1
|
Carlsson J, Karlsson O, Isaksson H, Gustafsson A. Phase-field simulation of crack growth in cortical bone microstructure: parameter identification and comparison against experiments. Biomech Model Mechanobiol 2025; 24:599-613. [PMID: 40025294 PMCID: PMC12055898 DOI: 10.1007/s10237-025-01929-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/26/2025] [Indexed: 03/04/2025]
Abstract
Computational models are commonly used to investigate how the cortical bone microstructure affects fracture resistance; recently, phase-field models have been introduced for this purpose. However, experimentally measured material parameters for the microstructural tissues are lacking. Moreover, as no validation studies have been published, it remains unclear to what extent classical phase-field methods, assuming linear-elastic, brittle fracture, accurately represent bone. In this study, we address both these shortcomings by first applying a design-of-experiments methodology to calibrate a set of material parameters for a two-dimensional phase-field finite element model of bovine osteonal microstructure. This was achieved by comparing the outcomes from simulation to data from single-edge notched bending experiments on bovine osteonal bone and subsequent imaging of the crack path. Second, we used these parameters in new bone geometries to evaluate the parameters and the predictive performance of the model. Reasonable agreement was achieved between prediction and experiments in terms of peak load, crack initiation toughness and crack path. However, the model is unable to capture the experimentally observed gradual evolution of damage, leading to a nonlinear force response before the onset of visible crack extension. Nor does it capture the similarly observed increase in toughness with increasing crack length. These limitations are inherent to all classical phase-field methods since they originate from theories of brittle fracture, and alternative formulations are discussed. This is the first study attempting to validate classical phase-field methods in simulation of cortical bone fracture, and it highlights both potential and limitations to be addressed in future work.
Collapse
Affiliation(s)
- Jenny Carlsson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden.
| | - Olivia Karlsson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden
| | - Anna Gustafsson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden
| |
Collapse
|
2
|
Kurtz T, Godio-Raboutet Y, Ribeiro FLB, Tailhan JL. A comprehensive methodology to assess human bone transversal toughness based on macroscopic specimens, the compliance method, and 3D bio-faithful numerical simulations. J Mech Behav Biomed Mater 2025; 163:106869. [PMID: 39730226 DOI: 10.1016/j.jmbbm.2024.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 12/29/2024]
Abstract
This study proposes a method for assessing the transverse toughness of human long-bone cortical tissue. The method is based on a three-point bending test of pre-notched femur diaphysis segments, post-processed using the compliance method coupled with numerical simulations. Given the cracking nature of bone and if cracking processes remain confined to the crack tip, it is assumed that the compliance method can be used. Numerical simulations are based on a bio-faithful 3D reconstruction of the bones tested and a detailed consideration of the boundary and loading conditions of the mechanical test. The resulting toughness values obtained on embalmed bones range from Gc=4.3 to 7.1 N/mm. The assumptions made, the biofidelity of the simulations, and the ability of the method to determine an intrinsic toughness value of cortical bone, considered a heterogeneous material, are discussed. Although related to embalmed bones, and considering the limitations this state can induce, the toughness values obtained are consistent with data from the literature. Due to the larger specimen size, they are also more realistic, ensuring a complete description of the material's crack extension resistance curve. They mainly characterize the medial and lateral quadrants of the bone transversal section. The study concludes that the proposed method provides a robust approach for assessing bone transversal toughness.
Collapse
Affiliation(s)
- T Kurtz
- Aix Marseille Université, CNRS, ISM, Marseille, France
| | - Y Godio-Raboutet
- Aix Marseille Université, Université Gustave Eiffel, LBA, Marseille, France
| | - F L B Ribeiro
- Department of Civil Engineering, COPPE, Federal University of Rio de Janeiro, Centro de Tecnologia - Ilha do Fundao, Rio de Janeiro 21941, Brazil
| | - J-L Tailhan
- Aix Marseille Université, Université Gustave Eiffel, LBA, Marseille, France.
| |
Collapse
|
3
|
Zambrano M LA, Famaey N, Gilchrist M, Annaidh AN. Fracture mechanics properties of human cranial bone. J Mech Behav Biomed Mater 2025; 163:106821. [PMID: 39637529 DOI: 10.1016/j.jmbbm.2024.106821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
The mechanical properties of the human skull have been examined and established previously in the literature, for example, the transversal isotropy of cranial bone and properties including the Elastic modulus and Poisson's ratio. However, despite the existing data, there are still mechanical properties which remain to be determined for the human skull. The present study aims to characterise the fracture properties of human cranial bone within the Linear Elastic Fracture Mechanics (LEFM) framework. Unembalmed human (2 female and 3 male) cortical cranial bone samples were harvested from the frontal, and left and right parietal bones and were tested in Mode I (N = 124), Mode II (N = 31) and Mixed-Mode I-II (N = 47) loading conditions. For Mode I, samples were tested using Single Edge Notched Beams (SENB) under symmetric 3-point bending, while for Mixed-Mode I-II samples were tested under asymmetric 3-point bending. For Mode II, 4-point bend tests were carried out. All samples fractured in a brittle fashion. From these tests, reference values of stress intensity factor (KI and KII) and the strain energy release rate (JI, GI, GII, GI-II) for the frontal, left and right parietal bones were calculated. It was determined that the fracture toughness of the frontal, and left and right parietal bones are not statistically different from each other and that they exhibit symmetry about the sagittal plane. It was also demonstrated that, as is the case for other human bones and for the age range tested here, the fracture toughness of human cranial bone is lower for females (KIfemale 2.48 (±2.16) MPa∗m0.5, KImale 4.75 (±2.58) MPa∗m0.5, GIfemale 1.07 (±3.01) kJ/m2, GImale 1.85 (±1.93) kJ/m2, JIfemale 1.57 (1.89) kJ/m2 and JImale 4.03 (±3.32) kJ/m2) and varies with age. More experimental work should be carried out to confirm the extrapolation of these conclusions to the other fracture modes tested here. Although these results are influenced by the age range and the age gap within the group of donors, the primary data presented here is valuable to those wishing to predict crack evolution and propagation in the human cranial bone and may prove useful in developing failure criterion or simulations of skull fracture using Finite Element Analysis.
Collapse
Affiliation(s)
- Lilibeth A Zambrano M
- Aerospace and Mechanical Engineering Department, South East University of Ireland, Carlow, Ireland; School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland.
| | - Nele Famaey
- BioMechanics (BMe) KU Leuven, Leuven, (Arenberg), Belgium.
| | - Michael Gilchrist
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland.
| | - Aislin Ní Annaidh
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Löffler MT, Wu PH, Pirmoazen AM, Joseph GB, Stewart JM, Saeed I, Liu J, Schafer AL, Schwartz AV, Link TM, Kazakia GJ. Microvascular disease not type 2 diabetes is associated with increased cortical porosity: A study of cortical bone microstructure and intracortical vessel characteristics. Bone Rep 2024; 20:101745. [PMID: 38444830 PMCID: PMC10912053 DOI: 10.1016/j.bonr.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Fracture risk is elevated in type 2 diabetes (T2D) despite normal or even high bone mineral density (BMD). Microvascular disease (MVD) is a diabetic complication, but also associated with other diseases, for example chronic kidney disease. We hypothesize that increased fracture risk in T2D could be due to increased cortical porosity (Ct.Po) driven by expansion of the vascular network in MVD. The purpose of this study was to investigate associations of T2D and MVD with cortical microstructure and intracortical vessel parameters. Methods The study group consisted of 75 participants (38 with T2D and 37 without T2D). High-resolution peripheral quantitative CT (HR-pQCT) and dynamic contrast-enhanced MRI (DCE-MRI) of the ultra-distal tibia were performed to assess cortical bone and intracortical vessels (outcomes). MVD was defined as ≥1 manifestation including neuropathy, nephropathy, or retinopathy based on clinical exams in all participants. Adjusted means of outcomes were compared between groups with/without T2D or between participants with/without MVD in both groups using linear regression models adjusting for age, sex, BMI, and T2D as applicable. Results MVD was found in 21 (55 %) participants with T2D and in 9 (24 %) participants without T2D. In T2D, cortical pore diameter (Ct.Po.Dm) and diameter distribution (Ct.Po.Dm.SD) were significantly higher by 14.6 μm (3.6 %, 95 % confidence interval [CI]: 2.70, 26.5 μm, p = 0.017) and by 8.73 μm (4.8 %, CI: 0.79, 16.7 μm, p = 0.032), respectively. In MVD, but not in T2D, cortical porosity was significantly higher by 2.25 % (relative increase = 12.9 %, CI: 0.53, 3.97 %, p = 0.011) and cortical BMD (Ct.BMD) was significantly lower by -43.6 mg/cm3 (2.6 %, CI: -77.4, -9.81 mg/cm3, p = 0.012). In T2D, vessel volume and vessel diameter were significantly higher by 0.02 mm3 (13.3 %, CI: 0.004, 0.04 mm3, p = 0.017) and 15.4 μm (2.9 %, CI: 0.42, 30.4 μm, p = 0.044), respectively. In MVD, vessel density was significantly higher by 0.11 mm-3 (17.8 %, CI: 0.01, 0.21 mm-3, p = 0.033) and vessel volume and diameter were significantly lower by -0.02 mm3 (13.7 %, CI: -0.04, -0.004 mm3, p = 0.015) and - 14.6 μm (2.8 %, CI: -29.1, -0.11 μm, p = 0.048), respectively. Conclusions The presence of MVD, rather than T2D, was associated with increased cortical porosity. Increased porosity in MVD was coupled with a larger number of smaller vessels, which could indicate upregulation of neovascularization triggered by ischemia. It is unclear why higher variability and average diameters of pores in T2D were accompanied by larger vessels.
