1
|
Sarsam J, Desmond A, Roustaei M, Satou G, Afshar Y. A Novel Prenatal Pipeline for Three-Dimensional Hemodynamic Modeling of the Fetal Aorta. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025. [PMID: 40434286 DOI: 10.1002/jum.16721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/15/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025]
Abstract
OBJECTIVE Congenital heart disease (CHD) is the most common birth defect and the leading cause of infant death from congenital anomalies. Limitations in standard-of-care fetal echocardiography lack hemodynamic insight. Cardiovascular computational modeling methods have been developed to simulate patient-specific morphology and hemodynamics, but are limited in applications for fetal diagnosis, as existing pipelines depend upon 3D CMR imaging data. There is no existing workflow for converting 2D echocardiograms into models of the fetal aorta. We aim to develop a methodology to create pulsatile 3D-aortic models from standard-of-care 2D echocardiograms to supplement fetal imaging with noninvasive predictions of hemodynamics in CHD diagnosis. METHODS Utilizing 2D fetal echocardiograms, edge detection algorithms are applied to delineate vessel boundaries. Cross-sectional diameters along the aortic arch and branch centerlines were segmented, integrated into 3D geometric models, and reconstructed using SimVascular. Patient-specific simulations were developed for three false-positive coarctation of the aorta (CoA) fetuses and 3 true positive CoA fetuses (postnatally confirmed), using echocardiogram and Doppler source data. RESULTS We propose a modeling methodology and set of boundary conditions that generate physiologically reasonable and cross-validated quantifications of fetal hemodynamics. Noninvasive predictions of fetal aortic pressures, flow streamlines, and vessel displacement offer insight into real-time hemodynamics and the stress of abnormal morphology on flow directions in the prenatal aorta. CONCLUSIONS We present a clinically useful pipeline for generating simulations of flow in the fetal aorta that capture fluid-structure interactions and generate noninvasive predictions of diagnostic hemodynamic indicators that could not previously be captured prenatally. This pipeline integrates into clinical diagnosis and offers insight into patient-specific physiology beyond a visualization of cardiac morphology alone, offering the potential to enhance the diagnostic precision of CHDs.
Collapse
Affiliation(s)
- Joanne Sarsam
- Department of Computational and Systems Biology, UCLA, Los Angeles, California, USA
| | - Angela Desmond
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, UCLA, Los Angeles, California, USA
- David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Mehrdad Roustaei
- Department of Bioengineering, UCLA Samueli School of Engineering, Los Angeles, California, USA
| | - Gary Satou
- David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Division of Cardiology, Department of Pediatrics, UCLA, Los Angeles, California, USA
| | - Yalda Afshar
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
2
|
Creazzo G, Nannini G, Saitta S, Astori D, Gaudino M, Girardi LN, Weinsaft JW, Redaelli A. Deployment of a digital twin using the coupled momentum method for fluid-structure interaction: A case study for aortic aneurysm. Comput Biol Med 2025; 190:110084. [PMID: 40179810 DOI: 10.1016/j.compbiomed.2025.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
INTRODUCTION Dacron graft replacement is the standard therapy for ascending aorta aneurysm, involving the insertion of a prosthesis with lower compliance than native tissue, which can alter downstream hemodynamics and lead to adverse remodeling. Digital human twins (DHT), based on in-silico models, have the potential to predict biomarkers of adverse outcome and aid in designing optimal treatments tailored to the individual patient. OBJECTIVE We propose a pipeline for deploying a digital human twin of the thoracic aorta to explore alternative solutions to traditional Dacron grafting, utilizing more compliant prostheses for reconstructing the ascending aorta. METHODS We propose a DHT based on fluid-structure interaction (FSI) analysis of the thoracic aorta. We create 3 models of the patient, representing: (i) the pre-operative baseline, (ii) the post-operative with Dacron graft, and (iii) a virtual post-operative using a compliant fibrous prosthesis. 3D geometry of the thoracic aorta for a patient with a congenital aneurysm, before and after the surgery, were reconstructed from magnetic resonance imaging (MRI). As inlet boundary condition (BC), we assigned a time-varying 3D velocity profile extrapolated from 4D flow MRI. For the outlet BCs, we coupled 0D Windkessel models, tuned to match the flow rate measured in the descending aorta from 4D flow. The aortic wall and the prosthetic graft were modeled as hyperelastic materials using the Holzapfel-Gasser constitutive model and tuned to patients distensibility. FSI analysis was run for two cardiac cycles. RESULTS Results were validated against 4D flow data. Quantitative comparison of outflows between FSI and 4D flow yielded relative squared errors of 5.28% and 0.33% for models (i) and (ii), respectively. Wall shear stress (WSS) and strain increased in both post-surgical scenarios (ii) and (iii) compared to (i), with a lower increase observed in the virtual scenario (iii) (p<0.001). However, the difference between scenarios (iii) and (ii) remained moderate on average (e.g., 0.6 Pa for WSS). CONCLUSION FSI analysis enables the deployment of reliable thoracic aorta DHTs to predict the impact of prostheses with different distensibility. Results indicate moderate yet promising benefits of more compliant fibrous devices on distal hemodynamics.
Collapse
Affiliation(s)
- Giacomo Creazzo
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Guido Nannini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Simone Saitta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Davide Astori
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Mario Gaudino
- Department of Medicine (Cardiology), Weill Cornell College, New York, NY, United States of America
| | - Leonard N Girardi
- Department of Medicine (Cardiology), Weill Cornell College, New York, NY, United States of America
| | - Jonathan W Weinsaft
- Department of Medicine (Cardiology), Weill Cornell College, New York, NY, United States of America
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
3
|
Ramazanli B, Yagmur O, Sarioglu EC, Salman HE. Modeling Techniques and Boundary Conditions in Abdominal Aortic Aneurysm Analysis: Latest Developments in Simulation and Integration of Machine Learning and Data-Driven Approaches. Bioengineering (Basel) 2025; 12:437. [PMID: 40428056 DOI: 10.3390/bioengineering12050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/03/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
Research on abdominal aortic aneurysms (AAAs) primarily focuses on developing a clear understanding of the initiation, progression, and treatment of AAA through improved model accuracy. High-fidelity hemodynamic and biomechanical predictions are essential for clinicians to optimize preoperative planning and minimize therapeutic risks. Computational fluid dynamics (CFDs), finite element analysis (FEA), and fluid-structure interaction (FSI) are widely used to simulate AAA hemodynamics and biomechanics. However, the accuracy of these simulations depends on the utilization of realistic and sophisticated boundary conditions (BCs), which are essential for properly integrating the AAA with the rest of the cardiovascular system. Recent advances in machine learning (ML) techniques have introduced faster, data-driven surrogates for AAA modeling. These approaches can accelerate segmentation, predict hemodynamics and biomechanics, and assess disease progression. However, their reliability depends on high-quality training data derived from CFDs and FEA simulations, where BC modeling plays a crucial role. Accurate BCs can enhance ML predictions, increasing the clinical applicability. This paper reviews existing BC models, discussing their limitations and technical challenges. Additionally, recent advancements in ML and data-driven techniques are explored, discussing their current states, future directions, common algorithms, and limitations.
Collapse
Affiliation(s)
- Burcu Ramazanli
- School of Information Technologies and Engineering, ADA University, Baku AZ1008, Azerbaijan
| | - Oyku Yagmur
- Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara 06560, Türkiye
| | - Efe Cesur Sarioglu
- Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara 06560, Türkiye
| | - Huseyin Enes Salman
- Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara 06560, Türkiye
| |
Collapse
|
4
|
Wu M, Liu L, Xiong J. In Vitro Studies on Hemodynamics of Type B Aortic Dissection: Accuracy and Reliability. J Endovasc Ther 2025; 32:303-311. [PMID: 37341214 DOI: 10.1177/15266028231182229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Type B aortic dissection (TBAD) is associated with high mortality. Multiple in vitro models and computational fluid dynamics (CFD) simulations have been used to mimic the hemodynamic characteristics of TBAD to inform more effective therapeutic strategies. However, the results of these experiments are rarely used in clinical practice due to concerns about their accuracy and reliability. The development of 4-dimensional magnetic resonance imaging (4D-MRI) allows to verify the accuracy of the results of in vitro models and CFD simulations. This review provides an overview of the strengths, limitations, and accuracy of in vitro models, CFD simulations, and in vivo 4D flow MRI for the study of TBAD hemodynamics.Clinical Impact1. Hemodynamic of TBAD is important to improve the long-term outcome of TEVAR.2. This review provides an overview of the in-vitro for the hemodynamic study of TBAD.3. The accuracy and validity of in-vitro TBAD experiments should be further studied.
Collapse
Affiliation(s)
- Mingwei Wu
- Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Li Liu
- National Institutes for Food and Drug Control, Beijing, China
| | - Jiang Xiong
- Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Wu P, Zhu C. Noninvasive estimation of central blood pressure through fluid-structure interaction modeling. Biomech Model Mechanobiol 2025; 24:423-439. [PMID: 39704894 DOI: 10.1007/s10237-024-01916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Central blood pressure (cBP) is considered a superior indicator of cardiovascular fitness than brachial blood pressure (bBP). Even though bBP is easy to measure noninvasively, it is usually higher than cBP due to pulse wave amplification, characterized by the gradual increase in peak systolic pressure during pulse wave propagation. In this study, we aim to develop an individualized transfer function that can accurately estimate cBP from bBP. We first construct a three-dimensional, patient-specific model of the upper limb arterial system using fluid-structure interaction simulations, incorporating variable material properties and complex boundary conditions. Then, we develop an analytical brachial-aortic transfer function based on novel solutions for compliant vessels. The accuracy of this transfer function is successfully validated against numerical simulation results, which effectively reproduce pulse wave propagation and amplification, with key hemodynamic parameters falling within the range of clinical measurements. Further analysis of the transfer function reveals that cBP is a linear combination of bBP and aortic flow rate in the frequency domain, with the coefficients determined by vessel geometry, material properties, and boundary conditions. Additionally, bBP primarily contributes to the steady component of cBP, while the aortic flow rate is responsible for the pulsatile component. Furthermore, local sensitivity analysis indicates that the lumen radius is the most influential parameter in accurately estimating cBP. Although not directly applicable clinically, the proposed transfer function enhances understanding of the underlying physics-highlighting the importance of aortic flow and lumen radius-and can guide the development of more practical transfer functions.
Collapse
Affiliation(s)
- Peishuo Wu
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing, 100871, China
| | - Chi Zhu
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing, 100871, China.
- Nanchang Innovation Institute, Peking University, Nanchang, 330008, China.
| |
Collapse
|
6
|
Chen Y, Cheng Y, Luo K, Fan J. Influence of Geometric Parameters on the Hemodynamic Characteristics of the Vertebral Artery. J Biomech Eng 2025; 147:031005. [PMID: 39790091 DOI: 10.1115/1.4067578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
The carotid arteries (CAs) and vertebral arteries (VAs) are principal conduits for cerebral blood supply and are common sites for atherosclerotic plaque formation. To date, there has been extensive clinical and hemodynamic reporting on carotid arteries; however, studies focusing on the hemodynamic characteristics of the VA are notably scarce. This article presents a systematic analysis of the impact of VA diameter and the angle of divergence from the subclavian artery (SA) on hemodynamic properties, facilitated by the construction of an idealized VA geometric model. Research indicates that the increase in the diameter of the VA is associated with a corresponding increase in the complexity of the vortex structures at the bifurcation with the SA. When the VA diameter is constant, a 30 deg VA-SA angle yields better hemodynamic capacity than 45 deg and 60 deg angles, and the patterns of blood flow and helicity values are consistent across different angles. Elevated oscillatory shear index (OSI) zones are mainly at the origin of the VA, with an elliptical low OSI region within. As the diameter increases, the high OSI region spreads downstream. Increasing the bifurcation angle decreases OSI values in and below the elliptical low OSI region. These findings are valuable for studying the physiological and pathological mechanisms of VA atherosclerosis.
