1
|
Anselmi Relats JM, Roguin LP, Marder M, Cercato MC, Marino J, Blank VC. Synergistic effect of the sphingosine kinase inhibitor safingol in combination with 2'-nitroflavone in breast cancer. J Mol Med (Berl) 2024; 102:1503-1516. [PMID: 39503902 DOI: 10.1007/s00109-024-02497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 11/21/2024]
Abstract
Sphingosine kinase-1 (SPHK1), the enzyme that catalyzes the synthesis of the pro-oncogenic molecule sphingosine-1-phosphate, is commonly upregulated in breast cancer cells and has been linked with poor prognosis and progression by promoting cell transformation, proliferation, angiogenesis, and metastasis. Therefore, SPHK1-targeting drugs have been proposed for breast cancer treatment, with better antitumor results when they are combined with chemotherapy. Previously, we demonstrated that the synthetic flavonoid 2'-nitroflavone (2'NF) exerted a potent and selective antiproliferative effect in murine HER2-positive LM3 mammary tumor cells. As we found that these cells overexpress SPHK1, we decided to explore the antitumor action of the combination of SPHK inhibitors (safingol or SKI-II) with 2'NF. In vitro assays showed that the combination induced a synergistic antiproliferative effect in LM3 cells. Similar results were obtained when human HER2-positive MDA-MB-453 breast cancer cells were treated with the combination of 2'NF/safingol. We also found that safingol potentiated the 2'NF apoptotic effect in both cell lines. The synergistic antitumor effect was confirmed in vivo in an LM3 syngeneic breast cancer model. Moreover, western blot analysis of tumor lysates revealed that combined treatment increased PARP cleavage and Bax protein levels and decreased anti-apoptotic Bcl-xL and Bcl-2 protein levels. Additionally, mice treated with both compounds showed no histopathological effects on different organ tissues. In summary, these findings suggest that the combination safingol/2'NF can be proposed as a potential therapeutic strategy for HER2-positive breast cancer treatment. KEY MESSAGES: The combination safingol/2'-nitroflavone exerts a synergic antitumor action in vitro. Safingol potentiates 2'-nitroflavone apoptotic effect in breast cancer cells. Safingol enhances the 2'-nitroflavone antitumor activity in vivo in breast cancer.
Collapse
Affiliation(s)
- Juan Manuel Anselmi Relats
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junin 956, C1113AAD, Buenos Aires, Argentina
| | - Leonor P Roguin
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junin 956, C1113AAD, Buenos Aires, Argentina
| | - Mariel Marder
- Laboratorio de Neuro-Fito-Farmacología Medicinal, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Magalí C Cercato
- Laboratorio de Histotecnología y Cultivo Celular, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Julieta Marino
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junin 956, C1113AAD, Buenos Aires, Argentina
| | - Viviana C Blank
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junin 956, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Ung J, Kassai M, Tan SF, Loughran TP, Feith DJ, Cabot MC. The Drug Transporter P-Glycoprotein and Its Impact on Ceramide Metabolism-An Unconventional Ally in Cancer Treatment. Int J Mol Sci 2024; 25:9825. [PMID: 39337312 PMCID: PMC11432138 DOI: 10.3390/ijms25189825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The tumor-suppressor sphingolipid ceramide is recognized as a key participant in the cytotoxic mechanism of action of many types of chemotherapy drugs, including anthracyclines, Vinca alkaloids, the podophyllotoxin etoposide, taxanes, and the platinum drug oxaliplatin. These drugs can activate de novo synthesis of ceramide or stimulate the production of ceramide via sphingomyelinases to limit cancer cell survival. On the contrary, dysfunctional sphingolipid metabolism, a prominent factor in cancer survival and therapy resistance, blunts the anticancer properties of ceramide-orchestrated cell death pathways, especially apoptosis. Although P-glycoprotein (P-gp) is famous for its role in chemotherapy resistance, herein, we propose alternate interpretations and discuss the capacity of this multidrug transporter as a "ceramide neutralizer", an unwelcome event, highlighting yet another facet of P-gp's versatility in drug resistance. We introduce sphingolipid metabolism and its dysfunctional regulation in cancer, present a summary of factors that contribute to chemotherapy resistance, explain how P-gp "neutralizes" ceramide by hastening its glycosylation, and consider therapeutic applications of the P-gp-ceramide connection in the treatment of cancer.
Collapse
Affiliation(s)
- Johnson Ung
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, The East Carolina Diabetes and Obesity Institute, Greenville, NC 27834, USA;
| | - Su-Fern Tan
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (D.J.F.)
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Thomas P. Loughran
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (D.J.F.)
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - David J. Feith
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (D.J.F.)
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Myles C. Cabot
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, The East Carolina Diabetes and Obesity Institute, Greenville, NC 27834, USA;
| |
Collapse
|
3
|
Nagahashi M, Miyoshi Y. Targeting Sphingosine-1-Phosphate Signaling in Breast Cancer. Int J Mol Sci 2024; 25:3354. [PMID: 38542328 PMCID: PMC10970081 DOI: 10.3390/ijms25063354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 01/04/2025] Open
Abstract
In recent years, newly emerging therapies, such as immune checkpoint inhibitors and antibody-drug conjugates, have further improved outcomes for breast cancer patients. However, recurrent and metastatic breast cancer often eventually develops resistance to these drugs, and cure is still rare. As such, the development of new therapies for refractory breast cancer that differ from conventional mechanisms of action is necessary. Sphingosine-1-phosphate (S1P) is a key molecule with a variety of bioactive activities, including involvement in cancer cell proliferation, invasion, and metastasis. S1P also contributes to the formation of the cancer microenvironment by inducing surrounding vascular- and lymph-angiogenesis and regulating the immune system. In this article, we outline the basic mechanism of action of S1P, summarize previous findings on the function of S1P in cancer cells and the cancer microenvironment, and discuss the clinical significance of S1P in breast cancer and the therapeutic potential of targeting S1P signaling.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | | |
Collapse
|
4
|
Davy M, Genest L, Legrand C, Pelouin O, Froget G, Castagné V, Rupp T. Evaluation of Temozolomide and Fingolimod Treatments in Glioblastoma Preclinical Models. Cancers (Basel) 2023; 15:4478. [PMID: 37760448 PMCID: PMC10527257 DOI: 10.3390/cancers15184478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastomas are malignant brain tumors which remain lethal due to their aggressive and invasive nature. The standard treatment combines surgical resection, radiotherapy, and chemotherapy using Temozolomide, albeit with a minor impact on patient prognosis (15 months median survival). New therapies evaluated in preclinical translational models are therefore still required to improve patient survival and quality of life. In this preclinical study, we evaluated the effect of Temozolomide in different models of glioblastoma. We also aimed to investigate the efficacy of Fingolimod, an immunomodulatory drug for multiple sclerosis also described as an inhibitor of the sphingosine-1-phosphate (S1P)/S1P receptor axis. The effects of Fingolimod and Temozolomide were analyzed with in vitro 2D and 3D cellular assay and in vivo models using mouse and human glioblastoma cells implanted in immunocompetent or immunodeficient mice, respectively. We demonstrated both in in vitro and in vivo models that Temozolomide has a varied effect depending on the tumor type (i.e., U87MG, U118MG, U138MG, and GL261), demonstrating sensitivity, acquired resistance, and purely resistant tumor phenotypes, as observed in patients. Conversely, Fingolimod only reduced in vitro 2D tumor cell growth and increased cytotoxicity. Indeed, Fingolimod had little or no effect on 3D spheroid cytotoxicity and was devoid of effect on in vivo tumor progression in Temozolomide-sensitive models. These results suggest that the efficacy of Fingolimod is dependent on the glioblastoma tumor microenvironment. Globally, our data suggest that the response to Temozolomide varies depending on the cancer model, consistent with its clinical activity, whereas the potential activity of Fingolimod may merit further evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tristan Rupp
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France
| |
Collapse
|
5
|
Corsetto PA, Zava S, Rizzo AM, Colombo I. The Critical Impact of Sphingolipid Metabolism in Breast Cancer Progression and Drug Response. Int J Mol Sci 2023; 24:ijms24032107. [PMID: 36768427 PMCID: PMC9916652 DOI: 10.3390/ijms24032107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Breast cancer is the second leading cause of cancer-related death in women in the world, and its management includes a combination of surgery, radiation therapy, chemotherapy, and immunotherapy, whose effectiveness depends largely, but not exclusively, on the molecular subtype (Luminal A, Luminal B, HER2+ and Triple Negative). All breast cancer subtypes are accompanied by peculiar and substantial changes in sphingolipid metabolism. Alterations in sphingolipid metabolite levels, such as ceramides, dihydroceramide, sphingosine, sphingosine-1-phosphate, and sphingomyelin, as well as in their biosynthetic and catabolic enzymatic pathways, have emerged as molecular mechanisms by which breast cancer cells grow, respond to or escape therapeutic interventions and could take on diagnostic and prognostic value. In this review, we summarize the current landscape around two main themes: 1. sphingolipid metabolites, enzymes and transport proteins that have been found dysregulated in human breast cancer cells and/or tissues; 2. sphingolipid-driven mechanisms that allow breast cancer cells to respond to or evade therapies. Having a complete picture of the impact of the sphingolipid metabolism in the development and progression of breast cancer may provide an effective means to improve and personalize treatments and reduce associated drug resistance.
