The maximal strain was 0.23% in the proximal region of the femoral diaphysis and 1.7% in the contact zone between the tibia and the fibula. Conclusions The presented approach based on FE modelling by including muscle forces from inverse dynamic analysis of musculoskeletal RB model can be used to perform analyses of the lower limb with very realistic boundary conditions. In the present form, this model can be used to better understand the loading, stresses and strains of bones in the knee area and hence to analyse osteotomy fixation devices.
Collapse
Affiliation(s)
- Arnaud Diffo Kaze
- Faculty of Science, Technology and Communication, University of Luxembourg, 6 Rue R. Coudenhove-Kalergi, 1359, Luxembourg, Luxembourg. .,Department of Orthopedic Surgery, Centre Hospitalier de Luxembourg, 76 Rue d'Eich, 1460, Luxembourg, Luxembourg. .,Cartilage Net of the Greater Region, 66421, Homburg/Saar, Germany.
| | - Stefan Maas
- Faculty of Science, Technology and Communication, University of Luxembourg, 6 Rue R. Coudenhove-Kalergi, 1359, Luxembourg, Luxembourg.,Cartilage Net of the Greater Region, 66421, Homburg/Saar, Germany
| | - Pierre-Jean Arnoux
- Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR-Université de la Méditerranée, Boulevard Pierre Dramard, 13916, Marseille Cedex 20, France
| | - Claude Wolf
- Faculty of Science, Technology and Communication, University of Luxembourg, 6 Rue R. Coudenhove-Kalergi, 1359, Luxembourg, Luxembourg
| | - Dietrich Pape
- Department of Orthopedic Surgery, Centre Hospitalier de Luxembourg, 76 Rue d'Eich, 1460, Luxembourg, Luxembourg.,Sports Medicine Research Laboratory, Public Research Centre for Health, Luxembourg, Centre Médical de La Fondation Norbert Metz, 76 Rue d'Eich, 1460, Luxembourg, Luxembourg.,Cartilage Net of the Greater Region, 66421, Homburg/Saar, Germany
| |
Collapse
|
21
|
Naghibi Beidokhti H, Janssen D, van de Groes S, Hazrati J, Van den Boogaard T, Verdonschot N. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint. J Biomech 2017; 65:1-11. [DOI: 10.1016/j.jbiomech.2017.08.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 07/12/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022]
|
22
|
Osteoarthritis year in review 2016: mechanics. Osteoarthritis Cartilage 2017; 25:190-198. [PMID: 28100420 DOI: 10.1016/j.joca.2016.09.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 02/02/2023]
Abstract
Inappropriate biomechanics, namely wear-and-tear, has been long believed to be a main cause of osteoarthritis (OA). However, this view is now being re-evaluated, especially when examined alongside mechanobiology and new biomechanical studies. These are multiscale experimental and computational studies focussing on cell- and tissue-level mechanobiology through to organ- and whole-body-level biomechanics, which focuses on the biomechanical and biochemical environment of the joint tissues. This review examined papers from April 2015 to April 2016, with a focus on multiscale experimental and computational biomechanical studies of OA. Assessing the onset or progression of OA at organ- and whole-body-levels, gait analysis, medical imaging and neuromusculoskeletal modelling revealed the extent to which tissue damage changes the view of inappropriate biomechanics. Traditional gait analyses studies reported that conservative treatments can alter joint biomechanics, thereby improving pain and function experienced by those with OA. Results of animal models of OA were consistent with these human studies, showing interactions among bone, cartilage and meniscus biomechanics and the onset and/or progression OA. Going down size scales, experimental and computational studies probed the nanosize biomechanics of molecules, cells and extracellular matrix, and demonstrated how the interactions between biomechanics and morphology affect cartilage dynamic poroelastic behaviour and pathways to OA. Finally, integration of multiscale experimental data and computational models were proposed to predict cartilage extracellular matrix remodelling and the development of OA. Summarising, experimental and computational methods provided a nuanced biomechanical understanding of the sub-cellular, cellular, tissue, organ and whole-body mechanisms involved in OA.
Collapse
|
23
|
Grassi L, Väänänen SP, Ristinmaa M, Jurvelin JS, Isaksson H. Prediction of femoral strength using 3D finite element models reconstructed from DXA images: validation against experiments. Biomech Model Mechanobiol 2016; 16:989-1000. [PMID: 28004226 PMCID: PMC5422489 DOI: 10.1007/s10237-016-0866-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/10/2016] [Indexed: 12/01/2022]
Abstract
Computed tomography (CT)-based finite element (FE) models may improve the current osteoporosis diagnostics and prediction of fracture risk by providing an estimate for femoral strength. However, the need for a CT scan, as opposed to the conventional use of dual-energy X-ray absorptiometry (DXA) for osteoporosis diagnostics, is considered a major obstacle. The 3D shape and bone mineral density (BMD) distribution of a femur can be reconstructed using a statistical shape and appearance model (SSAM) and the DXA image of the femur. Then, the reconstructed shape and BMD could be used to build FE models to predict bone strength. Since high accuracy is needed in all steps of the analysis, this study aimed at evaluating the ability of a 3D FE model built from one 2D DXA image to predict the strains and fracture load of human femora. Three cadaver femora were retrieved, for which experimental measurements from ex vivo mechanical tests were available. FE models were built using the SSAM-based reconstructions: using only the SSAM-reconstructed shape, only the SSAM-reconstructed BMD distribution, and the full SSAM-based reconstruction (including both shape and BMD distribution). When compared with experimental data, the SSAM-based models predicted accurately principal strains (coefficient of determination >0.83, normalized root-mean-square error <16%) and femoral strength (standard error of the estimate 1215 N). These results were only slightly inferior to those obtained with CT-based FE models, but with the considerable advantage of the models being built from DXA images. In summary, the results support the feasibility of SSAM-based models as a practical tool to introduce FE-based bone strength estimation in the current fracture risk diagnostics.