Collapse
Affiliation(s)
- Yanlu Chen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Yuquan Campus, 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| | - Yuzhou Cheng
- Shanghai Institute for Advanced Study of Zhejiang University, Zhangjiang Guochuang Center Phase, No. 799 Dangui Road, Shanghai 200120, China
| | - Kun Luo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Yuquan Campus, 38 Zheda Road, Hangzhou, Zhejiang 310027, China; Shanghai Institute for Advanced Study of Zhejiang University, Zhangjiang Guochuang Center Phase, No. 799 Dangui Road, Shanghai 200120, China
| | - Jianren Fan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Yuquan Campus, 38 Zheda Road, Hangzhou, Zhejiang 310027, China; Shanghai Institute for Advanced Study of Zhejiang University, Zhangjiang Guochuang Center Phase, No. 799 Dangui Road, Shanghai 200120, China
| |
Collapse
|
7
|
Yang J, Zhang Y, Xue J, Guo Y, Liu S, Yao Y, Zhong H, Quan A, Yang J. Hemodynamic effects of stenosis with varying severity in different segments of the carotid artery using computational fluid dynamics. Sci Rep 2025; 15:4896. [PMID: 39929978 PMCID: PMC11811151 DOI: 10.1038/s41598-025-89100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Carotid atherosclerosis is a leading cause of ischemic stroke. As a result of atherosclerotic plaque formation, the carotid artery lumen narrows, leading to significant hemodynamic alterations. These changes can further contribute to the development of subsequent lesions. In this study, we built 54 idealized carotid artery stenosis (CAS) models by using a single healthy carotid artery to simulate six different degrees of stenosis at nine various locations. Computational fluid dynamics (CFD) was applied to analyze blood flow changes, focusing on three key hemodynamic indicators: wall shear stress (WSS), oscillatory shear index (OSI), and relative residence time (RRT). Numerical simulations and model validations were conducted to ensure the correctness and validity of the results. The results show that increasing stenosis severity leads to higher WSS values at the site of stenosis, which may facilitate plaque rupture, while OSI and RRT decrease at the stenosis site. In the external carotid artery (ECA) and internal carotid artery (ICA), increasing stenosis severity results in a reduction in WSS at bifurcation sites, promoting plaque formation. These findings offer new insights into the hemodynamic changes associated with carotid artery stenosis and provide a solid foundation for future research and clinical applications.
Collapse
Affiliation(s)
- Jingxi Yang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Yang Zhang
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Junzhen Xue
- Health Management Faculty, Xianning Vocational and Technical College, Xianning, 437100, People's Republic of China
| | - Yuxin Guo
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Siyu Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Yixin Yao
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Huimin Zhong
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Anlong Quan
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Jianbao Yang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| |
Collapse
|
8
|
Xue S, Lu T, Hu W, Xia Z, Zhang J, Lu X, Xiong J. Influence of Left Subclavian Artery Stent Graft Geometry on Blood Hemodynamics in Thoracic Endovascular Aortic Repair. J Biomech Eng 2025; 147:021008. [PMID: 39688322 DOI: 10.1115/1.4067448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
The objective of this research is to analyze the hemodynamic differences in five configurations of left subclavian artery (LSA) stent grafts after LSA endovascular reconstruction in thoracic endovascular aortic repair (TEVAR). For numerical simulation, one three-dimensional thoracic aortic geometry model with an LSA stent graft retrograde curved orientation was reconstructed from post-TEVAR computed tomography angiography (CTA) images, and four potential LSA graft configurations were modified and reconstructed: three straight (0, 2, and 10 mm aortic extension) and one anterograde configuration. The blood perfusion of the LSA, flow field, and hemodynamic wall parameters were analyzed. The vortex evolution process was visualized by the Liutex method which enables accurate extraction of the pure rigid rotational motion of fluid and is highly suitable for identifying the vortex structure of blood flow near the vessel wall. The average flow in the retrograde configuration decreased by 11.2% compared to that in the basic configuration. When the LSA stent graft extends in the aortic lumen, flow separation is observed, and vortex structures begin to form at the proximal inferior arterial geometry and the wall of the extension in late systole. A greater extension length and inflow angle upstream resulted in a greater oscillatory shear index (OSI) and relative residence time (RRT) on the nearby wall of the posterior flow field of the extension. Shorter intra-aortic extension length (<10 mm) and smaller LSA stent graft inflow angle (<120 deg) may be recommended in TEVAR, considering LSA perfusion and minimized flow field disturbance.
Collapse
Affiliation(s)
- Song Xue
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Tiandong Lu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenqing Hu
- Department of Applied Mechanics and Engineering, School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, China
| | - Zeyang Xia
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Zhang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Jing Xiong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
9
|
Manta A, Tzirakis K. A Comprehensive Review on Computational Analysis, Research Advances, and Major Findings on Abdominal Aortic Aneurysms for the Years 2021 to 2023. Ann Vasc Surg 2025; 110:63-81. [PMID: 39343357 DOI: 10.1016/j.avsg.2024.07.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a pathological condition characterized by the dilation of the lower part of the aorta, where significant hemodynamic forces are present. The prevalence and high mortality risk associated with AAA remain major concerns within the scientific community. There is a critical need for extensive research to understand the underlying mechanisms, pathophysiological characteristics, and effective detection methods for abdominal aortic abnormalities. Additionally, it is imperative to develop and refine both medical and surgical management strategies. This review aims to indicate the role of computational analysis in the comprehension and management of AAAs and covers recent research studies regarding the computational analysis approach conducted between 2021 and 2023. Computational analysis methods have emerged as sophisticated and noninvasive approaches, providing detailed insights into the complex dynamics of AAA and enhancing our ability to study and manage this condition effectively. METHODS Computational analysis relies on fluid mechanics principles applied to arterial flow, using the Navier-Stokes equations to model blood flow dynamics. Key hemodynamic indicators relevant to AAAs include Time-Average Wall Shear Stress, Oscillatory Shear Index, Endothelial Cell Activation Potential, and Relative Residence Time. The primary methods employed for simulating the abdominal aorta and studying its biomechanical environment are computational fluid dynamics and Finite Element Methods. This review article encompasses a thorough examination of recent literature, focusing on studies conducted between 2021 and 2023. RESULTS The latest studies have elucidated crucial insights into the blood flow characteristics and geometric attributes of AAAs. Notably, blood flow patterns within AAAs are associated with increased rupture risk, along with elevated intraluminal thrombus volume and specific calcification thresholds. Asymmetric AAAs exhibit heightened risks of rupture and thrombus formation due to low and oscillating wall shear stresses. Moreover, larger aneurysms demonstrate increased wall stress, pressure, and energy loss. Advanced modeling techniques have augmented predictive capabilities concerning growth rates and surgical thresholds. Additionally, the influence of material properties and thrombus volume on wall stress levels is noteworthy, while inlet velocity profiles significantly modulate blood flow dynamics within AAAs. CONCLUSIONS This review highlights the potential utility of computational modeling. However, the clinical applicability of computational modeling has been limited by methodological variability despite the ongoing accumulation of evidence supporting the prognostic significance of biomechanical and hemodynamic indices in this field. The establishment of standardized reporting is critical for clinical implementation.
Collapse
Affiliation(s)
- Anastasia Manta
- Department of Mechanical Engineering, School of Engineering, Hellenic Mediterranean University, Heraklion, Greece; School of Medicine, University of Crete, Heraklion, Greece.
| | - Konstantinos Tzirakis
- Department of Mechanical Engineering, School of Engineering, Hellenic Mediterranean University, Heraklion, Greece
| |
Collapse
|
10
|
Wang X, Ghayesh MH, Li J, Kotousov A, Zander AC, Dawson JA, Psaltis PJ. Impact of Geometric Attributes on Abdominal Aortic Aneurysm Rupture Risk: An In Vivo FSI-Based Study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3884. [PMID: 39529502 DOI: 10.1002/cnm.3884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/02/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Reported in this paper is a cutting-edge computational investigation into the influence of geometric characteristics on abdominal aortic aneurysm (AAA) rupture risk, beyond the traditional measure of maximum aneurysm diameter. A Comprehensive fluid-structure interaction (FSI) analysis was employed to assess risk factors in a range of patient scenarios, with the use of three-dimensional (3D) AAA models reconstructed from patient-specific aortic data and finite element method. Wall shear stress (WSS), and its derivatives such as time-averaged WSS (TAWSS), oscillatory shear index (OSI), relative residence time (RRT) and transverse WSS (transWSS) offer insights into the force dynamics acting on the AAA wall. Emphasis is placed on these WSS-based metrics and seven key geometric indices. By correlating these geometric discrepancies with biomechanical phenomena, this study highlights the novel and profound impact of geometry on risk prediction. This study demonstrates the necessity of a multidimensional assessment approach, future efforts should complement these findings with experimental validations for an applicable approach for clinical use.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia, Australia
| | - Mergen H Ghayesh
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia, Australia
| | - Jiawen Li
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrei Kotousov
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia, Australia
| | - Anthony C Zander
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia, Australia
| | - Joseph A Dawson
- Department of Vascular & Endovascular Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Trauma Surgery Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Peter J Psaltis
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Vascular Research Centre, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Moghadasi K, Ghayesh MH, Li J, Hu E, Amabili M, Żur KK, Fitridge R. Nonlinear biomechanical behaviour of extracranial carotid artery aneurysms in the framework of Windkessel effect via FSI technique. J Mech Behav Biomed Mater 2024; 160:106760. [PMID: 39366083 DOI: 10.1016/j.jmbbm.2024.106760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Extracranial carotid artery aneurysms (ECCA) lead to rupture and neurologic symptoms from embolisation, with potentially fatal outcomes. Investigating the biomechanical behaviour of EECA with blood flow dynamics is crucial for identifying regions more susceptible to rupture. A coupled three-dimensional (3D) Windkessel-framework and hyperelastic fluid-structure interaction (FSI) analysis of ECCAs with patient-specific geometries, was developed in this paper with a particular focus on hemodynamic parameters and the arterial wall's biomechanical response. The blood flow has been modelled as non-Newtonian, pulsatile, and turbulent. The biomechanical characteristics of the aneurysm and artery are characterised employing a 5-parameter Mooney-Rivlin hyperelasticity model. The Windkessel effect is also considered to efficiently simulate pressure profile of the outlets and to capture the dynamic changes over the cardiac cycle. The study found the aneurysm carotid artery exhibited the high levels of pressure, wall shear stress (WSS), oscillatory shear index (OSI), and relative residence time (RRT) compared to the healthy one. The deformation of the arterial wall and the corresponding von Mises (VM) stress were found significantly increased in aneurysm cases, in comparison to that of no aneurysm cases, which strongly correlated with the hemodynamic characteristics of the blood flow and the geometric features of the aneurysms. This escalation would intensify the risk of aneurysm wall rupture. These findings have critical implications for enhancing treatment strategies for patients with extracranial aneurysms.
Collapse
Affiliation(s)
- Kaveh Moghadasi
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Mergen H Ghayesh
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Jiawen Li
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Eric Hu
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marco Amabili
- School of Engineering, Westlake University, Zhejiang province, PR China; Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Krzysztof Kamil Żur
- Faculty of Mechanical Engineering, Bialystok University of Technology, Bialystok, 15-351, Poland
| | - Robert Fitridge
- Vascular and Endovascular Service, Royal Adelaide Hospital, Adelaide, Australia; Discipline of Surgery, University of Adelaide, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, Australia
| |
Collapse
|
12
|
Wu H, Xi L, Hao Y, Liu M, Huang Q, Ma T, Deng X, Zhai Z, Liu X. Effects of inlet boundary conditions on blood flow and thrombosis modelling in patients with chronic thromboembolic pulmonary hypertension. Comput Methods Biomech Biomed Engin 2024:1-11. [PMID: 39565090 DOI: 10.1080/10255842.2024.2429789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
To investigate the impact of patient-specific boundary conditions (BC) on blood flow and thrombosis modelling for patients with chronic thromboembolic pulmonary hypertension (CTEPH), three types of BCs were utilized to construct CTEPH models based on computed tomography pulmonary angiography images. First BC type is the patient-specific velocity profiles at the main pulmonary artery using phase contrast MRI (PC-MRI). The other two simplified types are the pulsatile BC and steady BC, which are obtained by spatially and temporally averaging the PC-MRI BC. Hemodynamic features including helical density, time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI), and thrombosis were compared for the three types BCs. The results indicated that, compared to the MRI BC, steady BC overestimated helical density and TAWSS in the pulmonary arteries by approximately 63.1% and 60%, respectively. The impact of simplified pulsatile BC on TAWSS and OSI in most regions of the pulmonary arteries was negligible with differences within 5%. Regarding thrombosis, the area predicted under pulsatile BC was approximately 80% smaller than that under PC-MRI BC. In conclusion, compared to PC-MRI BC, steady inlet BC tend to overestimate hemodynamic parameters, while pulsatile inlet BC yield similar wall shear stress based on parameters in most regions of the pulmonary artery. Patient-specific PC-MRI inlet BC should be used for accurate predictions of helical flow pattern and thrombus formation.
