1
|
Mazur-Kuśnirek M, Lipiński K, Jørgensen JN, Hansen LHB, Antoszkiewicz Z, Zabielski R, Konieczka P. The Effect of a Bacillus-Based Probiotic on Sow and Piglet Performance in Two Production Cycles. Animals (Basel) 2023; 13:3163. [PMID: 37893887 PMCID: PMC10603631 DOI: 10.3390/ani13203163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study was to assess the impact of Bacillus-based probiotic diets on reproduction performance, fecal scores, microflora, and economic factors in lactating sows and suckling piglets across two productive cycles. A total of 96 sows, reared in a continuous farrowing system for two full cycles, were divided into two groups: a control group and an experimental group. Sows were fed a basal diet without the probiotic or a diet supplemented with viable bacterial spores. At seven days of age, control group piglets were offered standard creep feed, whereas piglets in the experimental (probiotic) group received a diet containing the probiotic fed to their dams. Sows receiving probiotic-supplemented diets were characterized by significantly higher (p ≤ 0.05) average daily feed intake in lactation, lower (p ≤ 0.01) body weight (BW) loss during lactation, and reduced loss of backfat thickness as well as higher body condition score after lactation. Dietary probiotic supplementation increased (p ≤ 0.01) birth weight, total creep feed consumption, litter weight gain, and piglet weaning weight. The probiotic also improved (p ≤ 0.01) overall fecal scores, decreased total E. coli count on day seven and Clostridium perfringens count (trend) in sucking piglets. The total feed cost per weaned piglet was lower in the experimental (probiotic) group. Supplementing the diet with a probiotic containing Bacillus strains improved the reproductive performance of sows and the performance and health of piglets.
Collapse
Affiliation(s)
- Magdalena Mazur-Kuśnirek
- Department of Animal Nutrition, Feed Science and Cattle Breeding, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (K.L.); (Z.A.)
| | - Krzysztof Lipiński
- Department of Animal Nutrition, Feed Science and Cattle Breeding, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (K.L.); (Z.A.)
| | - Jens Noesgaard Jørgensen
- Chr. Hansen A/S, Animal and Plant Health & Nutrition, 2970 Hoersholm, Denmark; (J.N.J.); (L.H.B.H.)
| | - Lea Hübertz Birch Hansen
- Chr. Hansen A/S, Animal and Plant Health & Nutrition, 2970 Hoersholm, Denmark; (J.N.J.); (L.H.B.H.)
| | - Zofia Antoszkiewicz
- Department of Animal Nutrition, Feed Science and Cattle Breeding, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (K.L.); (Z.A.)
| | - Romuald Zabielski
- Center of Translational Medicine, Warsaw University of Life Sciences, ul. Nowoursynowska 100, 02-797 Warszawa, Poland;
| | - Paweł Konieczka
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| |
Collapse
|
2
|
Vasquez R, Kim SH, Oh JK, Song JH, Hwang IC, Kim IH, Kang DK. Multispecies probiotic supplementation in diet with reduced crude protein levels altered the composition and function of gut microbiome and restored microbiome-derived metabolites in growing pigs. Front Microbiol 2023; 14:1192249. [PMID: 37485501 PMCID: PMC10360209 DOI: 10.3389/fmicb.2023.1192249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Both crude protein (CP) and probiotics can modulate the gut microbiome of the host, thus conferring beneficial effects. However, the benefits of low CP diet supplemented with multispecies probiotics on gut microbiome and its metabolites have not been investigated in pigs. Thus, we investigated the combinatory effects of low CP diet supplemented with multispecies probiotics on gut microbiome composition, function, and microbial metabolites in growing pigs. In total, 140 6 week-old piglets (Landrace × Yorkshire × Duroc) were used in this study. The pigs were divided into four groups with a 2 × 2 factorial design based on their diets: normal-level protein diet (16% CP; NP), low-level protein diet (14% CP; LP), NP with multispecies probiotics (NP-P), and LP with multispecies probiotics (LP-P). After the feeding trial, the fecal samples of the pigs were analyzed. The fecal scores were improved by the probiotic supplementation, especially in LP-P group. We also observed a probiotic-mediated alteration in the gut microbiome of pigs. In addition, LP-P group showed higher species richness and diversity compared with other groups. The addition of multispecies probiotics in low CP diet also enhanced gut microbiota metabolites production, such as short-chain fatty acids (SCFAs) and polyamines. Correlation analysis revealed that Oscillospiraceae UCG-002, Eubacterium coprostanoligenes, Lachnospiraceae NK4A136 group, and Muribaculaceae were positively associated with SCFAs; and Prevotella, Eubacterium ruminantium, Catenibacterium, Alloprevotella, Prevotellaceae NK3B31 group, Roseburia, Butyrivibrio, and Dialister were positively correlated with polyamines. Supplementation with multispecies probiotics modulated the function of the gut microbiome by upregulating the pathways for protein digestion and utilization, potentially contributing to enriched metabolite production in the gut. The results of this study demonstrate that supplementation with multispecies probiotics may complement the beneficial effects of low CP levels in pig feed. These findings may help formulate sustainable feeding strategies for swine production.
