1
|
Ji X, Wu Q, Cao X, Liu S, Zhang J, Chen S, Shan J, Zhang Y, Li B, Zhao H. Helicobacter pylori East Asian type CagA hijacks more SHIP2 by its EPIYA-D motif to potentiate the oncogenicity. Virulence 2024; 15:2375549. [PMID: 38982595 PMCID: PMC11238919 DOI: 10.1080/21505594.2024.2375549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
CagA is a significant oncogenic factor injected into host cells by Helicobacter pylori, which is divided into two subtypes: East Asian type (CagAE), characterized by the EPIYA-D motif, and western type (CagAW), harboring the EPIYA-C motif. CagAE has been reported to have higher carcinogenicity than CagAW, although the underlying reason is not fully understood. SHIP2 is an intracellular phosphatase that can be recruited by CagA to perturb the homeostasis of intracellular signaling pathways. In this study, we found that SHIP2 contributes to the higher oncogenicity of CagAE. Co-Immunoprecipitation and Pull-down assays showed that CagAE bind more SHIP2 than CagAW. Immunofluorescence staining showed that a higher amount of SHIP2 recruited by CagAE to the plasma membrane catalyzes the conversion of PI(3,4,5)P3 into PI(3,4)P2. This alteration causes higher activation of Akt signaling, which results in enhanced IL-8 secretion, migration, and invasion of the infected cells. SPR analysis showed that this stronger interaction between CagAE and SHIP2 stems from the higher affinity between the EPIYA-D motif of CagAE and the SH2 domain of SHIP2. Structural analysis revealed the crucial role of the Phe residue at the Y + 5 position in EPIYA-D. After mutating Phe of CagAE into Asp (the corresponding residue in the EPIYA-C motif) or Ala, the activation of downstream Akt signaling was reduced and the malignant transformation of infected cells was alleviated. These findings revealed that CagAE hijacks SHIP2 through its EPIYA-D motif to enhance its carcinogenicity, which provides a better understanding of the higher oncogenic risk of H. pylori CagAE.
Collapse
Affiliation(s)
- Xiaofei Ji
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Qianwen Wu
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Xinying Cao
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Shuzhen Liu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Jianhui Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Si Chen
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Jiangfan Shan
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Ying Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Boqing Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Huilin Zhao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
2
|
Wei W, Geer MJ, Guo X, Dolgalev I, Sanjana NE, Neel BG. Genome-wide CRISPR/Cas9 screens reveal shared and cell-specific mechanisms of resistance to SHP2 inhibition. J Exp Med 2023; 220:e20221563. [PMID: 36820830 PMCID: PMC9998968 DOI: 10.1084/jem.20221563] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 02/24/2023] Open
Abstract
SHP2 (PTPN11) acts upstream of SOS1/2 to enable RAS activation. Allosteric SHP2 inhibitors (SHP2i) in the clinic prevent SHP2 activation, block proliferation of RTK- or cycling RAS mutant-driven cancers, and overcome "adaptive resistance." To identify SHP2i resistance mechanisms, we performed genome-wide CRISPR/Cas9 knockout screens on two SHP2i-sensitive cell lines, recovering genes expected to cause resistance (NF1, PTEN, CDKN1B, LZTR1, and RASA2) and novel targets (INPPL1, MAP4K5, epigenetic modifiers). We screened 14 additional lines with a focused CRISPR library targeting common "hits" from the genome-wide screens. LZTR1 deletion conferred resistance in 12/14 lines, followed by MAP4K5 (8/14), SPRED2/STK40 (6/14), and INPPL1 (5/14). INPPL1, MAP4K5, or LZTR1 deletion reactivated ERK signaling. INPPL1-mediated sensitization to SHP2i required its NPXY motif but not lipid phosphatase activity. MAP4K5 acted upstream of MEK through a kinase-dependent target(s); LZTR1 had cell-dependent effects on RIT and RAS stability. INPPL1, MAP4K5, or LZTR1 deletion also conferred SHP2i resistance in vivo. Defining the SHP2i resistance landscape could suggest effective combination approaches.
Collapse
Affiliation(s)
- Wei Wei
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Mitchell J. Geer
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Xinyi Guo
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Igor Dolgalev
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Neville E. Sanjana
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Benjamin G. Neel
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| |
Collapse
|
3
|
John LH, Naughton FB, Sansom MSP, Larsen AH. The Role of C2 Domains in Two Different Phosphatases: PTEN and SHIP2. MEMBRANES 2023; 13:408. [PMID: 37103835 PMCID: PMC10146288 DOI: 10.3390/membranes13040408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Phosphatase and tensin homologue (PTEN) and SH2-containing inositol 5'-phosphatase 2 (SHIP2) are structurally and functionally similar. They both consist of a phosphatase (Ptase) domain and an adjacent C2 domain, and both proteins dephosphorylate phosphoinositol-tri(3,4,5)phosphate, PI(3,4,5)P3; PTEN at the 3-phophate and SHIP2 at the 5-phosphate. Therefore, they play pivotal roles in the PI3K/Akt pathway. Here, we investigate the role of the C2 domain in membrane interactions of PTEN and SHIP2, using molecular dynamics simulations and free energy calculations. It is generally accepted that for PTEN, the C2 domain interacts strongly with anionic lipids and therefore significantly contributes to membrane recruitment. In contrast, for the C2 domain in SHIP2, we previously found much weaker binding affinity for anionic membranes. Our simulations confirm the membrane anchor role of the C2 domain in PTEN, as well as its necessity for the Ptase domain in gaining its productive membrane-binding conformation. In contrast, we identified that the C2 domain in SHIP2 undertakes neither of these roles, which are generally proposed for C2 domains. Our data support a model in which the main role of the C2 domain in SHIP2 is to introduce allosteric interdomain changes that enhance catalytic activity of the Ptase domain.