Collapse
Affiliation(s)
- Hui Wu
- Key Laboratory of Biomechanics and Mechanobiology, (Beihang University,), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Linfeng Xi
- Capital Medical University, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yueming Hao
- Key Laboratory of Biomechanics and Mechanobiology, (Beihang University,), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Qiang Huang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tianxiang Ma
- Key Laboratory of Biomechanics and Mechanobiology, (Beihang University,), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology, (Beihang University,), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhenguo Zhai
- Capital Medical University, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiao Liu
- Key Laboratory of Biomechanics and Mechanobiology, (Beihang University,), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
13
|
Yin Z, Armour C, Kandail H, O'Regan DP, Bahrami T, Mirsadraee S, Pirola S, Xu XY. Fluid-structure interaction analysis of a healthy aortic valve and its surrounding haemodynamics. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3865. [PMID: 39209425 DOI: 10.1002/cnm.3865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/23/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in maintaining normal physiological functions of the valve. The aim of this study was to establish a subject-specific fluid-structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. A subject-specific aortic root was reconstructed from magnetic resonance (MR) images acquired from a healthy volunteer, whilst the valve leaflets were built using a parametric model fitted to the subject-specific aortic root geometry. The material behaviour of the leaflets was described using the isotropic hyperelastic Ogden model, and subject-specific boundary conditions were derived from 4D-flow MR imaging (4D-MRI). Strongly coupled FSI simulations were performed using a finite volume-based boundary conforming method implemented in FlowVision. Our FSI model was able to simulate the opening and closing of the AV throughout the entire cardiac cycle. Comparisons of simulation results with 4D-MRI showed a good agreement in key haemodynamic parameters, with stroke volume differing by 7.5% and the maximum jet velocity differing by less than 1%. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets.
Collapse
Affiliation(s)
- Zhongjie Yin
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Chlöe Armour
- Department of Chemical Engineering, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Declan P O'Regan
- Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Toufan Bahrami
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield Hospitals NHS Trust, London, UK
| | - Saeed Mirsadraee
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Radiology, Royal Brompton and Harefield Hospitals NHS Trust, London, UK
| | - Selene Pirola
- Department of Chemical Engineering, Imperial College London, London, UK
- Department of BioMechanical Engineering, TU Delft, Delft, The Netherlands
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
14
|
Tajeddini F, Romero DA, Huang YX, David TE, Ouzounian M, Amon CH, Chung JC. Type B aortic dissection in Marfan patients after the David procedure: Insights from patient-specific simulation. JTCVS OPEN 2024; 21:1-16. [PMID: 39534345 PMCID: PMC11551291 DOI: 10.1016/j.xjon.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 11/16/2024]
Abstract
Objective An elevated risk of acute type B aortic dissection exists in patients with Marfan syndrome after the David procedure. This study explores hemodynamic changes in the descending aorta postsurgery. Methods A single-center retrospective review identified 5 patients with Marfan syndrome who experienced acute type B aortic dissection within 6 years after the David procedure, alongside 5 matched patients with Marfan syndrome without dissection more than 6 years postsurgery. Baseline and postoperative computed tomography and magnetic resonance scans were analyzed for aortic geometry reconstruction. Computational fluid dynamic simulations evaluated preoperative and postoperative hemodynamics. Results Patients with acute type B aortic dissection showed lower blood flow velocities, increased vortices, and altered velocity profiles in the proximal descending aorta compared with controls. Preoperatively, median time-averaged wall shear stress in the descending aorta was lower in patients with acute type B aortic dissection (control: 1.76 [1.50-2.83] Pa, dissection: 1.16 [1.06-1.30] Pa, P = .047). Postsurgery, neither group had significant time-averaged wall shear stress changes (dissection: P = .69, control: P = .53). Localized analysis revealed surgery-induced time-averaged wall shear stress increases near the subclavian artery in the dissection group (range, +0.30 to +1.05 Pa, each comparison, P < .05). No such changes were observed in controls. Oscillatory shear index and relative residence time were higher in patients with acute type B aortic dissection before and after surgery versus controls. Conclusions Hemodynamics likely play a role in post-David procedure acute type B aortic dissection. Further investigation into aortic geometry, hemodynamics, and postoperative acute type B aortic dissection is vital for enhancing outcomes and refining surgical strategies in patients with Marfan syndrome.
Collapse
Affiliation(s)
- Farshad Tajeddini
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - David A. Romero
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yu Xuan Huang
- Department of Engineering Science, University of Toronto, Toronto, Ontario, Canada
| | - Tirone E. David
- Division of Cardiovascular Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Maral Ouzounian
- Division of Cardiovascular Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Cristina H. Amon
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer C.Y. Chung
- Division of Cardiovascular Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Wang K, Armour CH, Guo B, Dong Z, Xu XY. A new method for scaling inlet flow waveform in hemodynamic analysis of aortic dissection. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3855. [PMID: 39051141 DOI: 10.1002/cnm.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Computational fluid dynamics (CFD) simulations have shown great potentials in cardiovascular disease diagnosis and postoperative assessment. Patient-specific and well-tuned boundary conditions are key to obtaining accurate and reliable hemodynamic results. However, CFD simulations are usually performed under non-patient-specific flow conditions due to the absence of in vivo flow and pressure measurements. This study proposes a new method to overcome this challenge by tuning inlet boundary conditions using data extracted from electrocardiogram (ECG). Five patient-specific geometric models of type B aortic dissection were reconstructed from computed tomography (CT) images. Other available data included stoke volume (SV), ECG, and 4D-flow magnetic resonance imaging (MRI). ECG waveforms were processed to extract patient-specific systole to diastole ratio (SDR). Inlet boundary conditions were defined based on a generic aortic flow waveform tuned using (1) SV only, and (2) with ECG and SV (ECG + SV). 4D-flow MRI derived inlet boundary conditions were also used in patient-specific simulations to provide the gold standard for comparison and validation. Simulations using inlet flow waveform tuned with ECG + SV not only successfully reproduced flow distributions in the descending aorta but also provided accurate prediction of time-averaged wall shear stress (TAWSS) in the primary entry tear (PET) and abdominal regions, as well as maximum pressure difference, ∆Pmax, from the aortic root to the distal false lumen. Compared with simulations with inlet waveform tuned with SV alone, using ECG + SV in the tuning method significantly reduced the error in false lumen ejection fraction at the PET (from 149.1% to 6.2%), reduced errors in TAWSS at the PET (from 54.1% to 5.7%) and in the abdominal region (from 61.3% to 11.1%), and improved ∆Pmax prediction (from 283.1% to 18.8%) However, neither of these inlet waveforms could be used for accurate prediction of TAWSS in the ascending aorta. This study demonstrates the importance of SDR in tailoring inlet flow waveforms for patient-specific hemodynamic simulations. A well-tuned flow waveform is essential for ensuring that the simulation results are patient-specific, thereby enhancing the confidence and fidelity of computational tools in future clinical applications.
Collapse
Affiliation(s)
- Kaihong Wang
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Chlöe H Armour
- Department of Chemical Engineering, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Baolei Guo
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Dong
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
16
|
Hussain A, Bilal S, Arshad T, Riaz Dar MN, Ahmed Aljohani A, Riaz MB, Ghith E. Unveiling thermal and hemodynamic effects of aneurysm on abdominal aorta using power law model and finite element analysis. CASE STUDIES IN THERMAL ENGINEERING 2024; 60:104746. [DOI: 10.1016/j.csite.2024.104746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Chidyagwai SG, Kaplan MS, Jensen CW, Chen JS, Chamberlain RC, Hill KD, Barker PCA, Slesnick TC, Randles A. Surgical Modulation of Pulmonary Artery Shear Stress: A Patient-Specific CFD Analysis of the Norwood Procedure. Cardiovasc Eng Technol 2024:10.1007/s13239-024-00724-3. [PMID: 38459240 DOI: 10.1007/s13239-024-00724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
PURPOSR This study created 3D CFD models of the Norwood procedure for hypoplastic left heart syndrome (HLHS) using standard angiography and echocardiogram data to investigate the impact of shunt characteristics on pulmonary artery (PA) hemodynamics. Leveraging routine clinical data offers advantages such as availability and cost-effectiveness without subjecting patients to additional invasive procedures. METHODS Patient-specific geometries of the intrathoracic arteries of two Norwood patients were generated from biplane cineangiograms. "Virtual surgery" was then performed to simulate the hemodynamics of alternative PA shunt configurations, including shunt type (modified Blalock-Thomas-Taussig shunt (mBTTS) vs. right ventricle-to-pulmonary artery shunt (RVPAS)), shunt diameter, and pulmonary artery anastomosis angle. Left-right pulmonary flow differential, Qp/Qs, time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) were evaluated. RESULTS There was strong agreement between clinically measured data and CFD model output throughout the patient-specific models. Geometries with a RVPAS tended toward more balanced left-right pulmonary flow, lower Qp/Qs, and greater TAWSS and OSI than models with a mBTTS. For both shunt types, larger shunts resulted in a higher Qp/Qs and higher TAWSS, with minimal effect on OSI. Low TAWSS areas correlated with regions of low flow and changing the PA-shunt anastomosis angle to face toward low TAWSS regions increased TAWSS. CONCLUSION Excellent correlation between clinically measured and CFD model data shows that 3D CFD models of HLHS Norwood can be developed using standard angiography and echocardiographic data. The CFD analysis also revealed consistent changes in PA TAWSS, flow differential, and OSI as a function of shunt characteristics.
Collapse
Affiliation(s)
- Simbarashe G Chidyagwai
- Department of Biomedical Engineering, Duke University, 534 Research Drive, 27708, Durham, NC, USA
| | - Michael S Kaplan
- Department of Biomedical Engineering, Duke University, 534 Research Drive, 27708, Durham, NC, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Christopher W Jensen
- Department of Biomedical Engineering, Duke University, 534 Research Drive, 27708, Durham, NC, USA
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - James S Chen
- Department of Biomedical Engineering, Duke University, 534 Research Drive, 27708, Durham, NC, USA
| | - Reid C Chamberlain
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Kevin D Hill
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Piers C A Barker
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Timothy C Slesnick
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda Randles
- Department of Biomedical Engineering, Duke University, 534 Research Drive, 27708, Durham, NC, USA.
| |
Collapse
|
18
|
Ali AM, Ghobashy AA, Sultan AA, Elkhodary KI, El-Morsi M. A 3D scaling law for supravalvular aortic stenosis suited for stethoscopic auscultations. Heliyon 2024; 10:e26190. [PMID: 38390109 PMCID: PMC10881376 DOI: 10.1016/j.heliyon.2024.e26190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/24/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
In this study a frequency scaling law for 3D anatomically representative supravalvular aortic stenosis (SVAS) cases is proposed. The law is uncovered for stethoscopy's preferred auscultation range (70-120 Hz). LES simulations are performed on the CFD solver Fluent, leveraging Simulia's Living Heart Human Model (LHHM), modified to feature hourglass stenoses that range between 30 to 80 percent (mild to severe) in addition to the descending aorta. For physiological hemodynamic boundary conditions the Windkessel model is implemented via a UDF subroutine. The flow-generated acoustic signal is then extracted using the FW-H model and analyzed using FFT. A preferred receiver location that matches clinical practice is confirmed (right intercostal space) and a correlation between the degree of stenosis and a corresponding acoustic frequency is obtained. Five clinical auscultation signals are tested against the scaling law, with the findings interpreted in relation to the NHS classification of stenosis and to the assessments of experienced cardiologists. The scaling law is thus shown to succeed as a potential quantitative decision-support tool for clinicians, enabling them to reliably interpret stethoscopic auscultations for all degrees of stenosis, which is especially useful for moderate degrees of SVAS. Computational investigation of more complex stenotic cases would enhance the clinical relevance of this proposed scaling law, and will be explored in future research.