Collapse
|
3
|
Miyamoto H, Kikuchi J. An evaluation of homeostatic plasticity for ecosystems using an analytical data science approach. Comput Struct Biotechnol J 2023; 21:869-878. [PMID: 36698969 PMCID: PMC9860287 DOI: 10.1016/j.csbj.2023.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
The natural world is constantly changing, and planetary boundaries are issuing severe warnings about biodiversity and cycles of carbon, nitrogen, and phosphorus. In other views, social problems such as global warming and food shortages are spreading to various fields. These seemingly unrelated issues are closely related, but it can be said that understanding them in an integrated manner is still a step away. However, progress in analytical technologies has been recognized in various fields and, from a microscopic perspective, with the development of instruments including next-generation sequencers (NGS), nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC/MS), and liquid chromatography-mass spectrometry (LC/MS), various forms of molecular information such as genome data, microflora structure, metabolome, proteome, and lipidome can be obtained. The development of new technology has made it possible to obtain molecular information in a variety of forms. From a macroscopic perspective, the development of environmental analytical instruments and environmental measurement facilities such as satellites, drones, observation ships, and semiconductor censors has increased the data availability for various environmental factors. Based on these background, the role of computational science is to provide a mechanism for integrating and understanding these seemingly disparate data sets. This review describes machine learning and the need for structural equations and statistical causal inference of these data to solve these problems. In addition to introducing actual examples of how these technologies can be utilized, we will discuss how to use these technologies to implement environmentally friendly technologies in society.
Collapse
Affiliation(s)
- Hirokuni Miyamoto
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan
- RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa 230-0045, Japan
- Sermas Co., Ltd., Ichikawa, Chiba 272-0033, Japan
- Japan Eco-science (Nikkan Kagaku) Co. Ltd., Chiba, Chiba 260-0034, Japan
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Jun Kikuchi
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
Jarosz ŁS, Ciszewski A, Marek A, Hejdysz M, Nowaczewski S, Grądzki Z, Michalak K, Kwiecień M, Rysiak A. The effect of the multi-strain probiotic preparation EM Bokashi® on selected parameters of the cellular immune response in pigs. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2021.2006611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Łukasz S. Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Artur Ciszewski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Agnieszka Marek
- Sub-Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences in Lublin, Lublin, Poland
| | - Marcin Hejdysz
- Department of Animal Breeding And Product Quality Assessment, Poznań University of Life Sciences, Poznań, Poland
| | - Sebastian Nowaczewski
- Department of Animal Breeding And Product Quality Assessment, Poznań University of Life Sciences, Poznań, Poland
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Małgorzata Kwiecień
- Faculty of Biology and Animal Breeding, Institute of Animal Nutrition and Bromatology, Department of Animal Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Anna Rysiak
- Department of Botany, Mycology, and Ecology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
5
|