Collapse
Affiliation(s)
- Laura H. John
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Fiona B. Naughton
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Andreas Haahr Larsen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Structural Insights into the Binding Propensity of Human SHIP2 SH2 to Oncogenic CagA Isoforms from Helicobacter pylori. Int J Mol Sci 2022; 23:ijms231911299. [PMID: 36232599 PMCID: PMC9569640 DOI: 10.3390/ijms231911299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
SHIP2 is a multi-domain inositol 5-phosphatase binding to a variety of phosphotyrosine (pY)-containing proteins through its SH2 domain, so as to regulate various cell signaling pathways by modulating the phosphatidylinositol level in the plasma membrane. Unfavorably, Helicobacter pylori can hijack SHIP2 through the CagA protein to induce gastric cell carcinogenesis. To date, the interaction between SHIP2 and CagA was not analyzed from a structural point of view. Here, the binding of SHIP2-SH2 with Tyr-phosphorylated peptides from four EPIYA motifs (A/B/C/D) in CagA was studied using NMR spectroscopy. The results showed that EPIYA-C and -D bind to a similar interface of SHIP2-SH2, including a pY-binding pocket and a hydrophobic pocket, to achieve high affinity, while EPIYA-A and -B bind to a smaller interface of SHIP2-SH2 with weak affinity. By summarizing the interface and affinity of SHIP2-SH2 for CagA EPIYA-A/B/C/D, c-MET and FcgR2B ITIM, it was proposed that, potentially, SHIP2-SH2 has a selective preference for L > I > V for the aliphatic residues at the pY+3 position in its ligand. This study reveals the rule of the ligand sequence bound by SHIP2-SH2 and the mechanism by which CagA protein hijacks SHIP2, which will help design a peptide inhibitor against SHIP2-SH2.
Collapse
|
5
|
Hunting for Novel Routes in Anticancer Drug Discovery: Peptides against Sam-Sam Interactions. Int J Mol Sci 2022; 23:ijms231810397. [PMID: 36142306 PMCID: PMC9499636 DOI: 10.3390/ijms231810397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/10/2023] Open
Abstract
Among the diverse protein binding modules, Sam (Sterile alpha motif) domains attract attention due to their versatility. They are present in different organisms and play many functions in physiological and pathological processes by binding multiple partners. The EphA2 receptor contains a Sam domain at the C-terminus (EphA2-Sam) that is able to engage protein regulators of receptor stability (including the lipid phosphatase Ship2 and the adaptor Odin). Ship2 and Odin are recruited by EphA2-Sam through heterotypic Sam-Sam interactions. Ship2 decreases EphA2 endocytosis and consequent degradation, producing chiefly pro-oncogenic outcomes in a cellular milieu. Odin, through its Sam domains, contributes to receptor stability by possibly interfering with ubiquitination. As EphA2 is upregulated in many types of tumors, peptide inhibitors of Sam-Sam interactions by hindering receptor stability could function as anticancer therapeutics. This review describes EphA2-Sam and its interactome from a structural and functional perspective. The diverse design strategies that have thus far been employed to obtain peptides targeting EphA2-mediated Sam-Sam interactions are summarized as well. The generated peptides represent good initial lead compounds, but surely many efforts need to be devoted in the close future to improve interaction affinities towards Sam domains and consequently validate their anticancer properties.
Collapse
|
6
|
Vincenzi M, Anna Mercurio F, Di Natale C, Palumbo R, Pirone L, La Manna S, Marasco D, Maria Pedone E, Leone M. Targeting Ship2-Sam with peptide ligands: Novel insights from a multidisciplinary approach. Bioorg Chem 2022; 122:105680. [DOI: 10.1016/j.bioorg.2022.105680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 01/06/2023]
|
7
|
Abstract
Phosphoinositides are signalling lipids derived from phosphatidylinositol, a ubiquitous phospholipid in the cytoplasmic leaflet of eukaryotic membranes. Initially discovered for their roles in cell signalling, phosphoinositides are now widely recognized as key integrators of membrane dynamics that broadly impact on all aspects of cell physiology and on disease. The past decade has witnessed a vast expansion of our knowledge of phosphoinositide biology. On the endocytic and exocytic routes, phosphoinositides direct the inward and outward flow of membrane as vesicular traffic is coupled to the conversion of phosphoinositides. Moreover, recent findings on the roles of phosphoinositides in autophagy and the endolysosomal system challenge our view of lysosome biology. The non-vesicular exchange of lipids, ions and metabolites at membrane contact sites in between organelles has also been found to depend on phosphoinositides. Here we review our current understanding of how phosphoinositides shape and direct membrane dynamics to impact on cell physiology, and provide an overview of emerging concepts in phosphoinositide regulation.
Collapse
|
8
|
Sharma S, Mathre S, Ramya V, Shinde D, Raghu P. Phosphatidylinositol 5 Phosphate 4-Kinase Regulates Plasma-Membrane PIP 3 Turnover and Insulin Signaling. Cell Rep 2020; 27:1979-1990.e7. [PMID: 31091438 PMCID: PMC6591132 DOI: 10.1016/j.celrep.2019.04.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/06/2019] [Accepted: 04/17/2019] [Indexed: 01/25/2023] Open
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3) generation at the plasma membrane is a key event during activation of receptor tyrosine kinases such as the insulin receptor required for normal growth and metabolism. We report that in Drosophila, phosphatidylinositol 5 phosphate 4-kinase (PIP4K) is required to limit PIP3 levels during insulin receptor activation. Depletion of PIP4K increases the levels of PIP3 produced in response to insulin stimulation. We find that PIP4K function at the plasma membrane enhances class I phosphoinositide 3-kinase (PI3K) activity, although the catalytic ability of PIP4K to produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] at the plasma membrane is dispensable for this regulation. Animals lacking PIP4K show enhanced insulin signaling-dependent phenotypes and are resistant to the metabolic consequences of a high-sugar diet, highlighting the importance of PIP4K in normal metabolism and development. Thus, PIP4Ks are key regulators of receptor tyrosine kinase signaling with implications for growth factor-dependent processes including tumor growth, T cell activation, and metabolism.