Collapse
|
6
|
Pal P, Atilla-Gokcumen GE, Frasor J. Emerging Roles of Ceramides in Breast Cancer Biology and Therapy. Int J Mol Sci 2022; 23:ijms231911178. [PMID: 36232480 PMCID: PMC9569866 DOI: 10.3390/ijms231911178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
One of the classic hallmarks of cancer is the imbalance between elevated cell proliferation and reduced cell death. Ceramide, a bioactive sphingolipid that can regulate this balance, has long been implicated in cancer. While the effects of ceramide on cell death and therapeutic efficacy are well established, emerging evidence indicates that ceramide turnover to downstream sphingolipids, such as sphingomyelin, hexosylceramides, sphingosine-1-phosphate, and ceramide-1-phosphate, is equally important in driving pro-tumorigenic phenotypes, such as proliferation, survival, migration, stemness, and therapy resistance. The complex and dynamic sphingolipid network has been extensively studied in several cancers, including breast cancer, to find key sphingolipidomic alterations that can be exploited to develop new therapeutic strategies to improve patient outcomes. Here, we review how the current literature shapes our understanding of how ceramide synthesis and turnover are altered in breast cancer and how these changes offer potential strategies to improve breast cancer therapy.
Collapse
Affiliation(s)
- Purab Pal
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
- Correspondence: (G.E.A.-G.); (J.F.)
| | - Jonna Frasor
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (G.E.A.-G.); (J.F.)
| |
Collapse
|
7
|
Rupp T, Debasly S, Genest L, Froget G, Castagné V. Therapeutic Potential of Fingolimod and Dimethyl Fumarate in Non-Small Cell Lung Cancer Preclinical Models. Int J Mol Sci 2022; 23:ijms23158192. [PMID: 35897763 PMCID: PMC9330228 DOI: 10.3390/ijms23158192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023] Open
Abstract
New therapies are required for patients with non-small cell lung cancer (NSCLC) for which the current standards of care poorly affect the patient prognosis of this aggressive cancer subtype. In this preclinical study, we aim to investigate the efficacy of Fingolimod, a described inhibitor of sphingosine-1-phosphate (S1P)/S1P receptors axis, and Dimethyl Fumarate (DMF), a methyl ester of fumaric acid, both already approved as immunomodulators in auto-immune diseases with additional expected anti-cancer effects. The impact of both drugs was analyzed with in vitro cell survival analysis and in vivo graft models using mouse and human NSCLC cells implanted in immunocompetent or immunodeficient mice, respectively. We demonstrated that Fingolimod and DMF repressed tumor progression without apparent adverse effects in vivo in three preclinical mouse NSCLC models. In vitro, Fingolimod did not affect either the tumor proliferation or the cytotoxicity, although DMF reduced tumor cell proliferation. These results suggest that Fingolimod and DMF affected tumor progression through different cellular mechanisms within the tumor microenvironment. Fingolimod and DMF might uncover potential therapeutic opportunities in NSCLC.
Collapse
Affiliation(s)
- Tristan Rupp
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
- Correspondence: or ; Tel.: +33-(0)2-43-69-36-07
| | - Solène Debasly
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
- CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Université de Reims-Champagne-Ardenne, Campus Moulin de la Housse, 51687 Reims, France
| | - Laurie Genest
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
| | - Guillaume Froget
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
| | - Vincent Castagné
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
| |
Collapse
|
8
|
Samanta SK, Choudhury P, Sarma PP, Gogoi B, Gogoi N, Devi R. Dietary phytochemicals/nutrients as promising protector of breast cancer development: a comprehensive analysis. Pharmacol Rep 2022; 74:583-601. [PMID: 35661126 DOI: 10.1007/s43440-022-00373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Genetic change, particularly epigenetic alteration, is one of the imperative factors for sporadic breast cancer development in the worldwide population of women. The DNA methylation process is essential and natural for human cellular renewal and tissue homeostasis, but its dysregulation contributes to many pathological changes, including breast tumorigenesis. Chemopreventive agents mainly protect the abnormal DNA methylation either by hindering the division of pre-malignant cells or looming the DNA damage, which leads to malignancy. The present review article is about understanding the potential role of dietary phytochemicals in breast cancer prevention. Accordingly, a literature search of the published article until August 2021 has been performed. Further, we have investigated the binding affinity of different phytochemicals isolated from diverse dietary sources against the various oncogenic proteins related to breast cancer initiation to understand the common target(s) in breast cancer prevention mechanisms. Various small phytochemicals, especially dietary phytochemicals including sulforaphane, mahanine, resveratrol, linolenic acid, diallyl sulfide, benzyl/phenethyl isothiocyanate, etc. are being investigated as the chemopreventive agent to manage breast cancer development, and some of them have shown promising outcomes in the cited research. In this present review, we discuss the recent advancement in acceptance of such types of potential dietary phytochemicals as a chemopreventive agent against breast cancer development and their inner lining mechanism. The critical clinical trials and cohort studies have also been considered to understand the progress in contemporary perspectives.
Collapse
Affiliation(s)
- Suman Kumar Samanta
- Traditional and Modern Drug Discovery and Diseases Diagnosis Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
| | - Paramita Choudhury
- Traditional and Modern Drug Discovery and Diseases Diagnosis Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
| | - Partha Pratim Sarma
- Traditional and Modern Drug Discovery and Diseases Diagnosis Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
| | - Bhaskarjyoti Gogoi
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Neelutpal Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Rajlakshmi Devi
- Traditional and Modern Drug Discovery and Diseases Diagnosis Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
| |
Collapse
|
9
|
Zhang S, Chen X, Wu C, Xu H, Xie X, Feng M, Hu S, Bai H, Gao F, Tong L, Ding J, Liu H, Xie Z, Wang J. Novel Sphingosine Kinase 1 Inhibitor Suppresses Growth of Solid Tumor and Inhibits the Lung Metastasis of Triple-Negative Breast Cancer. J Med Chem 2022; 65:7697-7716. [PMID: 35439002 DOI: 10.1021/acs.jmedchem.2c00040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeting sphingosine kinase 1 (SphK1) has become a novel strategy for the treatment of inflammatory bowel disease and cancer via the SphK1/S1P signaling pathway. However, exploration of SphK1 inhibitor therapeutic applications has been hampered by the poor pharmacokinetic properties of these SphK1 inhibitors. Herein, we report the structural optimization and structure-activity relationship studies of a series of novel SphK1 inhibitors. The novel compound 28 selectively inhibits SphK1 and exhibits higher anti-proliferative activity compared to the positive compound PF-543 in various cancer cells, which is associated with the induction of G0/G1 phase arrest and apoptosis; besides, it could also inhibit the cell migration. Further, compound 28 can suppress in vivo growth of both colon tumor and triple-negative breast tumor and inhibits the lung metastasis of triple-negative breast cancer with higher potency compared with that of PF-543. Collectively, compound 28 represents a promising lead compound for the treatment of solid tumor and the metastasis.