Zamojska D, Nowak A, Nowak I, Macierzyńska-Piotrowska E. Probiotics and Postbiotics as Substitutes of Antibiotics in Farm Animals: A Review. Animals (Basel) 2021; 11:ani11123431. [PMID: 34944208 PMCID: PMC8697875 DOI: 10.3390/ani11123431] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Breeders are searching for methods to protect farming animals against diseases caused by pathogenic bacteria. The easiest way to fight bacteria is to use antibiotics. Unfortunately, their abuse results in the presence of bacteria resistant to the most commonly used antibiotics in the environment. The restrictions on the use of antibiotics have forced the search for natural and safe ways to protect animals. It has been shown that the use of probiotics based on lactic acid bacteria may have a positive effect on the growth and use of feed by broilers, on the stabilization of the intestinal microbiota of chickens and pigs, and in the prevention of mastitis in dairy cows. The use of probiotics (live, nonpathogenic microorganisms) and postbiotics (inanimate bacteria, cell components or post-fermentation by-products) reduces the occurrence of pathogens in large-scale farms. Abstract Since 2006, the use of growth-promoting antibiotics has been banned throughout the European Union. To meet the expectations of livestock farmers, various studies have been carried out with the use of lactic acid bacteria. Scientists are trying to obtain the antimicrobial effect against the most common pathogens in large-scale farms. Supplementing the diet of broilers with probiotics (live, nonpathogenic microorganisms) stabilized the intestinal microbiota, which improved the results of body weight gain (BWG) and feed intake (FI). The positive effect of probiotics based on lactic acid bacteria has been shown to prevent the occurrence of diarrhea during piglet weaning. The antagonistic activity of postbiotics (inanimate bacteria, cell components, or post-fermentation by-products) from post-culture media after lactobacilli cultures has been proven on Staphylococcus aureus—the pathogen most often responsible for causing mastitis among dairy cows. The article aims to present the latest research examining the antagonistic effect of lactic acid bacteria on the most common pathogens in broilers, piglets, pigs, and cow farms.
Collapse
Affiliation(s)
- Daria Zamojska
- Polwet-Centrowet Sp. z o.o., M. Konopnickiej 21, 98-100 Lask, Poland;
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (D.Z.); (A.N.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (D.Z.); (A.N.)
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Kopcinskiego 8/12, 90-232 Lodz, Poland;
| | | |
Collapse
|
6
|
Xin J, Zeng D, Wang H, Sun N, Zhao Y, Dan Y, Pan K, Jing B, Ni X. Probiotic Lactobacillus johnsonii BS15 Promotes Growth Performance, Intestinal Immunity, and Gut Microbiota in Piglets. Probiotics Antimicrob Proteins 2021; 12:184-193. [PMID: 30617949 DOI: 10.1007/s12602-018-9511-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous studies have investigated the beneficial effects of Lactobacillus johnsonii strain BS15 on mice and broilers. This study aimed to understand the growth-promoting effects of BS15 on piglets. We determined the effects of L. johnsonii BS15 and a commercial probiotic strain, Bacillus subtilis JS01. Seventy-two suckling piglets (1 ± 2-day-old) were divided into three groups and fed with diets supplemented with 1 × 106 colony-forming units (cfu) BS15 per gram of feed (BS15 group); 1 × 106 cfu JS01 per gram of feed (JS01 group); or de Man, Rogosa, and Sharpe liquid medium (control group) 35 days. Compared with JS01, BS15 significantly improved the daily weight gain and diarrhea index of the piglets. The BS15 group had higher fecal sIgA levels, whereas the JS01 group had high fecal sIgA levels only after 35 days of treatment. Additionally, BS15 altered T cell subsets in peripheral blood by significantly increasing the CD3+CD4+ T cell percentage and CD3+CD4+/CD3+CD8+ ratio and decreasing the CD3+CD8+ T cell percentage. Moreover, BS15 exerted better beneficial effects on fecal microbiota than JS01. Specifically, the BS15 group had markedly increased Clostridium, Peptococcus, and Lactobacillus populations on days 7 and 21 of treatment and reduced Escherichia coli populations on day 35 of treatment. These findings indicated that BS15 can be applied as a probiotic that promotes growth performance and controls diarrhea in piglets.
