1
|
Teng K, Ma H, Gai P, Zhao X, Qi G. SPHK1 enhances olaparib resistance in ovarian cancer through the NFκB/NRF2/ferroptosis pathway. Cell Death Discov 2025; 11:29. [PMID: 39875359 PMCID: PMC11775125 DOI: 10.1038/s41420-025-02309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/25/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
PARPis resistance is a challenge in the treatment of ovarian cancer. To investigate the potential mechanism involved in olaparib resistance of ovarian cancer, high-throughput sequencing was performed on olaparib-resistant SKOV3 cell line named SK/Ola. SPHK1 was upregulated in SK/Ola cells and was related to the PFS and OS in ovarian cancer patients. However, the effect and mechanism of SPHK1 on olaparib sensitivity in ovarian cancer were obscure. In this study, we found that SPHK1 promoted olaparib resistance. While, SPHK1 knockdown and SPHK1 inhibitor (PF-543 hydrochloride, named PF-543 in this article) enhanced the effect of olaparib on ovarian cancer cells. In mechanism, SPHK1 activated the NF-κB pathway through promoting p-IκBα degradation. Moreover, SPHK1 inhibited, but PF-543 activated ferroptosis in OC cells. Further investigation revealed that SPHK1 activated NF-κB p65, which in turn transcriptionally regulated NRF2 to inhibit ferroptosis in OC cells. Functionally, NF-κB p65 attenuated the PF-543-induced ferroptosis, and this effect was rescued by ferroptosis inducer erastin and RSL3. We conclude that SPHK1 inhibition triggers ferroptosis by restricting NF-κB-activated NRF2 transcription, thereby enhancing olaparib sensitivity in ovarian cancer. In vivo experiments also confirmed that the SPHK1 inhibitor increased olaparib sensitivity. A combination of SPHK1 inhibitors and olaparib may provide a therapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Kai Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
| | - Panpan Gai
- 71217 of the Chinese People's Liberation Army, Laiyang, China
| | - Xuelian Zhao
- Department of Obstetrics and Gynaecology, People's Hospital of Qihe County, Dezhou, China
| | - Gonghua Qi
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Rufail ML, Bassi R, Giussani P. Sphingosine-1-Phosphate Metabolic Pathway in Cancer: Implications for Therapeutic Targets. Int J Mol Sci 2025; 26:1056. [PMID: 39940821 PMCID: PMC11817292 DOI: 10.3390/ijms26031056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer biology revolves around understanding how cells undergo uncontrolled proliferation leading to the formation of malignant tumors. Key aspects include self-sufficiency in growth signals, the lack of response to signals of growth inhibition, the evasion of apoptosis, sustained angiogenesis, the evasion of immune response, the capacity to invade and metastasize, and alterations in cellular metabolism. A vast amount of research, which is exponentially growing, over the past few decades highlights the role of sphingolipids in cancer. They act not only as structural membrane components but also as bioactive molecules that regulate cell fate in different physio-pathological conditions. In cancer, sphingolipid metabolism is dysregulated, contributing to tumor progression, metastasis, and drug resistance. In this review, we outline the impact of sphingosine-1-phosphate (S1P) as a key bioactive sphingolipid in cancer. We give an overview of its metabolism summarizing the role of S1P as an intracellular and extracellular mediator through specific plasma membrane receptors in different cancers. We also describe previous findings on how the disruption in the balance between S1P and ceramide (Cer) is common in cancer cells and can contribute to tumorigenesis and resistance to chemotherapy. We finally consider the potential of targeting the metabolic pathways of S1P as well as its receptors and transporters as a promising therapeutic approach in cancer treatments.
Collapse
Affiliation(s)
- Miguel L. Rufail
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20054 Segrate, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20054 Segrate, Italy
| |
Collapse
|
3
|
Nagahashi M, Miyoshi Y. Targeting Sphingosine-1-Phosphate Signaling in Breast Cancer. Int J Mol Sci 2024; 25:3354. [PMID: 38542328 PMCID: PMC10970081 DOI: 10.3390/ijms25063354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 01/04/2025] Open
Abstract
In recent years, newly emerging therapies, such as immune checkpoint inhibitors and antibody-drug conjugates, have further improved outcomes for breast cancer patients. However, recurrent and metastatic breast cancer often eventually develops resistance to these drugs, and cure is still rare. As such, the development of new therapies for refractory breast cancer that differ from conventional mechanisms of action is necessary. Sphingosine-1-phosphate (S1P) is a key molecule with a variety of bioactive activities, including involvement in cancer cell proliferation, invasion, and metastasis. S1P also contributes to the formation of the cancer microenvironment by inducing surrounding vascular- and lymph-angiogenesis and regulating the immune system. In this article, we outline the basic mechanism of action of S1P, summarize previous findings on the function of S1P in cancer cells and the cancer microenvironment, and discuss the clinical significance of S1P in breast cancer and the therapeutic potential of targeting S1P signaling.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | | |
Collapse
|
4
|
Amiri-Farsani M, Taheri Z, Tirbakhsh Gouran S, Chabok O, Safarpour-Dehkordi M, Kazemi Roudsari M. Cancer stem cells: Recent trends in cancer therapy. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1383-1414. [PMID: 38319997 DOI: 10.1080/15257770.2024.2311789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
Cancer stem cells (CSCs) are a subset of tumor cells that were first identified in blood cancers (leukemia) and are considered promising therapeutic targets in cancer treatment. These cells are the cause of many malignancies including metastasis, heterogeneity, drug resistance, and tumor recurrence. They carry out these activities through multiple transcriptional programs and signaling pathways. This review summarizes the characteristics of cancer stem cells, explains their key signaling pathways and factors, and discusses targeted therapies for cancer stem cells. Investigating these mechanisms and signaling pathways responsible for treatment failure may help identify new therapeutic pathways in cancer.