Collapse
Affiliation(s)
- Shurui Zhang
- China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xiaoxu Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chenglin Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hui Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Mingshun Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Shulei Hu
- China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hudagula Bai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Feng Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Linjiang Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jian Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hong Liu
- China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,Lingang Laboratory, Shanghai 200031, China
| |
Collapse
|
10
|
Hii LW, Chung FFL, Mai CW, Ng PY, Leong CO. Sphingosine Kinase 1 Signaling in Breast Cancer: A Potential Target to Tackle Breast Cancer Stem Cells. Front Mol Biosci 2021; 8:748470. [PMID: 34820423 PMCID: PMC8606534 DOI: 10.3389/fmolb.2021.748470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Sphingosine kinases (SPHKs) are conserved lipid enzymes that catalyze the formation of sphingosine-1-phosphate (S1P) through ATP-dependent phosphorylation of sphingosine. Two distinct SPHK isoforms, namely SPHK1 and SPHK2, have been identified to date, and the former has been implicated for its oncogenic roles in cancer development and progression. While SPHK1 signaling axis has been extensively studied in non-stem breast cancer cells, recent evidence has emerged to suggest a role of SPHK1 in regulating cancer stem cells (CSCs). With the clinical implications of CSCs in disease relapse and metastasis, it is believed that therapeutic approaches that can eradicate both non-stem cancer cells and CSCs could be a key to cancer cure. In this review, we first explore the oncogenic functions of sphingosine kinase 1 in human cancers and summarize current research findings of SPHK1 signaling with a focus on breast cancer. We also discuss the therapeutic potentials and perspectives of targeting SPHK1 signaling in breast cancer and cancer stem cells. We aim to offer new insights and inspire future studies looking further into the regulatory functions of SPHK1 in CSC-driven tumorigenesis, uncovering novel therapeutic avenues of using SPHK1-targeted therapy in the treatment of CSC-enriched refractory cancers.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Venkatraman G, Tang X, Du G, Parisentti AM, Hemmings DG, Brindley DN. Lysophosphatidate Promotes Sphingosine 1-Phosphate Metabolism and Signaling: Implications for Breast Cancer and Doxorubicin Resistance. Cell Biochem Biophys 2021; 79:531-545. [PMID: 34415509 PMCID: PMC11948428 DOI: 10.1007/s12013-021-01024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) promote vasculogenesis, angiogenesis, and wound healing by activating a plethora of overlapping signaling pathways that stimulate mitogenesis, cell survival, and migration. As such, maladaptive signaling by LPA and S1P have major effects in increasing tumor progression and producing poor patient outcomes after chemotherapy and radiotherapy. Many signaling actions of S1P and LPA are not redundant; each are vital in normal physiology and their metabolisms differ. In the present work, we studied how LPA signaling impacts S1P metabolism and signaling in MDA-MB-231 and MCF-7 breast cancer cells. LPA increased sphingosine kinase-1 (SphK1) synthesis and rapidly activated cytosolic SphK1 through association with membranes. Blocking phospholipase D activity attenuated the LPA-induced activation of SphK1 and the synthesis of ABCC1 and ABCG2 transporters that secrete S1P from cells. This effect was magnified in doxorubicin-resistant MCF-7 cells. LPA also facilitated S1P signaling by increasing mRNA expression for S1P1 receptors. Doxorubicin-resistant MCF-7 cells had increased S1P2 and S1P3 receptor expression and show increased LPA-induced SphK1 activation, increased expression of ABCC1, ABCG2 and greater S1P secretion. Thus, LPA itself and LPA-induced S1P signaling counteract doxorubicin-induced death of MCF-7 cells. We conclude from the present and previous studies that LPA promotes S1P metabolism and signaling to coordinately increase tumor growth and metastasis and decrease the effectiveness of chemotherapy and radiotherapy for breast cancer treatment.
Collapse
Affiliation(s)
- Ganesh Venkatraman
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Guangwei Du
- Department of Integrative Biology & Pharmacology, University of Texas Health Science at Houston, Houston, TX, 77030, USA
| | - Amadeo M Parisentti
- Northern Ontario School of Medicine, Health Sciences North Research Institute, Sudbury, ON, P3E 2H2, Canada
| | - Denise G Hemmings
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
- Medical Microbiology and Immunology, Obstetrics and Gynecology, Women and Children's Health Research Institute, Li Ka Shing Institute of Virology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
12
|
Kim SJ, Lee JH, Park WJ, Kim S. Bioinformatic Exploration for Prognostic Significance of Sphingolipid Metabolism-Related Genes in Invasive Ductal Carcinoma Using the Cancer Genome Atlas Cohort. Int J Gen Med 2021; 14:4423-4434. [PMID: 34413672 PMCID: PMC8370849 DOI: 10.2147/ijgm.s328376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Sphingolipid metabolism is a highly controlled process that is involved in regulating bioactive lipid signaling pathways and serves important roles in several cellular processes in breast cancer. Invasive ductal carcinoma (IDC), which is characterized by the malignant proliferation of the ductal epithelium and stromal invasion, is the most common type of breast cancer. Recent advances in genetic research have accelerated the discovery of novel prognostic factors and therapeutic targets for the disease. The aim of the present study was to investigate the expression and prognostic significance of sphingolipid metabolism-related genes in female IDC. METHODS The present study used gene expression RNAseq data obtained from The Cancer Genome Atlas breast invasive carcinoma (TCGA BRCA) datasets. RESULTS Sphingolipid metabolism-related genes exhibited dysregulated mRNA expression levels in IDC. The Student's t-test revealed that SMPDL3B, B4GALNT1, LPAR2, and LASS2 were significantly upregulated, while LASS3, LPAR1, B4GALT6, GAL3ST1, HPGD, ST8SIA1, UGT8, and S1PR1 were significantly downregulated in female IDC tissues compared with normal solid tissues. Kaplan-Meier survival analyses revealed that high SMPDL3B mRNA expression levels were associated with good prognosis in female IDC, suggesting that SMPDL3B plays a tumor suppressor role. To the best of our knowledge, the present study was the first to report that dysregulated expressions of SMPDL3B are significantly associated with age, estrogen receptor status, progesterone receptor status, and histological subtype. CONCLUSION Taken together, our study indicated that SMPDL3B may have a pathophysiological role and serve as a novel prognostic biomarker in IDC.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Yeonsu-gu, Incheon, 21999, Republic of Korea
| | - Jae-Ho Lee
- Department of Anatomy, School of Medicine, Keimyung University, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Yeonsu-gu, Incheon, 21999, Republic of Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-gu, Daegu, 42601, Republic of Korea
- Institute of Medical Science, Keimyung University, Dalseo-gu, Daegu, 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University Dongsan Medical Center, Dalseo-gu, Daegu, 42601, Republic of Korea
| |
Collapse
|
13
|
Shi P, Zhang J, Li X, Li W, Li H, Fu P. Long non-coding RNA NORAD inhibition upregulates microRNA-323a-3p to suppress tumorigenesis and development of breast cancer through the PUM1/eIF2 axis. Cell Cycle 2021; 20:1295-1307. [PMID: 34125645 PMCID: PMC8331030 DOI: 10.1080/15384101.2021.1934627] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/25/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are known to competitively bind with microRNAs (miRNAs) to participate in human cancers. We aim to explore the role of non-coding RNA activated by DNA damage (NORAD) binding to miR-323a-3p in breast cancer (BC) with the involvement of pumilio RNA-binding family member 1 (PUM1)/eukaryotic initiation factor 2 (eIF2) axis. Expression of NORAD, miR-323a-3p and PUM1 in tissues and cell lines was detected, and the correlation between NORAD expression and clinicopathological features of BC patients was analyzed. The screened cell line was respectively transfected with altered NORAD or miR-323a-3p to reveal their roles in viability, migration, invasion and apoptosis of BC cells in vitro. The tumor growth in vivo was observed in nude mice. The binding relationships among NORAD, miR-323a-3p and PUM1 were analyzed, and the regulatory role of NORAD and miR-323a-3p in the eIF2 signaling pathway was assessed. NORAD and PUM1 were upregulated and miR-323a-3p was downregulated in BC. High NORAD expression indicated a poor prognosis of BC patients. NORAD inhibition or miR-323a-3p elevation inhibited malignant behaviors of BC cells. The in vivo assay revealed that NORAD inhibition or miR-323a-3p elevation inhibited tumor growth as well. MiR-323a-3p inhibition reversed the role of NORAD knockdown in the biological functions of BC cells while silencing PUM1 reversed the influence of NORAD overexpression on BC cells. NORAD bound with miR-323a-3p and miR-323a-3p targeted PUM1. NORAD and miR-323a-3p functioned through the PUM1/eIF2 axis. NORAD inhibition or miR-323a-3p elevation suppresses the development of BC through the PUM1/eIF2 axis.
Collapse
Affiliation(s)
- Pengfei Shi
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaming Zhang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xun Li
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhuan Li
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Li
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Fu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Exosomal microRNA-503-3p derived from macrophages represses glycolysis and promotes mitochondrial oxidative phosphorylation in breast cancer cells by elevating DACT2. Cell Death Discov 2021; 7:119. [PMID: 34016964 PMCID: PMC8137952 DOI: 10.1038/s41420-021-00492-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/30/2021] [Accepted: 04/23/2021] [Indexed: 11/08/2022] Open
Abstract
MicroRNAs (miRNAs) are emerging drivers in tumor progression, while the role of miR-503-3p in breast cancer (BC) remains largely unknown. We aimed to explore the impact of macrophage-derived exosomal miR-503-3p in the development of BC by regulating disheveled-associated binding antagonist of beta-catenin 2 (DACT2). miR-503-3p and DACT2 expression in BC tissues and cells was assessed, and the expression of Wnt/β-catenin signaling pathway-related proteins in BC cells was also evaluated. Macrophages were induced and exosomes were extracted. The screened BC cell lines were, respectively, treated with exosomes, miR-503-3p inhibitor/mimic or upregulated/inhibited DACT2, and then the phenotypes, glucose intake, oxygen consumption rate, and adenosine-triphosphate (ATP) level of BC cells were determined. Cell growth in vivo was also observed. MiR-503-3p was elevated, DACT2 was reduced, and Wnt/β-catenin signaling pathway was activated in BC cells. Macrophage-derived exosomes, upregulated miR-503-3p or inhibited DACT2 promoted malignant behaviors of BC cells, glucose intake, and activity of the Wnt/β-catenin signaling pathway, while repressed oxygen consumption rate and ATP level in BC cells. Reversely, reduced miR-503-3p or upregulated DACT2 exerted opposite effects. This study revealed that reduction of macrophage-derived exosomal miR-503-3p repressed glycolysis and promoted mitochondrial oxidative phosphorylation in BC by elevating DACT2 and inactivating Wnt/β-catenin signaling pathway. Our research may provide novel targets for BC treatment.