Collapse
Affiliation(s)
- Ahmed M Ali
- Department of Mechanical Engineering, The American University in Cairo, 11835 New Cairo, Egypt
| | - Aly A Ghobashy
- Department of Mechanical Engineering, The American University in Cairo, 11835 New Cairo, Egypt
| | - Abdelrahman A Sultan
- Department of Mechanical Engineering, The American University in Cairo, 11835 New Cairo, Egypt
| | - Khalil I Elkhodary
- Department of Mechanical Engineering, The American University in Cairo, 11835 New Cairo, Egypt
| | - Mohamed El-Morsi
- Department of Mechanical Engineering, The American University in Cairo, 11835 New Cairo, Egypt
| |
Collapse
|
19
|
Ma Z, Zhuang Y, Long X, Yu B, Li J, Yang Y, Yu Y. Modeling and evaluation of biomechanics and hemodynamic based on patient-specific small intracranial aneurysm using fluid-structure interaction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107963. [PMID: 38064956 DOI: 10.1016/j.cmpb.2023.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND OBJECTIVE Rupture of small intracranial aneurysm (IA) often leads to the development of highly fatal clinical syndromes such as subarachnoid hemorrhage. Due to the patient specificity of small IA, there are many difficulties in evaluating the rupture risk of small IA such as multiple influencing factors, high clinical experience requirements and poor reusability. METHODS In this study, clinical methods such as transcranial doppler (TCD) and magnetic resonance imaging (MRI) are used to obtain patient-specific parameters, and the fluid-structure interaction method (FSI) is used to model and evaluate the biomechanics and hemodynamics of patient-specific small IA. RESULTS The results show that a spiral vortex stably exists in the patient-specific small IA. Due to the small size of the patient-specific small IA, the blood flow velocity still maintains a high value with maximum reaching 3 m/s. The inertial impact of blood flow and vortex convection have certain influence on hemodynamic and biomechanics parameters. They cause three high value areas of WSSM on the patient-specific small IA with maximum of 180 Pa, 130 Pa and 110 Pa, respectively. They also cause two types of WSS concentration points, positive normal stress peak value areas and negative normal stress peak value areas to appear. CONCLUSION This paper found that the factors affecting hemodynamic parameters and biomechanical parameters are different. Unlike hemodynamic parameters, biomechanical parameters are also affected by blood pressure in addition to blood flow velocity. This study reveals the relationship between the flow field distribution and changes of patient-specific small IA, biomechanics and hemodynamics.
Collapse
Affiliation(s)
- Zijian Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yijie Zhuang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xiaoao Long
- Neurosurgery Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, Guangdong, China.
| | - Bo Yu
- Neurosurgery Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jiawang Li
- Neurosurgery Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, Guangdong, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, Guangdong, China
| |
Collapse
|
20
|
Armour C, Guo B, Saitta S, Guo D, Liu Y, Fu W, Dong Z, Xu XY. The Role of Multiple Re-Entry Tears in Type B Aortic Dissection Progression: A Longitudinal Study Using a Controlled Swine Model. J Endovasc Ther 2024; 31:104-114. [PMID: 35852439 PMCID: PMC10773162 DOI: 10.1177/15266028221111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE False lumen (FL) expansion often occurs in type B aortic dissection (TBAD) and has been associated with the presence of re-entry tears. This longitudinal study aims to elucidate the role of re-entry tears in the progression of TBAD using a controlled swine model, by assessing aortic hemodynamics through combined imaging and computational modeling. MATERIALS AND METHODS A TBAD swine model with a primary entry tear at 7 cm distal to the left subclavian artery was created in a previous study. In the current study, reintervention was carried out in this swine model to induce 2 additional re-entry tears of approximately 5 mm in diameter. Computed tomography (CT) and 4-dimensional (4D) flow magnetic resonance imaging (MRI) scans were taken at multiple follow-ups before and after reintervention. Changes in aortic volume were measured on CT scans, and hemodynamic parameters were evaluated based on dynamic data acquired with 4D-flow MRI and computational fluid dynamics simulations incorporating all available in vivo data. RESULTS Morphological analysis showed FL growth of 20% following the initial TBAD-growth stabilized after the creation of additional tears and eventually FL volume reduced by 6%. Increasing the number of re-entry tears from 1 to 2 caused flow redistribution, with the percentage of true lumen (TL) flow increasing from 56% to 78%; altered local velocities; reduced wall shear stress surrounding the tears; and led to a reduction in FL pressure and pressure difference between the 2 lumina. CONCLUSION This study combined extensive in vivo imaging data with sophisticated computational methods to show that additional re-entry tears can alter dissection hemodynamics through redistribution of flow between the TL and FL. This helps to reduce FL pressure, which could potentially stabilize aortic growth and lead to reversal of FL expansion. This work provides a starting point for further study into the use of fenestration in controlling undesirable FL expansion. CLINICAL IMPACT Aortic growth and false lumen (FL) patency are associated with the presence of re-entry tears in type B aortic dissection (TBAD) patients. Guidelines on how to treat re-entry tears are lacking, especially with regards to the control and prevention of FL expansion. Through a combined imagining and computational hemodynamics study of a controlled swine model, we found that increasing the number of re-entry tears reduced FL pressure and cross lumen pressure difference, potentially stabilising aortic growth and leading to FL reduction. Our findings provide a starting point for further study into the use of fenestration in controlling undesirable FL expansion.
Collapse
Affiliation(s)
- Chlöe Armour
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Baolei Guo
- Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Simone Saitta
- Department of Chemical Engineering, Imperial College London, London, UK
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Daqiao Guo
- Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Yifan Liu
- Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Zhihui Dong
- Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
21
|
Wang L, Jiang X, Zhang K, Chen K, Wu P, Li X. A hemodynamic analysis of energy loss in abdominal aortic aneurysm using three-dimension idealized model. Front Physiol 2024; 15:1330848. [PMID: 38312315 PMCID: PMC10834748 DOI: 10.3389/fphys.2024.1330848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Objective: The aim of this study is to perform specific hemodynamic simulations of idealized abdominal aortic aneurysm (AAA) models with different diameters, curvatures and eccentricities and evaluate the risk of thrombosis and aneurysm rupture. Methods: Nine idealized AAA models with different diameters (3 cm or 5 cm), curvatures (0° or 30°) and eccentricities (centered on or tangent to the aorta), as well as a normal model, were constructed using commercial software (Solidworks; Dassault Systemes S.A, Suresnes, France). Hemodynamic simulations were conducted with the same time-varying volumetric flow rate extracted from the literature and 3-element Windkessel model (3 EWM) boundary conditions were applied at the aortic outlet. Several hemodynamic parameters such as time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), endothelial cell activation potential (ECAP) and energy loss (EL) were obtained to evaluate the risk of thrombosis and aneurysm rupture under different conditions. Results: Simulation results showed that the proportion of low TAWSS region and high OSI region increases with the rising of aneurysm diameter, whereas decreases in the curvature and eccentric models of the corresponding diameters, with the 5 cm normal model having the largest low TAWSS region (68.5%) and high OSI region (40%). Similar to the results of TAWSS and OSI, the high ECAP and high RRT areas were largest in the 5 cm normal model, with the highest wall-averaged value (RRT: 5.18 s, ECAP: 4.36 Pa-1). Differently, the increase of aneurysm diameter, curvature, and eccentricity all lead to the increase of mean flow EL and turbulent EL, such that the highest mean flow EL (0.82 W · 10-3) and turbulent EL (1.72 W · 10-3) were observed in the eccentric 5 cm model with the bending angle of 30°. Conclusion: Collectively, increases in aneurysm diameter, curvature, and eccentricity all raise mean flow EL and turbulent flow EL, which may aggravate the damage and disturbance of flow in aneurysm. In addition, it can be inferred by conventional parameters (TAWSS, OSI, RRT and ECAP) that the increase of aneurysm diameter may raise the risk of thrombosis, whereas the curvature and eccentricity appeared to have a protective effect against thrombosis.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xudong Jiang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kejia Zhang
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Kai Chen
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Peng Wu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, China
| | - Xiaoqiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Jiang X, Xiang G, Du G, Li X, Wu P, Du X. A hemodynamic analysis of fenestrated physician-modified endograft repair for complicated aortic dissections involving the visceral arteries. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107785. [PMID: 37678097 DOI: 10.1016/j.cmpb.2023.107785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVE The aim of this study is to perform patient-specific hemodynamic simulations of the patients with complicated aortic dissection underwent Physician-modified endograft (PMEG) and evaluate the treatment outcome. METHOD 12 patient-specific models were reconstructed from computed tomography angiography (CTA) data of 6 patients with complicated aortic dissection before and after the PMEG. Hemodynamic simulations were conducted with the same time-varying volumetric flow rate extracted from the literature and 3-element Windkessel model (3 EWM) boundary conditions were applied at the aortic outlet. Hemodynamic indicators such as time-averaged wall shear stress (TAWSS), relative residence time (RRT) and endothelial cell activation potential (ECAP) were obtained to evaluate the postoperative effect of PMEG. RESULTS Comparing with the preoperative models, the flow rates of most visceral arteries were increased in the postoperative models (PSMA = 0.012, PRRA = 0.013, and PLRA = 0.005). Pressure and TAWSS in visceral regions were significantly reduced (PP = 0.003 and PTAWSS = 0.017). With the false lumens (FL) covered by the stent grafts, the average TAWSS level increased in the regions of postoperative abdominal aorta (P = 0.002), and the average RRT and ECAP values decreased significantly (PRRT = 0.02 and PECAP = 0.003). CONCLUSION This study shows that PMEG, as a new technique for the treatment of complicated aortic dissection involving the distal tears in the visceral region, can effectively restore the abnormal blood supply of the visceral arteries, reduce the risk of aortic rupture, the formation of aortic dissection aneurysm (ADA), and thrombosis. This corresponds well with clinical retrospective studies and 1-year follow-up outcomes. The findings of this study are of great significance for the development of PMEG.
Collapse
Affiliation(s)
- Xudong Jiang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, Jiangsu, China; Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Guangyuan Xiang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Guanting Du
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, 8 Jixue Road, Suzhou, Jiangsu 21513, China
| | - Xiaoqiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, Jiangsu, China; Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| | - Peng Wu
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, 8 Jixue Road, Suzhou, Jiangsu 21513, China.
| | - Xiaolong Du
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
23
|
Pirola S, Pirola S, Mastroiacovo G, Bonomi A, Manchester EL, Fisichella SM, Maragna R, Baggiano A, Mushtaq S, Muscogiuri G, Guglielmo M, Yun Xu X, Pontone G, Polvani G. Does the AVNeo valve reduce wall stress on the aortic wall? A cardiac magnetic resonance analysis with 4D-flow for the evaluation of aortic valve replacement with the Ozaki technique. Eur J Cardiothorac Surg 2023; 64:ezad299. [PMID: 37656941 DOI: 10.1093/ejcts/ezad299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023] Open
Abstract
OBJECTIVES Aortic valve neocuspidalization aims to replace the 3 aortic cusps with autologous pericardium pre-treated with glutaraldehyde, and it is a surgical alternative to the classical aortic valve replacement (AVR). Image-based patient-specific computational fluid dynamics allows the derivation of shear stress on the aortic wall [wall shear stress (WSS)]. Previous studies support a potential link between increased WSS and histological alterations of the aortic wall. The aim of this study is to compare the WSS of the ascending aorta in patients undergoing aortic valve neocuspidalization versus AVR with biological prostheses. METHODS This is a prospective nonrandomized clinical trial. Each patient underwent a 4D-flow cardiac magnetic resonance scan after surgery, which informed patient-specific computational fluid dynamics models to evaluate WSS at the ascending aortic wall. The adjusted variables were calculated by summing the residuals obtained from a multivariate linear model (with ejection fraction and left ventricle outflow tract-aorta angle as covariates) to the mean of the variables. RESULTS Ten patients treated with aortic valve neocuspidalization were enrolled and compared with 10 AVR patients. The aortic valve neocuspidalization group showed a significantly lower WSS in the outer curvature segments of the proximal and distal ascending aorta as compared to AVR patients (P = 0.0179 and 0.0412, respectively). WSS levels remained significantly lower along the outer curvature of the proximal aorta in the aortic valve neocuspidalization population, even after adjusting the WSS for the ejection fraction and the left ventricle outflow tract-aorta angle [2.44 Pa (2.17-3.01) vs 1.94 Pa (1.72-2.01), P = 0.02]. CONCLUSIONS Aortic valve neocuspidalization hemodynamical features are potentially associated with a lower WSS in the ascending aorta as compared to commercially available bioprosthetic valves.