Collapse
Affiliation(s)
- Maryam Amiri-Farsani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Taheri
- Department of Biology and Biotechnology, Pavia University, Pavia, Italy
| | - Somayeh Tirbakhsh Gouran
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Omid Chabok
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Safarpour-Dehkordi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mahsa Kazemi Roudsari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
5
|
Morita T. Seeking an Important Role on Metabolomics—Effects of β-Estradiol on Lipoprotein Metabolism in Mammary Tumors. YAKUGAKU ZASSHI 2022; 142:1191-1199. [DOI: 10.1248/yakushi.22-00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tetsuo Morita
- Department of Biochemistry, Faculty and Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
6
|
Chung WP, Huang WL, Liao WA, Hung CH, Chiang CW, Cheung CHA, Su WC. FTY720 in resistant human epidermal growth factor receptor 2-positive breast cancer. Sci Rep 2022; 12:241. [PMID: 34997132 PMCID: PMC8742024 DOI: 10.1038/s41598-021-04328-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
The prognosis of patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer has considerably improved. However, no reliable treatment besides anti-HER2 strategies has been available. FTY720, a small-molecule compound used for treating refractory multiple sclerosis, has been reported to have beneficial effects against cancers. We therefore evaluated the efficacy of FTY720 in trastuzumab-resistant breast cancer cells and investigated the possible mechanism involved. This study evaluated morphological changes after FTY720 treatment. Antiproliferative WST-1 assays and LDH Cytotoxicity Assay Kits were used to determine the treatment effects of drugs, whereas Western blot analysis was used to evaluate protein expression. Apoptotic events were investigated through annexin V staining and TUNEL assays using flow cytometry. FTY720 was effective in trastuzumab-resistant breast cancer cell lines despite the presence of PIK3CA mutation. Studied on a xenograft mouse model, FTY720-treated groups had statistically significantly poorer HCC1954 xenograft growth in vivo compared with the control group. Our findings suggest that FTY720 can overcome resistance to trastuzumab therapy in patients with HER2-positive breast cancer, with FTY720 plus trastuzumab might offer even better efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Wei-Pang Chung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Lun Huang
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-An Liao
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hua Hung
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine and Center for Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chun Hei Antonio Cheung
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Wu-Chou Su
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
7
|
Plasma Sphingosine-1-Phosphate Levels Are Associated with Progression of Estrogen Receptor-Positive Breast Cancer. Int J Mol Sci 2021; 22:ijms222413367. [PMID: 34948163 PMCID: PMC8703495 DOI: 10.3390/ijms222413367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Although numerous experiments revealed an essential role of a lipid mediator, sphingosine-1-phosphate (S1P), in breast cancer (BC) progression, the clinical significance of S1P remains unclear due to the difficulty of measuring lipids in patients. The aim of this study was to determine the plasma concentration of S1P in estrogen receptor (ER)-positive BC patients, as well as to investigate its clinical significance. We further explored the possibility of a treatment strategy targeting S1P in ER-positive BC patients by examining the effect of FTY720, a functional antagonist of S1P receptors, on hormone therapy-resistant cells. Plasma S1P levels were significantly higher in patients negative for progesterone receptor (PgR) expression than in those positive for expression (p = 0.003). Plasma S1P levels were also significantly higher in patients with larger tumor size (p = 0.012), lymph node metastasis (p = 0.014), and advanced cancer stage (p = 0.003), suggesting that higher levels of plasma S1P are associated with cancer progression. FTY720 suppressed the viability of not only wildtype MCF-7 cells, but also hormone therapy-resistant MCF-7 cells. Targeting S1P signaling in ER-positive BC appears to be a possible new treatment strategy, even for hormone therapy-resistant patients.
Collapse
|
8
|
Hii LW, Chung FFL, Mai CW, Ng PY, Leong CO. Sphingosine Kinase 1 Signaling in Breast Cancer: A Potential Target to Tackle Breast Cancer Stem Cells. Front Mol Biosci 2021; 8:748470. [PMID: 34820423 PMCID: PMC8606534 DOI: 10.3389/fmolb.2021.748470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Sphingosine kinases (SPHKs) are conserved lipid enzymes that catalyze the formation of sphingosine-1-phosphate (S1P) through ATP-dependent phosphorylation of sphingosine. Two distinct SPHK isoforms, namely SPHK1 and SPHK2, have been identified to date, and the former has been implicated for its oncogenic roles in cancer development and progression. While SPHK1 signaling axis has been extensively studied in non-stem breast cancer cells, recent evidence has emerged to suggest a role of SPHK1 in regulating cancer stem cells (CSCs). With the clinical implications of CSCs in disease relapse and metastasis, it is believed that therapeutic approaches that can eradicate both non-stem cancer cells and CSCs could be a key to cancer cure. In this review, we first explore the oncogenic functions of sphingosine kinase 1 in human cancers and summarize current research findings of SPHK1 signaling with a focus on breast cancer. We also discuss the therapeutic potentials and perspectives of targeting SPHK1 signaling in breast cancer and cancer stem cells. We aim to offer new insights and inspire future studies looking further into the regulatory functions of SPHK1 in CSC-driven tumorigenesis, uncovering novel therapeutic avenues of using SPHK1-targeted therapy in the treatment of CSC-enriched refractory cancers.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Xu G, Yang Z, Sun Y, Dong H, Ma J. Interaction of microRNAs with sphingosine kinases, sphingosine-1 phosphate, and sphingosine-1 phosphate receptors in cancer. Discov Oncol 2021; 12:33. [PMID: 35201458 PMCID: PMC8777508 DOI: 10.1007/s12672-021-00430-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a pleiotropic lipid mediator, participates in various cellular processes during tumorigenesis, including cell proliferation, survival, drug resistance, metastasis, and angiogenesis. S1P is formed by two sphingosine kinases (SphKs), SphK1 and SphK2. The intracellularly produced S1P is delivered to the extracellular space by ATP-binding cassette (ABC) transporters and spinster homolog 2 (SPNS2), where it binds to five transmembrane G protein-coupled receptors to mediate its oncogenic functions (S1PR1-S1PR5). MicroRNAs (miRNAs) are small non-coding RNAs, 21-25 nucleotides in length, that play numerous crucial roles in cancer, such as tumor initiation, progression, apoptosis, metastasis, and angiogenesis via binding to the 3'-untranslated region (3'-UTR) of the target mRNA. There is growing evidence that various miRNAs modulate tumorigenesis by regulating the expression of SphKs, and S1P receptors. We have reviewed various roles of miRNAs, SphKs, S1P, and S1P receptors (S1PRs) in malignancies and how notable miRNAs like miR-101, miR-125b, miR-128, and miR-506, miR-1246, miR-21, miR-126, miR499a, miR20a-5p, miR-140-5p, miR-224, miR-137, miR-183-5p, miR-194, miR181b, miR136, and miR-675-3p, modulate S1P signaling. These tumorigenesis modulating miRNAs are involved in different cancers including breast, gastric, hepatocellular carcinoma, prostate, colorectal, cervical, ovarian, and lung cancer via cell proliferation, invasion, angiogenesis, apoptosis, metastasis, immune evasion, chemoresistance, and chemosensitivity. Therefore, understanding the interaction of SphKs, S1P, and S1P receptors with miRNAs in human malignancies will lead to better insights for miRNA-based cancer therapy.
Collapse
Affiliation(s)
- Guangmeng Xu
- Department of Colorectal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Yamin Sun
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Hongmei Dong
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Jingru Ma
- Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000 China
| |
Collapse
|
10
|
Shakartalla SB, Alhumaidi RB, Shammout ODA, Al Shareef ZM, Ashmawy NS, Soliman SSM. Dyslipidemia in breast cancer patients increases the risk of SAR-CoV-2 infection. INFECTION GENETICS AND EVOLUTION 2021; 92:104883. [PMID: 33905884 PMCID: PMC8079327 DOI: 10.1016/j.meegid.2021.104883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Breast cancer (BC) is the most diagnosed and second leading cause of death among women worldwide. Elevated levels of lipids have been reported in BC patients. On the other hand, lipids play an important role in coronavirus infections including the newly emerged disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and designated COVID-19 by WHO. Cancer patients including BC have been reported to be at higher risk of SARS-CoV-2 infection, which is mostly attributed to the chronic immunosuppressive status of cancer patients along with the use of cytotoxic drugs. Here in this review, we highlighted the role of dyslipidemia associated with BC patients in the incidence and severity of SARS-CoV-2 infection. Elevated levels of lipids namely phospholipids, cholesterol, sphingolipids, and eicosanoids in the serum of BC patients and their re-localization to the alveolar spaces can increase susceptibility and/or severity due to SARA-CoV-2 infection. Therefore, manipulation of dyslipidemia in BC patients should be recommended as prophylactic and therapy against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sarra B Shakartalla
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, University of Gezira, P.O.Box. 21111, Wadmedani, Sudan
| | - Razan B Alhumaidi
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Ola D A Shammout
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Zainab M Al Shareef
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Naglaa S Ashmawy
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, 11566-Abbassia, Cairo, Egypt
| | - Sameh S M Soliman
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
11
|
Brown RDR, Veerman BEP, Oh J, Tate RJ, Torta F, Cunningham MR, Adams DR, Pyne S, Pyne NJ. A new model for regulation of sphingosine kinase 1 translocation to the plasma membrane in breast cancer cells. J Biol Chem 2021; 296:100674. [PMID: 33865856 PMCID: PMC8135045 DOI: 10.1016/j.jbc.2021.100674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 01/24/2023] Open
Abstract
The translocation of sphingosine kinase 1 (SK1) to the plasma membrane (PM) is crucial in promoting oncogenesis. We have previously proposed that SK1 exists as both a monomer and dimer in equilibrium, although it is unclear whether these species translocate to the PM via the same or different mechanisms. We therefore investigated the structural determinants involved to better understand how translocation might potentially be targeted for therapeutic intervention. We report here that monomeric WT mouse SK1 (GFP-mSK1) translocates to the PM of MCF-7L cells stimulated with carbachol or phorbol 12-myristate 13-acetate, whereas the dimer translocates to the PM in response to sphingosine-1-phosphate; thus, the equilibrium between the monomer and dimer is sensitive to cellular stimulus. In addition, carbachol and phorbol 12-myristate 13-acetate induced translocation of monomeric GFP-mSK1 to lamellipodia, whereas sphingosine-1-phosphate induced translocation of dimeric GFP-mSK1 to filopodia, suggesting that SK1 regulates different cell biological processes dependent on dimerization. GFP-mSK1 mutants designed to modulate dimerization confirmed this difference in localization. Regulation by the C-terminal tail of SK1 was investigated using GFP-mSK1 truncations. Removal of the last five amino acids (PPEEP) prevented translocation of the enzyme to the PM, whereas removal of the last ten amino acids restored translocation. This suggests that the penultimate five amino acids (SRRGP) function as a translocation brake, which can be released by sequestration of the PPEEP sequence. We propose that these determinants alter the arrangement of N-terminal and C-terminal domains in SK1, leading to unique surfaces that promote differential translocation to the PM.