Collapse
Affiliation(s)
- Sanjeev Sharma
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Swarna Mathre
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Visvanathan Ramya
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Dhananjay Shinde
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Padinjat Raghu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
9
|
Vande Catsyne CA, Sayyed SA, Molina-Ortiz P, Moes B, Communi D, Muller J, Heusschen R, Caers J, Azzi A, Erneux C, Schurmans S. Altered chondrocyte differentiation, matrix mineralization and MEK-Erk1/2 signaling in an INPPL1 catalytic knock-out mouse model of opsismodysplasia. Adv Biol Regul 2019; 76:100651. [PMID: 31519471 DOI: 10.1016/j.jbior.2019.100651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 11/25/2022]
Abstract
Opsismodysplasia (OPS) is a rare but severe autosomal recessive skeletal chondrodysplasia caused by inactivating mutations in the Inppl1/Ship2 gene. The molecular mechanism leading from Ship2 gene inactivation to OPS is currently unknown. Here, we used our Ship2Δ/Δ mouse expressing reduced amount of a catalytically-inactive SHIP2 protein and a previously reported SHIP2 inhibitor to investigate growth plate development and mineralization in vivo, ex vivo and in vitro. First, as observed in OPS patients, catalytic inactivation of SHIP2 in mouse leads to reduced body length, shortening of long bones, craniofacial dysmorphism, reduced height of the hyperthrophic chondrocyte zone and to defects in growth plate mineralization. Second, intrinsic Ship2Δ/Δ bone defects were sufficient to induce the characteristic OPS alterations in bone growth, histology and mineralization ex vivo. Third, expression of osteocalcin was significantly increased in SHIP2-inactivated chondrocyte cultures whereas production of mineralized nodules was markedly decreased. Targeting osteocalcin mRNA with a specific shRNA increased the production of mineralized nodules. Fourth, levels of p-MEK and p-Erk1/2 were significantly increased in SHIP2-inactivated chondrocytes in response to serum and IGF-1, but not to FGF2, as compared to control chondrocytes. Treatment of chondrocytes and bones in culture with a MEK inhibitor partially rescued the production of mineralized nodules, the size of the hypertrophic chondrocyte zone and bone growth, raising the possibility of a treatment that could partially reduce the phenotype of this severe condition. Altogether, our results indicate that Ship2Δ/Δ mice represent a relevant model for human OPS. They also highlight the important role of SHIP2 in chondrocytes during endochondral ossification and its different differentiation steps. Finally, we identified a role of osteocalcin in mineralized nodules production and for the MEK-Erk1/2 signaling pathway in the OPS phenotype.
Collapse
Affiliation(s)
- Charles-Andrew Vande Catsyne
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Sufyan Ali Sayyed
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Patricia Molina-Ortiz
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Bastien Moes
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - David Communi
- IRIBHM, Bat. C, Campus Hôpital Erasme, Université Libre de Bruxelles, route de Lennik 808, 1070, Bruxelles, Belgium
| | - Joséphine Muller
- Laboratory of Hematology, GIGA-Inflammation, Infection & Immunity, GIGA-B34, CHU Sart Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Roy Heusschen
- Laboratory of Hematology, GIGA-Inflammation, Infection & Immunity, GIGA-B34, CHU Sart Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Jo Caers
- Laboratory of Hematology, GIGA-Inflammation, Infection & Immunity, GIGA-B34, CHU Sart Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Abdelhalim Azzi
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Christophe Erneux
- IRIBHM, Bat. C, Campus Hôpital Erasme, Université Libre de Bruxelles, route de Lennik 808, 1070, Bruxelles, Belgium
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium.
| |
Collapse
|
10
|
Su KJ, Yu YL. Downregulation of SHIP2 by Hepatitis B Virus X Promotes the Metastasis and Chemoresistance of Hepatocellular Carcinoma through SKP2. Cancers (Basel) 2019; 11:cancers11081065. [PMID: 31357665 PMCID: PMC6721294 DOI: 10.3390/cancers11081065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV)-encoded X protein (HBx) plays an important role in the development of hepatocellular carcinoma (HCC). The protein SH2 domain containing inositol 5-phosphatase 2 (SHIP2) belongs to the family of enzymes that dephosphorylate the 5 position of PI(3,4,5)P3 to produce PI(3,4)P2. Expression of SHIP2 has been associated with several cancers including HCC. However, its role in the development of HBV-related HCC remains elusive. In this study, we performed tissue microarray analysis using 49 cases of HCC to explore SHIP2 expression changes and found that SHIP2 was downregulated in HBV-positive HCC. In addition, S-phase kinase-associated protein 2 (SKP2), a component of the E3 ubiquitin–ligase complex, was increased in HCC cell lines that overexpressed HBx, which also showed a notable accumulation of polyubiquitinated SHIP2. Moreover, HCC cells with silenced SHIP2 had increased expression of mesenchymal markers, which promotes cell migration, enhances glucose uptake, and leads to resistance to the chemotherapy drug (5-Fluorouracil, 5-FU). Taken together, our results demonstrate that HBx downregulates SHIP2 through SKP2 and suggest a potential role for SHIP2 in HBx-mediated HCC migration.
Collapse
Affiliation(s)
- Kuo-Jung Su
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yung-Luen Yu
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan.
- Drug Development Center, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
11
|
Ijuin T. Phosphoinositide phosphatases in cancer cell dynamics-Beyond PI3K and PTEN. Semin Cancer Biol 2019; 59:50-65. [PMID: 30922959 DOI: 10.1016/j.semcancer.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Phosphoinositides are a group of lipids that regulate intracellular signaling and subcellular biological events. The signaling by phosphatidylinositol-3,4,5-trisphosphate and Akt mediates the action of growth factors that are essential for cell proliferation, gene transcription, cell migration, and polarity. The hyperactivation of this signaling has been identified in different cancer cells; and, it has been implicated in oncogenic transformation and cancer cell malignancy. Recent studies have argued the role of phosphoinositides in cancer cell dynamics, including actin cytoskeletal rearrangement at the plasma membrane and the organization of intracellular compartments. The focus of this review is to summarize the impact of the activities of phosphoinositide phosphatases on intracellular signaling related to cancer cell dynamics and to discuss how the abnormalities in the activities of the enzymes alter the levels of phosphoinositides in cancer cells.