Collapse
Affiliation(s)
- Lorenzo Grassi
- Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden.
| | - Sami P Väänänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio, Finland
| | | | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| |
Collapse
|
24
|
Venäläinen MS, Mononen ME, Salo J, Räsänen LP, Jurvelin JS, Töyräs J, Virén T, Korhonen RK. Quantitative Evaluation of the Mechanical Risks Caused by Focal Cartilage Defects in the Knee. Sci Rep 2016; 6:37538. [PMID: 27897156 PMCID: PMC5126640 DOI: 10.1038/srep37538] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022] Open
Abstract
Focal cartilage lesions can proceed to severe osteoarthritis or remain unaltered even for years. A method to identify high risk defects would be of utmost importance to guide clinical decision making and to identify the patients that are at the highest risk for the onset and progression of osteoarthritis. Based on cone beam computed tomography arthrography, we present a novel computational model for evaluating changes in local mechanical responses around cartilage defects. Our model, based on data obtained from a human knee in vivo, demonstrated that the most substantial alterations around the defect, as compared to the intact tissue, were observed in minimum principal (compressive) strains and shear strains. Both strain values experienced up to 3-fold increase, exceeding levels previously associated with chondrocyte apoptosis and failure of collagen crosslinks. Furthermore, defects at the central regions of medial tibial cartilage with direct cartilage-cartilage contact were the most vulnerable to loading. Also locations under the meniscus experienced substantially increased minimum principal strains. We suggest that during knee joint loading particularly minimum principal and shear strains are increased above tissue failure limits around cartilage defects which might lead to osteoarthritis. However, this increase in strains is highly location-specific on the joint surface.
Collapse
Affiliation(s)
- Mikko S Venäläinen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland.,Cancer Center, Kuopio University Hospital, POB 100, FI-70029 KUH, Kuopio, Finland
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland
| | - Jari Salo
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, POB 100, FI-70029 KUH, Kuopio, Finland.,Hospital Mehiläinen, FI-00260, Helsinki, Finland
| | - Lasse P Räsänen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, POB 100, FI-70029 KUH, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, POB 100, FI-70029 KUH, Kuopio, Finland
| | - Tuomas Virén
- Cancer Center, Kuopio University Hospital, POB 100, FI-70029 KUH, Kuopio, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, POB 100, FI-70029 KUH, Kuopio, Finland
| |
Collapse
|
25
|
Klets O, Mononen ME, Tanska P, Nieminen MT, Korhonen RK, Saarakkala S. Comparison of different material models of articular cartilage in 3D computational modeling of the knee: Data from the Osteoarthritis Initiative (OAI). J Biomech 2016; 49:3891-3900. [PMID: 27825602 DOI: 10.1016/j.jbiomech.2016.10.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
The intricate properties of articular cartilage and the complexity of the loading environment are some of the key challenges in developing models for biomechanical analysis of the knee joint. Fibril-reinforced poroelastic (FRPE) material models have been reported to accurately capture characteristic responses of cartilage during dynamic and static loadings. However, high computational and time costs associated with such advanced models limit applicability of FRPE models when multiple subjects need to be analyzed. If choosing simpler material models, it is important to show that they can still produce truthful predictions. Therefore, the aim of this study was to compare depth-dependent maximum principal stresses and strains within articular cartilage in the 3D knee joint between FRPE material models and simpler isotropic elastic (IE), isotropic poroelastic (IPE) and transversely isotropic poroelastic (TIPE) material models during simulated gait cycle. When cartilage-cartilage contact pressures were matched between the models (15% allowed difference), maximum principal stresses in the IE, IPE and TIPE models were substantially lower than those in the FRPE model (by more than 50%, TIPE model being closest to the FRPE model), and stresses occurred only in compression in the IE model. Additional simulations were performed to find material parameters for the TIPE model (due to its anisotropic nature) that would yield maximum principal stresses similar to the FRPE model. The modified homogeneous TIPE model was in a better agreement with the homogeneous FRPE model, and the average and maximum differences in maximum principal stresses throughout the depth of cartilage were 7% and 9%, respectively, in the lateral compartment and 9% and 11% in the medial compartment. This study revealed that it is possible to match simultaneously maximum principal stresses and strains of cartilage between non-fibril-reinforced and fibril-reinforced knee joint models during gait. Depending on the research question (such as analysis of fibril strain necessitates the use of fibril-reinforced material models) or clinical demand (fast simulations with simpler material models), the choice of the material model should be done carefully.
Collapse
Affiliation(s)
- Olesya Klets
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital Oulu, Finland.
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital Oulu, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital Oulu, Finland
| |
Collapse
|
26
|
In Vivo Contrast-Enhanced Cone Beam CT Provides Quantitative Information on Articular Cartilage and Subchondral Bone. Ann Biomed Eng 2016; 45:811-818. [DOI: 10.1007/s10439-016-1730-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
|