Collapse
Affiliation(s)
- Ryan D R Brown
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Ben E P Veerman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Jeongah Oh
- SLING, Singapore Lipidomics Incubator, Life Sciences Institute and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rothwelle J Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Federico Torta
- SLING, Singapore Lipidomics Incubator, Life Sciences Institute and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Margaret R Cunningham
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - David R Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK.
| |
Collapse
|
12
|
Velazquez FN, Hernandez-Corbacho M, Trayssac M, Stith JL, Bonica J, Jean B, Pulkoski-Gross MJ, Carroll BL, Salama MF, Hannun YA, Snider AJ. Bioactive sphingolipids: Advancements and contributions from the laboratory of Dr. Lina M. Obeid. Cell Signal 2020; 79:109875. [PMID: 33290840 PMCID: PMC8244749 DOI: 10.1016/j.cellsig.2020.109875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Sphingolipids and their synthetic enzymes have emerged as critical mediators in numerous diseases including inflammation, aging, and cancer. One enzyme in particular, sphingosine kinase (SK) and its product sphingosine-1-phosphate (S1P), has been extensively implicated in these processes. SK catalyzes the phosphorylation of sphingosine to S1P and exists as two isoforms, SK1 and SK2. In this review, we will discuss the contributions from the laboratory of Dr. Lina M. Obeid that have defined the roles for several bioactive sphingolipids in signaling and disease with an emphasis on her work defining SK1 in cellular fates and pathobiologies including proliferation, senescence, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Fabiola N Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Hernandez-Corbacho
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Magali Trayssac
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jeffrey L Stith
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph Bonica
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Bernandie Jean
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael J Pulkoski-Gross
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Brittany L Carroll
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Mohamed F Salama
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ashley J Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
13
|
Simchovitz-Gesher A, Soreq H. Pharmaceutical Implications of Sex-Related RNA Divergence in Psychiatric Disorders. Trends Pharmacol Sci 2020; 41:840-850. [DOI: 10.1016/j.tips.2020.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
|
14
|
Pyne NJ, Pyne S. Recent advances in the role of sphingosine 1-phosphate in cancer. FEBS Lett 2020; 594:3583-3601. [PMID: 32969034 DOI: 10.1002/1873-3468.13933] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that binds to a family of G protein-coupled receptors (S1P1-5 ) and intracellular targets, such as HDAC1/2, that are functional in normal and pathophysiologic cell biology. There is a significant role for sphingosine 1-phosphate in cancer underpinning the so-called hallmarks, such as transformation and replicative immortality. In this review, we survey the most recent developments concerning the role of sphingosine 1-phosphate receptors, sphingosine kinase and S1P lyase in cancer and the prognostic indications of these receptors and enzymes in terms of disease-specific survival and recurrence. We also provide evidence for identification of new therapeutic approaches targeting sphingosine 1-phosphate to prevent neovascularisation, to revert aggressive and drug-resistant cancers to more amenable forms sensitive to chemotherapy, and to induce cytotoxicity in cancer cells. Finally, we briefly describe current advances in the development of isoform-specific inhibitors of sphingosine kinases for potential use in the treatment of various cancers, where these enzymes have a predominant role. This review will therefore highlight sphingosine 1-phosphate signalling as a promising translational target for precision medicine in stratified cancer patients.
Collapse
Affiliation(s)
- Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
15
|
Tang X, Chen H, Chen G, Duan C, Fan Q, Li H, Wang Y, Li Z, Shi W, Liu Y. Validated LC-MS/MS method of Sphingosine 1-phosphate quantification in human serum for evaluation of response to radiotherapy in lung cancer. Thorac Cancer 2020; 11:1443-1452. [PMID: 32233070 PMCID: PMC7262919 DOI: 10.1111/1759-7714.13409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Background Sphingosine 1‐phosphate (S1P), a bioactive lipid, has been shown to mediate cancer processes. Therefore, accurate qualitative and quantitative determination is essential. The current assay method is still cumbersome to be of practical use worldwide and the aim of this study was therefore to develop a fast, accurate, precise and efficient LC‐MS/MS method for targeted analyses of S1P in serum samples. Methods Liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) is an established method used for monitoring and analyzing S1P levels in serum. We determined the level of serum S1P in 256 patients with lung cancer and 36 healthy donors, and used Spearman';s rank correlation analysis to evaluate the difference in serum S1P levels between radiotherapy and nonradiotherapy patients. Results Standard curves were linear over ranges of 25–600 ng/mL for S1P with correlation coefficient (r2) greater than 0.9996. The lower limit of quantifications (LLOQs) was 25 ng/mL. The intra‐ and interbatch precisions and accuracy was less than 10% for S1P. The recoveries of the method were found to be 80%–98%. Serum S1P levels in healthy donors were different from those in patients (P < 0.001). Of 256 lung cancer patients, 124 (48.4%) received radiotherapy and were identified to have concomitant low serum S1P levels (222.13 ± 48.63), whereas 132 (51.6%) who had not received radiotherapy were identified to have high levels (315.16 ± 51.06). The serum S1P levels were therefore associated with radiotherapy (Spearman's Rho = −0.653, P < 0.001). Conclusions Our results indicated that this new LC‐MS/MS method is rapid, sensitive, specific and reliable for the quantification of S1P levels in serum samples. The level of S1P in serum samples of patients with lung cancer who received radiotherapy was significantly lower than that in patients who did not receive radiotherapy. Key points An improved method was established to quantify S1P levels in human serum by LC‐MS/MS, which enabled the change in serum S1P levels in lung cancer patients to be monitored, in combination with radiotherapy, and their clinical significance to be analyzed.