Collapse
Affiliation(s)
- Takeshi Ijuin
- Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chu-o, Kobe 650-0017, Japan.
| |
Collapse
|
12
|
Zhou YL, Zheng C, Chen YT, Chen XM. Underexpression of INPPL1 is associated with aggressive clinicopathologic characteristics in papillary thyroid carcinoma. Onco Targets Ther 2018; 11:7725-7731. [PMID: 30464521 PMCID: PMC6219113 DOI: 10.2147/ott.s185803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose To study the relationship between INPPL1 gene and clinicopathologic characteristics of papillary thyroid carcinoma (PTC). Patients and methods INPPL1 expression in PTCs was tested by quantitative real-time reverse transcription PCR. The Cancer Genome Atlas (TCGA) RNA-seq data and our mRNA data were used to analyze and reveal the relationship between INPPL1 and aggressive clinicopathologic characteristics of PTC. Results When compared to normal thyroid tissues, INPPL1 was significantly downregulated in PTC tissues, as revealed by our data and TCGA data. INPPL1 underexpression was remarkably related to aggressive clinicopathologic characteristics such as lymph node metastasis (LNM), histological type, tumor size, mulitifocality, and disease stage in TCGA data. Meanwhile, LNM was confirmed to be associated with underexpression of INPPL1 in our data. In addition, logistic analysis clearly showed that underexpression of INPPL1 was an independent factor for LNM in PTC. Conclusion INPPL1 may be a novel tumor suppressor gene in PTC, which was significantly correlated with aggressive clinicopathologic characteristics, especially LNM.
Collapse
Affiliation(s)
- Yi-Li Zhou
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| | - Chen Zheng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| | - Yi-Tong Chen
- Department of Clinical Medicine, Tai Zhou University Medical School, Taizhou, Zhejiang, China
| | - Xue-Min Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| |
Collapse
|
13
|
Hoekstra E, Das AM, Willemsen M, Swets M, Kuppen PJK, van der Woude CJ, Bruno MJ, Shah JP, Ten Hagen TLM, Chisholm JD, Kerr WG, Peppelenbosch MP, Fuhler GM. Lipid phosphatase SHIP2 functions as oncogene in colorectal cancer by regulating PKB activation. Oncotarget 2018; 7:73525-73540. [PMID: 27716613 PMCID: PMC5341996 DOI: 10.18632/oncotarget.12321] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related death, encouraging the search for novel therapeutic targets affecting tumor cell proliferation and migration. These cellular processes are under tight control of two opposing groups of enzymes; kinases and phosphatases. Aberrant activity of kinases is observed in many forms of cancer and as phosphatases counteract such "oncogenic" kinases, it is generally assumed that phosphatases function as tumor suppressors. However, emerging evidence suggests that the lipid phosphatase SH2-domain-containing 5 inositol phosphatase (SHIP2), encoded by the INPPL1 gene, may act as an oncogene. Just like the well-known tumor suppressor gene Phosphatase and Tensin Homolog (PTEN) it hydrolyses phosphatidylinositol (3,4,5) triphosphate (PI(3,4,5)P3). However, unlike PTEN, the reaction product is PI(3,4)P2, which is required for full activation of the downstream protein kinase B (PKB/Akt), suggesting that SHIP2, in contrast to PTEN, could have a tumor initiating role through PKB activation. In this work, we investigated the role of SHIP2 in colorectal cancer. We found that SHIP2 and INPPL1 expression is increased in colorectal cancer tissue in comparison to adjacent normal tissue, and this is correlated with decreased patient survival. Moreover, SHIP2 is more active in colorectal cancer tissue, suggesting that SHIP2 can induce oncogenesis in colonic epithelial cells. Furthermore, in vitro experiments performed on colorectal cancer cell lines shows an oncogenic role for SHIP2, by enhancing chemoresistance, cell migration, and cell invasion. Together, these data indicate that SHIP2 expression contributes to the malignant potential of colorectal cancer, providing a possible target in the fight against this devastating disease.
Collapse
Affiliation(s)
- Elmer Hoekstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Asha M Das
- Department of Surgery, Section Surgical Oncology, Laboratory Experimental Surgical Oncology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marcella Willemsen
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marloes Swets
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Christien J van der Woude
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jigisha P Shah
- Department of Chemistry, Syracuse University, Syracuse, New York, United States of America
| | - Timo L M Ten Hagen
- Department of Surgery, Section Surgical Oncology, Laboratory Experimental Surgical Oncology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, New York, United States of America
| | - William G Kerr
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, United States of America
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Ramos AR, Elong Edimo W, Erneux C. Phosphoinositide 5-phosphatase activities control cell motility in glioblastoma: Two phosphoinositides PI(4,5)P2 and PI(3,4)P2 are involved. Adv Biol Regul 2018; 67:40-48. [PMID: 28916189 DOI: 10.1016/j.jbior.2017.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 05/15/2023]
Abstract
Inositol polyphosphate 5-phosphatases or phosphoinositide 5-phosphatases (PI 5-phosphatases) are enzymes that can act on soluble inositol phosphates and/or phosphoinositides (PIs). Several PI 5-phosphatases have been linked to human genetic diseases, in particular the Lowe protein or OCRL which is mutated in the Lowe syndrome. There are 10 different members of this family and 9 of them can use PIs as substrate. One of these substrates, PI(3,4,5)P3 binds to specific PH domains and recruits as effectors specific proteins to signaling complexes. Protein kinase B is one target protein and activation of the kinase will have a major impact on cell proliferation, survival and cell metabolism. Two other PIs, PI(4,5)P2 and PI(3,4)P2, are produced or used as substrates of PI 5-phosphatases (OCRL, INPP5B, SHIP1/2, SYNJ1/2, INPP5K, INPP5J, INPP5E). The inositol lipids may influence many aspects of cytoskeletal organization, lamellipodia formation and F-actin polymerization. PI 5-phosphatases have been reported to control cell migration, adhesion, polarity and cell invasion particularly in cancer cells. In glioblastoma, reducing SHIP2 expression can positively or negatively affect the speed of cell migration depending on the glioblastoma cell type. The two PI 5-phosphatases SHIP2 or SKIP could be localized at the plasma membrane and can reduce either PI(3,4,5)P3 or PI(4,5)P2 abundance. In the glioblastoma 1321 N1 cells, SHIP2 controls plasma membrane PI(4,5)P2 thereby participating in the control of cell migration.