Collapse
Affiliation(s)
- Maximilian T. Löffler
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg im Breisgau, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Po-hung Wu
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Amir M. Pirmoazen
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Gabby B. Joseph
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Jay M. Stewart
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Isra Saeed
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Jing Liu
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Anne L. Schafer
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Ann V. Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Galateia J. Kazakia
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| |
Collapse
|
5
|
Kurtz T, Woitrain T, Godio-Raboutet Y, Ribeiro FLB, Arnoux PJ, Tailhan JL. Method for Evaluating Cortical Bone Young's Modulus: Numerical Twin Reconstruction, Finite Element Calculation, and Microstructure Analysis. J Biomech Eng 2023; 145:111013. [PMID: 37542711 DOI: 10.1115/1.4063100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
The determination of bone mechanical properties remains crucial, especially to feed up numerical models. An original methodology of inverse analysis has been developed to determine the longitudinal elastic modulus of femoral cortical bone. The method is based on a numerical twin of a specific three-point bending test. It has been designed to be reproducible on each test result. In addition, the biofidelity of the geometric acquisition method has been quantified. As the assessment is performed at the scale of a bone shaft segment, the Young's modulus values obtained (between 9518.29 MPa and 14181.15 MPa) are considered average values for the whole tissue, highlighting some intersubject variability. The material microstructure has also been studied through histological analysis, and bone-to-bone comparisons highlighted discrepancies in quadrants microstructures. Furthermore, significant intrasubject variability exists since differences between the bone's medial-lateral and anterior-posterior quadrants have been observed. Thus, the study of microstructures can largely explain the differences between the elastic modulus values obtained. However, a more in-depth study of bone mineral density would also be necessary and would provide some additional information. This study is currently being setup, alongside an investigation of the local variations of the elastic modulus.
Collapse
Affiliation(s)
- T Kurtz
- Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille 13015, France
| | - T Woitrain
- Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille 13015, France
| | - Y Godio-Raboutet
- Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille 13015, France
| | - F L B Ribeiro
- Department of Civil Engineering, COPPE, Federal University of Rio de Janeiro, Centro de Tecnologia - Ilha do Fundao, Rio de Janeiro 21941, Brazil
| | - P-J Arnoux
- Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille 13015, France
| | - J-L Tailhan
- Univ Gustave Eiffel, MAST-EMGCU, Marne la Vallée 77454, France
| |
Collapse
|
6
|
Demirtas A, Taylor EA, Gludovatz B, Ritchie RO, Donnelly E, Ural A. An integrated experimental-computational framework to assess the influence of microstructure and material properties on fracture toughness in clinical specimens of human femoral cortical bone. J Mech Behav Biomed Mater 2023; 145:106034. [PMID: 37494816 DOI: 10.1016/j.jmbbm.2023.106034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/08/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
Microstructural and compositional changes that occur due to aging, pathological conditions, or pharmacological treatments alter cortical bone fracture resistance. However, the relative importance of these changes to the fracture resistance of cortical bone has not been quantified in detail. In this technical note, we developed an integrated experimental-computational framework utilizing human femoral cortical bone biopsies to advance the understanding of how fracture resistance of cortical bone is modulated due to modifications in its microstructure and material properties. Four human biopsy samples from individuals with varying fragility fracture history and osteoporosis treatment status were converted to finite element models incorporating specimen-specific material properties and were analyzed using fracture mechanics-based modeling. The results showed that cement line density and osteonal volume had a significant effect on crack volume. The removal of cement lines substantially increased the crack volume in the osteons and interstitial bone, representing straight crack growth, compared to models with cement lines due to the lack of crack deflection in the models without cement lines. Crack volume in the osteons and interstitial bone increased when mean elastic modulus and ultimate strength increased and mean fracture toughness decreased. Crack volume in the osteons and interstitial bone was reduced when material property heterogeneity was incorporated in the models. Although both the microstructure and the heterogeneity of the material properties of the cortical bone independently increased the fracture toughness, the relative contribution of the microstructure was more significant. The integrated experimental-computational framework developed here can identify the most critical microscale features of cortical bone modulated by pathological processes or pharmacological treatments that drive changes in fracture resistance and improve our understanding of the relative influence of microstructure and material properties on fracture resistance of cortical bone.
Collapse
Affiliation(s)
- Ahmet Demirtas
- Department of Mechanical Engineering, Villanova University, Villanova, PA, USA
| | - Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA; Musculoskeletal Integrity Program, Weill Cornell Medicine, Research Institute, Hospital for Special Surgery, New York City, NY, USA
| | - Ani Ural
- Department of Mechanical Engineering, Villanova University, Villanova, PA, USA.
| |
Collapse
|
7
|
Minonzio JG, Ramiandrisoa D, Schneider J, Kohut E, Streichhahn M, Stervbo U, Wirth R, Westhoff TH, Raum K, Babel N. Bi-Directional Axial Transmission measurements applied in a clinical environment. PLoS One 2022; 17:e0277831. [PMID: 36584002 PMCID: PMC9803229 DOI: 10.1371/journal.pone.0277831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/03/2022] [Indexed: 12/31/2022] Open
Abstract
Accurate measurement of cortical bone parameters may improve fracture risk assessment and help clinicians on the best treatment strategy. Patients at risk of fracture are currently detected using the current X-Ray gold standard DXA (Dual XRay Absorptiometry). Different alternatives, such as 3D X-Rays, Magnetic Resonance Imaging or Quantitative Ultrasound (QUS) devices, have been proposed, the latter having advantages of being portable and sensitive to mechanical and geometrical properties. The objective of this cross-sectional study was to evaluate the performance of a Bi-Directional Axial Transmission (BDAT) device used by trained operators in a clinical environment with older subjects. The device, positioned at one-third distal radius, provides two velocities: VFAS (first arriving signal) and VA0 (first anti-symmetrical guided mode). Moreover, two parameters are obtained from an inverse approach: Ct.Th (cortical thickness) and Ct.Po (cortical porosity), along with their ratio Ct.Po/Ct.Th. The areal bone mineral density (aBMD) was obtained using DXA at the femur and spine. One hundred and six patients (81 women, 25 men) from Marien Hospital and St. Anna Hospital (Herne, Germany) were included in this study. Age ranged from 41 to 95 years, while body mass index (BMI) ranged from 16 to 47 kg.m-2. Three groups were considered: 79 non-fractured patients (NF, 75±13years), 27 with non-traumatic fractures (F, 80±9years) including 14 patients with non-vertebral fractures (NVF, 84±7years). Weak to moderate significant Spearman correlations (R ranging from 0.23 to 0.53, p < 0.05) were found between ultrasound parameters and age, BMI. Using multivariate Partial Least Square discrimination analyses with Leave-One-Out Cross-Validation (PLS-LOOCV), we found the combination of VFAS and the ratio Ct.Po/Ct.Th to be predictive for all non traumatic fractures (F) with the odds ratio (OR) equals to 2.5 [1.6-3.4] and the area under the ROC curve (AUC) equal to 0.63 [0.62-0.65]. For the group NVF, combination of four parameters VA0. Ct.Th, Ct.Po and Ct.Po/Ct.Po, along with age provides a discrimination model with OR and AUC equals to 7.5 [6.0-9.1] and 0.75 [0.73-0.76]. When restricted to a smaller population (87 patients) common to both BDAT and DXA, BDAT ORs and AUCs are comparable or slightly higher to values obtained with DXA. The fracture risk assessment by BDAT method in older patients, in a clinical setting, suggests the benefit of the affordable and transportable device for the routine use.