Collapse
Affiliation(s)
- Xiaohui Tang
- School of Medicine and Life Sciences, University of Jinan Shandong Academy of Medical Sciences, Jinan, China.,Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Haisheng Chen
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guanxuan Chen
- Department of ICU, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Cunxian Duan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hui Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yanhong Wang
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhijun Li
- School of Medicine and Life Sciences, University of Jinan Shandong Academy of Medical Sciences, Jinan, China.,Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenna Shi
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuguo Liu
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
16
|
Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta Biomater 2020; 101:43-68. [PMID: 31518706 DOI: 10.1016/j.actbio.2019.09.009] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/09/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Recent findings suggest that the cellular and extracellular materials surrounding the cancerous cells from an atypical tumor microenvironment (TM) play a pivotal role in the process of tumor initiation and progression. TM comprises an intricate system involving diverse cell types including endothelial cells, pericytes, smooth muscle cells, fibroblasts, various inflammatory cells, dendritic cells, and cancer stem cells (CSCs). The TM-forming cells dynamically interact with the cancerous cells through various signaling mechanisms and pathways. The existence of this dynamic cellular communication is responsible for creating an environment suitable for sustaining a reasonably high cellular proliferation. Presently, researchers are showing interest to use these TM conditions to mediate effective targeting measures for cancer therapy. The use of nanotherapeutics-based combination therapy; stimuli-responsive nanotherapeutics targeting acidic pH, hypoxic environment; and nanoparticle-induced hyperthermia are some of the approaches that are under intense investigation for cancer therapy. This review discusses TM and its role in cancer progression and crosstalk understanding, opportunities, and epigenetic modifications involved therein to materialize the capability of nanotherapeutics to target cancer by availing TM. STATEMENT OF SIGNIFICANCE: This article presents various recent reports, proof-of-concept studies, patents, and clinical trials on the concept of tumor microenvironment for mediating the cancer-specific delivery of nanotechnology-based systems bearing anticancer drug and diagnostics. We highlight the potential of tumor microenvironment; its role in disease progression, opportunities, challenges, and allied treatment strategies for effective cancer therapy by conceptual understanding of tumor microenvironment and epigenetic modifications involved. Specifically, nanoparticle-based approaches to target various processes related to tumor microenvironment (pH responsive, hypoxic environment responsive, targeting of specific cells involved in tumor microenvironment, etc.) are dealt in detail.
Collapse
|
17
|
Singh SK, Spiegel S. Sphingosine-1-phosphate signaling: A novel target for simultaneous adjuvant treatment of triple negative breast cancer and chemotherapy-induced neuropathic pain. Adv Biol Regul 2019; 75:100670. [PMID: 31708456 DOI: 10.1016/j.jbior.2019.100670] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
Triple-negative breast cancer (TNBC) is very aggressive with high metastatic and mortality rates and unfortunately, except for chemotherapy, there are few therapeutic options. The bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) regulates numerous processes important for cancer progression, metastasis, and neuropathic pain. The pro-drug FTY720 (fingolimod, Gilenya) used to treat multiple sclerosis is phosphorylated in the body to a S1P mimic that binds to S1PRs, except S1PR2, and also acts as a functional antagonist of S1PR1. This review highlights current findings showing that FTY720 has multiple anti-cancer activities and simultaneously prevents formation and actions of S1P. Moreover, in mouse breast cancer models, treatment with FTY720 reduces tumor growth, metastasis, and enhances sensitivity of advanced and hormonal refractory breast cancer and TNBC to conventional therapies. We discuss recent studies demonstrating that neuropathic pain induced by the chemotherapeutic bortezomib is also greatly reduced by administration of clinically relevant doses of FTY720, likely by targeting S1PR1 on astrocytes. FTY720 also shows promising anticancer potential in pre-clinical studies and is FDA approved, thus we suggest in this review that further studies are needed to pave the way for fast-tracking approval of FTY720/fingolimod for enhancing chemotherapy effectiveness and reduction of painful neuropathies.
Collapse
Affiliation(s)
- Sandeep K Singh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, VA, USA.
| |
Collapse
|
18
|
Maczis MA, Maceyka M, Waters MR, Newton J, Singh M, Rigsby MF, Turner TH, Alzubi MA, Harrell JC, Milstien S, Spiegel S. Sphingosine kinase 1 activation by estrogen receptor α36 contributes to tamoxifen resistance in breast cancer. J Lipid Res 2018; 59:2297-2307. [PMID: 30315000 DOI: 10.1194/jlr.m085191] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/04/2018] [Indexed: 01/01/2023] Open
Abstract
In breast cancer, 17β-estradiol (E2) plays critical roles mainly by binding to its canonical receptor, estrogen receptor (ER) α66, and eliciting genomic effects. E2 also triggers rapid, nongenomic responses. E2 activates sphingosine kinase 1 (SphK1), increasing sphingosine-1-phosphate (S1P) that binds to its receptors, leading to important breast cancer signaling. However, the E2 receptor responsible for SphK1 activation has not yet been identified. Here, we demonstrate in triple-negative breast cancer cells, which lack the canonical ERα66 but express the novel splice variant ERα36, that ERα36 is the receptor responsible for E2-induced activation of SphK1 and formation and secretion of S1P and dihydro-S1P, the ligands for S1PRs. Tamoxifen, the first-line endocrine therapy for breast cancer, is an antagonist of ERα66, but an agonist of ERα36, and, like E2, activates SphK1 and markedly increases secretion of S1P. A major problem with tamoxifen therapy is development of acquired resistance. We found that tamoxifen resistance correlated with increased SphK1 and ERα36 expression in tamoxifen-resistant breast cancer cells, in patient-derived xenografts, and in endocrine-resistant breast cancer patients. Our data also indicate that targeting this ERα36 and SphK1 axis may be a therapeutic option to circumvent endocrine resistance and improve patient outcome.
Collapse
Affiliation(s)
- Melissa A Maczis
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael Maceyka
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael R Waters
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Jason Newton
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Manjulata Singh
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Madisyn F Rigsby
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Tia H Turner
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Mohammad A Alzubi
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - J Chuck Harrell
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sheldon Milstien
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
19
|
Zaidi SK, Fritz AJ, Tracy KM, Gordon JA, Tye CE, Boyd J, Van Wijnen AJ, Nickerson JA, Imbalzano AN, Lian JB, Stein JL, Stein GS. Nuclear organization mediates cancer-compromised genetic and epigenetic control. Adv Biol Regul 2018; 69:1-10. [PMID: 29759441 PMCID: PMC6102062 DOI: 10.1016/j.jbior.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
Nuclear organization is functionally linked to genetic and epigenetic regulation of gene expression for biological control and is modified in cancer. Nuclear organization supports cell growth and phenotypic properties of normal and cancer cells by facilitating physiologically responsive interactions of chromosomes, genes and regulatory complexes at dynamic three-dimensional microenvironments. We will review nuclear structure/function relationships that include: 1. Epigenetic bookmarking of genes by phenotypic transcription factors to control fidelity and plasticity of gene expression as cells enter and exit mitosis; 2. Contributions of chromatin remodeling to breast cancer nuclear morphology, metabolism and effectiveness of chemotherapy; 3. Relationships between fidelity of nuclear organization and metastasis of breast cancer to bone; 4. Dynamic modifications of higher-order inter- and intra-chromosomal interactions in breast cancer cells; 5. Coordinate control of cell growth and phenotype by tissue-specific transcription factors; 6. Oncofetal epigenetic control by bivalent histone modifications that are functionally related to sustaining the stem cell phenotype; and 7. Noncoding RNA-mediated regulation in the onset and progression of breast cancer. The discovery of components to nuclear organization that are functionally related to cancer and compromise gene expression have the potential for translation to innovative cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Jonathan A Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Joseph Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Andre J Van Wijnen
- Departments of Orthopedic Surgery, Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Jeffrey A Nickerson
- Department of Pediatrics, UMass Medical School, Worcester, MA, United States
| | - Antony N Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, United States
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
20
|
Montes-Grajales D, Martínez-Romero E, Olivero-Verbel J. Phytoestrogens and mycoestrogens interacting with breast cancer proteins. Steroids 2018; 134:9-15. [PMID: 29608946 DOI: 10.1016/j.steroids.2018.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
Breast cancer is a highly heterogeneous disease influenced by the hormonal microenvironment and the most common malignancy in women worldwide. Some phytoestrogens and mycoestrogens have been epidemiologically linked as risk factors or protectors, however their mechanisms of action are complex and not fully understood. The aim of this study was to predict the potential of 36 natural xenoestrogens to interact with 189 breast cancer proteins using AutoDock Vina. In order to validate our protocol, an in silico docking pose and binding site determination was compared with the crystallographic structure and the power of prediction to distinguish between ligand and decoys was evaluated through a receiver operating characteristic curve (ROC) of the resultant docking affinities and in vitro data. The best affinity score was obtained for glyceollin III interacting with the sex hormone binding globulin (-11.9 Kcal/mol), a plasma steroid transport protein that regulates sex steroids bioavailability. Other natural xenoestrogens such as beta-carotene, chrysophanol 8-O-beta-d-glucopyranoside and glyceollin I, also presented good affinity for proteins related to this disease and the validation was successful. This study may help to prioritize compounds for toxicity tests or drug development from natural scaffolds, and to elucidate their mechanisms of action.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia; Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México UNAM, Cuernavaca-Morelos 62210, Mexico
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México UNAM, Cuernavaca-Morelos 62210, Mexico
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia.