Collapse
Affiliation(s)
- Sergio Pirola
- Department of Cardiovascular Surgery, IRCCS Centro Cardiologico Monzino, Milan, Italy
| | - Selene Pirola
- Institute of Clinical Sciences, Imperial College London, London, UK
- Department of BioMechanical Engineering, TU Delft, Delft, Netherlands
| | - Giorgio Mastroiacovo
- Department of Cardiovascular Surgery, IRCCS Centro Cardiologico Monzino, Milan, Italy
| | - Alice Bonomi
- Department of Biostatistics, IRCCS Centro Cardiologico Monzino, Milan, Italy
| | | | | | - Riccardo Maragna
- Department of Cardiac imaging, IRCCS Centro Cardiologico Monzino, Milan, Italy
| | - Andrea Baggiano
- Department of Cardiac imaging, IRCCS Centro Cardiologico Monzino, Milan, Italy
- Department of Cardiovascular Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Giuseppe Muscogiuri
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, Milan, Italy
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, Netherlands
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, UK
| | - Gianluca Pontone
- Department of Cardiac imaging, IRCCS Centro Cardiologico Monzino, Milan, Italy
| | - Gianluca Polvani
- Department of Cardiovascular Surgery, IRCCS Centro Cardiologico Monzino, Milan, Italy
- Department of Surgical and Dental Biomedical Sciences, University of Milan, Italy
| |
Collapse
|
24
|
Martínez A, Hoeijmakers M, Geronzi L, Morgenthaler V, Tomasi J, Rochette M, Biancolini ME. Effect of turbulence and viscosity models on wall shear stress derived biomarkers for aorta simulations. Comput Biol Med 2023; 167:107603. [PMID: 37922602 DOI: 10.1016/j.compbiomed.2023.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/12/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Ascending aorta simulations provide insight into patient-specific hemodynamic conditions. Numerous studies have assessed fluid biomarkers which show a potential to aid clinicians in the diagnosis process. Unfortunately, there exists a large disparity in the computational methodology used to model turbulence and viscosity. Recognizing this disparity, some authors focused on analysing the influence of either the turbulence or viscosity models on the biomarkers in order to quantify the importance of these model choices. However, no analysis has yet been done on their combined effect. In order to fully understand and quantify the effect of the computational methodology, an assessment of the combined effect of turbulence and viscosity model choice was performed. Our results show that (1) non-Newtonian viscosity has greater impact (2.9-5.0%) on wall shear stress than Large Eddy Simulation turbulence modelling (0.1-1.4%), (2) the contribution of non-Newtonian viscosity is amplified when combined with a subgrid-scale turbulence model, (3) wall shear stress is underestimated when considering Newtonian viscosity by 2.9-5.0% and (4) cycle-to-cycle variability can impact the results as much as the numerical model if insufficient cycles are performed. These results demonstrate that, when assessing the effect of computational methodologies, the resultant combined effect of the different modelling assumptions differs from the aggregated effect of the isolated modifications. Accurate aortic flow modelling requires non-Newtonian viscosity and Large Eddy Simulation turbulence modelling.
Collapse
Affiliation(s)
- Antonio Martínez
- University of Rome Tor Vergata, Rome, Italy; Ansys France, Villeurbanne, France.
| | | | - Leonardo Geronzi
- University of Rome Tor Vergata, Rome, Italy; Ansys France, Villeurbanne, France
| | | | - Jacques Tomasi
- University of Rennes, CHU Rennes, Inserm, LTSI-UMR 1099, F-35000, Rennes, France
| | | | | |
Collapse
|
25
|
Luan J, Qiao Y, Mao L, Fan J, Zhu T, Luo K. The role of aorta distal to stent in the occurrence of distal stent graft-induced new entry tear: A computational fluid dynamics and morphological study. Comput Biol Med 2023; 166:107554. [PMID: 37839217 DOI: 10.1016/j.compbiomed.2023.107554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Distal stent graft-induced new entry tear (dSINE) is an important complication of thoracic endovascular aortic repair (TEVAR) for the treatment of type B aortic dissection (TBAD). This study aims to explore whether the aorta distal to the stent plays an important role in the occurrence of dSINE. Sixty-nine patient-specific geometrical models of twenty-three enrolled patients were reconstructed from preoperative, postoperative, and predSINE computed tomography scans. Computational fluid dynamics (CFD) simulations were performed to calculate the von Mises stress in the CFD group. Meanwhile, morphological measurements were performed in all patients, including measurements of the inverted pyramid index at different follow-up time points and the postoperative true lumen volume change rate. In the CFD study, the time-averaged von Mises stress of the true lumen distal to the stent in dSINE patients was significantly higher than that in the CFD controls (20.42 kPa vs. 15.47 kPa). In the morphological study, a special aortic plane (plane A) with an extremely small area distal to the stent was observed in dSINE patients, which resulted in an inverted pyramid structure in the true lumen distal to the stent. This structure in dSINE patients became increasingly obvious during the follow-up period and finally reached the maximum value before dSINE occurred (mean, 3.91 vs. 1.23). At the same time, enlargement of the true lumen distal to the stent occurs before dSINE, manifesting as a continuous increase in the true lumen volume (mean, 0.70 vs. 013). A new theory of what causes dSINE to occur has been proposed: the inverted pyramid structure of the true lumen distal to the stent caused an increase in the von Mises stress in this region and aortic enlargement, which ultimately led to the occurrence of dSINE.
Collapse
Affiliation(s)
- Jingyang Luan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yonghui Qiao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Le Mao
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianren Fan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China; Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China
| | - Ting Zhu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Kun Luo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China; Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China.
| |
Collapse
|
26
|
Lu K, Qin W, Sun X, Si Y, Ding G, Fu W, Wang S. Computational study of fenestration and parallel grafts used in TEVAR of aortic arch aneurysms. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3664. [PMID: 36447341 DOI: 10.1002/cnm.3664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 06/16/2023]
Abstract
To explore the differences between fenestration technique and parallel grafts technique of thoracic endovascular aortic repair, and evaluate the risk of complications after interventional treatment of aortic arch aneurysms. A three-dimensional aortic model was established from the follow-up imaging data of patient who reconstructed the superior arch vessel by the chimney technique, which was called the chimney model. Based on the chimney model, the geometric of the reconstructed vessel was modified by virtual surgery, and the normal model, fenestration model and periscope model were established. The blood flow waveforms measured by 2D phase contrast magnetic resonance imaging were processed as the boundary conditions of the ascending aorta inlet and the superior arch vessels outlets of the normal model. The pressure waveform of descending aorta was obtained using three-element Windkessel model, and specific pressure boundary conditions were imposed at reconstructed branches for the postoperative models. Through computational fluid dynamics simulations, the hemodynamic parameters of each model were obtained. The reconstructed vessel flow rate of the periscope model and the fenestration model are 33% and 50% of that of the normal model, respectively. The pressure difference between the inner and outer walls of the fenestration stent and periscope stent is 3.15 times and 7.56 times that of the chimney stent. The velocity in the fenestration stent and periscope stent is uneven. The high relative residence time is concentrated in the region around the branch stents, which is prone to thrombosis. The "gutter" part of the chimney model may become larger due to the effect of the stent-graft DF, increasing the risk of endoleak. For patients with incomplete circle of Willis, the periscope technique to reconstruct the supra-arch vessels may affect blood perfusion. It is recommended to use balloon-expandable stent for fenestration stent and periscope stent, and self-expanding stent for chimney stent. For patients with aortic arch aneurysms, the fenestration technique may be superior to the parallel grafts technique.
Collapse
Affiliation(s)
- Kai Lu
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Wang Qin
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Xiaofan Sun
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Si
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guanghong Ding
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
- Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengzhang Wang
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
- Institute of Biomedical Engineering Technology, Academy of Engineering and Technology, Fudan University, Shanghai, China
- Yiwu Research Institute, Fudan University, Yiwu, China
| |
Collapse
|
27
|
Fevola E, Bradde T, Triverio P, Grivet-Talocia S. A Vector Fitting Approach for the Automated Estimation of Lumped Boundary Conditions of 1D Circulation Models. Cardiovasc Eng Technol 2023; 14:505-525. [PMID: 37308695 PMCID: PMC10465662 DOI: 10.1007/s13239-023-00669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/03/2023] [Indexed: 06/14/2023]
Abstract
PURPOSE The choice of appropriate boundary conditions is a crucial step in the development of cardiovascular models for blood flow simulations. The three-element Windkessel model is usually employed as a lumped boundary condition, providing a reduced order representation of the peripheral circulation. However, the systematic estimation of the Windkessel parameters remains an open problem. Moreover, the Windkessel model is not always adequate to model blood flow dynamics, which often require more elaborate boundary conditions. In this study, we propose a method for the estimation of the parameters of high order boundary conditions, including the Windkessel model, from pressure and flow rate waveforms at the truncation point. Moreover, we investigate the effect of adopting higher order boundary conditions, corresponding to equivalent circuits with more than one storage element, on the accuracy of the model. METHOD The proposed technique is based on Time-Domain Vector Fitting, a modeling algorithm that, given samples of the input and output of a system, such as pressure and flow waveforms, can derive a differential equation approximating their relation. RESULTS The capabilities of the proposed method are tested on a 1D circulation model consisting of the 55 largest human systemic arteries, to demonstrate its accuracy and its usefulness to estimate boundary conditions with order higher than the traditional Windkessel models. The proposed method is compared to other common estimation techniques, and its robustness in parameter estimation is verified in presence of noisy data and of physiological changes of aortic flow rate induced by mental stress. CONCLUSION Results suggest that the proposed method is able to accurately estimate boundary conditions of arbitrary order. Higher order boundary conditions can improve the accuracy of cardiovascular simulations, and Time-Domain Vector Fitting can automatically estimate them.
Collapse
Affiliation(s)
- Elisa Fevola
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Tommaso Bradde
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Piero Triverio
- Department of Electrical & Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | | |
Collapse
|
28
|
Wang X, Carpenter HJ, Ghayesh MH, Kotousov A, Zander AC, Amabili M, Psaltis PJ. A review on the biomechanical behaviour of the aorta. J Mech Behav Biomed Mater 2023; 144:105922. [PMID: 37320894 DOI: 10.1016/j.jmbbm.2023.105922] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/14/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Large aortic aneurysm and acute and chronic aortic dissection are pathologies of the aorta requiring surgery. Recent advances in medical intervention have improved patient outcomes; however, a clear understanding of the mechanisms leading to aortic failure and, hence, a better understanding of failure risk, is still missing. Biomechanical analysis of the aorta could provide insights into the development and progression of aortic abnormalities, giving clinicians a powerful tool in risk stratification. The complexity of the aortic system presents significant challenges for a biomechanical study and requires various approaches to analyse the aorta. To address this, here we present a holistic review of the biomechanical studies of the aorta by categorising articles into four broad approaches, namely theoretical, in vivo, experimental and combined investigations. Experimental studies that focus on identifying mechanical properties of the aortic tissue are also included. By reviewing the literature and discussing drawbacks, limitations and future challenges in each area, we hope to present a more complete picture of the state-of-the-art of aortic biomechanics to stimulate research on critical topics. Combining experimental modalities and computational approaches could lead to more comprehensive results in risk prediction for the aortic system.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Harry J Carpenter
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mergen H Ghayesh
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Andrei Kotousov
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Anthony C Zander
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marco Amabili
- Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
| | - Peter J Psaltis
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia; Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| |
Collapse
|
29
|
Wang K, Armour CH, Ma T, Dong Z, Xu XY. Hemodynamic parameters impact the stability of distal stent graft-induced new entry. Sci Rep 2023; 13:12123. [PMID: 37495611 PMCID: PMC10372056 DOI: 10.1038/s41598-023-39130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Stent graft-induced new entry tear (SINE) is a serious complication in aortic dissection patients caused by the stent-graft itself after thoracic endovascular aortic repair (TEVAR). The stability of SINE is a key indicator for the need and timing of reinterventions. This study aimed to understand the role of hemodynamics in SINE stability by means of computational fluid dynamics (CFD) analysis based on patient-specific anatomical information. Four patients treated with TEVAR who developed a distal SINE (dSINE) were included; two patients had a stable dSINE and two patients experienced expansion of the dSINE upon follow-up examinations. CFD simulations were performed on geometries reconstructed from computed tomography scans acquired upon early detection of dSINE in these patients. Computational results showed that stable dSINEs presented larger regions with low time-averaged wall shear stress (TAWSS) and high relative residence time (RRT), and partial thrombosis was observed at subsequent follow-ups. Furthermore, significant systolic antegrade flow was observed in the unstable dSINE which also had a larger retrograde flow fraction (RFF) on the SINE plane. In conclusion, this pilot study suggested that high RRT and low TAWSS may indicate stable dSINE by promoting thrombosis, whereas larger RFF and antegrade flows inside dSINE might be associated with its expansion.
