2
|
Yotova AY, Li LL, O'Leary A, Tegeder I, Reif A, Courtney MJ, Slattery DA, Freudenberg F. Synaptic proteome perturbations after maternal immune activation: Identification of embryonic and adult hippocampal changes. Brain Behav Immun 2024; 121:351-364. [PMID: 39089536 DOI: 10.1016/j.bbi.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Maternal immune activation (MIA) triggers neurobiological changes in offspring, potentially reshaping the molecular synaptic landscape, with the hippocampus being particularly vulnerable. However, critical details regarding developmental timing of these changes and whether they differ between males and females remain unclear. METHODS We induced MIA in C57BL/6J mice on gestational day nine using the viral mimetic poly(I:C) and performed mass spectrometry-based proteomic analyses on hippocampal synaptoneurosomes of embryonic (E18) and adult (20 ± 1 weeks) MIA offspring. RESULTS In the embryonic synaptoneurosomes, MIA led to lipid, polysaccharide, and glycoprotein metabolism pathway disruptions. In the adult synaptic proteome, we observed a dynamic shift toward transmembrane trafficking, intracellular signalling cascades, including cell death and growth, and cytoskeletal organisation. In adults, many associated pathways overlapped between males and females. However, we found distinct sex-specific enrichment of dopaminergic and glutamatergic pathways. We identified 50 proteins altered by MIA in both embryonic and adult samples (28 with the same directionality), mainly involved in presynaptic structure and synaptic vesicle function. We probed human phenome-wide association study data in the cognitive and psychiatric domains, and 49 of the 50 genes encoding these proteins were significantly associated with the investigated phenotypes. CONCLUSIONS Our data emphasise the dynamic effects of viral-like MIA on developing and mature hippocampi and provide novel targets for study following prenatal immune challenges. The 22 proteins that changed directionality from the embryonic to adult hippocampus, suggestive of compensatory over-adaptions, are particularly attractive for future investigations.
Collapse
Affiliation(s)
- Anna Y Yotova
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany
| | - Li-Li Li
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - Aet O'Leary
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Department of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Irmgard Tegeder
- Goethe University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt, Germany
| | - Andreas Reif
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Michael J Courtney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - David A Slattery
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Florian Freudenberg
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany.
| |
Collapse
|
4
|
Yang XZ, Wan MY, Zhang DD, Dai Y, Pan ZA, Zhai FF, Han F, Liu JY, Zhou LX, Ni J, Yao M, Jin ZY, Cui LY, Zhang SY, Zhu YC. Investigating the Genetic Characteristics of Hippocampal Volume and Plasma β-Amyloid in a Chinese Community-Dwelling Population. Neurology 2022; 99:e234-e244. [PMID: 35623891 DOI: 10.1212/wnl.0000000000200554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/02/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The genetic characteristics and correlations of hippocampal volume (HV) and plasma β-amyloid (Aβ), probable endophenotypes for dementia, remain to be explored in a Chinese community cohort. Using whole-exome sequencing (WES) and single nucleotide polymorphism (SNP) array genotyping, we sought to identify rare and common variants and genes influencing these 2 endophenotypes and calculate their heritability and genetic correlation. METHODS Association analyses with both WES and SNP array genotyping data were performed for HV and plasma Aβ with mixed-effect linear regression model adjusted for sex, age, and total intracranial volume or APOE ε4 while considering familial relatedness. We also performed gene-level analysis for common and gene burden analysis for rare variants. Heritability and genetic correlation were examined further. RESULTS A total of 1,261 participants from a Chinese community cohort were included and we identified 1 gene, PTPRT, for HV, with the top significant SNPs by whole genome-wide association study (GWAS). rs6030076 (p = 5.48 × 10-8, β = -0.092, SE 0.017) from WES and rs6030088 (p = 8.24 × 10-9, β = -105.22, SE 18.09) from SNP array data were both located in this gene. Gene burden analysis based on rare mutations detected 6 genes to be significantly associated with Aβ. The SNP-based heritability was 0.43 ± 0.13 for HV and 0.2-0.3 for plasma Aβ. The SNP-based genetic correlation between HV and plasma Aβ was negative. DISCUSSION In this study, we identified several SNPs and 1 gene, PTPRT, which were not reported in previous GWAS, associated with HV. The heritability and the genetic correlation gave an overview of HV and plasma Aβ. Our findings provide insights into the mechanisms behind the individual variances in these endophenotypes.
Collapse
Affiliation(s)
- Xin-Zhuang Yang
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng-Yao Wan
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ding-Ding Zhang
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Dai
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zi-Ang Pan
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei-Fei Zhai
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Han
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Yi Liu
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Xin Zhou
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Ni
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Yao
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng-Yu Jin
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Ying Cui
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Yang Zhang
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Zhu
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|