| |
Collapse
|
21
|
Candido S, Abrams SL, Steelman L, Lertpiriyapong K, Martelli AM, Cocco L, Ratti S, Follo MY, Murata RM, Rosalen PL, Lombardi P, Montalto G, Cervello M, Gizak A, Rakus D, Suh PG, Libra M, McCubrey JA. Metformin influences drug sensitivity in pancreatic cancer cells. Adv Biol Regul 2018; 68:13-30. [PMID: 29482945 DOI: 10.1016/j.jbior.2018.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5-10% after diagnosis and treatment. Pancreatic cancer has been associated with type II diabetes as the frequency of recently diagnosed diabetics that develop pancreatic cancer within a 10-year period of initial diagnosis of diabetes in increased in comparison to non-diabetic patients. Metformin is a very frequently prescribed drug used to treat type II diabetes. Metformin acts in part by stimulating AMP-kinase (AMPK) and results in the suppression of mTORC1 activity and the induction of autophagy. In the following studies, we have examined the effects of metformin in the presence of various chemotherapeutic drugs, signal transduction inhibitors and natural products on the growth of three different PDAC lines. Metformin, by itself, was not effective at suppressing growth of the pancreatic cancer cell lines at concentration less than 1000 nM, however, in certain PDAC lines, a suboptimal dose of metformin (250 nM) potentiated the effects of various chemotherapeutic drugs used to treat pancreatic cancer (e.g., gemcitabine, cisplatin, 5-fluorouracil) and other cancer types (e.g., doxorubicin, docetaxel). Furthermore, metformin could increase anti-proliferative effects of mTORC1 and PI3K/mTOR inhibitors as well as natural products such as berberine and the anti-malarial drug chloroquine in certain PDAC lines. Thus, metformin can enhance the effects of certain drugs and signal transduction inhibitors which are used to treat pancreatic and various other cancers.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Linda Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Ramiro M Murata
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Pann-Gill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
22
|
Wang S, Liang Y, Chang W, Hu B, Zhang Y. Triple Negative Breast Cancer Depends on Sphingosine Kinase 1 (SphK1)/Sphingosine-1-Phosphate (S1P)/Sphingosine 1-Phosphate Receptor 3 (S1PR3)/Notch Signaling for Metastasis. Med Sci Monit 2018; 24:1912-1923. [PMID: 29605826 PMCID: PMC5894569 DOI: 10.12659/msm.905833] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) has a more aggressive recurrence. Previous reports have demonstrated that sphingosine kinase 1 (SphK1) is a crucial regulator of breast cancer progression. However, the correlation of SphK1 with clinical prognosis has been poorly investigated. Thus, we aimed to elaborate the role of SphK1 in TNBC metastasis. Material/Methods We first determined the level of SphK1 in breast cancer tissue samples and breast cancer cells. Furthermore, the expression of HER2 and phosphor-SphK1 (pSphK1) in human breast cancer tissue samples was determined by immunohistochemical analysis. Associations between SphK1 and clinical parameters of tumors were analyzed. The activity of SphK1 was measured by fluorescence analysis. Extracellular sphingosine-1-phosphate (S1P) was detected using an ELISA kit. Associations between SphK1 and metastasis potential were analyzed by Transwell assay. Results Levels of SphK1 in TNBC patients were significantly higher than levels in other patients with other breast tumors. The expression of SphK1 was positively correlated with poor overall survival (OS) and progression-free survival (PFS), as well as poor response to 5-FU and doxorubicin. The depression of SphK1 thus could repress the Notch signaling pathway, reduce migration, and invasion of TNBC cells in vivo and in vitro. Furthermore, silencing of SphK1 by Ad-SPHK1-siRNA or SphK1 inhibitor PF543 sensitized TNBCs to 5-FU and doxorubicin. Our results also indicated that SphK1 inhibition could effectively counteracts tumors metastasis via Notch signaling pathways, indicating a potentially anti-tumor strategy in TNBC. Conclusions We found that elevated levels of pSphK1 were positive correlation with high expression of S1P, which in turn promoted metastasis of TNBC through S1P/S1PR3/Notch signaling pathway.