Collapse
|
15
|
Dai L, Wang C, Song K, Wang W, Di W. Activation of SphK1 by adipocytes mediates epithelial ovarian cancer cell proliferation. J Ovarian Res 2021; 14:62. [PMID: 33931106 PMCID: PMC8088075 DOI: 10.1186/s13048-021-00815-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/21/2021] [Indexed: 12/05/2022] Open
Abstract
Background Adipocytes, active facilitators of epithelial ovarian cancer (EOC) growth, have been implicated in the link between obesity and EOC. However, the current understanding of the mechanisms underlying adipocyte-induced EOC cell proliferation remains incomplete. Results We provide the first evidence showing that sphingosine kinase (SphK) 1 is critical for adipocyte-induced EOC cell proliferation. Adipocytes are capable of activating SphK1, which then leads to extracellular signal-regulated kinase (ERK) phosphorylation. Moreover, adipocyte-induced SphK1 activation is ERK dependent. Furthermore, sphingosine 1-phosphate receptor (S1PR) 1 and S1PR3, key components of the SphK1 signalling pathway, participate in adipocyte-mediated growth-promoting action in EOC cells. Conclusions Our study reveals a previously unrecognized role of SphK1 in adipocyte-induced growth-promoting action in EOC, suggesting a new target for EOC therapy.
Collapse
Affiliation(s)
- Lan Dai
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Chen Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Keqi Song
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wenjing Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
16
|
Gupta P, Taiyab A, Hussain A, Alajmi MF, Islam A, Hassan MI. Targeting the Sphingosine Kinase/Sphingosine-1-Phosphate Signaling Axis in Drug Discovery for Cancer Therapy. Cancers (Basel) 2021; 13:1898. [PMID: 33920887 PMCID: PMC8071327 DOI: 10.3390/cancers13081898] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/11/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023] Open
Abstract
Sphingolipid metabolites have emerged as critical players in the regulation of various physiological processes. Ceramide and sphingosine induce cell growth arrest and apoptosis, whereas sphingosine-1-phosphate (S1P) promotes cell proliferation and survival. Here, we present an overview of sphingolipid metabolism and the compartmentalization of various sphingolipid metabolites. In addition, the sphingolipid rheostat, a fine metabolic balance between ceramide and S1P, is discussed. Sphingosine kinase (SphK) catalyzes the synthesis of S1P from sphingosine and modulates several cellular processes and is found to be essentially involved in various pathophysiological conditions. The regulation and biological functions of SphK isoforms are discussed. The functions of S1P, along with its receptors, are further highlighted. The up-regulation of SphK is observed in various cancer types and is also linked to radio- and chemoresistance and poor prognosis in cancer patients. Implications of the SphK/S1P signaling axis in human pathologies and its inhibition are discussed in detail. Overall, this review highlights current findings on the SphK/S1P signaling axis from multiple angles, including their functional role, mechanism of activation, involvement in various human malignancies, and inhibitor molecules that may be used in cancer therapy.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.); (M.F.A.)
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.); (M.F.A.)
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| |
Collapse
|
17
|
Patel DS, Ahmad F, Abu Sneineh M, Patel RS, Rohit Reddy S, Llukmani A, Hashim A, Gordon DK. The Importance of Sphingosine Kinase in Breast Cancer: A Potential for Breast Cancer Management. Cureus 2021; 13:e13413. [PMID: 33758708 PMCID: PMC7978154 DOI: 10.7759/cureus.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Breast cancer management includes a combination of surgery, radiation therapy, and chemotherapy. While this management has proven effective, it is not perfect. To expand the umbrella of management to resistant breast cancer tumors, researchers have explored the idea of sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as a potential target for treatment. In this article, we review the mechanism of the sphingosine kinase/sphingosine-1-phosphate (SphK/S1P) axis along with its effect on the tumor microenvironment (TME) and compounds that have been studied inhibiting the SphK/S1P axis. We searched for relevant articles in the last five years in Medline and PubMed Central. Inclusion criteria, exclusion criteria, and quality checklists were applied to identify the most relevant articles. We compiled the information that has been summarized in the respective tables and figures provided in this review. The metabolism of sphingolipids was summarized, followed by the SphK/S1P upregulation in breast cancer cells. The variety of effects by upregulation of SphK led to an increase in inflammation, growth, and metastasis in breast cancer tumors. The increase in S1P also impacted the TME, including the cells and surrounding tissue, allowing the breast tumors to thrive. The final point made was a summary of the compounds and drugs that inhibited the SphK/S1P axis. They have proven their effectiveness and show even greater efficacy in combination with docetaxel and doxorubicin in preclinical studies. In conclusion, what is known about the SphK/S1P axis within breast cancer cells is immense but incomplete as we summarize what is known so far. Having a complete picture will allow a faster transition to application in the clinical field but clinical trials have not commenced as of yet.
Collapse
Affiliation(s)
- Dutt S Patel
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Farrukh Ahmad
- Emergency Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Emergency Department, Beaumont Hospital, Dublin, IRL
| | - Majdi Abu Sneineh
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ravi S Patel
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sai Rohit Reddy
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Adiona Llukmani
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ayat Hashim
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Domonick K Gordon
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Internal Medicine, Scarborough General Hospital, Scarborough, CAN
| |
Collapse
|
18
|
Congdon M, Fritzemeier RG, Kharel Y, Brown AM, Serbulea V, Bevan DR, Lynch KR, Santos WL. Probing the substitution pattern of indole-based scaffold reveals potent and selective sphingosine kinase 2 inhibitors. Eur J Med Chem 2020; 212:113121. [PMID: 33445156 DOI: 10.1016/j.ejmech.2020.113121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 01/07/2023]
Abstract
Elevated levels of sphingosine 1-phosphate (S1P) and increased expression of sphingosine kinase isoforms (SphK1 and SphK2) have been implicated in a variety of disease states including cancer, inflammation, and autoimmunity. Consequently, the S1P signaling axis has become an attractive target for drug discovery. Selective inhibition of either SphK1 or SphK2 has been demonstrated to be effective in modulating S1P levels in animal models. While SphK1 inhibitors have received much attention, the development of potent and selective SphK2 inhibitors are emerging. Previously, our group reported a SphK2 naphthalene-based selective inhibitor, SLC5081308, which displays approximately 7-fold selectivity for hSphK2 over hSphK1 and has a SphK2 Ki value of 1.0 μM. To improve SphK2 potency and selectivity, we designed, synthesized, and evaluated a series of indole-based compounds derived from SLC5081308. After investigating substitution patterns around the indole ring, we discovered that 1,5-disubstitution promoted optimal binding in the SphK2 substrate binding site and subsequent inhibition of enzymatic activity. Our studies led to the identification of SLC5101465 (6r, SphK2 Ki = 90 nM, >110 fold selective for SphK2 over SphK1). Molecular modeling studies revealed key nonpolar interactions with Val308, Phe548, His556, and Cys533 and hydrogen bonds with both Asp211 and Asp308 as responsible for the high SphK2 inhibition and selectivity.
Collapse
Affiliation(s)
- Molly Congdon
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Russell G Fritzemeier
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, United States
| | - Anne M Brown
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States; Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, United States; Research and Informatics, University Libraries, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, United States
| | - David R Bevan
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States; Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States.
| |
Collapse
|
19
|
Muñoz M, Rosso M, Coveñas R. Triple Negative Breast Cancer: How Neurokinin-1 Receptor Antagonists Could Be Used as a New Therapeutic Approach. Mini Rev Med Chem 2020; 20:408-417. [PMID: 31721701 DOI: 10.2174/1389557519666191112152642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/07/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and the leading cause of cancer death among females. BC cells not showing HER-2/Neu amplification and not expressing estrogen/ progesterone receptors are named triple-negative BC (TNBC) cells. TNBC represents 10-15% of all BC and is associated with an aggressive clinical course. TNBC patient prognosis, survival and response to current therapies are poor and for this reason, it is crucial to search for new therapeutic targets in TNBC to develop new therapeutic strategies. One of these targets is the neurokinin-1 receptor (NK-1R). It is well known that the substance P (SP)/NK-1R system is involved in cancer progression. TNBC cells overexpress the NK-1R and, after binding to this receptor, SP promotes the proliferation/ migration of TNBC cells. Non-peptide NK-1R antagonists (e.g., aprepitant) are known to exert, via the NK-1R, an antitumor action; TNBC cells die by apoptosis. In this review, we update the data on a promising therapeutic innovation: the use of NK-1R antagonists for the treatment of TNBC patients.