Collapse
Affiliation(s)
- Ana Raquel Ramos
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| | - William's Elong Edimo
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Christophe Erneux
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium.
| |
Collapse
|
15
|
Hamze-Komaiha O, Sarr S, Arlot-Bonnemains Y, Samuel D, Gassama-Diagne A. SHIP2 Regulates Lumen Generation, Cell Division, and Ciliogenesis through the Control of Basolateral to Apical Lumen Localization of Aurora A and HEF 1. Cell Rep 2017; 17:2738-2752. [PMID: 27926875 DOI: 10.1016/j.celrep.2016.11.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/05/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022] Open
Abstract
Lumen formation during epithelial morphogenesis requires the creation of a luminal space at cell interfaces named apical membrane-initiation sites (AMISs). This is dependent upon integrated signaling from mechanical and biochemical cues, vesicle trafficking, cell division, and processes tightly coupled to ciliogenesis. Deciphering relationships between polarity determinants and lumen or cilia generation remains a fundamental issue. Here, we report that Src homology 2 domain-containing inositol 5-phosphatase 2 (SHIP2), a basolateral determinant of polarity, regulates RhoA-dependent actin contractility and cell division to form AMISs. SHIP2 regulates mitotic spindle alignment. SHIP2 is expressed in G1 phase, whereas Aurora A kinase is enriched in mitosis. SHIP2 binds Aurora A kinase and the scaffolding protein HEF1 and promotes their basolateral localization at the expense of their luminal expression connected with cilia resorption. Furthermore, SHIP2 expression increases cilia length. Thus, our findings offer new insight into the relationships among basolateral proteins, lumen generation, and ciliogenesis.
Collapse
Affiliation(s)
- Ola Hamze-Komaiha
- Université Paris-Sud, 91400 Orsay, France; Unité 1193, 94800 Villejuif, France
| | - Sokavuth Sarr
- Université Paris-Sud, 91400 Orsay, France; Unité 1193, 94800 Villejuif, France
| | | | - Didier Samuel
- Université Paris-Sud, 91400 Orsay, France; Unité 1193, 94800 Villejuif, France; AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, 94800 Villejuif, France
| | - Ama Gassama-Diagne
- Université Paris-Sud, 91400 Orsay, France; Unité 1193, 94800 Villejuif, France.
| |
Collapse
|
16
|
Huang S, Jin A. ZIC2 promotes viability and invasion of human osteosarcoma cells by suppressing SHIP2 expression and activating PI3K/AKT pathways. J Cell Biochem 2017; 119:2248-2257. [PMID: 28857346 DOI: 10.1002/jcb.26387] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/24/2017] [Indexed: 12/20/2022]
Abstract
Osteosarcoma is a malignant tumor of the skeletal system. The zinc finger transcription factor ZIC2 has been reported to be highly expressed in human cancers. The present study evaluated the effects of ZIC2 and the possible underlying mechanisms in the human osteosarcoma cells. The expression levels of ZIC2 in human fetal osteoblastic cell line (hFOB1.19), osteosarcoma cell lines (U-2OS, SaoS2, and MG63), normal bone tissue, and osteosarcoma tumor were analyzed by Western blot, and real-time quantitative RT-PCR (qRT-PCR). Osteosarcoma cells with either overexpressed ZIC2 or suppressed ZIC2 were analyzed to determine cell viability, colony formation, and cell invasion. The expressions of SHIP2 and PI3K/AKT signal pathway-related proteins were analyzed by Western blot and qRT-PCR. We first showed that ZIC2 is highly expressed in osteosarcoma cells and tissues. Then we demonstrated that overexpression of ZIC2 promoted viability, migration, and invasion of osteosarcoma cells, whereas suppression of ZIC2 showed opposite effects. Furthermore, SHIP2 expression was negatively regulated by ZIC2. Importantly, ZIC2 overexpression activated the PI3K/AKT signal pathway; however, overexpressed SHIP2 inhibited these effects. Lastly, we showed that activation of the PI3K/AKT signal pathway is essential for the effects of ZIC2 on osteosarcoma cells, as the effects of ZIC2 on the osteosarcoma cells were reversed by a PI3K/AKT inhibitor. Overall, ZIC2 is highly expressed in osteosarcoma cells and tissues, and its overexpression promotes viability, invasion of osteosarcoma cells via SHIP2 suppression, and PI3K/AKT activation. Thus, ZIC2 can be considered as a novel drug target for osteosarcoma management.