Collapse
Affiliation(s)
- Shushu Wang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Yueyang Liang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Wenxiao Chang
- Outpatient Department of Stomatology, Shan Xi Da Yi Hospital, Taiyuan, Shanxi, China (mainland)
| | - Baoquan Hu
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Yi Zhang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China (mainland)
| |
Collapse
|
23
|
Tantikanlayaporn D, Tourkova IL, Larrouture Q, Luo J, Piyachaturawat P, Witt MR, Blair HC, Robinson LJ. Sphingosine-1-Phosphate Modulates the Effect of Estrogen in Human Osteoblasts. JBMR Plus 2018; 2:217-226. [PMID: 30123862 PMCID: PMC6095197 DOI: 10.1002/jbm4.10037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Production of sphingosine‐1‐phosphate (S1P) is linked to 17β‐estradiol (E2) activity in many estrogen‐responsive cells; in bone development, the role of S1P is unclear. We studied effects of S1P on proliferation and differentiation of human osteoblasts (hOB). Ten nM E2, 1 μM S1P, or 1 μM of the S1P receptor 1 (S1PR1) agonist SEW2871 increased hOB proliferation at 24 hours. S1PR 1, 2, and 3 mRNAs are expressed by hOB but not S1PR4 or S1PR5. Expression of S1PR2 was increased at 7 and 14 days of differentiation, in correspondence with osteoblast‐related mRNAs. Expression of S1PR1 was increased by E2 or S1P in proliferating hOB, whereas S1PR2 mRNA was unaffected in proliferating cells; S1PR3 was not affected by E2 or S1P. Inhibiting sphingosine kinase (SPHK) activity with sphingosine kinase inhibitor (Ski) greatly reduced the E2 proliferative effect. Both E2 and S1P increased SPHK mRNA at 24 hours in hOB. S1P promoted osteoblast proliferation via activating MAP kinase activity. Either E2 or S1P increased S1P synthesis in a fluorescent S1P assay. Interaction of E2 and S1P signaling was indicated by upregulation of E2 receptor mRNA after S1P treatment. E2 and S1P also promoted alkaline phosphatase expression. During osteoblast differentiation, S1P increased bone‐specific mRNAs, similarly to the effects of E2. However, E2 and S1P showed differences in the activation of some osteoblast pathways. Pathway analysis by gene expression arrays was consistent with regulation of pathways of osteoblast differentiation; collagen and cell adhesion proteins centered on Rho/Rac small GTPase signaling and Map kinase or signal transducer and activator of transcription (Stat) intermediates. Transcriptional activation also included significant increases in superoxide dismutase 1 and 2 transcription by either S1P or E2. We demonstrate that the SPHK system is a co‐mediator for osteoblast proliferation and differentiation, which is mainly, but not entirely, complementary to E2, whose effects are mediated by S1PR1 and S1PR2. © 2018 The Authors JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Irina L Tourkova
- Veterans Affairs Medical Center, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Michelle R Witt
- Departments of Pathology and of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Harry C Blair
- Veterans Affairs Medical Center, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa J Robinson
- Departments of Pathology and of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
24
|
Sun X, Xu C, Xiao G, Meng J, Wang J, Tang SC, Qin S, Du N, Li G, Ren H, Liu D. Breast cancer stem-like cells are sensitized to tamoxifen induction of self-renewal inhibition with enforced Let-7c dependent on Wnt blocking. Int J Mol Med 2018; 41:1967-1975. [PMID: 29336465 PMCID: PMC5810214 DOI: 10.3892/ijmm.2018.3388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 12/04/2017] [Indexed: 01/04/2023] Open
Abstract
Let-7 microRNAs have been reported to have tumor suppressive functions; however, the effect of Let-7 when used in combination with chemotherapies is uncertain, but may have potential for use in clinical practice. In this study, we used RT-qPCR, western blot analysis, cell proliferation assay, flow cytometry analysis, immunohistochemistry (IHC) staining, luciferase assays, cell sorting analysis and xenografted tumor model to explore the role of Let-7 in the chemotherapy sensitivity of breast cancer stem cells. The findings of the current study indicated that Let‑7 enhances the effects of endocrine therapy potentially by regulating the self‑renewal of cancer stem cells. Let‑7c increased the anticancer functions of tamoxifen and reduced the ratio of cancer stem‑like cells (CSCs), sensitizing cells to therapy-induced repression in an estrogen receptor (ER)‑dependent manner. Notably, Let‑7 decreased the tumor formation ability of estrogen‑treated breast CSCs in vivo and suppressed Wnt signaling, which further consolidated the previously hypothesis that Let‑7 decreases the self‑renewal ability, contributing to reduced tumor formation ability of stem cells. The suppressive effects exerted by Let‑7 on stem‑like cells involved Let‑7c/ER/Wnt signaling, and the functions of Let‑7c exerted with tamoxifen were dependent on ER. Taken together, the findings identified a biochemical and functional link between Let‑7 and endocrine therapy in breast CSCs, which may facilitate clinical treatment in the future using delivery of suppressive Let-7.
Collapse
Affiliation(s)
- Xin Sun
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chongwen Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guodong Xiao
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jinying Meng
- Department of Surgery Oncology, The First People's Hospital of Xianyang City, Xianyang, Shaanxi 712000, P.R. China
| | - Jichang Wang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shou-Ching Tang
- Solid Tumor Clinical Trials, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sida Qin
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ning Du
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Gang Li
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hong Ren
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dapeng Liu
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
25
|
McCubrey JA, Abrams SL, Lertpiriyapong K, Cocco L, Ratti S, Martelli AM, Candido S, Libra M, Murata RM, Rosalen PL, Lombardi P, Montalto G, Cervello M, Gizak A, Rakus D, Steelman LS. Effects of berberine, curcumin, resveratrol alone and in combination with chemotherapeutic drugs and signal transduction inhibitors on cancer cells-Power of nutraceuticals. Adv Biol Regul 2018; 67:190-211. [PMID: 28988970 DOI: 10.1016/j.jbior.2017.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Over the past fifty years, society has become aware of the importance of a healthy diet in terms of human fitness and longevity. More recently, the concept of the beneficial effects of certain components of our diet and other compounds, that are consumed often by different cultures in various parts of the world, has become apparent. These "healthy" components of our diet are often referred to as nutraceuticals and they can prevent/suppress: aging, bacterial, fungal and viral infections, diabetes, inflammation, metabolic disorders and cardiovascular diseases and have other health-enhancing effects. Moreover, they are now often being investigated because of their anti-cancer properties/potentials. Understanding the effects of various natural products on cancer cells may enhance their usage as anti-proliferative agents which may be beneficial for many health problems. In this manuscript, we discuss and demonstrate how certain nutraceuticals may enhance other anti-cancer drugs to suppress proliferation of cancer cells.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA; Center of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine and the Hospital for Special Surgery, New York City, New York, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
26
|
De Francesco EM, Sotgia F, Clarke RB, Lisanti MP, Maggiolini M. G Protein-Coupled Receptors at the Crossroad between Physiologic and Pathologic Angiogenesis: Old Paradigms and Emerging Concepts. Int J Mol Sci 2017; 18:ijms18122713. [PMID: 29240722 PMCID: PMC5751314 DOI: 10.3390/ijms18122713] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have been implicated in transmitting signals across the extra- and intra-cellular compartments, thus allowing environmental stimuli to elicit critical biological responses. As GPCRs can be activated by an extensive range of factors including hormones, neurotransmitters, phospholipids and other stimuli, their involvement in a plethora of physiological functions is not surprising. Aberrant GPCR signaling has been regarded as a major contributor to diverse pathologic conditions, such as inflammatory, cardiovascular and neoplastic diseases. In this regard, solid tumors have been demonstrated to activate an angiogenic program that relies on GPCR action to support cancer growth and metastatic dissemination. Therefore, the manipulation of aberrant GPCR signaling could represent a promising target in anticancer therapy. Here, we highlight the GPCR-mediated angiogenic function focusing on the molecular mechanisms and transduction effectors driving the patho-physiological vasculogenesis. Specifically, we describe evidence for the role of heptahelic receptors and associated G proteins in promoting angiogenic responses in pathologic conditions, especially tumor angiogenesis and progression. Likewise, we discuss opportunities to manipulate aberrant GPCR-mediated angiogenic signaling for therapeutic benefit using innovative GPCR-targeted and patient-tailored pharmacological strategies.
Collapse
Affiliation(s)
- Ernestina M De Francesco
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria via Savinio, 87036 Rende, Italy.
- Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK.
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester M5 4WT, UK.
| | - Robert B Clarke
- Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK.