Collapse
Affiliation(s)
- Kaihong Wang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Chlӧe H Armour
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Tao Ma
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Dong
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
30
|
Yoon WJ, Mani K, Han SM, Lee CJ, Cho JS, Wanhainen A. Near-wall hemodynamic changes in subclavian artery perfusion induced by retrograde inner branched thoracic endograft implantation. JVS Vasc Sci 2023; 4:100116. [PMID: 37496886 PMCID: PMC10366580 DOI: 10.1016/j.jvssci.2023.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/05/2023] [Indexed: 07/28/2023] Open
Abstract
Objective Left subclavian artery (LSA)-branched endografts with retrograde inner branch configuration (thoracic branch endoprosthesis [TBE]) offer a complete endovascular solution when LSA preservation is required during zone 2 thoracic endovascular aortic repair. However, the hemodynamic consequences of the TBE have not been well-investigated. We compared near-wall hemodynamic parameters before and after the TBE implantation using computational fluid dynamic simulations. Methods Eleven patients who had undergone TBE implantation were included. Three-dimensional aortic arch geometries were constructed from the pre- and post-TBE implantation computed tomography images. The resulting 22 three-dimensional aortic arch geometries were then discretized into finite element meshes for computational fluid dynamic simulations. Inflow boundary conditions were prescribed using normal physiological pulsatile circulation. Outlet boundary conditions consisted of Windkessel models with previously published values. Blood flow, modeled as Newtonian fluid, simulations were performed with rigid wall assumptions using SimVascular's incompressible Navier-Stokes solver. We compared well-established hemodynamic descriptors: pressure, flow rate, time-averaged wall shear stress (TAWSS), the oscillatory shear index (OSI), and percent area with an OSI of >0.2. Data were presented on the stented portion of the LSA. Results TBE implantation was associated with a small decrease in peak LSA pressure (153 mm Hg; interquartile range [IQR], 151-154 mm Hg vs 159 mm Hg; IQR, 158-160 mm Hg; P = .005). No difference was observed in peak LSA flow rates before and after implantation: 40.4 cm3/ (IQR, 39.5-41.6 cm3/s) vs 41.3 cm3/s (IQR, 37.2-44.8 cm3/s; P = .59). There was a significant postimplantation increase in TAWSS (15.2 dynes/cm2 [IQR, 12.2-17.7 dynes/cm2] vs 6.2 dynes/cm2 [IQR, 5.7-10.3 dynes/cm2]; P = .003), leading to decreases in both the OSI (0.088 [IQR, 0.063 to -0.099] vs 0.1 [IQR, 0.096-0.16]; P = .03) and percentage of area with an OSI of >0.2 (10.4 [IQR, 5.8-15.8] vs 15.7 [IQR, 10.7-31.9]; P = .13). Neither LSA side branch angulation (median, 81°, IQR, 77°-109°) nor moderate compression (16%-58%) seemed to have an impact on the pressure, flow rate, TAWSS, or percentage of area with an OSI of >0.2 in the stented LSA. Conclusions The implantation of TBE produces modest hemodynamic disturbances that are unlikely to result in clinically relevant changes.
Collapse
Affiliation(s)
- William J. Yoon
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Kevin Mani
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - Sukgu M. Han
- Comprehensive Aortic Center, Keck Medical Center of University of Southern California, Los Angeles, CA
| | - Cheong J. Lee
- Division of Vascular Surgery, Department of Surgery, NorthShore University Health System, Evanston, IL
| | - Jae S. Cho
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Anders Wanhainen
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
- Department of Surgical and perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| |
Collapse
|
31
|
Gnudi G. Analytical solution to Windkessel models using piecewise linear aortic flow waveform. Physiol Meas 2023; 44:06NT01. [PMID: 37280722 DOI: 10.1088/1361-6579/acd6d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Objective.Deriving time-domain analytical solutions to two- three- and four-element Windkessel models, which are commonly used in teaching and research to analyse the behaviour of the arterial pressure-flow relationship.Approach.The governing (first-order, non-homogeneous, linear) differential equations are solved analytically, based on a piecewise linear function that can accurately approximate typical aortic flow waveforms.Main results.Closed-form expressions for arterial pressure are obtained both in transient conditions and in steady-state periodic regime.Significance.In most cases Windkessel models are studied in the frequency domain and when studied in the time domain, numerical methods are used. The main advantage of the proposed expressions is that they are an explicit, exact, and easily understood mathematical description of the model behaviour. Moreover, they avoid the use of Fourier analysis or numerical solvers to integrate the differential equations.
Collapse
Affiliation(s)
- Gianni Gnudi
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi'-DEI, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| |
Collapse
|
32
|
Sengupta S, Yuan X, Maga L, Pirola S, Nienaber CA, Xu XY. Aortic haemodynamics and wall stress analysis following arch aneurysm repair using a single-branched endograft. Front Cardiovasc Med 2023; 10:1125110. [PMID: 37283581 PMCID: PMC10240084 DOI: 10.3389/fcvm.2023.1125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Thoracic endovascular aortic repair (TEVAR) of the arch is challenging given its complex geometry and the involvement of supra-aortic arteries. Different branched endografts have been designed for use in this region, but their haemodynamic performance and the risk for post-intervention complications are not yet clear. This study aims to examine aortic haemodynamics and biomechanical conditions following TVAR treatment of an aortic arch aneurysm with a two-component single-branched endograft. Methods Computational fluid dynamics and finite element analysis were applied to a patient-specific case at different stages: pre-intervention, post-intervention and follow-up. Physiologically accurate boundary conditions were used based on available clinical information. Results Computational results obtained from the post-intervention model confirmed technical success of the procedure in restoring normal flow to the arch. Simulations of the follow-up model, where boundary conditions were modified to reflect change in supra-aortic vessel perfusion observed on the follow-up scan, predicted normal flow patterns but high levels of wall stress (up to 1.3M MPa) and increased displacement forces in regions at risk of compromising device stability. This might have contributed to the suspected endoleaks or device migration identified at the final follow up. Discussion Our study demonstrated that detailed haemodynamic and biomechanical analysis can help identify possible causes for post-TEVAR complications in a patient-specific setting. Further refinement and validation of the computational workflow will allow personalised assessment to aid in surgical planning and clinical decision making.
Collapse
Affiliation(s)
- Sampad Sengupta
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Xun Yuan
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Cardiology and Aortic Centre, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Ludovica Maga
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Selene Pirola
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Christoph A. Nienaber
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Cardiology and Aortic Centre, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
33
|
Black SM, Maclean C, Hall Barrientos P, Ritos K, McQueen A, Kazakidi A. Calibration of patient-specific boundary conditions for coupled CFD models of the aorta derived from 4D Flow-MRI. Front Bioeng Biotechnol 2023; 11:1178483. [PMID: 37251565 PMCID: PMC10210162 DOI: 10.3389/fbioe.2023.1178483] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: Patient-specific computational fluid dynamics (CFD) models permit analysis of complex intra-aortic hemodynamics in patients with aortic dissection (AD), where vessel morphology and disease severity are highly individualized. The simulated blood flow regime within these models is sensitive to the prescribed boundary conditions (BCs), so accurate BC selection is fundamental to achieve clinically relevant results. Methods: This study presents a novel reduced-order computational framework for the iterative flow-based calibration of 3-Element Windkessel Model (3EWM) parameters to generate patient-specific BCs. These parameters were calibrated using time-resolved flow information derived from retrospective four-dimensional flow magnetic resonance imaging (4D Flow-MRI). For a healthy and dissected case, blood flow was then investigated numerically in a fully coupled zero dimensional-three dimensional (0D-3D) numerical framework, where the vessel geometries were reconstructed from medical images. Calibration of the 3EWM parameters was automated and required ~3.5 min per branch. Results: With prescription of the calibrated BCs, the computed near-wall hemodynamics (time-averaged wall shear stress, oscillatory shear index) and perfusion distribution were consistent with clinical measurements and previous literature, yielding physiologically relevant results. BC calibration was particularly important in the AD case, where the complex flow regime was captured only after BC calibration. Discussion: This calibration methodology can therefore be applied in clinical cases where branch flow rates are known, for example, via 4D Flow-MRI or ultrasound, to generate patient-specific BCs for CFD models. It is then possible to elucidate, on a case-by-case basis, the highly individualized hemodynamics which occur due to geometric variations in aortic pathology high spatiotemporal resolution through CFD.
Collapse
Affiliation(s)
- Scott MacDonald Black
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Craig Maclean
- Research and Development, Terumo Aortic, Glasgow, United Kingdom
| | - Pauline Hall Barrientos
- Clinical Physics, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Konstantinos Ritos
- Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, United Kingdom
- Department of Mechanical Engineering, University of Thessaly, Volos, Greece
| | - Alistair McQueen
- Department of Biomedical Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Asimina Kazakidi
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
34
|
Saitta S, Maga L, Armour C, Votta E, O'Regan DP, Salmasi MY, Athanasiou T, Weinsaft JW, Xu XY, Pirola S, Redaelli A. Data-driven generation of 4D velocity profiles in the aneurysmal ascending aorta. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 233:107468. [PMID: 36921465 DOI: 10.1016/j.cmpb.2023.107468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/15/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Numerical simulations of blood flow are a valuable tool to investigate the pathophysiology of ascending thoratic aortic aneurysms (ATAA). To accurately reproduce in vivo hemodynamics, computational fluid dynamics (CFD) models must employ realistic inflow boundary conditions (BCs). However, the limited availability of in vivo velocity measurements, still makes researchers resort to idealized BCs. The aim of this study was to generate and thoroughly characterize a large dataset of synthetic 4D aortic velocity profiles sampled on a 2D cross-section along the ascending aorta with features similar to clinical cohorts of patients with ATAA. METHODS Time-resolved 3D phase contrast magnetic resonance (4D flow MRI) scans of 30 subjects with ATAA were processed through in-house code to extract anatomically consistent cross-sectional planes along the ascending aorta, ensuring spatial alignment among all planes and interpolating all velocity fields to a reference configuration. Velocity profiles of the clinical cohort were extensively characterized by computing flow morphology descriptors of both spatial and temporal features. By exploiting principal component analysis (PCA), a statistical shape model (SSM) of 4D aortic velocity profiles was built and a dataset of 437 synthetic cases with realistic properties was generated. RESULTS Comparison between clinical and synthetic datasets showed that the synthetic data presented similar characteristics as the clinical population in terms of key morphological parameters. The average velocity profile qualitatively resembled a parabolic-shaped profile, but was quantitatively characterized by more complex flow patterns which an idealized profile would not replicate. Statistically significant correlations were found between PCA principal modes of variation and flow descriptors. CONCLUSIONS We built a data-driven generative model of 4D aortic inlet velocity profiles, suitable to be used in computational studies of blood flow. The proposed software system also allows to map any of the generated velocity profiles to the inlet plane of any virtual subject given its coordinate set.
Collapse
Affiliation(s)
- Simone Saitta
- Department of Information, Electronics and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Ludovica Maga
- Department of Information, Electronics and Bioengineering, Politecnico di Milano, Milan, Italy; Department of Chemical Engineering, Imperial College London, London, UK
| | - Chloe Armour
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Emiliano Votta
- Department of Information, Electronics and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Declan P O'Regan
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - M Yousuf Salmasi
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Thanos Athanasiou
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jonathan W Weinsaft
- Department of Medicine (Cardiology), Weill Cornell College, New York, NY, USA
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Selene Pirola
- Department of Chemical Engineering, Imperial College London, London, UK; Department of BioMechanical Engineering, 3mE Faculty, Delft University of Technology, Delft, Netherlands.
| | - Alberto Redaelli
- Department of Information, Electronics and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
35
|
Pajaziti E, Montalt-Tordera J, Capelli C, Sivera R, Sauvage E, Quail M, Schievano S, Muthurangu V. Shape-driven deep neural networks for fast acquisition of aortic 3D pressure and velocity flow fields. PLoS Comput Biol 2023; 19:e1011055. [PMID: 37093855 PMCID: PMC10159343 DOI: 10.1371/journal.pcbi.1011055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/04/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high computational resources, specialist experience needed for designing simulation set-ups, and long processing times. The aim of this study was to explore the use of machine learning (ML) to replicate conventional aortic CFD with automatic and fast regression models. Data used to train/test the model consisted of 3,000 CFD simulations performed on synthetically generated 3D aortic shapes. These subjects were generated from a statistical shape model (SSM) built on real patient-specific aortas (N = 67). Inference performed on 200 test shapes resulted in average errors of 6.01% ±3.12 SD and 3.99% ±0.93 SD for pressure and velocity, respectively. Our ML-based models performed CFD in ∼0.075 seconds (4,000x faster than the solver). This proof-of-concept study shows that results from conventional vascular CFD can be reproduced using ML at a much faster rate, in an automatic process, and with reasonable accuracy.