Collapse
Affiliation(s)
- Shuaihao Huang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Anmin Jin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Reed DE, Shokat KM. INPP4B and PTEN Loss Leads to PI-3,4-P2 Accumulation and Inhibition of PI3K in TNBC. Mol Cancer Res 2017; 15:765-775. [PMID: 28196852 DOI: 10.1158/1541-7786.mcr-16-0183] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/07/2016] [Accepted: 01/17/2017] [Indexed: 01/06/2023]
Abstract
Triple-negative breast cancer [TNBC, lacks expression of estrogen receptor (ER), progesterone receptor (PR), and amplification of HER2/Neu] remains one of the most aggressive subtypes, affects the youngest patients, and still lacks an effective targeted therapy. Both phosphatidylinositol-3-kinase (PI3K)-α and -β contribute to oncogenesis of solid tumors, including the development of breast cancer. Inositol polyphosphate-4-phosphatase type II (INPP4B) catalyzes the removal of the 4'-phosphate of phosphatidylinositol-(3, 4)-bisphosphate (PI-3,4-P2), creating phosphatidylinositol-3-phosphate. There is debate concerning whether PI-3,4-P2 contributes to Akt and downstream effector activation with the known canonical signaling second messenger, phosphatidylinositol-(3, 4, 5)-trisphosphate (PIP3). If PI-3,4-P2 is a positive effector, INPP4B would be a negative regulator of PI3K signaling, and there is some evidence to support this. Utilizing phosphatase and tensin homolog deleted on chromosome ten (PTEN)-null triple-negative breast tumor cell lines, it was unexpectedly found that silencing INPP4B decreased basal phospho-Akt (pAkt) and cellular proliferation, and in most cases sensitized cells to PI3K-α and PI3K-β isoform-specific inhibitors. Conversely, overexpression of INPP4B desensitized cells to PI3K inhibitors in a phosphatase activity-dependent manner. In summary, the current investigation of INPP4B in PTEN-null TNBC suggests new mechanistic insight and the potential for targeted therapy for this aggressive subset of breast cancer.Implications: These data support a model where PI-3,4-P2 is inhibitory toward PI3K, revealing a novel feedback mechanism under conditions of excessive signaling, and potentially an indication for PI3K-β isoform-specific inhibitors in PTEN-null TNBC that have lost INPP4B expression. Mol Cancer Res; 15(6); 765-75. ©2017 AACR.
Collapse
Affiliation(s)
- Darien E Reed
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California.,Howard Hughes Medical Institute, University of California, San Francisco, California
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California. .,Howard Hughes Medical Institute, University of California, San Francisco, California
| |
Collapse
|
18
|
Decreased Sp1 Expression Mediates Downregulation of SHIP2 in Gastric Cancer Cells. Int J Mol Sci 2017; 18:ijms18010220. [PMID: 28117748 PMCID: PMC5297849 DOI: 10.3390/ijms18010220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/22/2016] [Accepted: 01/15/2017] [Indexed: 02/06/2023] Open
Abstract
Past studies have shown that the Src homology 2-containing inositol 5-phosphatase 2 (SHIP2) is commonly downregulated in gastric cancer, which contributes to elevated activation of PI3K/Akt signaling, proliferation and tumorigenesis of gastric cancer cells. However, the mechanisms underlying the reduced expression of SHIP2 in gastric cancer remain unclear. While gene copy number variation analysis and exon sequencing indicated the absence of genomic alterations of SHIP2, bisulfite genomic sequencing (BGS) showed promoter hypomethylation of SHIP2 in gastric cancer cells. Analysis of transcriptional activity of SHIP2 promoter revealed Specificity protein 1 (Sp1) was responsible for the regulation of SHIP2 expression in gastric cancer cells. Furthermore, Sp1 expression, but not Sp3, was frequently downregulated in gastric cancer compared with normal gastric mucosa, which was associated with a paralleled reduction in SHIP2 levels in gastric cancer. Moreover, overexpression of Sp1 inhibited cell proliferation, induced apoptosis, suppressed cell motility and invasion in gastric cancer cells in vitro, which was, at least in part, due to transcriptional activation of SHIP2 mediated by Sp1, thereby inactivating Akt. Collectively, these results indicate that decreased expression of transcription factor Sp1 contributes to suppression of SHIP2 in gastric cancer cells.
Collapse
|
19
|
Nuclear Lipids in the Nervous System: What they do in Health and Disease. Neurochem Res 2016; 42:321-336. [PMID: 27766461 DOI: 10.1007/s11064-016-2085-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
In the last 20 years it has been widely demonstrated that cell nucleus contains neutral and polar lipids localized in nuclear membranes, nucleoli, nuclear matrix and chromatin. Nuclear lipids may show specific organization forming nuclear lipid microdomains and have both structural and functional roles. Depending on their localization, nuclear lipids play different roles such as the regulation of nuclear membrane and nuclear matrix fluidity but they also can act as platforms for vitamin and hormone function, for active chromatin anchoring, and for the regulation of gene expression, DNA duplication and transcription. Crosstalk among different kinds of lipid signalling pathways influence the physiopathology of numerous cell types. In neural cells the nuclear lipids are involved in cell proliferation, differentiation, inflammation, migration and apoptosis. Abnormal metabolism of nuclear lipids might be closely associated with tumorigenesis and neurodegenerative diseases such as Alzheimer disease and Parkinson disease among others.
Collapse
|
20
|
McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, Libra M, Nicoletti F, Scalisi A, Torino F, Fenga C, Neri LM, Marmiroli S, Cocco L, Martelli AM. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2942-2976. [PMID: 27612668 DOI: 10.1016/j.bbamcr.2016.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Francesco Torino
- Department of Systems Medicine, Chair of Medical Oncology, Tor Vergata University of Rome, Rome, Italy
| | - Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section - Policlinico "G. Martino" - University of Messina, Messina 98125, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
21
|
Ye Y, Ge YM, Xiao MM, Guo LM, Li Q, Hao JQ, Da J, Hu WL, Zhang XD, Xu J, Zhang LJ. Suppression of SHIP2 contributes to tumorigenesis and proliferation of gastric cancer cells via activation of Akt. J Gastroenterol 2016. [PMID: 26201869 DOI: 10.1007/s00535-015-1101-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The Src homology 2-containing inositol 5-phosphatase 2 (SHIP2) is implicated in diabetes, arthrosclerosis, and cancer. However, the role of SHIP2 in human gastric cancer remains unclear. METHODS The expression levels of SHIP2 in gastric cancer tissues, a panel of gastric cancer cell lines, and normal gastric epithelial cells were analyzed by immunohistochemistry (IHC), Western blot, and real-time quantitative RT-PCR (qRT-PCR). Gastric cancer cells with either overexpressed SHIP2 or co-overexpressed SHIP2 and Akt were analyzed to determine cell proliferation, colony formation, apoptosis, cell migration, and invasion assays. Normal gastric epithelial cells with knockdown SHIP2 or co-knockdown SHIP2 and Akt were subjected by anchorage-independent growth assays. The effect of SHIP2 on tumor growth in vivo was detected by xenograft tumorigenesis assays. RESULTS SHIP2 was commonly downregulated in gastric cancer compared with normal gastric mucosa, and overexpression of SHIP2 inhibited cell proliferation, induced apoptosis, suppressed cell motility and invasion in gastric cancer cells in vitro, and retarded the growth of xenograft gastric tumors in vivo, while knockdown of SHIP2 in normal gastric epithelial cells promoted anchorage-independent growth. Moreover, overexpression of SHIP2 inactivated Akt, and upregulated p21, p27, and the pro-apoptotic protein Bim. Restoring Akt activation in gastric cancer cells largely blocked the inhibition of PI3K/Akt signaling by SHIP2 and reversed the inhibitory effect of SHIP2 on tumorigenesis and proliferation. CONCLUSIONS This study demonstrates, for the first time, that SHIP2 is frequently downregulated in gastric cancer, and reduced SHIP2 expression promotes tumorigenesis and proliferation of gastric cancer via activation of the PI3K/Akt signaling.