Collapse
Affiliation(s)
- Miguel Muñoz
- Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, Sevilla, Spain
| | - Marisa Rosso
- Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, Sevilla, Spain
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y Leon (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, Salamanca, Spain
| |
Collapse
|
20
|
Rupp T, Pelouin O, Genest L, Legrand C, Froget G, Castagné V. Therapeutic potential of Fingolimod in triple negative breast cancer preclinical models. Transl Oncol 2020; 14:100926. [PMID: 33157518 PMCID: PMC7649527 DOI: 10.1016/j.tranon.2020.100926] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/29/2022] Open
Abstract
Fingolimod represses triple negative breast cancer cells survival in vitro by inducing cell apoptosis. Fingolimod represses triple negative breast cancer progression in orthotopic graft murine in vivo models. Fingolimod represses spleen and liver metastases without affecting lung metastasis in murine in vivo models. In contrast with Cisplatin, Fingolimod is well tolerated in murine in vivo models.
Surgery followed by a chemotherapy agent is the first-line treatment for breast cancer patients. Nevertheless, new targets are required for women with triple-negative breast cancer (TNBC) in order to improve the treatment of this aggressive cancer subtype. Multiple pro-inflammatory molecules including lipid-based substances such as sphingosine-1-phosphate (S1P) promote cancer progression. In this preclinical study, we aim to investigate the efficacy of Fingolimod, an inhibitor of S1P / S1P receptors axis, already approved as an immunomodulator in multiple sclerosis. The impact of Fingolimod was analyzed using in vitro 2D and 3D cell survival analysis and in vivo orthotopic graft models, using mouse and human TNBC cells implanted in immunocompetent or immunodeficient mice, respectively. Resection of the tumor primary mass was also performed to mimic the clinical standard of care. We demonstrated that Fingolimod repressed tumor cell survival in vitro. We also showed in preclinical mouse TNBC models that Fingolimod repressed tumor progression and liver and spleen metastases without apparent adverse effects on the animals. Our data indicate that Fingolimod induces tumor cells apoptosis and thereby represses tumor progression. Globally, our data suggest that Fingolimod merits further evaluation as a potential therapeutic opportunity for TNBC.
Collapse
Affiliation(s)
- Tristan Rupp
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France.
| | - Océane Pelouin
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France
| | - Laurie Genest
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France
| | | | | | | |
Collapse
|
21
|
Chellamuthu A, Gray SG. The RNA Methyltransferase NSUN2 and Its Potential Roles in Cancer. Cells 2020; 9:cells9081758. [PMID: 32708015 PMCID: PMC7463552 DOI: 10.3390/cells9081758] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022] Open
Abstract
5-methylcytosine is often associated as an epigenetic modifier in DNA. However, it is also found increasingly in a plethora of RNA species, predominantly transfer RNAs, but increasingly found in cytoplasmic and mitochondrial ribosomal RNAs, enhancer RNAs, and a number of long noncoding RNAs. Moreover, this modification can also be found in messenger RNAs and has led to an increasing appreciation that RNA methylation can functionally regulate gene expression and cellular activities. In mammalian cells, the addition of m5C to RNA cytosines is carried out by enzymes of the NOL1/NOP2/SUN domain (NSUN) family as well as the DNA methyltransferase homologue DNMT2. In this regard, NSUN2 is a critical RNA methyltransferase for adding m5C to mRNA. In this review, using non-small cell lung cancer and other cancers as primary examples, we discuss the recent developments in the known functions of this RNA methyltransferase and its potential critical role in cancer.
Collapse
Affiliation(s)
- Anitha Chellamuthu
- Department of Clinical Medicine, Trinity College Dublin, Dublin D08 W9RT, Ireland;
| | - Steven G. Gray
- Department of Clinical Medicine, Trinity College Dublin, Dublin D08 W9RT, Ireland;
- Thoracic Oncology Research Group, St. James’s Hospital, Dublin D08 RX0X, Ireland
- Correspondence:
| |
Collapse
|
22
|
Blankenbach KV, Bruno G, Wondra E, Spohner AK, Aster NJ, Vienken H, Trautmann S, Ferreirós N, Wieland T, Bruni P, Meyer Zu Heringdorf D. The WD40 repeat protein, WDR36, orchestrates sphingosine kinase-1 recruitment and phospholipase C-β activation by G q-coupled receptors. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158704. [PMID: 32244061 DOI: 10.1016/j.bbalip.2020.158704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/13/2020] [Accepted: 03/27/2020] [Indexed: 11/29/2022]
Abstract
Sphingosine kinases (SphK) catalyse the formation of sphingosine-1-phosphate (S1P) and play important roles in the cardiovascular, nervous and immune systems. We have shown before that Gq-coupled receptors induce a rapid and long-lasting translocation of SphK1 to the plasma membrane and cross-activation of S1P receptors. Here, we further addressed Gq regulation of SphK1 by analysing the influence of the WD40 repeat protein, WDR36. WDR36 has been described as a scaffold tethering Gαq to phospholipase C (PLC)-β and the thromboxane A2 receptor-β (TPβ receptor). Overexpression of WDR36 in HEK-293 cells enhanced TPβ receptor-induced inositol phosphate production, as reported (Cartier et al. 2011), but significantly attenuated inositol phosphate production induced by muscarinic M3 and bradykinin B2 receptors. In agreement with its effect on PLCβ, WDR36 augmented TPβ receptor-induced [Ca2+]i increases. Surprisingly, WDR36 also augmented M3 receptor-induced [Ca2+]i increases, which was due to increased Ca2+ mobilization while the Ca2+ content of thapsigargin-sensitive stores remained unaltered. Interestingly, overexpression of WDR36 significantly delayed SphK1 translocation by Gq-coupled M3, B2 and H1 receptors in HEK-293 cells, while TPβ receptor-induced SphK1 translocation was generally slow and not altered by WDR36 in these cells. Finally, in C2C12 myoblasts, overexpression of WDR36 delayed SphK1 translocation induced by B2 receptors. It is concluded that WDR36 reduces signalling of Gq-coupled receptors other than TPβ towards PLC and SphK1, most likely by scavenging Gαq and PLCβ. Our results support a role of WDR36 in orchestration of Gq signalling complexes, and might help to functionally unravel its genetic association with asthma and allergy.
Collapse
Affiliation(s)
- Kira Vanessa Blankenbach
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Gennaro Bruno
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy.
| | - Enrico Wondra
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Anna Katharina Spohner
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Natalie Judith Aster
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Hans Vienken
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Sandra Trautmann
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Nerea Ferreirós
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Thomas Wieland
- Experimentelle Pharmakologie, Medizinische Fakultät Mannheim der Universität Heidelberg, Ludolf Krehl-Str. 13-17, D-68167 Mannheim, Germany.
| | - Paola Bruni
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy.
| | - Dagmar Meyer Zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
23
|
Sibley CD, Morris EA, Kharel Y, Brown AM, Huang T, Bevan DR, Lynch KR, Santos WL. Discovery of a Small Side Cavity in Sphingosine Kinase 2 that Enhances Inhibitor Potency and Selectivity. J Med Chem 2020; 63:1178-1198. [PMID: 31895563 DOI: 10.1021/acs.jmedchem.9b01508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The sphingosine-1-phosphate (S1P) signaling pathway is an attractive drug target due to its involvement in immune cell chemotaxis and vascular integrity. The formation of S1P is catalyzed by sphingosine kinase 1 or 2 (SphK1 or SphK2) from sphingosine (Sph) and ATP. Inhibition of SphK1 and SphK2 to attenuate levels of S1P has been reported to be efficacious in animal models of diseases such as cancer, sickle cell disease, and renal fibrosis. While inhibitors of both SphKs have been reported, improvements in potency and selectivity are still needed. Toward that end, we performed structure-activity relationship profiling of 8 (SLM6031434) and discovered a heretofore unrecognized side cavity that increased inhibitor potency toward SphK2. Interrogating this region revealed that relatively small hydrophobic moieties are preferred, with 10 being the most potent SphK2-selective inhibitor (Ki = 89 nM, 73-fold SphK2-selective) with validated in vivo activity.