Collapse
Affiliation(s)
- Jinge Xin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hesong Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ning Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Dan
- Chongqing Fishery Sciences Research Institute, Chongqing, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Sobrino OJ, Alba C, Arroyo R, Pérez I, Sariego L, Delgado S, Fernández L, de María J, Fumanal P, Fumanal A, Rodríguez JM. Replacement of Metaphylactic Antimicrobial Therapy by Oral Administration of Ligilactobacillus salivarius MP100 in a Pig Farm. Front Vet Sci 2021; 8:666887. [PMID: 34136556 PMCID: PMC8200559 DOI: 10.3389/fvets.2021.666887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/06/2021] [Indexed: 01/04/2023] Open
Abstract
Antibiotic use in swine production contributes to the emergence and spread of resistant bacteria, which poses a threat on human health. Therefore, alternative approaches must be developed. The objective of this work was the characterization of the probiotic properties of a Ligilactobacillus salivarius strain isolated from sow's milk and its application as an inoculated fermented feed to pregnant sows and piglets. The study was carried in a farm in which metaphylactic use of antimicrobials (including zinc oxide) was eliminated at the time of starting the probiotic intervention, which lasted for 2 years. Feces from 8-week-old piglets were collected before and after the treatment and microbiological and biochemical analyses were performed. The procedure led to an increase in the concentrations of clostridia and lactobacilli-related bacteria. Parallel, an increase in the concentration of butyrate, propionate and acetate was observed and a notable reduction in the presence of antibiotic resistant lactobacilli became apparent. In conclusion, replacement of antimicrobials by a microbiota-friendly approach was feasible and led to positive microbiological and biochemical changes in the enteric environment.
Collapse
Affiliation(s)
- Odón J. Sobrino
- Scientific Society of Veterinary Public and Community Health (SOCIVESC), Madrid, Spain
| | - Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Inés Pérez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Lydia Sariego
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Villaviciosa, Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Villaviciosa, Spain
| | - Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
| | | | | | | | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
8
|
Zhang L, Gu X, Wang J, Liao S, Duan Y, Li H, Song Z, He X, Fan Z. Effects of Dietary Isomaltooligosaccharide Levels on the Gut Microbiota, Immune Function of Sows, and the Diarrhea Rate of Their Offspring. Front Microbiol 2021; 11:588986. [PMID: 33488538 PMCID: PMC7820075 DOI: 10.3389/fmicb.2020.588986] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/11/2020] [Indexed: 02/02/2023] Open
Abstract
To investigate the effects of dietary isomaltooligosaccharide (IMO) levels on the gut microbiota, immune function of sows, and the diarrhea rate of their offspring, 120 multiparous gestating pig improvement company (PIC) sows with similar body conditions were selected and fed 1 of 6 diets: a basal diet with no supplement (control, CON), or a diet supplemented with 2.5 g/kg, 5.0 g/kg, 10.0 g/kg, 20.0 g/kg, or 40.0 g/kg IMO (IMO1, IMO2, IMO3, IMO4, or IMO5 group, respectively). Results showed that dietary treatments did not affect the reproductive performance and colostrum composition of sows (P > 0.05). However, compared to the CON, IMO reduced the diarrhea rate of suckling piglets (P < 0.05) and improved the concentrations of colostrum IgA, IgG, and IgM (P < 0.05). Moreover, IMO decreased the concentrations of serum D-lactate (D-LA) and lipopolysaccharides (LPS) at farrowing and day 18 of lactation (L18) (P < 0.05). High-throughput pyrosequencing of the 16S rRNA demonstrated that IMO shaped the composition of gut microbiota in different reproductive stages (day 107 of gestation, G107; day 10 of lactation, L10) (P < 0.05). At the genus level, the relative abundance of g_Parabacteroides and g_Slackia in G107 and g_Unclassified_Peptostreptococcaceae, g_Turicibacter, g_Sarcina, and g_Coprococcus in L10 was increased in IMO groups but the g_YRC22 in G107 was decreased in IMO groups relative to the CON group (P < 0.05). Furthermore, the serum D-LA and LPS were negatively correlated with the genus g_Akkermansia and g_Parabacteroides but positively correlated with the genus g_YRC22 and g_Unclassified_Peptostreptococcaceae. Additionally, the colostrum IgA, IgG, and IgM of sows were positively correlated with the genus g_Parabacteroides, g_Sarcina, and g_Coprococcus but negatively correlated with the genus g_YRC22. These findings indicated that IMO could promote the immune activation and had a significant influence in sows' gut microbiota during perinatal period, which may reduce the diarrhea rate of their offspring.