Collapse
Affiliation(s)
- Yan Ye
- Department of Immunology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yan Mei Ge
- Department of Immunology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Miao Miao Xiao
- Department of Immunology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Mei Guo
- Department of Immunology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qun Li
- Department of Immunology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ji Qing Hao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jie Da
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Wang Lai Hu
- Department of Immunology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xu Dong Zhang
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Jiegou Xu
- Department of Immunology, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Lin Jie Zhang
- Department of Immunology, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
22
|
Erneux C, Ghosh S, Koenig S. Inositol(1,4,5)P3 3-kinase isoenzymes: Catalytic properties and importance of targeting to F-actin to understand function. Adv Biol Regul 2016; 60:135-143. [PMID: 26446452 DOI: 10.1016/j.jbior.2015.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
Inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) 3-kinases (Itpks) catalyze the phosphorylation of inositol(1,4,5)trisphosphate into inositol(1,3,4,5)tetrakisphosphate (Ins(1,3,4,5)P4). Three isoenzymes Itpka/b and c have been identified in human, rat and mouse. They share a catalytic domain relatively well conserved at the C-terminal end and a quite isoenzyme specific regulatory domain at the N-terminal end of the protein. Activity determined in cell homogenates with Ins(1,4,5)P3 and ATP as substrate is generally very low compared to Ins(1,4,5)P3 5-phosphatase, except in a few tissues such as brain, testis, thymus or intestine. Activity is very much Ca(2+) sensitive and increased in the presence of Ca(2+)/calmodulin (CaM) as compared to EGTA alone. When challenged after receptor activation, activity could be further activated several fold, e.g. in rat brain cortical slices stimulated by carbachol or in human astrocytoma cells stimulated by purinergic agonists. Two of the three isoenzymes show an unexpected cytoskeletal localization for Itpka/b or at the leading edge for Itpkb. This is explained by the presence of an F-actin binding site at the N-terminal part of the two isoenzymes. This interaction confers to Itpka the properties of an F-actin bundling protein with two major consequences: i) it can reorganize the cytoskeletal network, particularly in dendritic spines, and ii) can provide an opportunity for Ins(1,3,4,5)P4 to act very locally as second messenger.
Collapse
Affiliation(s)
- Christophe Erneux
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium.
| | - Somadri Ghosh
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Sandra Koenig
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
23
|
Venditti R, Masone MC, Wilson C, De Matteis MA. PI(4)P homeostasis: Who controls the controllers? Adv Biol Regul 2016; 60:105-114. [PMID: 26542744 DOI: 10.1016/j.jbior.2015.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
During recent decades, PI(4)P (phosphoinositol-4-phosphate) has been described as a key regulator of a wide range of cellular functions such as organelle biogenesis, lipid metabolism and distribution, membrane trafficking, ion channels, pumps, and transporter activities. In this review we will focus on the multiple mechanisms that regulate PI(4)P homeostasis ranging from those responsible for the spatial distribution of the PI4 kinases and PI(4)P phosphatase to those controlling their enzymatic activity or the delivery/presentation of the substrate, i.e. PI or PI(4)P, to the PI4Ks or PI(4)P phosphatase, respectively. We will also highlight the open questions in the field mainly dealing with the existence and mode of action of PI(4)P sensors that monitor its amount and can act as a rheostat tuning PI(4)P levels in different compartments and adapting them to the different needs of the cell.
Collapse
Affiliation(s)
- Rossella Venditti
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Maria Chiara Masone
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | | |
Collapse
|
24
|
Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol 2015; 27:409-16. [PMID: 26681673 DOI: 10.1093/annonc/mdv615] [Citation(s) in RCA: 592] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022] Open
Abstract
Evasion of immune system is a hallmark of cancer, which enables cancer cells to escape the attack from immune cells. Cancer cells can express many immune inhibitory signalling proteins to cause immune cell dysfunction and apoptosis. One of these inhibitory molecules is programmed death-ligand-1 (PD-L1), which binds to programmed death-1 (PD-1) expressed on T-cells, B-cells, dendritic cells and natural killer T-cells to suppress anti-cancer immunity. Therefore, anti-PD-L1 and anti-PD-1 antibodies have been used for the treatment of cancer, showing promising outcomes. However, only a proportion of patients respond to the treatments. Further understanding of the regulation of PD-L1 expression could be helpful for the improvement of anti-PD-L1 and anti-PD-1 treatments. Studies have shown that PD-L1 expression is regulated by signalling pathways, transcriptional factors and epigenetic factors. In this review, we summarise the recent progress of the regulation of PD-L1 expression in cancer cells and propose a regulatory model for unified explanation. Both PI3K and MAPK pathways are involved in PD-L1 regulation but the downstream molecules that control PD-L1 and cell proliferation may differ. Transcriptional factors hypoxia-inducible factor-1α and signal transducer and activation of transcription-3 act on the promoter of PD-L1 to regulate its expression. In addition, microRNAs including miR-570, miR-513, miR-197, miR-34a and miR-200 negatively regulate PD-L1. Clinically, it could increase treatment efficacy of targeted therapy by choosing those molecules that control both PD-L1 expression and cell proliferation.