Collapse
Affiliation(s)
- Christopher D Sibley
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Emily A Morris
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Yugesh Kharel
- Department of Pharmacology , University of Virginia , Charlottesville , Virginia 22908 , United States
| | - Anne M Brown
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Tao Huang
- Department of Pharmacology , University of Virginia , Charlottesville , Virginia 22908 , United States
| | - David R Bevan
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Kevin R Lynch
- Department of Pharmacology , University of Virginia , Charlottesville , Virginia 22908 , United States
| | - Webster L Santos
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
24
|
Khan FI, Lai D, Anwer R, Azim I, Khan MKA. Identifying novel sphingosine kinase 1 inhibitors as therapeutics against breast cancer. J Enzyme Inhib Med Chem 2020; 35:172-186. [PMID: 31752564 PMCID: PMC6882459 DOI: 10.1080/14756366.2019.1692828] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sphingosine kinase 1 (SphK1) is a promising therapeutic target against several diseases including mammary cancer. The aim of present work is to identify a potent lead compound against breast cancer using ligand-based virtual screening, molecular docking, MD simulations, and the MMPBSA calculations. The LBVS in molecular and virtual libraries yielded 20,800 hits, which were reduced to 621 by several parameters of drug-likeness, lead-likeness, and PAINS. Furthermore, 55 compounds were selected by ADMET descriptors carried forward for molecular interaction studies with SphK1. The binding energy (ΔG) of three screened compounds namely ZINC06823429 (–11.36 kcal/mol), ZINC95421501 (–11.29 kcal/mol), and ZINC95421070 (–11.26 kcal/mol) exhibited stronger than standard drug PF-543 (–9.9 kcal/mol). Finally, it was observed that the ZINC06823429 binds tightly to catalytic site of SphK1 and remain stable during MD simulations. This study provides a significant understanding of SphK1 inhibitors that can be used in the development of potential therapeutics against breast cancer.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Iffat Azim
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Mohd Kalim Ahmad Khan
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| |
Collapse
|
25
|
Crivelli SM, Giovagnoni C, Visseren L, Scheithauer AL, de Wit N, den Hoedt S, Losen M, Mulder MT, Walter J, de Vries HE, Bieberich E, Martinez-Martinez P. Sphingolipids in Alzheimer's disease, how can we target them? Adv Drug Deliv Rev 2020; 159:214-231. [PMID: 31911096 DOI: 10.1016/j.addr.2019.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/09/2019] [Accepted: 12/31/2019] [Indexed: 01/06/2023]
Abstract
Altered levels of sphingolipids and their metabolites in the brain, and the related downstream effects on neuronal homeostasis and the immune system, provide a framework for understanding mechanisms in neurodegenerative disorders and for developing new intervention strategies. In this review we will discuss: the metabolites of sphingolipids that function as second messengers; and functional aberrations of the pathway resulting in Alzheimer's disease (AD) pathophysiology. Focusing on the central product of the sphingolipid pathway ceramide, we describ approaches to pharmacologically decrease ceramide levels in the brain and we argue on how the sphingolipid pathway may represent a new framework for developing novel intervention strategies in AD. We also highlight the possible use of clinical and non-clinical drugs to modulate the sphingolipid pathway and sphingolipid-related biological cascades.
Collapse
|
26
|
Wang X, Sun Y, Peng X, Naqvi SMAS, Yang Y, Zhang J, Chen M, Chen Y, Chen H, Yan H, Wei G, Hong P, Lu Y. The Tumorigenic Effect of Sphingosine Kinase 1 and Its Potential Therapeutic Target. Cancer Control 2020; 27:1073274820976664. [PMID: 33317322 PMCID: PMC8480355 DOI: 10.1177/1073274820976664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Sphingosine kinase 1 (SPHK1) regulates cell proliferation and survival by converting sphingosine to the signaling mediator sphingosine 1-phosphate (S1P). SPHK1 is widely overexpressed in most cancers, promoting tumor progression and is associated with clinical prognosis. Numerous studies have explored SPHK1 as a promising target for cancer therapy. However, due to insufficient knowledge of SPHK1 oncogenic mechanisms, its inhibitors' therapeutic potential in preventing and treating cancer still needs further investigation. In this review, we summarized the metabolic balance regulated by the SPHK1/S1P signaling pathway and highlighted the oncogenic mechanisms of SPHK1 via the upregulation of autophagy, proliferation, and survival, migration, angiogenesis and inflammation, and inhibition of apoptosis. Drug candidates targeting SPHK1 were also discussed at the end. This review provides new insights into the oncogenic effect of SPHK1 and sheds light on the future direction for targeting SPHK1 as cancer therapy.
Collapse
Affiliation(s)
- Xianwang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Syed Manzar Abbas Shah Naqvi
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yue Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Meiwen Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yuan Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Hongyue Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huizi Yan
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Guangliang Wei
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Peng Hong
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yingying Lu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
27
|
Singh SK, Spiegel S. Sphingosine-1-phosphate signaling: A novel target for simultaneous adjuvant treatment of triple negative breast cancer and chemotherapy-induced neuropathic pain. Adv Biol Regul 2019; 75:100670. [PMID: 31708456 DOI: 10.1016/j.jbior.2019.100670] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
Triple-negative breast cancer (TNBC) is very aggressive with high metastatic and mortality rates and unfortunately, except for chemotherapy, there are few therapeutic options. The bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) regulates numerous processes important for cancer progression, metastasis, and neuropathic pain. The pro-drug FTY720 (fingolimod, Gilenya) used to treat multiple sclerosis is phosphorylated in the body to a S1P mimic that binds to S1PRs, except S1PR2, and also acts as a functional antagonist of S1PR1. This review highlights current findings showing that FTY720 has multiple anti-cancer activities and simultaneously prevents formation and actions of S1P. Moreover, in mouse breast cancer models, treatment with FTY720 reduces tumor growth, metastasis, and enhances sensitivity of advanced and hormonal refractory breast cancer and TNBC to conventional therapies. We discuss recent studies demonstrating that neuropathic pain induced by the chemotherapeutic bortezomib is also greatly reduced by administration of clinically relevant doses of FTY720, likely by targeting S1PR1 on astrocytes. FTY720 also shows promising anticancer potential in pre-clinical studies and is FDA approved, thus we suggest in this review that further studies are needed to pave the way for fast-tracking approval of FTY720/fingolimod for enhancing chemotherapy effectiveness and reduction of painful neuropathies.
Collapse
Affiliation(s)
- Sandeep K Singh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, VA, USA.
| |
Collapse
|
28
|
Xu Y. Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside. Cancers (Basel) 2019; 11:E1523. [PMID: 31658655 PMCID: PMC6826372 DOI: 10.3390/cancers11101523] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Since the clear demonstration of lysophosphatidic acid (LPA)'s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications.
Collapse
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA.
| |
Collapse
|
29
|
Gowda C, Song C, Ding Y, Iyer S, Dhanyamraju PK, McGrath M, Bamme Y, Soliman M, Kane S, Payne JL, Dovat S. Cellular signaling and epigenetic regulation of gene expression in leukemia. Adv Biol Regul 2019; 75:100665. [PMID: 31623972 PMCID: PMC7239353 DOI: 10.1016/j.jbior.2019.100665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Alterations in normal regulation of gene expression is one of the key features of hematopoietic malignancies. In order to gain insight into the mechanisms that regulate gene expression in these diseases, we dissected the role of the Ikaros protein in leukemia. Ikaros is a DNA-binding, zinc finger protein that functions as a transcriptional regulator and a tumor suppressor in leukemia. The use of ChIP-seq, RNA-seq, and ATAC-seq—coupled with functional experiments—revealed that Ikaros regulates both the global epigenomic landscape and epigenetic signature at promoter regions of its target genes. Casein kinase II (CK2), an oncogenic kinase that is overexpressed in leukemia, directly phosphorylates Ikaros at multiple, evolutionarily-conserved residues. Phosphorylation of Ikaros impairs the protein's ability to regulate both the transcription of its target genes and global epigenetic landscape in leukemia. Treatment of leukemia cells with a specific inhibitor of CK2 restores Ikaros function, resulting in cytotoxicity of leukemia cells. Here, we review the mechanisms through which the CK2-Ikaros signaling axis regulates the global epigenomic landscape and expression of genes that control cellular proliferation in leukemia.
Collapse
Affiliation(s)
- Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Soumya Iyer
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Pavan K Dhanyamraju
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mary McGrath
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yevgeniya Bamme
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mario Soliman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Shriya Kane
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jonathon L Payne
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
30
|
Montrose DC, Galluzzi L. Drugging cancer metabolism: Expectations vs. reality. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:1-26. [PMID: 31451211 DOI: 10.1016/bs.ircmb.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As compared to their normal counterparts, neoplastic cells exhibit a variety of metabolic changes that reflect not only genetic and epigenetic defects underlying malignant transformation, but also the nutritional and immunobiological conditions of the tumor microenvironment. Such alterations, including the so-called Warburg effect (an increase in glucose uptake largely feeding anabolic and antioxidant metabolism), have attracted considerable attention as potential targets for the development of novel anticancer therapeutics. However, very few drugs specifically conceived to target bioenergetic cancer metabolism are currently approved by regulatory agencies for use in humans. This reflects the elevated degree of heterogeneity and redundancy in the metabolic circuitries exploited by neoplastic cells from different tumors (even of the same type), as well as the resemblance of such metabolic pathways to those employed by highly proliferating normal cells. Here, we summarize the major metabolic alterations that accompany oncogenesis, the potential of targeting bioenergetic metabolism for cancer therapy, and the obstacles that still prevent the clinical translation of such a promising therapeutic paradigm.