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester M5 4WT, UK.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria via Savinio, 87036 Rende, Italy.
| |
Collapse
|
27
|
Drug-resistance in doxorubicin-resistant FL5.12 hematopoietic cells: elevated MDR1, drug efflux and side-population positive and decreased BCL2-family member expression. Oncotarget 2017; 8:113013-113033. [PMID: 29348885 PMCID: PMC5762570 DOI: 10.18632/oncotarget.22956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
Chemotherapeutic drug treatment can result in the emergence of drug-resistant cells. By culturing an interleukin-3 (IL-3)-dependent cell line, FL5.12 cells in the presence of the chemotherapeutic drug doxorubicin, we isolated FL/Doxo cells which are multi-drug resistant. Increased levels of drug efflux were detected in FL/Doxo cells which could be inhibited by the MDR1 inhibitor verapamil but not by the MRP1 inhibitor MK571. The effects of TP53 and MEK1 were examined by infection of FL/Doxo cells with retroviruses encoding either a dominant negative TP-53 gene (FL/Doxo+ TP53 (DN) or a constitutively-activated MEK-1 gene (FL/Doxo + MEK1 (CA). Elevated MDR1 but not MRP1 mRNA transcripts were detected by quantitative RT-PCR in the drug-resistant cells while transcripts encoding anti-apoptotic genes such as: BCL2, BCLXL and MCL1 were observed at higher levels in the drug-sensitive FL5.12 cells. The percentage of cells that were side-population positive was increased in the drug-resistant cells compared to the parental line. Drug-resistance and side-positive population cells have been associated with cancer stem cells (CSC). Our studies suggest mechanisms which could allow the targeting of these molecules to prevent drug-resistance.
Collapse
|
28
|
Ochnik AM, Baxter RC. Insulin-like growth factor receptor and sphingosine kinase are prognostic and therapeutic targets in breast cancer. BMC Cancer 2017; 17:820. [PMID: 29207959 PMCID: PMC5718000 DOI: 10.1186/s12885-017-3809-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/21/2017] [Indexed: 01/26/2023] Open
Abstract
Background Targeting the type 1 insulin-like growth factor receptor (IGF1R) in breast cancer remains an ongoing clinical challenge. Oncogenic IGF1R-signaling occurs via activation of PI3K/AKT/MAPK downstream mediators which regulate cell proliferation and protein synthesis. To further understand IGF1R signaling we have investigated the involvement of the oncogenic IGF1R-related sphingosine kinase (SphK) pathway. Methods The prognostic (overall survival, OS) and therapeutic (anti-endocrine therapy) co-contribution of IGF1R and SphK1 were investigated using breast cancer patient samples (n = 236) for immunohistochemistry to measure total and phosphorylated IGF1R and SphK1. Kaplan-Meier and correlation analyses were performed to determine the contribution of high versus low IGF1R and/or SphK1 expression to OS in patients treated with anti-endocrine therapy. Cell viability and colony formation in vitro studies were completed using estrogen receptor (ER) positive and negative breast cancer cell-lines to determine the benefit of IGF1R inhibitor (OSI-906) and SphK inhibitor (SKI-II) co-therapy. Repeated measures and 1-way ANOVA were performed to compare drug treatments groups and the Chou-Talalay combination index (CI) was calculated to estimate drug synergism in vitro (CI < 1). Results High IGF1R and SphK1 protein co-expression in tumor tissue was associated with improved OS specifically in ER-positive disease and stratified for anti-endocrine therapy. A significant synergistic inhibition of cell viability and/or colony formation following OSI-906 and SKI-II co-treatment in vitro was evident (p < 0.05, CI < 1). Conclusion We conclude that high IGF1R and SphK1 co-expression act together as prognostic indicators and are potentially, dual therapeutic targets for the development of a more effective IGF1R-directed combination breast cancer therapy. Electronic supplementary material The online version of this article (10.1186/s12885-017-3809-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aleksandra M Ochnik
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia. .,Centre for Drug Discovery & Development, Sansom Institute for Health Research, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia, 5001, Australia.
| | - Robert C Baxter
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| |
Collapse
|
29
|
Geffken K, Spiegel S. Sphingosine kinase 1 in breast cancer. Adv Biol Regul 2017; 67:59-65. [PMID: 29055687 DOI: 10.1016/j.jbior.2017.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 01/14/2023]
Abstract
Breast cancer affects 1 out of 8 women in the US and is the second highest cause of death from cancer for women, leading to considerable research examining the causes, progression, and treatment of breast cancer. Over the last two decades, sphingosine-1-phosphate (S1P), a potent sphingolipid metabolite, has been implicated in many processes important for breast cancer including growth, progression, transformation and metastasis, and is the focus of this review. In particular, one of the kinases that produces S1P, sphingosine kinase 1 (SphK1), has come under increasing scrutiny as it is commonly upregulated in breast cancer cells and has been linked with poorer prognosis and progression, possibly leading to resistance to certain anti-cancer therapies. In this review, we will also discuss preclinical studies of both estrogen receptor (ER) positive as well as triple-negative breast cancer mouse models with inhibitors of SphK1 and other compounds that target the S1P axis and have shown good promise in reducing tumor growth and metastasis. It is hoped that in the future this will lead to development of novel combination approaches for effective treatment of both conventional hormonal therapy-resistant breast cancer and triple-negative breast cancer.
Collapse
Affiliation(s)
- Kurt Geffken
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA.
| |
Collapse
|
30
|
Pyne NJ, El Buri A, Adams DR, Pyne S. Sphingosine 1-phosphate and cancer. Adv Biol Regul 2017; 68:97-106. [PMID: 28942351 DOI: 10.1016/j.jbior.2017.09.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 01/08/2023]
Abstract
The bioactive lipid, sphingosine 1-phosphate (S1P) is produced by phosphorylation of sphingosine and this is catalysed by two sphingosine kinase isoforms (SK1 and SK2). Here we discuss structural functional aspects of SK1 (which is a dimeric quaternary enzyme) that relate to coordinated coupling of membrane association with phosphorylation of Ser225 in the 'so-called' R-loop, catalytic activity and protein-protein interactions (e.g. TRAF2, PP2A and Gq). S1P formed by SK1 at the plasma-membrane is released from cells via S1P transporters to act on S1P receptors to promote tumorigenesis. We discuss here an additional novel mechanism that can operate between cancer cells and fibroblasts and which involves the release of the S1P receptor, S1P2 in exosomes from breast cancer cells that regulates ERK-1/2 signalling in fibroblasts. This novel mechanism of signalling might provide an explanation for the role of S1P2 in promoting metastasis of cancer cells and which is dependent on the micro-environmental niche.
Collapse
Affiliation(s)
- Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK.
| | - Ashref El Buri
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| |
Collapse
|
31
|
"Dicing and Splicing" Sphingosine Kinase and Relevance to Cancer. Int J Mol Sci 2017; 18:ijms18091891. [PMID: 28869494 PMCID: PMC5618540 DOI: 10.3390/ijms18091891] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
Sphingosine kinase (SphK) is a lipid enzyme that maintains cellular lipid homeostasis. Two SphK isozymes, SphK1 and SphK2, are expressed from different chromosomes and several variant isoforms are expressed from each of the isozymes, allowing for the multi-faceted biological diversity of SphK activity. Historically, SphK1 is mainly associated with oncogenicity, however in reality, both SphK1 and SphK2 isozymes possess oncogenic properties and are recognized therapeutic targets. The absence of mutations of SphK in various cancer types has led to the theory that cancer cells develop a dependency on SphK signaling (hyper-SphK signaling) or “non-oncogenic addiction”. Here we discuss additional theories of SphK cellular mislocation and aberrant “dicing and splicing” as contributors to cancer cell biology and as key determinants of the success or failure of SphK/S1P (sphingosine 1 phosphate) based therapeutics.