Collapse
Affiliation(s)
- Endrit Pajaziti
- University College London, Institution of Cardiovascular Science, London, United Kingdom
| | - Javier Montalt-Tordera
- University College London, Institution of Cardiovascular Science, London, United Kingdom
| | - Claudio Capelli
- University College London, Institution of Cardiovascular Science, London, United Kingdom
| | - Raphaël Sivera
- University College London, Institution of Cardiovascular Science, London, United Kingdom
| | - Emilie Sauvage
- University College London, Institution of Cardiovascular Science, London, United Kingdom
| | - Michael Quail
- Great Ormond Street Hospital, Cardiac Unit, London, United Kingdom
| | - Silvia Schievano
- University College London, Institution of Cardiovascular Science, London, United Kingdom
| | - Vivek Muthurangu
- University College London, Institution of Cardiovascular Science, London, United Kingdom
| |
Collapse
|
36
|
Tran-Nguyen N, Yan AT, Fremes S, Triverio P, Jimenez-Juan L. Abnormal Wall Shear Stress Area is Correlated to Coronary Artery Bypass Graft Remodeling 1 Year After Surgery. Ann Biomed Eng 2023:10.1007/s10439-023-03167-4. [PMID: 36871052 DOI: 10.1007/s10439-023-03167-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/12/2023] [Indexed: 03/06/2023]
Abstract
Coronary artery bypass graft surgery is a common intervention for coronary artery disease; however, it suffers from graft failure, and the underlying mechanisms are not fully understood. To better understand the relation between graft hemodynamics and surgical outcomes, we performed computational fluid dynamics simulations with deformable vessel walls in 10 study participants (24 bypass grafts) based on CT and 4D flow MRI one month after surgery to quantify lumen diameter, wall shear stress (WSS), and related hemodynamic measures. A second CT acquisition was performed one year after surgery to quantify lumen remodeling. Compared to venous grafts, left internal mammary artery grafts experienced lower abnormal WSS (< 1 Pa) area one month after surgery (13.8 vs. 70.1%, p = 0.001) and less inward lumen remodeling one year after surgery (- 2.4% vs. - 16.1%, p = 0.027). Abnormal WSS area one month post surgery correlated with percent change in graft lumen diameter one year post surgery (p = 0.030). This study shows for the first time prospectively a correlation between abnormal WSS area one month post surgery and graft lumen remodeling 1 year post surgery, suggesting that shear-related mechanisms may play a role in post-operative graft remodeling and might help explain differences in failure rates between arterial and venous grafts.
Collapse
Affiliation(s)
- Nhien Tran-Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Andrew T Yan
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- St. Michael's Hospital, Toronto, ON, Canada
| | - Stephen Fremes
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Piero Triverio
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Laura Jimenez-Juan
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- St. Michael's Hospital, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
37
|
Zhu Y, Xu XY, Rosendahl U, Pepper J, Mirsadraee S. Advanced risk prediction for aortic dissection patients using imaging-based computational flow analysis. Clin Radiol 2023; 78:e155-e165. [PMID: 36610929 DOI: 10.1016/j.crad.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Patients with either a repaired or medically managed aortic dissection have varying degrees of risk of developing late complications. High-risk patients would benefit from earlier intervention to improve their long-term survival. Currently serial imaging is used for risk stratification, which is not always reliable. On the other hand, understanding aortic haemodynamics within a dissection is essential to fully evaluate the disease and predict how it may progress. In recent decades, computational fluid dynamics (CFD) has been extensively applied to simulate complex haemodynamics within aortic diseases, and more recently, four-dimensional (4D)-flow magnetic resonance imaging (MRI) techniques have been developed for in vivo haemodynamic measurement. This paper presents a comprehensive review on the application of image-based CFD simulations and 4D-flow MRI analysis for risk prediction in aortic dissection. The key steps involved in patient-specific CFD analyses are demonstrated. Finally, we propose a workflow incorporating computational modelling for personalised assessment to aid in risk stratification and treatment decision-making.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - X Y Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - U Rosendahl
- Department of Cardiac Surgery, Royal Brompton and Harefield Hospitals, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - J Pepper
- Department of Cardiac Surgery, Royal Brompton and Harefield Hospitals, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - S Mirsadraee
- National Heart and Lung Institute, Imperial College London, London, UK; Department of Radiology, Royal Brompton and Harefield Hospitals, London, UK.
| |
Collapse
|
38
|
Moretti S, Tauro F, Orrico M, Mangialardi N, Facci AL. Comparative Analysis of Patient-Specific Aortic Dissections through Computational Fluid Dynamics Suggests Increased Likelihood of Degeneration in Partially Thrombosed False Lumen. Bioengineering (Basel) 2023; 10:bioengineering10030316. [PMID: 36978707 PMCID: PMC10045026 DOI: 10.3390/bioengineering10030316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Aortic dissection is a life-threatening vascular disease associated with high rates of morbidity and mortality, especially in medically underserved communities. Understanding patients’ blood flow patterns is pivotal for informing evidence-based treatment as they greatly influence the disease outcome. The present study investigates the flow patterns in the false lumen of three aorta dissections (fully perfused, partially thrombosed, and fully thrombosed) in the chronic phase, and compares them to a healthy aorta. Three-dimensional geometries of aortic true and false lumens (TLs and FLs) are reconstructed through an ad hoc developed and minimally supervised image analysis procedure. Computational fluid dynamics (CFD) is performed through a finite volume unsteady Reynolds-averaged Navier–Stokes approach assuming rigid wall aortas, Newtonian and homogeneous fluid, and incompressible flow. In addition to flow kinematics, we focus on time-averaged wall shear stress and oscillatory shear index that are recognized risk factors for aneurysmal degeneration. Our analysis shows that partially thrombosed dissection is the most prone to false lumen degeneration. In all dissections, the arteries connected to the false lumen are generally poorly perfused. Further, both true and false lumens present higher turbulence levels than the healthy aorta, and critical stagnation points. Mesh sensitivity and a thorough comparison against literature data together support the reliability of the CFD methodology. Image-based CFD simulations are efficient tools to assess the possibility of aortic dissection to lead to aneurysmal degeneration, and provide new knowledge on the hemodynamic characteristics of dissected versus healthy aortas. Similar analyses should be routinely included in patient-specific hemodynamics investigations, to plan and design tailored therapeutic strategies, and to timely assess their effectiveness.
Collapse
Affiliation(s)
- Simona Moretti
- DEIM Department of Economics, Engineering, Society and Business Administration, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Flavia Tauro
- DIBAF Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
- Correspondence: ; Tel.: +39-0761-357355
| | - Matteo Orrico
- Vascular and Endovascular Surgery Unit, San Camillo Forlanini Hospital, Circonvallazione Gianicolense 87, 00149 Roma, Italy
| | - Nicola Mangialardi
- Vascular and Endovascular Surgery Unit, San Camillo Forlanini Hospital, Circonvallazione Gianicolense 87, 00149 Roma, Italy
| | - Andrea Luigi Facci
- DEIM Department of Economics, Engineering, Society and Business Administration, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| |
Collapse
|
39
|
Tricarico R, Berceli SA, Tran-Son-Tay R, He Y. Non-invasive estimation of the parameters of a three-element windkessel model of aortic arch arteries in patients undergoing thoracic endovascular aortic repair. Front Bioeng Biotechnol 2023; 11:1127855. [PMID: 36926690 PMCID: PMC10011467 DOI: 10.3389/fbioe.2023.1127855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Image-based computational hemodynamic modeling and simulations are important for personalized diagnosis and treatment of cardiovascular diseases. However, the required patient-specific boundary conditions are often not available and need to be estimated. Methods: We propose a pipeline for estimating the parameters of the popular three-element Windkessel (WK3) models (a proximal resistor in series with a parallel combination of a distal resistor and a capacitor) of the aortic arch arteries in patients receiving thoracic endovascular aortic repair of aneurysms. Pre-operative and post-operative 1-week duplex ultrasound scans were performed to obtain blood flow rates, and intra-operative pressure measurements were also performed invasively using a pressure transducer pre- and post-stent graft deployment in arch arteries. The patient-specific WK3 model parameters were derived from the flow rate and pressure waveforms using an optimization algorithm reducing the error between simulated and measured pressure data. The resistors were normalized by total resistance, and the capacitor was normalized by total resistance and heart rate. The normalized WK3 parameters can be combined with readily available vessel diameter, brachial blood pressure, and heart rate data to estimate WK3 parameters of other patients non-invasively. Results: Ten patients were studied. The medians (interquartile range) of the normalized proximal resistor, distal resistor, and capacitor parameters are 0.10 (0.07-0.15), 0.90 (0.84-0.93), and 0.46 (0.33-0.58), respectively, for common carotid artery; 0.03 (0.02-0.04), 0.97 (0.96-0.98), and 1.91 (1.63-2.26) for subclavian artery; 0.18 (0.08-0.41), 0.82 (0.59-0.92), and 0.47 (0.32-0.85) for vertebral artery. The estimated pressure showed fairly high tolerance to patient-specific inlet flow rate waveforms using the WK3 parameters estimated from the medians of the normalized parameters. Conclusion: When patient-specific outflow boundary conditions are not available, our proposed pipeline can be used to estimate the WK3 parameters of arch arteries.
Collapse
Affiliation(s)
- Rosamaria Tricarico
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, University of Florida, Gainesville, FL, United States.,North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
| | - Roger Tran-Son-Tay
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.,Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - Yong He
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
40
|
García-Galindo A, Agujetas R, López-Mínguez JR, Ferrera C. Assessment of valve implantation in the descending aorta as an alternative for aortic regurgitation patients not treatable with conventional procedures. Biomech Model Mechanobiol 2022; 22:575-591. [PMID: 36550245 PMCID: PMC10097802 DOI: 10.1007/s10237-022-01665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Aortic Regurgitation (AR) produces the entrance of an abnormal amount of blood in the left ventricle. This disease is responsible for high morbidity and mortality worldwide and may be caused by an aortic valve dysfunction. Surgical and transcatheter aortic valve replacement (TAVR) are the current options for treating AR. They have replaced older procedures such as Hufnagel's one. However, some physicians have reconsidered this procedure as a less aggressive alternative for patients not eligible for surgical or TAVR. Although Hufnagel suggested a 75% regurgitation reduction when a valve is placed in the descending aorta, a quantification of this value has not been reported. METHODS In this paper, CFD/FSI numerical simulation is conducted on an idealized geometry. We quantify the effect of placing a bileaflet mechanical heart valve in the descending aorta on a moderate-severe AR case. A three-element Windkessel model is employed to prescribe pressure outlet boundary conditions. We calculate the resulting flow rates and pressures at the aorta and first-generation vessels. Moreover, we evaluate several indices to assess the improvement due to the valve introduction. RESULTS AND CONCLUSIONS Regurgitation fraction (RF) is reduced from 37.5% (without valve) to 18.0% (with valve) in a single cardiac cycle. This reduction clearly shows the remarkable efficacy of the rescued technique. It will further ameliorate the left ventricle function in the long-term. Moreover, the calculations show that the implantation in that location introduces fewer incompatibilities' risks than a conventional one. The proposed methodology can be extended to any particular conditions (pressure waveforms/geometry) and is designed to assess usual clinical parameters employed by physicians.
Collapse
Affiliation(s)
- A García-Galindo
- Departamento de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006, Badajoz, Spain
| | - R Agujetas
- Departamento de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006, Badajoz, Spain
| | - J R López-Mínguez
- Sección de Cardiologıa Intervencionista, Servicio de Cardiologıa, Hospital Universitario de Badajoz, Avda. de Elvas s/n, E-06006, Badajoz, Spain
| | - C Ferrera
- Departamento de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006, Badajoz, Spain.
| |
Collapse
|
41
|
Parametric analysis of an efficient boundary condition to control outlet flow rates in large arterial networks. Sci Rep 2022; 12:19092. [PMID: 36351976 PMCID: PMC9646762 DOI: 10.1038/s41598-022-21923-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Substantial effort is being invested in the creation of a virtual human-a model which will improve our understanding of human physiology and diseases and assist clinicians in the design of personalised medical treatments. A central challenge of achieving blood flow simulations at full-human scale is the development of an efficient and accurate approach to imposing boundary conditions on many outlets. A previous study proposed an efficient method for implementing the two-element Windkessel model to control the flow rate ratios at outlets. Here we clarify the general role of the resistance and capacitance in this approach and conduct a parametric sweep to examine how to choose their values for complex geometries. We show that the error of the flow rate ratios decreases exponentially as the resistance increases. The errors fall below 4% in a simple five-outlets model and 7% in a human artery model comprising ten outlets. Moreover, the flow rate ratios converge faster and suffer from weaker fluctuations as the capacitance decreases. Our findings also establish constraints on the parameters controlling the numerical stability of the simulations. The findings from this work are directly applicable to larger and more complex vascular domains encountered at full-human scale.