Collapse
Affiliation(s)
- Jean-Gabriel Minonzio
- Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, Laboratoire d’Imagerie Biomédicale, Paris, France
- Escuela de Ingeniería Informática, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
- * E-mail:
| | | | - Johannes Schneider
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| | - Eva Kohut
- Medical Clinic I, Marien Hospital Herne, Ruhr University, Bochum, Herne, Germany
| | - Melanie Streichhahn
- Medical Clinic I, Marien Hospital Herne, Ruhr University, Bochum, Herne, Germany
| | - Ulrik Stervbo
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr University, Bochum, Herne, Germany
| | - Rainer Wirth
- Department for Geriatric Medicine, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Timm Henning Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr University, Bochum, Herne, Germany
| | - Kay Raum
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| | - Nina Babel
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr University, Bochum, Herne, Germany
| |
Collapse
|
8
|
Vaidya R, Rezaee T, Edwards T, Bender R, Vickneswaran A, Chalivendra V, Karim L. Accumulation of fluorescent advanced glycation end products and carboxymethyl-lysine in human cortical and trabecular bone. Bone Rep 2022; 17:101634. [DOI: 10.1016/j.bonr.2022.101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
|
9
|
Cirovic A, Cirovic A, Djukic D, Djonic D, Zivkovic V, Nikolic S, Djuric M, Milovanovic P. Three-dimensional mapping of cortical porosity and thickness along the superolateral femoral neck in older women. Sci Rep 2022; 12:15544. [PMID: 36109611 PMCID: PMC9477875 DOI: 10.1038/s41598-022-19866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Although several studies have analyzed inter-individual differences in the femoral neck cortical microstructure, intra-individual variations have not been comprehensively evaluated. By using microCT, we mapped cortical pore volume fraction (Ct.Po) and thickness (Ct.Th) along the superolateral femoral neck in 14 older women (age: 77.1 ± 9.8 years) to identify subregions and segments with high porosity and/or low thickness-potential "critical" spots where a fracture could start. We showed that Ct.Po and Ct.Th significantly differed between basicervical, midcervical, and subcapital subregions of the femoral neck (p < 0.001), where the subcapital subregion showed the lowest mean Ct.Th and the highest mean Ct.Po. These cortical parameters also varied substantially with age and with the location of the analyzed microsegments along the individual's neck (p < 0.001), showing multiple microsegments with high porosity and/or low thickness. Although the highest ratio of these microsegments was found in the subcapital subregion, they were also present at other examined subregions, which may provide an anatomical basis for explaining the fracture initiation at various sites of the superolateral neck. Given that fractures likely start at structurally and mechanically weaker spots, intra-individual variability in Ct.Po and Ct.Th should be considered and the average values for the entire femoral neck should be interpreted with caution.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Danica Djukic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Danijela Djonic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Vladimir Zivkovic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Slobodan Nikolic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Marija Djuric
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Petar Milovanovic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia.
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia.
| |
Collapse
|
10
|
Hedjazi G, Guterman-Ram G, Blouin S, Schemenz V, Wagermaier W, Fratzl P, Hartmann MA, Zwerina J, Fratzl-Zelman N, Marini JC. Alterations of bone material properties in growing Ifitm5/BRIL p.S42 knock-in mice, a new model for atypical type VI osteogenesis imperfecta. Bone 2022; 162:116451. [PMID: 35654352 PMCID: PMC11162744 DOI: 10.1016/j.bone.2022.116451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Osteogenesis imperfecta (OI) is a heterogenous group of heritable connective tissue disorders characterized by high bone fragility due to low bone mass and impaired bone material properties. Atypical type VI OI is an extremely rare and severe form of bone dysplasia resulting from a loss-of-function mutation (p.S40L) in IFITM5/BRIL,the causative gene of OI type V and decreased osteoblast secretion of pigment epithelium-derived factor (PEDF), as in OI type VI. It is not yet known which alterations at the material level might lead to such a severe phenotype. We therefore characterized bone tissue at the micrometer level in a novel heterozygous Ifitm5/BRIL p.S42L knock-in murine model at 4 and 8 weeks of age. METHODS We evaluated in female mice, total body size, femoral and lumbar bone mineral density (BMD) by dual-energy X-ray absorptiometry. In the femoral bone we examined osteoid deposition by light microscopy, assessed bone histomorphometry and mineralization density distribution by quantitative backscattered electron imaging (qBEI). Osteocyte lacunae were examined by qBEI and the osteocyte lacuno-canalicular network by confocal laser scanning microscopy. Vasculature was examined indirectly by qBEI as 2D porosity in cortex, and as 3D porosity by micro-CT in third trochanter. Collagen orientation was examined by second harmonic generation microscopy. Two-way ANOVA was used to discriminate the effect of age and genotype. RESULTS Ifitm5/BRIL p.S42L female mice are viable, do not differ in body size, fat and lean mass from wild type (WT) littermates but have lower whole-body, lumbar and femoral BMD and multiple fractures. The average and most frequent calcium concentration, CaMean and CaPeak, increased with age in metaphyseal and cortical bone in both genotypes and were always higher in Ifitm5/BRIL p.S42L than in WT, except CaMean in metaphysis at 4 weeks of age. The fraction of highly mineralized bone area, CaHigh, was also increased in Ifitm5/BRIL p.S42L metaphyseal bone at 8 weeks of age and at both ages in cortical bone. The fraction of lowly mineralized bone area, CaLow, decreased with age and was not higher in Ifitm5/BRIL p.S42L, consistent with lack of hyperosteoidosis on histological sections by visual exam. Osteocyte lacunae density was higher in Ifitm5/BRIL p.S42L than WT, whereas canalicular density was decreased. Indirect measurements of vascularity revealed a higher pore density at 4 weeks in cortical bone of Ifitm5/BRIL p.S42L than in WT and at both ages in the third trochanter. Importantly, the proportion of bone area with disordered collagen fibrils was highly increased in Ifitm5/BRIL p.S42L at both ages. CONCLUSIONS Despite normal skeletal growth and the lack of a collagen gene mutation, the Ifitm5/BRIL p.S42L mouse shows major OI-related bone tissue alterations such as hypermineralization of the matrix and elevated osteocyte porosity. Together with the disordered lacuno-canalicular network and the disordered collagen fibril orientation, these abnormalities likely contribute to overall bone fragility.
Collapse
Affiliation(s)
- Ghazal Hedjazi
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Gali Guterman-Ram
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, USA
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Victoria Schemenz
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Wolfgang Wagermaier
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, USA.
| |
Collapse
|
11
|
Mandair GS, Bigelow EMR, Viswanathan G, Ward FS, Patton DM, Schlecht SH, Jepsen KJ, Kohn DH. Region-specific associations among tissue-level mechanical properties, porosity, and composition in human male femora. J Biomech 2022; 139:111144. [PMID: 35623287 DOI: 10.1016/j.jbiomech.2022.111144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Region-specific differences in age-related bone remodeling are known to exist. We therefore hypothesized that the decline in tissue-level strength and post-yield strain (PYS) with age is not uniform within the femur, but is driven by region-specific differences in porosity and composition. Four-point bending was conducted on anterior, posterior, medial, and lateral beams from male cadaveric femora (n = 33, 18-89 yrs of age). Mid-cortical porosity, composition, and mineralization were assessed using nano-computed tomography (nanoCT), Raman spectroscopy, and ashing assays. Traits between bones from young and elderly groups were compared, while multivariate analyses were used to identify traits that predicted strength and PYS at the regional level. We show that age-related decline in porosity and mechanical properties varied regionally, with highest positive slope of age vs. Log(porosity) found in posterior and anterior bone, and steepest negative slopes of age vs. strength and age vs. PYS found in anterior bone. Multivariate analyses show that Log(porosity) and/or Raman 1246/1269 ratio explained 46-51% of the variance in strength in anterior and posterior bone. Three out of five traits related to Log(porosity), mineral crystallinity, 1246/1269, mineral/matrix ratio, and/or hydroxyproline/proline (Hyp/Pro) ratio, explained 35-50% of the variance in PYS in anterior, posterior and lateral bones. Log(porosity) and Hyp/Pro ratio alone explained 13% and 19% of the variance in strength and PYS in medial bone, respectively. The predictive performance of multivariate analyses was negatively impacted by pooling data across all bone regions, underscoring the complexity of the femur and that the use of pooled analyses may obscure underlying region-specific differences.