Collapse
Affiliation(s)
- Longlin Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Xueling Gu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Jie Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Shuang Liao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Hao Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Zhiyong Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| |
Collapse
|
9
|
Jiang L, Feng C, Tao S, Li N, Zuo B, Han D, Wang J. Maternal imprinting of the neonatal microbiota colonization in intrauterine growth restricted piglets: a review. J Anim Sci Biotechnol 2019; 10:88. [PMID: 31737268 PMCID: PMC6844051 DOI: 10.1186/s40104-019-0397-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Early colonization of intestinal microbiota during the neonatal stage plays an important role on the development of intestinal immune system and nutrients absorption of the host. Compared to the normal birth weight (NBW) piglets, intrauterine growth restricted (IUGR) piglets have a different intestinal microbiota during their early life, which is related to maternal imprinting on intestinal microbial succession during gestation, at birth and via suckling. Imbalanced allocation of limited nutrients among fetuses during gestation could be one of the main causes for impaired intestinal development and microbiota colonization in neonatal IUGR piglets. In this review, we summarized the potential impact of maternal imprinting on the colonization of the intestinal microbiota in IUGR piglets, including maternal undernutrition, imbalanced allocation of nutrients among fetuses, as well as vertical microbial transmission from mother to offspring during gestation and lactation. At the same time, we give information about the current maternal nutritional strategies (mainly breastfeeding, probiotics and prebiotics) to help colonization of the advantageous intestinal microbiota for IUGR piglets.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Cuiping Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Bin Zuo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
10
|
Jiang Q, Adebowale TO, Tian J, Yin Y, Yao K. Effects of dietary alpha-ketoglutarate on bacteria profiles in the faeces of lactating sows and their suckling piglets. Arch Anim Nutr 2019; 74:39-56. [PMID: 31552757 DOI: 10.1080/1745039x.2019.1639443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of the study was to investigate the effects of dietary alpha-ketoglutarate (AKG) on the faecal bacteria composition of suckling piglets after supplementation of AKG to the diet of lactating sows. After farrowing, the sows were assigned to either a normal lactation diet (control group, n = 12) or a diet supplemented with 0.25% AKG (AKG group, n = 12) based on body weight (BW) and parity. During the 21-d suckling period, BW and diarrhoea occurrences of piglets were recorded daily, while faeces were sampled weekly from sows and piglets. The levels of pH, ammonia, short-chain fatty acids (SCFA) and lactate in the faeces of piglets were determined. In particular, bacteria profiles in faeces of sows and their suckling piglets were examined by Illumina sequencing. The results showed that the AKG diet altered the faecal bacteria composition in sows during the 21-d lactation period, leading to increases (p < 0.05) in the abundances of genera Prevotella, Lactobacillus, Bacteroides and Methanobrevibacter, but decreases (p < 0.05) in the abundances of genera Oscillospira and Dorea. AKG supplement to the sows during lactation indirectly enhanced (p < 0.05) bacterial richness and SCFA levels (especially, acetate) in the faeces of piglets during the 21-d suckling period. It is suggested that maternal AKG supplementation alters the composition of faecal bacteria in the sows, and increases the faecal bacteria richness and acetate levels in the piglets, which might be associated with an enhanced growth performance of piglets.