Collapse
Affiliation(s)
- David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Department of Dermatology, Yale School of Medicine, New Haven, CT, United States; Université Paris Descartes/Paris V, Paris, France.
| |
Collapse
|
31
|
Ma Q, Gabelli SB, Raben DM. Diacylglycerol kinases: Relationship to other lipid kinases. Adv Biol Regul 2019; 71:104-110. [PMID: 30348515 PMCID: PMC6347529 DOI: 10.1016/j.jbior.2018.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 04/17/2023]
Abstract
Lipid kinases regulate a wide variety of cellular functions and have emerged as one the most promising targets for drug design. Diacylglycerol kinases (DGKs) are a family of enzymes that catalyze the ATP-dependent phosphorylation of diacylglycerol (DAG) to phosphatidic acid (PtdOH). Despite the critical role in lipid biosynthesis, both DAG and PtdOH have been shown as bioactive lipids mediating a number of signaling pathways. Although there is increasing recognition of their role in signaling systems, our understanding of the key enzyme which regulate the balance of these two lipid messages remain limited. Solved structures provide a wealth of information for understanding the function and regulation of these enzymes. Solving the structures of mammalian DGKs by traditional NMR and X-ray crystallography approaches have been challenging and so far, there are still no three-dimensional structures of these DGKs. Despite this, some insights may be gained by examining the similarities and differences between prokaryotic DGKs and other mammalian lipid kinases. This review focuses on summarizing and comparing the structure of prokaryotic and mammalian DGKs as well as two other lipid kinases: sphingosine kinase and phosphatidylinositol-3-kinase. How these known lipid kinases structures relate to mammalian DGKs will also be discussed.
Collapse
Affiliation(s)
- Qianqian Ma
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sandra B Gabelli
- The Department of Biophysics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel M Raben
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
32
|
Kajimoto T, Caliman AD, Tobias IS, Okada T, Pilo CA, Van AAN, Andrew McCammon J, Nakamura SI, Newton AC. Activation of atypical protein kinase C by sphingosine 1-phosphate revealed by an aPKC-specific activity reporter. Sci Signal 2019; 12:eaat6662. [PMID: 30600259 PMCID: PMC6657501 DOI: 10.1126/scisignal.aat6662] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atypical protein kinase C (aPKC) isozymes are unique in the PKC superfamily in that they are not regulated by the lipid second messenger diacylglycerol, which has led to speculation about whether a different second messenger acutely controls their function. Here, using a genetically encoded reporter that we designed, aPKC-specific C kinase activity reporter (aCKAR), we found that the lipid mediator sphingosine 1-phosphate (S1P) promoted the cellular activity of aPKC. Intracellular S1P directly bound to the purified kinase domain of aPKC and relieved autoinhibitory constraints, thereby activating the kinase. In silico studies identified potential binding sites on the kinase domain, one of which was validated biochemically. In HeLa cells, S1P-dependent activation of aPKC suppressed apoptosis. Together, our findings identify a previously undescribed molecular mechanism of aPKC regulation, a molecular target for S1P in cell survival regulation, and a tool to further explore the biochemical and biological functions of aPKC.
Collapse
Affiliation(s)
- Taketoshi Kajimoto
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA.
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Alisha D Caliman
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Irene S Tobias
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Taro Okada
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Caila A Pilo
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - An-Angela N Van
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - J Andrew McCammon
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
33
|
Maczis MA, Maceyka M, Waters MR, Newton J, Singh M, Rigsby MF, Turner TH, Alzubi MA, Harrell JC, Milstien S, Spiegel S. Sphingosine kinase 1 activation by estrogen receptor α36 contributes to tamoxifen resistance in breast cancer. J Lipid Res 2018; 59:2297-2307. [PMID: 30315000 DOI: 10.1194/jlr.m085191] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/04/2018] [Indexed: 01/01/2023] Open
Abstract
In breast cancer, 17β-estradiol (E2) plays critical roles mainly by binding to its canonical receptor, estrogen receptor (ER) α66, and eliciting genomic effects. E2 also triggers rapid, nongenomic responses. E2 activates sphingosine kinase 1 (SphK1), increasing sphingosine-1-phosphate (S1P) that binds to its receptors, leading to important breast cancer signaling. However, the E2 receptor responsible for SphK1 activation has not yet been identified. Here, we demonstrate in triple-negative breast cancer cells, which lack the canonical ERα66 but express the novel splice variant ERα36, that ERα36 is the receptor responsible for E2-induced activation of SphK1 and formation and secretion of S1P and dihydro-S1P, the ligands for S1PRs. Tamoxifen, the first-line endocrine therapy for breast cancer, is an antagonist of ERα66, but an agonist of ERα36, and, like E2, activates SphK1 and markedly increases secretion of S1P. A major problem with tamoxifen therapy is development of acquired resistance. We found that tamoxifen resistance correlated with increased SphK1 and ERα36 expression in tamoxifen-resistant breast cancer cells, in patient-derived xenografts, and in endocrine-resistant breast cancer patients. Our data also indicate that targeting this ERα36 and SphK1 axis may be a therapeutic option to circumvent endocrine resistance and improve patient outcome.
Collapse
Affiliation(s)
- Melissa A Maczis
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael Maceyka
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael R Waters
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Jason Newton
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Manjulata Singh
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Madisyn F Rigsby
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Tia H Turner
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Mohammad A Alzubi
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - J Chuck Harrell
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sheldon Milstien
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
34
|
Harrison PJ, Dunn T, Campopiano DJ. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep 2018; 35:921-954. [PMID: 29863195 PMCID: PMC6148460 DOI: 10.1039/c8np00019k] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 12/20/2022]
Abstract
A new review covering up to 2018 Sphingolipids are essential molecules that, despite their long history, are still stimulating interest today. The reasons for this are that, as well as playing structural roles within cell membranes, they have also been shown to perform a myriad of cell signalling functions vital to the correct function of eukaryotic and prokaryotic organisms. Indeed, sphingolipid disregulation that alters the tightly-controlled balance of these key lipids has been closely linked to a number of diseases such as diabetes, asthma and various neuropathologies. Sphingolipid biogenesis, metabolism and regulation is mediated by a large number of enzymes, proteins and second messengers. There appears to be a core pathway common to all sphingolipid-producing organisms but recent studies have begun to dissect out important, species-specific differences. Many of these have only recently been discovered and in most cases the molecular and biochemical details are only beginning to emerge. Where there is a direct link from classic biochemistry to clinical symptoms, a number a drug companies have undertaken a medicinal chemistry campaign to try to deliver a therapeutic intervention to alleviate a number of diseases. Where appropriate, we highlight targets where natural products have been exploited as useful tools. Taking all these aspects into account this review covers the structural, mechanistic and regulatory features of sphingolipid biosynthetic and metabolic enzymes.
Collapse
Affiliation(s)
- Peter J. Harrison
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology
, Uniformed Services University
,
Bethesda
, Maryland
20814
, USA
| | - Dominic J. Campopiano
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| |
Collapse
|
35
|
Niemann-Pick type C disease: The atypical sphingolipidosis. Adv Biol Regul 2018; 70:82-88. [PMID: 30205942 DOI: 10.1016/j.jbior.2018.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 12/29/2022]
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disorder resulting from mutations in either the NPC1 (95%) or NPC2 (5%) genes. NPC typically presents in childhood with visceral lipid accumulation and complex progressive neurodegeneration characterized by cerebellar ataxia, dysphagia, and dementia, resulting in a shortened lifespan. While cholesterol is widely acknowledged as the principal storage lipid in NPC, multiple species of sphingolipids accumulate as well. This accumulation of sphingolipids led to the initial assumption that NPC disease was caused by a deficiency in a sphingolipid catabolism enzyme, similar to sphingomyelinase deficiencies with which it shares a family name. It took about half a century to determine that NPC was in fact caused by a cholesterol trafficking defect, and still as we approach a century after the initial identification of the disease, the mechanisms by which sphingolipids accumulate remain poorly understood. Here we focus on the defects of sphingolipid catabolism in the endolysosomal compartment and how they contribute to the biology and pathology observed in NPC disease. This review highlights the need for further work on understanding and possibly developing treatments to correct the accumulation of sphingolipids in addition to cholesterol in this currently untreatable disease.