Collapse
Affiliation(s)
- Gurjit S Mandair
- Biological and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Erin M R Bigelow
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Gowri Viswanathan
- Biological and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Ferrous S Ward
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA; Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Daniella M Patton
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA; Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Stephen H Schlecht
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA; Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA; Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - David H Kohn
- Biological and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Tailhan JL, Kurtz T, Godio-Raboutet Y, Rossi P, Thollon L. Macrocrack propagation in a notched shaft segment of human long bone: Experimental results and mechanical aspects. J Mech Behav Biomed Mater 2022; 128:105132. [DOI: 10.1016/j.jmbbm.2022.105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/14/2021] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
|
13
|
Kumar A, Ghosh R. A review on experimental and numerical investigations of cortical bone fracture. Proc Inst Mech Eng H 2022; 236:297-319. [DOI: 10.1177/09544119211070347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper comprehensively reviews the various experimental and numerical techniques, which were considered to determine the fracture characteristics of the cortical bone. This study also provides some recommendations along with the critical review, which would be beneficial for future research of fracture analysis of cortical bone. Cortical bone fractures due to sports activities, climbing, running, and engagement in transport or industrial accidents. Individuals having different diseases are also at high risk of cortical bone fracture. It has been observed that osteon orientation influences cortical bone fracture toughness and fracture mechanisms. Apart from this, recent studies indicate that fracture parameters of cortical bone also depend on many factors such as age, sex, temperature, osteoporosis, orientation, location, loading condition, strain rate, and storage facility, etc. The cortical bone regains its fracture toughness due to various toughening mechanisms. Owing to these factors, several experimental, clinical, and numerical investigations have been carried out to determine the fracture parameters of the cortical bone. Cortical bone is the dense outer surface of the bone and contributes to 80%–82% of the skeleton mass. Cortical bone experiences load far exceeding body weight due to muscle contraction and the dynamics of motion. It is very important to know the fracture pattern, direction of fracture, location of the fracture, and toughening mechanism of cortical bone. A basic understanding of the different factors that affect the fracture parameters and fracture mechanisms of the cortical bone is necessary to prevent the failure and fracture of cortical bone. This review has summarized the advancement considered in the various experimental techniques and numerical methods to get complete information about the fracture mechanisms of cortical bone.
Collapse
Affiliation(s)
- Ajay Kumar
- School of Engineering, Indian Institute of Technology Mandi (IIT Mandi), Kamand, Mandi 175005, Himachal Pradesh, India
| | - Rajesh Ghosh
- School of Engineering, Indian Institute of Technology Mandi (IIT Mandi), Kamand, Mandi 175005, Himachal Pradesh, India
| |
Collapse
|
14
|
Clinical Devices for Bone Assessment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:35-53. [DOI: 10.1007/978-3-030-91979-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Armbrecht G, Nguyen Minh H, Massmann J, Raum K. Pore-Size Distribution and Frequency-Dependent Attenuation in Human Cortical Tibia Bone Discriminate Fragility Fractures in Postmenopausal Women With Low Bone Mineral Density. JBMR Plus 2021; 5:e10536. [PMID: 34761144 PMCID: PMC8567489 DOI: 10.1002/jbm4.10536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
Osteoporosis is a disorder of bone remodeling leading to reduced bone mass, structural deterioration, and increased bone fragility. The established diagnosis is based on the measurement of areal bone mineral density by dual‐energy X‐ray absorptiometry (DXA), which poorly captures individual bone loss and structural decay. Enlarged cortical pores in the tibia have been proposed to indicate structural deterioration and reduced bone strength in the hip. Here, we report for the first time the in vivo assessment of the cortical pore‐size distribution together with frequency‐dependent attenuation at the anteromedial tibia midshaft by means of a novel ultrasonic cortical backscatter (CortBS) technology. We hypothesized that the CortBS parameters are associated with the occurrence of fragility fractures in postmenopausal women (n = 55). The discrimination performance was compared with those of DXA and high‐resolution peripheral computed tomography (HR‐pQCT). The results suggest a superior discrimination performance of CortBS (area under the receiver operating characteristic curve [AUC]: 0.69 ≤ AUC ≤ 0.75) compared with DXA (0.54 ≤ AUC ≤ 0.55) and a similar performance compared with HR‐pQCT (0.66 ≤ AUC ≤ 0.73). CortBS is the first quantitative bone imaging modality that can quantify microstructural tissue deteriorations in cortical bone, which occur during normal aging and the development of osteoporosis. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Gabriele Armbrecht
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, Center for Muscle and Bone Research Berlin Germany
| | - Huong Nguyen Minh
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Regenerative Therapies Berlin Germany
| | - Jonas Massmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Regenerative Therapies Berlin Germany
| | - Kay Raum
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Regenerative Therapies Berlin Germany
| |
Collapse
|
16
|
Muñoz A, Docaj A, Ugarteburu M, Carriero A. Poor bone matrix quality: What can be done about it? Curr Osteoporos Rep 2021; 19:510-531. [PMID: 34414561 DOI: 10.1007/s11914-021-00696-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF THE REVIEW Bone's ability to withstand load resisting fracture and adapting to it highly depends on the quality of its matrix and its regulators. This review focuses on the contribution of bone quality to fracture resistance and possible therapeutic targets for skeletal fragility in aging and disease. RECENT FINDINGS The highly organized, hierarchical composite structure of bone extracellular matrix together with its (re)modeling mechanisms and microdamage dynamics determines its stiffness, strength, and toughness. Aging and disease affect the biological processes regulating bone quality, thus resulting in defective extracellular matrix and bone fragility. Targeted therapies are being developed to restore bone's mechanical integrity. However, their current limitations include low tissue selectivity and adverse side effects. Biological and mechanical insights into the mechanisms controlling bone quality, together with advances in drug delivery and studies in animal models, will accelerate the development and translation to clinical application of effective targeted-therapeutics for bone fragility.
Collapse
Affiliation(s)
- Asier Muñoz
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Bldg. Room 403C, New York, NY, 10031, USA
| | - Anxhela Docaj
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Bldg. Room 403C, New York, NY, 10031, USA
| | - Maialen Ugarteburu
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Bldg. Room 403C, New York, NY, 10031, USA
| | - Alessandra Carriero
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Bldg. Room 403C, New York, NY, 10031, USA.
| |
Collapse
|
17
|
Easter QT. Biopolymer hydroxyapatite composite materials: Adding fluorescence lifetime imaging microscopy to the characterization toolkit. NANO SELECT 2021. [DOI: 10.1002/nano.202100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Quinn T. Easter
- Department of Innovation and Technology Research ADA Science & Research Institute Gaithersburg MD USA
| |
Collapse
|
18
|
Maghami E, Josephson TO, Moore JP, Rezaee T, Freeman TA, Karim L, Najafi AR. Fracture behavior of human cortical bone: Role of advanced glycation end-products and microstructural features. J Biomech 2021; 125:110600. [PMID: 34246065 DOI: 10.1016/j.jbiomech.2021.110600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023]
Abstract
Diabetes is associated with increased fracture risk in human bone, especially in the elderly population. In the present study, we investigate how simulated advanced glycation end-products (AGEs) and materials heterogeneity affect crack growth trajectory in human cortical bone. We used a phase field fracture framework on 2D models of cortical microstructure created from human tibias to analyze crack propagation. The increased AGEs level results in a higher rate of crack formation. The simulations also indicate that the mismatch between the fracture properties (e.g., critical energy release rate) of osteons and interstitial tissue can alter the post-yielding behavior. The results show that if the critical energy release rate of cement lines is lower than that of osteons and the surrounding interstitial matrix, cracks can be arrested by cement lines. Additionally, activation of toughening mechanisms such as crack merging and branching depends on bone microstructural morphology (i.e., osteons geometrical parameters, canals, and lacunae porosities). In conclusion, the present findings suggest that materials heterogeneity of microstructural features and the crack-microstructure interactions can play important roles in bone fragility.