Collapse
|
42
|
Liu D, Wang X, Zhao D, Sun Z, Biekan J, Wen Z, Xu L, Liu J. Influence of MRI-based boundary conditions on type B aortic dissection simulations in false lumen with or without abdominal aorta involvement. Front Physiol 2022; 13:977275. [PMID: 36160847 PMCID: PMC9490059 DOI: 10.3389/fphys.2022.977275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Most computational hemodynamic studies of aortic dissections rely on idealized or general boundary conditions. However, numerical simulations that ignore the characteristics of the abdominal branch arteries may not be conducive to accurately observing the hemodynamic changes below the branch arteries. In the present study, two men (M-I and M-II) with type B aortic dissection (TBAD) underwent arterial-phase computed tomography angiography and four-dimensional flow magnetic resonance imaging (MRI) before and after thoracic endovascular aortic repair (TEVAR). The finite element method was used to simulate the computational fluid dynamic parameters of TBAD [false lumen (FL) with or without visceral artery involvement] under MRI-specific and three idealized boundary conditions in one cardiac cycle. Compared to the results of zero pressure and outflow boundary conditions, the simulations with MRI boundary conditions were closer to the initial MRI data. The pressure difference between true lumen and FL after TEVAR under the other three boundary conditions was lower than that of the MRI-specific results. The results of the outflow boundary conditions could not characterize the effect of the increased wall pressure near the left renal artery caused by the impact of Tear-1, which raised concerns about the distal organ and limb perfused by FL. After TEVAR, the flow velocity and wall pressure in the FL and the distribution areas of high time average wall shear stress and oscillating shear index were reduced. The difference between the calculation results for different boundary conditions was lower in M-II, wherein FL did not involve the abdominal aorta branches than in M-I. The boundary conditions of the abdominal branch arteries from MRI data might be valuable in elucidating the hemodynamic changes of the descending aorta in TBAD patients before and after treatment, especially those with FL involving the branch arteries.
Collapse
Affiliation(s)
- Dongting Liu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xuan Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Dongliang Zhao
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA, Australia
- *Correspondence: Jiayi Liu, ; Zhonghua Sun,
| | | | - Zhaoying Wen
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jiayi Liu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jiayi Liu, ; Zhonghua Sun,
| |
Collapse
|
43
|
Ling Y, Schenkel T, Tang J, Liu H. Computational fluid dynamics investigation on aortic hemodynamics in double aortic arch before and after ligation surgery. J Biomech 2022; 141:111231. [PMID: 35901663 DOI: 10.1016/j.jbiomech.2022.111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023]
Abstract
Double aortic arch (DAA) malformation is one of the reasons for symptomatic vascular rings, the hemodynamics of which is still poorly understood. This study aims to investigate the blood flow characteristics in patient-specific double aortic arches using computational fluid dynamics (CFD). Seven cases of infantile patients with DAA were collected and their computed tomography images were used to reconstruct 3D computational models. A modified Carreau model was used to consider the non-Newtonian effect of blood and a three-element Windkessel model taking the effect of the age of patients into account was applied to reproduce physiological pressure waveforms. Numerical results show that blood flow distribution and energy loss of DAA depends on relative sizes of the two aortic arches and their angles with the ascending aorta. Ligation of either aortic arch increases the energy loss of blood in the DAA, leading to the increase in cardiac workload. Generally, the rising rate of energy loss before and after the surgery is almost linear with the area ratio between the aortic arch without ligation and the ascending aorta.
Collapse
Affiliation(s)
- Yunfei Ling
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Torsten Schenkel
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Jiguo Tang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| | - Hongtao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| |
Collapse
|
44
|
Patient-specific computational haemodynamics associated with the surgical creation of an arteriovenous fistula. Med Eng Phys 2022; 105:103814. [DOI: 10.1016/j.medengphy.2022.103814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022]
|
45
|
Berg M, Holroyd N, Walsh C, West H, Walker-Samuel S, Shipley R. Challenges and opportunities of integrating imaging and mathematical modelling to interrogate biological processes. Int J Biochem Cell Biol 2022; 146:106195. [PMID: 35339913 PMCID: PMC9693675 DOI: 10.1016/j.biocel.2022.106195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022]
Abstract
Advances in biological imaging have accelerated our understanding of human physiology in both health and disease. As these advances have developed, the opportunities gained by integrating with cutting-edge mathematical models have become apparent yet remain challenging. Combined imaging-modelling approaches provide unprecedented opportunity to correlate data on tissue architecture and function, across length and time scales, to better understand the mechanisms that underpin fundamental biology and also to inform clinical decisions. Here we discuss the opportunities and challenges of such approaches, providing literature examples across a range of organ systems. Given the breadth of the field we focus on the intersection of continuum modelling and in vivo imaging applied to the vasculature and blood flow, though our rationale and conclusions extend widely. We propose three key research pillars (image acquisition, image processing, mathematical modelling) and present their respective advances as well as future opportunity via better integration. Multidisciplinary efforts that develop imaging and modelling tools concurrently, and share them open-source with the research community, provide exciting opportunity for advancing these fields.
Collapse
Affiliation(s)
- Maxime Berg
- UCL Mechanical Engineering, Torrington Place, London WC1E 7JE, UK
| | - Natalie Holroyd
- UCL Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Claire Walsh
- UCL Mechanical Engineering, Torrington Place, London WC1E 7JE, UK; UCL Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Hannah West
- UCL Mechanical Engineering, Torrington Place, London WC1E 7JE, UK
| | - Simon Walker-Samuel
- UCL Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Rebecca Shipley
- UCL Mechanical Engineering, Torrington Place, London WC1E 7JE, UK.
| |
Collapse
|
46
|
He Y, Northrup H, Le H, Cheung AK, Berceli SA, Shiu YT. Medical Image-Based Computational Fluid Dynamics and Fluid-Structure Interaction Analysis in Vascular Diseases. Front Bioeng Biotechnol 2022; 10:855791. [PMID: 35573253 PMCID: PMC9091352 DOI: 10.3389/fbioe.2022.855791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/08/2022] [Indexed: 01/17/2023] Open
Abstract
Hemodynamic factors, induced by pulsatile blood flow, play a crucial role in vascular health and diseases, such as the initiation and progression of atherosclerosis. Computational fluid dynamics, finite element analysis, and fluid-structure interaction simulations have been widely used to quantify detailed hemodynamic forces based on vascular images commonly obtained from computed tomography angiography, magnetic resonance imaging, ultrasound, and optical coherence tomography. In this review, we focus on methods for obtaining accurate hemodynamic factors that regulate the structure and function of vascular endothelial and smooth muscle cells. We describe the multiple steps and recent advances in a typical patient-specific simulation pipeline, including medical imaging, image processing, spatial discretization to generate computational mesh, setting up boundary conditions and solver parameters, visualization and extraction of hemodynamic factors, and statistical analysis. These steps have not been standardized and thus have unavoidable uncertainties that should be thoroughly evaluated. We also discuss the recent development of combining patient-specific models with machine-learning methods to obtain hemodynamic factors faster and cheaper than conventional methods. These critical advances widen the use of biomechanical simulation tools in the research and potential personalized care of vascular diseases.
Collapse
Affiliation(s)
- Yong He
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, United States
| | - Hannah Northrup
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Ha Le
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Alfred K. Cheung
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, United States
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, United States
- Vascular Surgery Section, Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, United States
| | - Yan Tin Shiu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, United States
- *Correspondence: Yan Tin Shiu,
| |
Collapse
|
47
|
Asadi H, Hedayat M, Borazjani I. The Effects of Implantation Orientation of a Bileaflet Mechanical Heart Valve in an Anatomic Left Ventricle-Aorta Configuration. J Biomech Eng 2022; 144:1140397. [PMID: 35466356 DOI: 10.1115/1.4054411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/08/2022]
Abstract
We have performed three-dimensional high-resolution numerical simulations of a bi-leaflet mechanical heart valve (BMHV) implanted at different orientations in an anatomic left ventricle-aorta obtained from magnetic resonance imaging (MRI) of a volunteer. The thoroughly validated overset curvilinear-immersed boundary (overset-CURVIB) fluid-structure interaction (FSI) flow solver is used in which the aorta and LV are discretized with boundary-conforming and non-conforming curvilinear grids, respectively. The motion of the LV wall is prescribed based on a lumped parameter model while the motion of the leaflets are calculated using a strong coupled FSI algorithm enhanced with Aitken convergence technique. We carried out simulations for three valve orientations, which differ from each other by 45 degrees and compared the leaflet motion and flow field for multiple cycles. Our results show reproducible and relatively symmetrical opening for all valve orientations. The presence of small-scale vortical structures after peak systole, cause significant cycle-to-cycle variations in valve kinematics during the closing phase for all valve orientations. Furthermore, our results show that valve orientation does not have a significant effect on the distribution of viscous shear stress in the ascending aorta. Additionally, two different mathematical activation models including linear level of activation and Soares model are used to quantify the platelet activation in the ascending aorta. The results show that the valve orientation does not significantly affect (less than 8%) the total platelet activation in the ascending aorta.
Collapse
Affiliation(s)
- Hossein Asadi
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Mohammadali Hedayat
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Iman Borazjani
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
48
|
Conijn M, Krings GJ. Understanding stenotic pulmonary arteries: Can computational fluid dynamics help us out? PROGRESS IN PEDIATRIC CARDIOLOGY 2022. [DOI: 10.1016/j.ppedcard.2021.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Haemodynamic Analysis of Branched Endografts for Complex Aortic Arch Repair. Bioengineering (Basel) 2022; 9:bioengineering9020045. [PMID: 35200399 PMCID: PMC8868591 DOI: 10.3390/bioengineering9020045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
This study aims to investigate the haemodynamic response induced by implantation of a double-branched endograft used in thoracic endovascular aortic repair (TEVAR) of the aortic arch. Anatomically realistic models were reconstructed from CT images obtained from patients who underwent TEVAR using the RelayPlus double-branched endograft implanted in the aortic arch. Two cases (Patient 1, Patient 2) were included here, both patients presented with type A aortic dissection before TEVAR. To examine the influence of inner tunnel branch diameters on localised flow patterns, three tunnel branch diameters were tested using the geometric model reconstructed for Patient 1. Pulsatile blood flow through the models was simulated by numerically solving the Navier–Stokes equations along with a transitional flow model. The physiological boundary conditions were imposed at the model inlet and outlets, while the wall was assumed to be rigid. Our simulation results showed that the double-branched endograft allowed for the sufficient perfusion of blood to the supra-aortic branches and restored flow patterns expected in normal aortas. The diameter of tunnel branches in the device plays a crucial role in the development of flow downstream of the branches and thus must be selected carefully based on the overall geometry of the vessel. Given the importance of wall shear stress in vascular remodelling and thrombus formation, longitudinal studies should be performed in the future in order to elucidate the role of tunnel branch diameters in long-term patency of the supra-aortic branches following TEVAR with the double-branched endograft.
Collapse
|
50
|
Inlet and Outlet Boundary Conditions and Uncertainty Quantification in Volumetric Lattice Boltzmann Method for Image-Based Computational Hemodynamics. FLUIDS 2022. [DOI: 10.3390/fluids7010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inlet and outlet boundary conditions (BCs) play an important role in newly emerged image-based computational hemodynamics for blood flows in human arteries anatomically extracted from medical images. We developed physiological inlet and outlet BCs based on patients’ medical data and integrated them into the volumetric lattice Boltzmann method. The inlet BC is a pulsatile paraboloidal velocity profile, which fits the real arterial shape, constructed from the Doppler velocity waveform. The BC of each outlet is a pulsatile pressure calculated from the three-element Windkessel model, in which three physiological parameters are tuned by the corresponding Doppler velocity waveform. Both velocity and pressure BCs are introduced into the lattice Boltzmann equations through Guo’s non-equilibrium extrapolation scheme. Meanwhile, we performed uncertainty quantification for the impact of uncertainties on the computation results. An application study was conducted for six human aortorenal arterial systems. The computed pressure waveforms have good agreement with the medical measurement data. A systematic uncertainty quantification analysis demonstrates the reliability of the computed pressure with associated uncertainties in the Windkessel model. With the developed physiological BCs, the image-based computation hemodynamics is expected to provide a computation potential for the noninvasive evaluation of hemodynamic abnormalities in diseased human vessels.
Collapse
|