Collapse
Affiliation(s)
- J Chen
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle School of Biomedical Sciences, The University of Queensland, Brisbane
| | - C C Jiang
- School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia
| | - L Jin
- School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia
| | - X D Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle
| |
Collapse
|
25
|
Chappell WH, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Terrian D, Steelman LS, McCubrey JA. Novel roles of androgen receptor, epidermal growth factor receptor, TP53, regulatory RNAs, NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, and matrix metalloproteinase-9 in prostate cancer and prostate cancer stem cells. Adv Biol Regul 2015; 60:64-87. [PMID: 26525204 DOI: 10.1016/j.jbior.2015.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022]
Abstract
Approximately one in six men will be diagnosed with some form of prostate cancer in their lifetime. Over 250,000 men worldwide die annually due to complications from prostate cancer. While advancements in prostate cancer screening and therapies have helped in lowering this statistic, better tests and more effective therapies are still needed. This review will summarize the novel roles of the androgen receptor (AR), epidermal growth factor receptor (EGFR), the EGFRvIII variant, TP53, long-non-coding RNAs (lncRNAs), microRNAs (miRs), NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, (NGAL), matrix metalloproteinase-9 (MMP-9), the tumor microenvironment and cancer stem cells (CSC) have on the diagnosis, development and treatment of prostate cancer.
Collapse
Affiliation(s)
- William H Chappell
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - David Terrian
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
26
|
Fitzgerald TL, Lertpiriyapong K, Cocco L, Martelli AM, Libra M, Candido S, Montalto G, Cervello M, Steelman L, Abrams SL, McCubrey JA. Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells. Adv Biol Regul 2015; 59:65-81. [PMID: 26257206 DOI: 10.1016/j.jbior.2015.06.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2023]
Abstract
Pancreatic cancer is currently the fourth most common cancer, is increasing in incidence and soon will be the second leading cause of cancer death in the USA. This is a deadly malignancy with an incidence that approximates the mortality with 44,000 new cases and 36,000 deaths each year. Surgery, although only modestly successful, is the only curative option. However, due the locally aggressive nature and early metastasis, surgery can be performed on less than 20% of patients. Cytotoxic chemotherapy is palliative, has significant toxicity and improves survival very little. Thus new treatment paradigms are needed desperately. Due to the extremely high frequency of KRAS gene mutations (>90%) detected in pancreatic cancer patients, the roles of the epidermal growth factor receptor (EGFR), Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTORC1/GSK-3 pathways have been investigated in pancreatic cancer for many years. Constitutively active Ras can activate both of these pathways and there is cross talk between Ras and EGFR which is believed to be important in driving metastasis. Mutant KRAS may also drive the expression of GSK-3 through Raf/MEK/ERK-mediated effects on GSK-3 transcription. GSK-3 can then regulate the expression of NF-kappaB which is important in modulating pancreatic cancer chemoresistance. While the receptors and many downstream signaling molecules have been identified and characterized, there is still much to learn about these pathways and how their deregulation can lead to cancer. Multiple inhibitors to EGFR, PI3K, mTOR, GSK-3, Raf, MEK and hedgehog (HH) have been developed and are being evaluated in various cancers. Current research often focuses on the role of these pathways in cancer stem cells (CSC), with the goal to identify sites where therapeutic resistance may develop. Relatively novel fields of investigation such as microRNAs and drugs used for other diseases e.g., diabetes, (metformin) and malaria (chloroquine) have provided new information about therapeutic resistance and CSCs. This review will focus on recent advances in the field and how they affect pancreatic cancer research and treatment.
Collapse
Affiliation(s)
- Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology & Functional Genomics, Section of Pathology & Oncology, Via Androne, Catania, Italy, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology & Functional Genomics, Section of Pathology & Oncology, Via Androne, Catania, Italy, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Linda Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| |
Collapse
|
27
|
McCubrey JA, Abrams SL, Fitzgerald TL, Cocco L, Martelli AM, Montalto G, Cervello M, Scalisi A, Candido S, Libra M, Steelman LS. Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Adv Biol Regul 2014; 57:75-101. [PMID: 25453219 DOI: 10.1016/j.jbior.2014.09.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/13/2014] [Indexed: 11/28/2022]
Abstract
The EGFR/PI3K/PTEN/Akt/mTORC pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance, cancer initiating cells (CICs) and metastasis. The expression of this pathway is frequently altered in breast and other cancers due to mutations at or aberrant expression of: HER2, EGFR1, PIK3CA, and PTEN as well as other oncogenes and tumor suppressor genes. miRs and epigenetic mechanisms of gene regulation are also important events which regulate this pathway. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway has been associated with CICs and in some cases resistance to therapeutics. We will review the effects of activation of the EGFR/PI3K/PTEN/Akt/mTORC pathway primarily in breast cancer and development of drug resistance. The targeting of this pathway and other interacting pathways will be discussed as well as clinical trials with novel small molecule inhibitors as well as established drugs that are used to treat other diseases. In this manuscript, we will discuss an inducible EGFR model (v-ERB-B:ER) and its effects on cell growth, cell cycle progression, activation of signal transduction pathways, prevention of apoptosis in hematopoietic, breast and prostate cancer models.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Anatomical Sciences, Università di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Saverio Candido
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
28
|
Deneubourg L, Elong Edimo W, Moreau C, Vanderwinden JM, Erneux C. Phosphorylated SHIP2 on Y1135 localizes at focal adhesions and at the mitotic spindle in cancer cell lines. Cell Signal 2014; 26:1193-203. [DOI: 10.1016/j.cellsig.2014.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/20/2014] [Accepted: 02/13/2014] [Indexed: 11/30/2022]
|