Collapse
Affiliation(s)
- Ebrahim Maghami
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
| | - Timothy O Josephson
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
| | - Jason P Moore
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
| | - Taraneh Rezaee
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA
| | - Theresa A Freeman
- Thomas Jefferson University Division of Orthopaedic Research, Philadelphia, PA 19107, USA
| | - Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA
| | - Ahmad R Najafi
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Singleton RC, Pharr GM, Nyman JS. Increased tissue-level storage modulus and hardness with age in male cortical bone and its association with decreased fracture toughness. Bone 2021; 148:115949. [PMID: 33862261 PMCID: PMC8102428 DOI: 10.1016/j.bone.2021.115949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022]
Abstract
The incidence of bone fracture increases with age, due to both declining bone quantity and quality. Toward the goal of an improved understanding of the causes of the age-related decline in the fracture toughness of male cortical bone, nanoindentation experiments were performed on femoral diaphysis specimens from men aged 21-98 years. Because aged bone has less matrix-bound water and dry bone is less viscoelastic, we used a nanoindentation method that is sensitive to changes in viscoelasticity. Given the anisotropy of bone stiffness, longitudinal (n = 26) and transverse (n = 25) specimens relative to the long axis of the femur diaphysis were tested both dry in air and immersed in phosphate buffered saline solution. Indentation stiffness (storage modulus) and hardness increased with age, while viscoelasticity (loss modulus) was independent of donor age. The increases in indentation stiffness and hardness with age were best explained by increased mineralization with age. Indentation stiffness and hardness were negatively correlated with previously acquired fracture toughness parameters, which is consistent with a tradeoff between material strength and toughness. In keeping with the complex structure of bone, a combination of tissue-level storage modulus or hardness, bound water, and osteonal area in regression models best explained the variance in the fracture toughness of male human cortical bone. On the other hand, viscoelasticity was unchanged with age and was not associated with fracture toughness. In conclusion, the age-related increase in stiffness and hardness of male cortical bone may be one of the multiple tissue-level characteristics that contributes to decreased fracture toughness.
Collapse
Affiliation(s)
- Robert C Singleton
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA
| | - George M Pharr
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
20
|
Yadav RN, Uniyal P, Sihota P, Kumar S, Dhiman V, Goni VG, Sahni D, Bhadada SK, Kumar N. Effect of ageing on microstructure and fracture behavior of cortical bone as determined by experiment and Extended Finite Element Method (XFEM). Med Eng Phys 2021; 93:100-112. [PMID: 34154770 DOI: 10.1016/j.medengphy.2021.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Bone fracture is a severe health concern; therefore, understanding the causes of bone fracture are crucial. This paper investigates the microstructure and fracture behaviour of cadaveric cortical bone of two different groups (Young, n= 6; Aged, n=7). The microstructure is obtained from µ-CT images, and the material parameters are measured with nanoindentation. Fracture behaviour in transverse and longitudinal orientations is investigated experimentally and numerically. The results show that the Haversian canal (HC) size increases and the osteon wall thickness (OWT) decreases significantly in the aged group, whereas a nonsignificant difference is found in tissue properties. The crack initiation (Jic) and crack growth (Jgrow) toughness of the aged group are found to be significantly lower (p<0.01) than the young group in the transverse orientation; however, for the longitudinal orientation, only the value of Jic in the aged group is found significantly lower. Further, a 4-phase XFEM (based on micro-CT image) model is developed to investigate the crack propagation behaviour in both orientations. For the transverse orientation, results show that in the aged group, the crack initially follows the cementline and then penetrates the osteon, whereas, in the young group, it propagates along the cementline. These results are in agreement with experimental results where the decrease in Jgrow is more significant than the Jic in the aged group. This study suggests that ageing leads to a larger HC and reduced OWT, which weakens the crack deflection ability and causes fragility fracture. Further, the XFEM results indicate that the presence of a small microcrack in the vicinity of a major crack tip causes an increase in the critical stress intensity factor.
Collapse
Affiliation(s)
- Ram Naresh Yadav
- Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Piyush Uniyal
- Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Praveer Sihota
- Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Sachin Kumar
- Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Vandana Dhiman
- Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Vijay G Goni
- Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Daisy Sahni
- Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sanjay Kumar Bhadada
- Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Navin Kumar
- Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
21
|
Subject-specific FE models of the human femur predict fracture path and bone strength under single-leg-stance loading. J Mech Behav Biomed Mater 2020; 113:104118. [PMID: 33125949 DOI: 10.1016/j.jmbbm.2020.104118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/25/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
Hip fractures are a major health problem with high socio-economic costs. Subject-specific finite element (FE) models have been suggested to improve the fracture risk assessment, as compared to clinical tools based on areal bone mineral density, by adding an estimate of bone strength. Typically, such FE models are limited to estimate bone strength and possibly the fracture onset, but do not model the fracture process itself. The aim of this study was to use a discrete damage approach to simulate the full fracture process in subject-specific femur models under stance loading conditions. A framework based on the partition of unity finite element method (PUFEM), also known as XFEM, was used. An existing PUFEM framework previously used on a homogeneous generic femur model was extended to include a heterogeneous material description together with a strain-based criterion for crack initiation. The model was tested on two femurs, previously mechanically tested in vitro. Our results illustrate the importance of implementing a subject-specific material distribution to capture the experimental fracture pattern under stance loading. Our models accurately predicted the fracture pattern and bone strength (1% and 5% error) in both investigated femurs. This is the first study to simulate complete fracture paths in subject-specific FE femur models and it demonstrated how discrete damage models can provide a more complete picture of fracture risk by considering both bone strength and fracture toughness in a subject-specific fashion.
Collapse
|
22
|
Gauthier R, Follet H, Langer M, Peyrin F, Mitton D. What is the influence of two strain rates on the relationship between human cortical bone toughness and micro-structure? Proc Inst Mech Eng H 2020; 234:247-254. [DOI: 10.1177/0954411919884776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cortical bone fracture mechanisms are well studied under quasi-static loading. The influence of strain rate on crack propagation mechanisms needs to be better understood, however. We have previously shown that several aspects of the bone micro-structure are involved in crack propagation, such as the complete porosity network, including the Haversian system and the lacunar network, as well as biochemical aspects, such as the maturity of collagen cross-links. The aim of this study is to investigate the influence of strain rate on the toughness of human cortical bone with respect to its microstructure and organic non-collagenous composition. Two strain rates will be considered: quasi-static loading (10−4 s−1), a standard condition, and a higher loading rate (10−1 s−1), representative of a fall. Cortical bone samples were extracted from eight female donors (age 50–91 years). Three-point bending tests were performed until failure. Synchrotron radiation micro-computed tomography imaging was performed to assess bone microstructure including the Haversian system and the lacunar system. Collagen enzymatic cross-link maturation was measured using a high performance liquid chromatography column. Results showed that that under quasi-static loading, the elastic contribution of the fracture process is correlated to both the collagen cross-links maturation and the microstructure, while the plastic contribution is correlated only to the porosity network. Under fall-like loading, bone organization appears to be less linked to crack propagation.
Collapse
Affiliation(s)
- Rémy Gauthier
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, Lyon, France
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, CREATIS, Villeurbanne, France
| | - Hélène Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, LYOS UMR1033, Lyon, France
| | - Max Langer
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, CREATIS, Villeurbanne, France
| | - Françoise Peyrin
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, CREATIS, Villeurbanne, France
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - David Mitton
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, Lyon, France
| |
Collapse
|
23
|
Gauthier R, Follet H, Olivier C, Mitton D, Peyrin F. 3D analysis of the osteonal and interstitial tissue in human radii cortical bone. Bone 2019; 127:526-536. [PMID: 31362068 DOI: 10.1016/j.bone.2019.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
Human cortical bone has a complex hierarchical structure that is periodically remodelled throughout a lifetime. This microstructure dictates the mechanical response of the tissue under a critical load. If only some structural features, such as the different porosities observed in bone, are primarily studied, then investigations may not fully consider the osteonal systems in three-dimensions (3D). Currently, it is difficult to differentiate osteons from interstitial tissue using standard 3D characterization methods. Synchrotron radiation micro-computed tomography (SR-μCT) in the phase contrast mode is a promising method for the investigation of osteons. In the current study, SR-μCT imaging was performed on cortical bone samples harvested from eight human radii (female, 50-91 y.o.). The images were segmented to identify Haversian canals, osteocyte lacunae, micro-cracks, as well as osteons. The significant correlation between osteonal and Haversian canal volume fraction highlights the role of the canals as sites where bone remodelling is initiated. The results showed that osteocyte lacunae morphometric parameters depend on their distance to cement lines, strongly suggesting the evolution of biological activity from the beginning to the end of the remodelling process. Thus, the current study provides new data on 3D osteonal morphometric parameters and their relationships with other structural features in humans.