Collapse
|
32
|
Tsuchida J, Nagahashi M, Takabe K, Wakai T. Clinical Impact of Sphingosine-1-Phosphate in Breast Cancer. Mediators Inflamm 2017; 2017:2076239. [PMID: 28912626 PMCID: PMC5585627 DOI: 10.1155/2017/2076239] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Breast cancer metastasizes to lymph nodes or other organs, which determine the prognosis of patients. It is difficult to cure the breast cancer patients with distant metastasis due to resistance to drug therapies. Elucidating the underlying mechanisms of breast cancer metastasis and drug resistance is expected to provide new therapeutic targets. Sphingosine-1-phosphate (S1P) is a pleiotropic, bioactive lipid mediator that regulates many cellular functions, including proliferation, migration, survival, angiogenesis/lymphangiogenesis, and immune responses. S1P is formed in cells by sphingosine kinases and released from them, which acts in an autocrine, paracrine, and/or endocrine manner. S1P in extracellular space, such as interstitial fluid, interacts with components in the tumor microenvironment, which may be important for metastasis. Importantly, recent translational research has demonstrated an association between S1P levels in breast cancer patients and clinical outcomes, highlighting the clinical importance of S1P in breast cancer. We suggest that S1P is one of the key molecules to overcome the resistance to the drug therapies, such as hormonal therapy, anti-HER2 therapy, or chemotherapy, all of which are crucial aspects of a breast cancer treatment.
Collapse
Affiliation(s)
- Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Kazuaki Takabe
- Breast Surgery, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14203, USA
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| |
Collapse
|
33
|
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Via Irnerio, 48 I-40126 Bologna, Italy.
| |
Collapse
|
34
|
Hatoum D, Haddadi N, Lin Y, Nassif NT, McGowan EM. Mammalian sphingosine kinase (SphK) isoenzymes and isoform expression: challenges for SphK as an oncotarget. Oncotarget 2017; 8:36898-36929. [PMID: 28415564 PMCID: PMC5482707 DOI: 10.18632/oncotarget.16370] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
The various sphingosine kinase (SphK) isoenzymes (isozymes) and isoforms, key players in normal cellular physiology, are strongly implicated in cancer and other diseases. Mutations in SphKs, that may justify abnormal physiological function, have not been recorded. Nonetheless, there is a large and growing body of evidence demonstrating the contribution of gain or loss of function and the imbalance in the SphK/S1P rheostat to a plethora of pathological conditions including cancer, diabetes and inflammatory diseases. SphK is expressed as two isozymes SphK1 and SphK2, transcribed from genes located on different chromosomes and both isozymes catalyze the phosphorylation of sphingosine to S1P. Expression of each SphK isozyme produces alternately spliced isoforms. In recent years the importance of the contribution of SpK1 expression to treatment resistance in cancer has been highlighted and, additionally, differences in treatment outcome appear to also be dependent upon SphK isoform expression. This review focuses on an exciting emerging area of research involving SphKs functions, expression and subcellular localization, highlighting the complexity of targeting SphK in cancer and also comorbid diseases. This review also covers the SphK isoenzymes and isoforms from a historical perspective, from their first discovery in murine species and then in humans, their role(s) in normal cellular function and in disease processes, to advancement of SphK as an oncotarget.
Collapse
Affiliation(s)
- Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Eileen M. McGowan
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| |
Collapse
|
35
|
Targeting sphingosine-1-phosphate signaling for cancer therapy. SCIENCE CHINA-LIFE SCIENCES 2017. [DOI: 10.1007/s11427-017-9046-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Cocco L, Ratti S, Martelli AM, Candido S, Libra M, Montalto G, Cervello M, Gizak A, Rakus D. Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases. Adv Biol Regul 2017; 65:77-88. [PMID: 28579298 DOI: 10.1016/j.jbior.2017.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
Natural products or nutraceuticals promote anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway. This review will focus on the effects of curcumin (CUR), berberine (BBR) and resveratrol (RES), on the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway, with a special focus on GSK-3. These natural products may regulate the pathway by multiple mechanisms including: reactive oxygen species (ROS), cytokine receptors, mirco-RNAs (miRs) and many others. CUR is present the root of turmeric (Curcuma longa). CUR is used in the treatment of many disorders, especially in those involving inflammatory processes which may contribute to abnormal proliferation and promote cancer growth. BBR is also isolated from various plants (Berberis coptis and others) and is used in traditional medicine to treat multiple diseases/conditions including: diabetes, hyperlipidemia, cancer and bacterial infections. RES is present in red grapes, other fruits and berries such as blueberries and raspberries. RES may have some anti-diabetic and anti-cancer effects. Understanding the effects of these natural products on the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway may enhance their usage as anti-proliferative agent which may be beneficial for many health problems.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| |
Collapse
|
37
|
Ebenezer DL, Fu P, Suryadevara V, Zhao Y, Natarajan V. Epigenetic regulation of pro-inflammatory cytokine secretion by sphingosine 1-phosphate (S1P) in acute lung injury: Role of S1P lyase. Adv Biol Regul 2017; 63:156-166. [PMID: 27720306 PMCID: PMC5292070 DOI: 10.1016/j.jbior.2016.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 09/20/2016] [Accepted: 09/25/2016] [Indexed: 11/25/2022]
Abstract
Cellular level of sphingosine-1-phosphate (S1P), the simplest bioactive sphingolipid, is tightly regulated by its synthesis catalyzed by sphingosine kinases (SphKs) 1 & 2 and degradation mediated by S1P phosphatases, lipid phosphate phosphatases, and S1P lyase. The pleotropic actions of S1P are attributed to its unique inside-out (extracellular) signaling via G-protein-coupled S1P1-5 receptors, and intracellular receptor independent signaling. Additionally, S1P generated in the nucleus by nuclear SphK2 modulates HDAC1/2 activity, regulates histone acetylation, and transcription of pro-inflammatory genes. Here, we present data on the role of S1P lyase mediated S1P signaling in regulating LPS-induced inflammation in lung endothelium. Blocking S1P lyase expression or activity attenuated LPS-induced histone acetylation and secretion of pro-inflammatory cytokines. Degradation of S1P by S1P lyase generates Δ2-hexadecenal and ethanolamine phosphate and the long-chain fatty aldehyde produced in the cytoplasmic compartment of the endothelial cell seems to modulate histone acetylation pattern, which is different from the nuclear SphK2/S1P signaling and inhibition of HDAC1/2. These in vitro studies suggest that S1P derived long-chain fatty aldehyde may be an epigenetic regulator of pro-inflammatory genes in sepsis-induced lung inflammation. Trapping fatty aldehydes and other short chain aldehydes such as 4-hydroxynonenal derived from S1P degradation and lipid peroxidation, respectively by cell permeable agents such as phloretin or other aldehyde trapping agents may be useful in treating sepsis-induced lung inflammation via modulation of histone acetylation. .
Collapse
Affiliation(s)
- David L Ebenezer
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Vidyani Suryadevara
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yutong Zhao
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA; Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
38
|
Vogt D, Stark H. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. Med Res Rev 2016; 37:3-51. [PMID: 27480072 DOI: 10.1002/med.21402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
During the last two decades the study of the sphingolipid anabolic, catabolic, and signaling pathways has attracted enormous interest. Especially the introduction of fingolimod into market as first p.o. therapeutic for the treatment of multiple sclerosis has boosted this effect. Although the complex regulation of sphingosine-1-phosphate (S1P) and other catabolic and anabolic sphingosine-related compounds is not fully understood, the influence on different (patho)physiological states from inflammation to cytotoxicity as well as the availability of versatile pharmacological tools that represent new approaches to study these states are described. Here, we have summarized various aspects concerning the many faces of sphingolipid function modulation by different pharmacological tools up to clinical candidates. Due to the immense heterogeneity of physiological or pharmacological actions and complex cross regulations, it is difficult to predict their role in upcoming therapeutic approaches. Currently, inflammatory, immunological, and/or antitumor aspects are discussed.
Collapse
Affiliation(s)
- Dominik Vogt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438, Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|