Collapse
|
36
|
Chappell WH, Candido S, Abrams SL, Russo S, Ove R, Martelli AM, Cocco L, Ramazzotti G, Cervello M, Montalto G, Steelman LS, Leng X, Arlinghaus RB, Libra M, McCubrey JA. Roles of p53, NF-κB and the androgen receptor in controlling NGAL expression in prostate cancer cell lines. Adv Biol Regul 2018; 69:43-62. [PMID: 29861174 DOI: 10.1016/j.jbior.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL a.k.a lipocalin 2, lnc2) is a secreted protein which can form a complex with matrix metalloproteinase-9 (MMP9). This MMP9/NGAL complex has been associated with metastasis. MMP9 and NGAL are detected in the urine of patients afflicted with many different types of cancer, including prostate cancer. The effects of p53, NF-κB and the androgen receptor (AR) on the expression of NGAL was examined in four prostate cancer cell lines. Prostate cancer cell lines that are AR negative and expressed either mutant or no p53 (DU145 and PC3) displayed higher levels of NGAL expression compared to the prostate cancer cell lines (LNCaP and 22Rv-1) which are AR positive and express wild type (WT) p53. Introduction of WT-p53 into the PC3 prostate cancer cell line, resulted in reduction of the levels of NGAL expression. Conversely, introduction of dominant negative (DN) p53 or a retroviral construct expressing NF-κB into LNCaP cells increased NGAL expression. NGAL expression had functional effects on the ability of the cells to form colonies in soft agar. Whereas suppression of WT-53 in LNCaP cells increased NGAL expression, the introduction of WT-p53 suppressed NGAL transcription activity in PC3 prostate cells which normally express high level of NGAL. NF-κB and p53 were determined to regulate NGAL expression by positive and negative mechanisms, respectively. Our data indicate that prostate cancer growth, progression and sensitivity to chemotherapeutic drugs are regulated in part by NGAL and may involve complex interactions between NGAL, MMP9, NF-κB and p53.
Collapse
Affiliation(s)
- William H Chappell
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Becton, Dickinson and Company (BD), BD Diagnostics, Franklin Lakes, NJ, USA
| | - Saverio Candido
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Suzanne Russo
- Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Roger Ove
- Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Giuseppe Montalto
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy; Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Xiaohong Leng
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas Medical Center at Houston, Houston, TX, USA
| | - Ralph B Arlinghaus
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas Medical Center at Houston, Houston, TX, USA
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
37
|
Abrams SL, Lertpiriyapong K, Yang LV, Martelli AM, Cocco L, Ratti S, Falasca M, Murata RM, Rosalen PL, Lombardi P, Libra M, Candido S, Montalto G, Cervello M, Steelman LS, McCubrey JA. Introduction of WT-TP53 into pancreatic cancer cells alters sensitivity to chemotherapeutic drugs, targeted therapeutics and nutraceuticals. Adv Biol Regul 2018; 69:16-34. [PMID: 29980405 DOI: 10.1016/j.jbior.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5-10%. Mutations at the TP53 gene are readily detected in pancreatic tumors isolated from PDAC patients. We have investigated the effects of restoration of wild-type (WT) TP53 activity on the sensitivity of pancreatic cancer cells to: chemotherapy, targeted therapy, as well as, nutraceuticals. Upon introduction of the WT-TP53 gene into the MIA-PaCa-2 pancreatic cancer cell line, the sensitivity to drugs used to treat pancreatic cancer cells such as: gemcitabine, fluorouracil (5FU), cisplatin, irinotecan, oxaliplatin, and paclitaxel increased significantly. Likewise, the sensitivity to drugs used to treat other cancers such as: doxorubicin, mitoxantrone, and 4 hydroxy tamoxifen (4HT) also increased upon introduction of WT-TP53 into MIA-PaCa-2 cells. Furthermore, the sensitivity to certain inhibitors which target: PI3K/mTORC1, PDK1, SRC, GSK-3, and biochemical processes such as proteasomal degradation and the nutraceutical berberine as increased upon introduction of WT-TP53. Furthermore, in some cases, cells with WT-TP53 were more sensitive to the combination of drugs and suboptimal doses of the MDM2 inhibitor nutlin-3a. However, TP53-independent effects of nutlin-3a were observed upon treatment with either a proteasomal or a PI3K/mTOR inhibitor. These studies indicate the sensitizing effects that WT-TP53 can have in PDAC cells which normally lack WT-TP53 to various therapeutic agents and suggest approaches to improve PDAC therapy.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Ramiro M Murata
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy; Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
38
|
Candido S, Abrams SL, Steelman L, Lertpiriyapong K, Martelli AM, Cocco L, Ratti S, Follo MY, Murata RM, Rosalen PL, Lombardi P, Montalto G, Cervello M, Gizak A, Rakus D, Suh PG, Libra M, McCubrey JA. Metformin influences drug sensitivity in pancreatic cancer cells. Adv Biol Regul 2018; 68:13-30. [PMID: 29482945 DOI: 10.1016/j.jbior.2018.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5-10% after diagnosis and treatment. Pancreatic cancer has been associated with type II diabetes as the frequency of recently diagnosed diabetics that develop pancreatic cancer within a 10-year period of initial diagnosis of diabetes in increased in comparison to non-diabetic patients. Metformin is a very frequently prescribed drug used to treat type II diabetes. Metformin acts in part by stimulating AMP-kinase (AMPK) and results in the suppression of mTORC1 activity and the induction of autophagy. In the following studies, we have examined the effects of metformin in the presence of various chemotherapeutic drugs, signal transduction inhibitors and natural products on the growth of three different PDAC lines. Metformin, by itself, was not effective at suppressing growth of the pancreatic cancer cell lines at concentration less than 1000 nM, however, in certain PDAC lines, a suboptimal dose of metformin (250 nM) potentiated the effects of various chemotherapeutic drugs used to treat pancreatic cancer (e.g., gemcitabine, cisplatin, 5-fluorouracil) and other cancer types (e.g., doxorubicin, docetaxel). Furthermore, metformin could increase anti-proliferative effects of mTORC1 and PI3K/mTOR inhibitors as well as natural products such as berberine and the anti-malarial drug chloroquine in certain PDAC lines. Thus, metformin can enhance the effects of certain drugs and signal transduction inhibitors which are used to treat pancreatic and various other cancers.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Linda Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Ramiro M Murata
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Pann-Gill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
39
|
Julovi SM, Martin JL, Baxter RC. Nuclear Insulin-Like Growth Factor Binding Protein-3 As a Biomarker in Triple-Negative Breast Cancer Xenograft Tumors: Effect of Targeted Therapy and Comparison With Chemotherapy. Front Endocrinol (Lausanne) 2018; 9:120. [PMID: 29623068 PMCID: PMC5874320 DOI: 10.3389/fendo.2018.00120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/09/2018] [Indexed: 12/22/2022] Open
Abstract
Triple-negative breast cancer (TNBC) typically has a worse outcome than other breast cancer subtypes, in part owing to a lack of approved therapeutic targets or prognostic markers. We have previously described an oncogenic pathway in basal-like TNBC cells, initiated by insulin-like growth factor binding protein-3 (IGFBP-3), in which the epidermal growth factor receptor (EGFR) is transactivated by sphingosine-1-phosphate (S1P) resulting from sphingosine kinase (SphK)-1 activation. Oncogenic IGFBP-3 signaling can be targeted by combination treatment with the S1P receptor modulator and SphK inhibitor, fingolimod, and the EGFR kinase inhibitor, gefitinib (F + G). However, the interaction of this treatment with chemotherapy has not been documented. Since we observed nuclear localization of IGFBP-3 in some TNBC tumors, this study aimed to evaluate the prognostic significance of nuclear IGFBP-3 in pre-clinical models of basal-like TNBC treated with F + G and doxorubicin. Orthotopic xenograft tumors were grown in nude mice from the human basal-like TNBC cell lines MDA-MB-468 and HCC1806, and were treated with gefitinib, 25 mg/Kg, plus fingolimod, 5 mg/Kg, 3-times weekly. In some studies, doxorubicin was also administered once weekly for 6 weeks. Tumor tissue proteins were quantitated by immunohistochemistry (IHC). Interaction between doxorubicin and F + G was also studied in proliferation assays in vitro. In both tumor models, tissue staining for IGFBP-3 was predominantly nuclear. Combination of F + G significantly enhanced mouse survival, decreased nuclear IGFBP-3 and Ki67 staining, and increased apoptosis (cleaved caspase-3) staining. Kaplan-Meier survival analysis showed that a high tumor IGFBP-3 IHC score (>median), like a high Ki67 score, was significantly associated with shorter survival time, whereas a high apoptosis score was associated with prolonged survival. Studied in vitro in both cell lines, low-dose doxorubicin that had little effect alone, strongly enhanced the cytostatic effect of low-dose F + G combination. However, in both in vivo models, doxorubicin at maximum-tolerated dose neither inhibited tumor growth when administered alone, nor enhanced the significant inhibitory effect of F + G. We conclude that doxorubicin may not add benefit to the inhibitory effect of F + G unless its dose-limiting toxicity can be overcome. Nuclear IGFBP-3 appears to have potential as a prognostic marker in TNBC and could be evaluated for clinical utility.
Collapse
|