Collapse
Affiliation(s)
- Rémy Gauthier
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France; Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France
| | - Hélène Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France
| | - Cécile Olivier
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France
| | - David Mitton
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France
| | - Françoise Peyrin
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France.
| |
Collapse
|
24
|
Gustafsson A, Wallin M, Isaksson H. Age-related properties at the microscale affect crack propagation in cortical bone. J Biomech 2019; 95:109326. [DOI: 10.1016/j.jbiomech.2019.109326] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 01/11/2023]
|
25
|
Blank M, Sims NA. Cellular Processes by Which Osteoblasts and Osteocytes Control Bone Mineral Deposition and Maturation Revealed by Stage-Specific EphrinB2 Knockdown. Curr Osteoporos Rep 2019; 17:270-280. [PMID: 31401710 DOI: 10.1007/s11914-019-00524-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW We outline the diverse processes contributing to bone mineralization and bone matrix maturation by describing two mouse models with bone strength defects caused by restricted deletion of the receptor tyrosine kinase ligand EphrinB2. RECENT FINDINGS Stage-specific EphrinB2 deletion differs in its effects on skeletal strength. Early-stage deletion in osteoblasts leads to osteoblast apoptosis, delayed initiation of mineralization, and increased bone flexibility. Deletion later in the lineage targeted to osteocytes leads to a brittle bone phenotype and increased osteocyte autophagy. In these latter mice, although mineralization is initiated normally, all processes involved in matrix maturation, including mineral accrual, carbonate substitution, and collagen compaction, progress more rapidly. Osteoblasts and osteocytes control the many processes involved in bone mineralization; defining the contributing signaling activities may lead to new ways to understand and treat human skeletal fragilities.
Collapse
Affiliation(s)
- Martha Blank
- St. Vincent's Institute of Medical Research, and the Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, and the Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia.
| |
Collapse
|
26
|
Gustafsson A, Wallin M, Khayyeri H, Isaksson H. Crack propagation in cortical bone is affected by the characteristics of the cement line: a parameter study using an XFEM interface damage model. Biomech Model Mechanobiol 2019; 18:1247-1261. [PMID: 30963356 PMCID: PMC6647448 DOI: 10.1007/s10237-019-01142-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 01/25/2023]
Abstract
Bulk properties of cortical bone have been well characterized experimentally, and potent toughening mechanisms, e.g., crack deflections, have been identified at the microscale. However, it is currently difficult to experimentally measure local damage properties and isolate their effect on the tissue fracture resistance. Instead, computer models can be used to analyze the impact of local characteristics and structures, but material parameters required in computer models are not well established. The aim of this study was therefore to identify the material parameters that are important for crack propagation in cortical bone and to elucidate what parameters need to be better defined experimentally. A comprehensive material parameter study was performed using an XFEM interface damage model in 2D to simulate crack propagation around an osteon at the microscale. The importance of 14 factors (material parameters) on four different outcome criteria (maximum force, fracture energy, crack length and crack trajectory) was evaluated using ANOVA for three different osteon orientations. The results identified factors related to the cement line to influence the crack propagation, where the interface strength was important for the ability to deflect cracks. Crack deflection was also favored by low interface stiffness. However, the cement line properties are not well determined experimentally and need to be better characterized. The matrix and osteon stiffness had no or low impact on the crack pattern. Furthermore, the results illustrated how reduced matrix toughness promoted crack penetration of the cement line. This effect is highly relevant for the understanding of the influence of aging on crack propagation and fracture resistance in cortical bone.
Collapse
Affiliation(s)
- Anna Gustafsson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| | - Mathias Wallin
- Division of Solid Mechanics, Lund University, Box 118, 221 00 Lund, Sweden
| | - Hanifeh Khayyeri
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| |
Collapse
|
27
|
Shah FA, Ruscsák K, Palmquist A. 50 years of scanning electron microscopy of bone-a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone Res 2019; 7:15. [PMID: 31123620 PMCID: PMC6531483 DOI: 10.1038/s41413-019-0053-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair. The scanning electron microscope (SEM) is among the most frequently used instruments for examining bone. It offers the key advantage of very high spatial resolution coupled with a large depth of field and wide field of view. Interactions between incident electrons and atoms on the sample surface generate backscattered electrons, secondary electrons, and various other signals including X-rays that relay compositional and topographical information. Through selective removal or preservation of specific tissue components (organic, inorganic, cellular, vascular), their individual contribution(s) to the overall functional competence can be elucidated. With few restrictions on sample geometry and a variety of applicable sample-processing routes, a given sample may be conveniently adapted for multiple analytical methods. While a conventional SEM operates at high vacuum conditions that demand clean, dry, and electrically conductive samples, non-conductive materials (e.g., bone) can be imaged without significant modification from the natural state using an environmental scanning electron microscope. This review highlights important insights gained into bone microstructure and pathophysiology, bone response to implanted biomaterials, elemental analysis, SEM in paleoarchaeology, 3D imaging using focused ion beam techniques, correlative microscopy and in situ experiments. The capacity to image seamlessly across multiple length scales within the meso-micro-nano-continuum, the SEM lends itself to many unique and diverse applications, which attest to the versatility and user-friendly nature of this instrument for studying bone. Significant technological developments are anticipated for analysing bone using the SEM.
Collapse
Affiliation(s)
- Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Krisztina Ruscsák
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Unal M, Uppuganti S, Timur S, Mahadevan-Jansen A, Akkus O, Nyman JS. Assessing matrix quality by Raman spectroscopy helps predict fracture toughness of human cortical bone. Sci Rep 2019; 9:7195. [PMID: 31076574 PMCID: PMC6510799 DOI: 10.1038/s41598-019-43542-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/26/2019] [Indexed: 01/10/2023] Open
Abstract
Developing clinical tools that assess bone matrix quality could improve the assessment of a person's fracture risk. To determine whether Raman spectroscopy (RS) has such potential, we acquired Raman spectra from human cortical bone using microscope- and fiber optic probe-based Raman systems and tested whether correlations between RS and fracture toughness properties were statistically significant. Calculated directly from intensities at wavenumbers identified by second derivative analysis, Amide I sub-peak ratio I1670/I1640, not I1670/I1690, was negatively correlated with Kinit (N = 58; R2 = 32.4%) and J-integral (R2 = 47.4%) when assessed by Raman micro-spectroscopy. Area ratios (A1670/A1690) determined from sub-band fitting did not correlate with fracture toughness. There were fewer correlations between RS and fracture toughness when spectra were acquired by probe RS. Nonetheless, the I1670/I1640 sub-peak ratio again negatively correlated with Kinit (N = 56; R2 = 25.6%) and J-integral (R2 = 39.0%). In best-fit general linear models, I1670/I1640, age, and volumetric bone mineral density explained 50.2% (microscope) and 49.4% (probe) of the variance in Kinit. I1670/I1640 and v1PO4/Amide I (microscope) or just I1670/I1640 (probe) were negative predictors of J-integral (adjusted-R2 = 54.9% or 37.9%, respectively). While Raman-derived matrix properties appear useful to the assessment of fracture resistance of bone, the acquisition strategy to resolve the Amide I band needs to be identified.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37212, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Selin Timur
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37212, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA.
| |
Collapse
|
29
|
Iori G, Schneider J, Reisinger A, Heyer F, Peralta L, Wyers C, Gräsel M, Barkmann R, Glüer CC, van den Bergh JP, Pahr D, Raum K. Large cortical bone pores in the tibia are associated with proximal femur strength. PLoS One 2019; 14:e0215405. [PMID: 30995279 PMCID: PMC6469812 DOI: 10.1371/journal.pone.0215405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/01/2019] [Indexed: 11/23/2022] Open
Abstract
Alterations of structure and density of cortical bone are associated with fragility fractures and can be assessed in vivo in humans at the tibia. Bone remodeling deficits in aging women have been recently linked to an increase in size of cortical pores. In this ex vivo study, we characterized the cortical microarchitecture of 19 tibiae from human donors (aged 69 to 94 years) to address, whether this can reflect impairments of the mechanical competence of the proximal femur, i.e., a major fracture site in osteoporosis. Scanning acoustic microscopy (12 μm pixel size) provided reference microstructural measurements at the left tibia, while the bone vBMD at this site was obtained using microcomputed tomography (microCT). The areal bone mineral density of both left and right femoral necks (aBMDneck) was measured by dual‐energy X‐ray absorptiometry (DXA), while homogenized nonlinear finite element models based on high-resolution peripheral quantitative computed tomography provided hip stiffness and strength for one-legged standing and sideways falling loads. Hip strength was associated with aBMDneck (r = 0.74 to 0.78), with tibial cortical thickness (r = 0.81) and with measurements of the tibial cross-sectional geometry (r = 0.48 to 0.73) of the same leg. Tibial vBMD was associated with hip strength only for standing loads (r = 0.59 to 0.65). Cortical porosity (Ct.Po) of the tibia was not associated with any of the femoral parameters. However, the proportion of Ct.Po attributable to large pores (diameter > 100 μm) was associated with hip strength in both standing (r = -0.61) and falling (r = 0.48) conditions. When added to aBMDneck, the prevalence of large pores could explain up to 17% of the femur ultimate force. In conclusion, microstructural characteristics of the tibia reflect hip strength as well as femoral DXA, but it remains to be tested whether such properties can be measured in vivo.
Collapse
Affiliation(s)
- Gianluca Iori
- Berlin-Brandenburg Center for Regenerative Therapies, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Schneider
- Berlin-Brandenburg Center for Regenerative Therapies, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Reisinger
- Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Frans Heyer
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
| | - Laura Peralta
- Laboratoire d’Imagerie Biomédicale, Sorbonne Universités, INSERM UMR S 1146, CNRS UMR 7371, Paris, France
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Caroline Wyers
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
| | - Melanie Gräsel
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Reinhard Barkmann
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Claus C. Glüer
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - J. P. van den Bergh
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
| | - Dieter Pahr
- Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
- Institute for Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Kay Raum
- Berlin-Brandenburg Center for Regenerative Therapies, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- * E-mail:
| |
Collapse
|
30
|
Gauthier R, Langer M, Follet H, Olivier C, Gouttenoire PJ, Helfen L, Rongiéras F, Mitton D, Peyrin F. Influence of loading condition and anatomical location on human cortical bone linear micro-cracks. J Biomech 2019; 85:59-66. [PMID: 30686510 DOI: 10.1016/j.jbiomech.2019.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Human cortical bone fracture toughness depends on the anatomical locations under quasi-static loading. Recent results also showed that under fall-like loading, cortical bone fracture toughness is similar at different anatomical locations in the same donor. While cortical bone toughening mechanisms are known to be dependent on the tissue architecture under quasi-static loading, the fracture mechanisms during a fall are less studied. In the current study, the structural parameters of eight paired femoral diaphyses, femoral necks and radial diaphyses were mechanically tested under quasi-static and fall-like loading conditions (female donors, 70 ± 14 y.o., [50-91 y.o.]). Synchrotron radiation micro-CT imaging was used to quantify the amount of micro-cracks formed during loading. The volume fraction of these micro-cracks was significantly higher within the specimens loaded under a quasi-static condition than under a loading representative of a fall. Under fall-like loading, there was no difference in crack volume fraction between the different paired anatomical locations. This result shows that the micro-cracking toughening mechanism depends both on the anatomical location and on the loading condition.
Collapse
Affiliation(s)
- Rémy Gauthier
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France; Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France
| | - Max Langer
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France
| | - Hélène Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France
| | - Cécile Olivier
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France; European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble Cedex 9, France
| | - Pierre-Jean Gouttenoire
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France; European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble Cedex 9, France
| | - Lukas Helfen
- European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble Cedex 9, France; Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Frédéric Rongiéras
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France; Service Chirurgie Orthopédique et Traumatologie - Hôpital Desgenettes, 69003 Lyon, France
| | - David Mitton
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France
| | - Françoise Peyrin
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France; European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble Cedex 9, France.
| |
Collapse
|
31
|
Willett TL, Dapaah DY, Uppuganti S, Granke M, Nyman JS. Bone collagen network integrity and transverse fracture toughness of human cortical bone. Bone 2019; 120:187-193. [PMID: 30394355 PMCID: PMC6360115 DOI: 10.1016/j.bone.2018.10.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/09/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
Greater understanding of the determinants of skeletal fragility is highly sought due to the great burden that bone affecting diseases and fractures have on economies, societies and health care systems. Being a complex, hierarchical composite of collagen type-I and non-stoichiometric substituted hydroxyapatite, bone derives toughness from its organic phase. In this study, we tested whether early observations that a strong correlation between bone collagen integrity measured by thermomechanical methods and work to fracture exist in a more general and heterogeneous sampling of the population. Neighboring uniform specimens from an established, highly characterized and previously published collection of human cortical bone samples (femur mid-shaft) were decalcified in EDTA. Fifty-four of the original 62 donors were included (26 male and 28 females; ages 21-101 years; aging, osteoporosis, diabetes and cancer). Following decalcification, bone collagen was tested using hydrothermal isometric tension (HIT) testing in order to measure the collagen's thermal stability (denaturation temperature, Td) and network connectivity (maximum rate of isometric tension generation; Max.Slope). We used linear regression and general linear models (GLMs) with several explanatory variables to determine whether relationships between HIT parameters and generally accepted bone quality factors (e.g., cortical porosity, pentosidine content [pen], pyridinoline content [pyd]), age, and measures of fracture toughness (crack initiation fracture toughness, Kinit, and total energy release/dissipation rate evaluated at the point of unstable fast fracture, J-int) were significant. Bone collagen connectivity (Max.Slope) correlated well with the measures of fracture toughness (R2 = 24-35%), and to a lesser degree with bound water fraction (BW; R2 = 7.9%) and pore water fraction (PW; R2 = 9.1%). Significant correlations with age, apparent volumetric bone mineral density (vBMD), and mature enzymatic [pyd] and non-enzymatic collagen crosslinks [pen] were not detected. GLMs found that Max.Slope and vBMD (or BW), with or without age as additional covariate, all significantly explained the variance in Kinit (adjusted-R2 = 36.7-49.0%). Also, the best-fit model for J-int (adjusted-R2 = 35.7%) included only age and Max.Slope as explanatory variables with Max.Slope contributing twice as much as age. Max.Slope and BW without age were also significant predictors of J-int (adjusted-R2 = 35.5%). In conclusion, bone collagen integrity as measured by thermomechanical methods is a key factor in cortical bone fracture toughness. This study further demonstrates that greater attention should be paid to degradation of the overall organic phase, rather than a specific biomarker (e.g. [pen]), when seeking to understand elevated fracture rates in aging and disease.
Collapse
Affiliation(s)
- Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Daniel Y Dapaah
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sasidhar Uppuganti
- Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Mathilde Granke
- Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jeffry S Nyman
- Vanderbilt University Medical Center, Nashville, TN, United States of America.
| |
Collapse
|
32
|
Sroga GE, Vashishth D. Phosphorylation of Extracellular Bone Matrix Proteins and Its Contribution to Bone Fragility. J Bone Miner Res 2018; 33:2214-2229. [PMID: 30001467 DOI: 10.1002/jbmr.3552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 01/22/2023]
Abstract
Phosphorylation of bone matrix proteins is of fundamental importance to all vertebrates including humans. However, it is currently unknown whether increase or decline of total protein phosphorylation levels, particularly in hypophosphatemia-related osteoporosis, osteomalacia, and rickets, contribute to bone fracture. To address this gap, we combined biochemical measurements with mechanical evaluation of bone to discern fracture characteristics associated with age-related development of skeletal fragility in relation to total phosphorylation levels of bone matrix proteins and one of the key representatives of bone matrix phosphoproteins, osteopontin (OPN). Here for the first time, we report that as people age the total phosphorylation level declines by approximately 20% for bone matrix proteins and approximately 30% for OPN in the ninth decade of human life. Moreover, our results suggest that the decline of total protein phosphorylation of extracellular matrix (ECM) contributes to bone fragility, but less pronouncedly than glycation. We theorize that the separation of two sources of OPN negative charges, acidic backbone amino acids and phosphorylation, would be nature's means of assuring that OPN functions in both energy dissipation and biomineralization. We propose that total phosphorylation decline could be an important contributor to the development of osteoporosis, increased fracture risk and skeletal fragility. Targeting the enzymes kinase FamC20 and bone alkaline phosphatase involved in the regulation of matrix proteins' phosphorylation could be a means for the development of suitable therapeutic treatments. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
33
|
3D micro structural analysis of human cortical bone in paired femoral diaphysis, femoral neck and radial diaphysis. J Struct Biol 2018; 204:182-190. [PMID: 30107234 DOI: 10.1016/j.jsb.2018.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022]
Abstract
Human bone is known to adapt to its mechanical environment in a living body. Both its architecture and microstructure may differ between weight-bearing and non-weight-bearing bones. The aim of the current study was to analyze in three dimensions, the morphology of the multi-scale porosities on human cortical bone at different locations. Eight paired femoral diaphyses, femoral necks, and radial diaphyses were imaged using Synchrotron Radiation µCT with a 0.7 µm isotropic voxel size. The spatial resolution facilitates the investigation of the multiscale porosities of cortical bone, from the osteonal canals system down to the osteocyte lacunar system. Our results showed significant differences in the microstructural properties, regarding both osteonal canals and osteocytes lacunae, between the different anatomical locations. The radius presents significantly lower osteonal canal volume fraction and smaller osteonal canals than the femoral diaphysis or neck. Osteocytes lacunae observed in the radius are significantly different in shape than in the femur, and lacunar density is higher in the femoral neck. These results show that the radius, a non-weight-bearing bone, is significantly different in terms of its microstructure from a weight-bearing bone such as the femur. This implies that the cortical bone properties evaluated on the femoral diaphysis, the main location studied within the literature, cannot be generalized to other anatomical locations.
Collapse
|
34
|
Bailey S, Vashishth D. Mechanical Characterization of Bone: State of the Art in Experimental Approaches-What Types of Experiments Do People Do and How Does One Interpret the Results? Curr Osteoporos Rep 2018; 16:423-433. [PMID: 29915968 PMCID: PMC8078087 DOI: 10.1007/s11914-018-0454-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The mechanical integrity of bone is determined by the direct measurement of bone mechanical properties. This article presents an overview of the current, most common, and new and upcoming experimental approaches for the mechanical characterization of bone. The key outcome variables of mechanical testing, as well as interpretations of the results in the context of bone structure and biology are also discussed. RECENT FINDINGS Quasi-static tests are the most commonly used for determining the resistance to structural failure by a single load at the organ (whole bone) level. The resistance to crack initiation or growth by fracture toughness testing and fatigue loading offers additional and more direct characterization of tissue material properties. Non-traditional indentation techniques and in situ testing are being increasingly used to probe the material properties of bone ultrastructure. Destructive ex vivo testing or clinical surrogate measures are considered to be the gold standard for estimating fracture risk. The type of mechanical test used for a particular investigation depends on the length scale of interest, where the outcome variables are influenced by the interrelationship between bone structure and composition. Advancement in the sensitivity of mechanical characterization techniques to detect changes in bone at the levels subjected to modifications by aging, disease, and/or pharmaceutical treatment is required. As such, a number of techniques are now available to aid our understanding of the factors that contribute to fracture risk.
Collapse
Affiliation(s)
- Stacyann Bailey
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW While thinning of the cortices or trabeculae weakens bone, age-related changes in matrix composition also lower fracture resistance. This review summarizes how the organic matrix, mineral phase, and water compartments influence the mechanical behavior of bone, thereby identifying characteristics important to fracture risk. RECENT FINDINGS In the synthesis of the organic matrix, tropocollagen experiences various post-translational modifications that facilitate a highly organized fibril of collagen I with a preferred orientation giving bone extensibility and several toughening mechanisms. Being a ceramic, mineral is brittle but increases the strength of bone as its content within the organic matrix increases. With time, hydroxyapatite-like crystals experience carbonate substitutions, the consequence of which remains to be understood. Water participates in hydrogen bonding with organic matrix and in electrostatic attractions with mineral phase, thereby providing stability to collagen-mineral interface and ductility to bone. Clinical tools sensitive to age- and disease-related changes in matrix composition that the affect mechanical behavior of bone could potentially improve fracture risk assessment.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amy Creecy
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Orthopedic Institute, Medical Center East, South Tower, Suite 4200, Nashville, TN, 37232, USA.
| |
Collapse
|
36
|
Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone. Biomech Model Mechanobiol 2018; 17:1415-1428. [PMID: 29808355 DOI: 10.1007/s10237-018-1035-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/16/2018] [Indexed: 01/10/2023]
Abstract
The recent studies have shown that long-term bisphosphonate use may result in a number of mechanical alterations in the bone tissue including a reduction in compositional heterogeneity and an increase in microcrack density. There are limited number of experimental and computational studies in the literature that evaluated how these modifications affect crack initiation and propagation in cortical bone. Therefore, in this study, the entire crack growth process including initiation and propagation was simulated at the microscale by using the cohesive extended finite element method. Models with homogeneous and heterogeneous material properties (represented at the microscale capturing the variability in material property values and their distribution) as well as different microcrack density and microstructure were compared. The results showed that initiation fracture resistance was higher in models with homogeneous material properties compared to heterogeneous ones, whereas an opposite trend was observed in propagation fracture resistance. The increase in material heterogeneity level up to 10 different material property sets increased the propagation fracture resistance beyond which a decrease was observed while still remaining higher than the homogeneous material distribution. The simulation results also showed that the total osteonal area influenced crack propagation and the local osteonal area near the initial crack affected the crack initiation behavior. In addition, the initiation fracture resistance was higher in models representing bisphosphonate treated bone (low material heterogeneity, high microcrack density) compared to untreated bone models (high material heterogeneity, low microcrack density), whereas an opposite trend was observed at later stages of crack growth. In summary, the results demonstrated that tissue material heterogeneity, microstructure, and microcrack density influenced crack initiation and propagation differently. The findings also elucidate how possible modifications in material heterogeneity and microcrack density due to bisphosphonate treatment may influence the initiation and propagation fracture resistance of cortical bone.
Collapse
|
37
|
Akbardoost J, Amirafshari R, Mohsenzade O, Berto F. Scaling effect on the fracture toughness of bone materials using MMTS criterion. J Mech Behav Biomed Mater 2018; 85:72-79. [PMID: 29859417 DOI: 10.1016/j.jmbbm.2018.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/29/2018] [Accepted: 05/19/2018] [Indexed: 10/16/2022]
Abstract
The aim of this study is to present a stress based approach for investigating the effect of specimen size on the fracture toughness of bone materials. The proposed approach is a modified form of the classical fracture criterion called maximum tangential stress (MTS). The mechanical properties of bone are different in longitudinal and transverse directions and hence the tangential stress component in the proposed approach should be determined in the orthotropic media. Since only the singular terms of series expansions were obtained in the previous studies, the tangential stress is measured from finite element analysis. In this study, the critical distance is also assumed to be size dependent and a semi-empirical formulation is used for describing the size dependency of the critical distance. By comparing the results predicted by the proposed approach and those reported in the previous studies, it is shown that the proposed approach can predict the fracture resistance of cracked bone by taking into account the effect of specimen size.
Collapse
Affiliation(s)
- Javad Akbardoost
- Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University, Mofatteh Avenue, P.O. Box 15719-14911, Tehran, Iran.
| | - Reza Amirafshari
- Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University, Mofatteh Avenue, P.O. Box 15719-14911, Tehran, Iran
| | - Omid Mohsenzade
- Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University, Mofatteh Avenue, P.O. Box 15719-14911, Tehran, Iran
| | - Filippo Berto
- Department of mechanical engineering, Norwegian university science and technology, Richard birkelands vei 2b, 7491 Trondheim, Norway
| |
Collapse
|
38
|
Makowski AJ, Granke M, Ayala OD, Uppuganti S, Mahadevan-Jansen A, Nyman JS. Applying Full Spectrum Analysis to a Raman Spectroscopic Assessment of Fracture Toughness of Human Cortical Bone. APPLIED SPECTROSCOPY 2017; 71:2385-2394. [PMID: 28708001 PMCID: PMC5561524 DOI: 10.1177/0003702817718149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A decline in the inherent quality of bone tissue is a † Equal contributors contributor to the age-related increase in fracture risk. Although this is well-known, the important biochemical factors of bone quality have yet to be identified using Raman spectroscopy (RS), a nondestructive, inelastic light-scattering technique. To identify potential RS predictors of fracture risk, we applied principal component analysis (PCA) to 558 Raman spectra (370-1720 cm-1) of human cortical bone acquired from 62 female and male donors (nine spectra each) spanning adulthood (age range = 21-101 years). Spectra were analyzed prior to R-curve, nonlinear fracture mechanics that delineate crack initiation (Kinit) from crack growth toughness (Kgrow). The traditional ν1phosphate peak per amide I peak (mineral-to-matrix ratio) weakly correlated with Kinit (r = 0.341, p = 0.0067) and overall crack growth toughness (J-int: r = 0.331, p = 0.0086). Sub-peak ratios of the amide I band that are related to the secondary structure of type 1 collagen did not correlate with the fracture toughness properties. In the full spectrum analysis, one principal component (PC5) correlated with all of the mechanical properties (Kinit: r = - 0.467, Kgrow: r = - 0.375, and J-int: r = - 0.428; p < 0.0067). More importantly, when known predictors of fracture toughness, namely age and/or volumetric bone mineral density (vBMD), were included in general linear models as covariates, several PCs helped explain 45.0% (PC5) to 48.5% (PC7), 31.4% (PC6), and 25.8% (PC7) of the variance in Kinit, Kgrow, and J-int, respectively. Deriving spectral features from full spectrum analysis may improve the ability of RS, a clinically viable technology, to assess fracture risk.
Collapse
Affiliation(s)
- Alexander J. Makowski
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232
| | - Mathilde Granke
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212
| | - Oscar D. Ayala
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232
| | - Jeffry S. Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|