Collapse
Affiliation(s)
- Qian Jiang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Tolulope Oluwadamilare Adebowale
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Junquan Tian
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China
| | - Kang Yao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China
| |
Collapse
|
11
|
Effect of Multi-Microbial Probiotic Formulation Bokashi on Pro- and Anti-Inflammatory Cytokines Profile in the Serum, Colostrum and Milk of Sows, and in a Culture of Polymorphonuclear Cells Isolated from Colostrum. Probiotics Antimicrob Proteins 2019; 11:220-232. [PMID: 29305686 PMCID: PMC6449489 DOI: 10.1007/s12602-017-9380-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The use of probiotics in sows during pregnancy and lactation and their impact on the quality of colostrum and milk, as well as the health conditions of their offspring during the rearing period, are currently gaining the attention of researchers. The aim of the study was to determine the effect of Bokashi formulation on the concentrations of pro- and anti-inflammatory cytokines in the serum of sows during pregnancy, in their colostrum and milk, and in a culture of Con-A-stimulated polymorphonuclear cells (PMNs) isolated from the colostrum. The study was conducted on 60 sows aged 2–4 years. EM Bokashi were added to the sows’ feed. The material for the study consisted of peripheral blood, colostrum, and milk. Blood samples were collected from the sows on days 60 and 114 of gestation. Colostrum and milk samples were collected from all sows at 0, 24, 48, 72, 96, 120, 144, and 168 h after parturition. The results indicate that the use of Bokashi as feed additives resulted in increased concentrations of pro-inflammatory cytokines TNF-α and IL-6, which increase the protective capacity of the colostrum by stimulating cellular immune mechanisms protecting the sow and neonates against infection. At the same time, the increased concentrations of cytokines IL-4, IL-10, TGF-β, and of immunoglobulins in the colostrum and milk from sows in the experimental group demonstrate the immunoregulatory effect of Bokashi on Th2 cells and may lead to increased expression of regulatory T cells and polarization of the immune response from Th1 to Th2.
Collapse
|
12
|
Ortiz R, Orozco A, Ordaz G, López M, Pérez RE. Effect of the addition of cactus ( O. ficus-indica) to the lactating sows' diet on piglet development at lactation and post-weaning. J Adv Vet Anim Res 2019; 6:290-299. [PMID: 31583225 PMCID: PMC6760516 DOI: 10.5455/javar.2019.f347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 01/30/2023] Open
Abstract
Objective: The aim was to evaluate the effect of cactus (Opuntia ficus-indica) to the lactating sows’ diet on piglet development at lactation and post-weaning. Materials and Methods: Twenty-four litters of hybrids sows were evaluated in this study. The sows were divided into two groups: Control (CG), sows fed conventionally and experimental (EG), sows fed with commercial fed plus cactus. Post-weaning, the piglets of both groups were monitored up to the 20 kg liveweight (LW). It was evaluated, lactation (in sows): feed intake (FI), milk production (MP), and quality (MQ) and LW of the piglet. Post-weaning (in piglets): FI, LW, and length of intestinal villi (LIV) at 0, 24 h, and 42 days post-weaning. Results: FI sow-1 was higher in EG (p < 0.05). MP, MQ, and LW piglet-1 at weaning were equal (p > 0.05). FI piglet-1 in the sixth and eighth week of age was higher in EG (p < 0.05); at the end of weaning phase, EG presented higher LW (p < 0.05): 8.4% more. LIV of the jejunum were higher (p < 0.05) in EG at 48 h (28.8%) and 42 days post-weaning (29.9%). At day 0, post-weaning LIV of the descending portion was higher (p < 0.05) in CG (1,571.0 μm) versus EG (1,058.0 μm). At day 42, post-weaning LIV of the transverse portion was higher (p < 0.05) in EG: 23.7% higher. Conclusion: Cactus intake in lactating sows does not affect the piglet development. However, post-weaning piglets present higher LIV in jejunum and transverse portion, aspect that improves LW.
Collapse
Affiliation(s)
- Ruy Ortiz
- Faculty of Veterinary Medicine and Zootechnical of the Universidad Michoacana de San Nicolas de Hidalgo (UMSNH), Michoacan, México
| | - Alejandro Orozco
- Faculty of Agrobiology "Presidente Juárez" (UMSNH), Michoacan, México
| | - Gerardo Ordaz
- Institute of Agricultural and Forestry Research (UMSNH), Michoacan, México
| | - Manuel López
- Faculty of Veterinary Medicine and Zootechnical of the Universidad Michoacana de San Nicolas de Hidalgo (UMSNH), Michoacan, México
| | | |
Collapse
|
13
|
Abstract
Abstract
The use of probiotics as alternatives to antibiotics for farm animals is gaining more and more interest during recent years. Probiotics are living microorganisms that provide a wide variety of health benefits to the host when ingested in adequate amounts. The bacterial strains most frequently used as probiotic agents are Bacillus, lactic acid bacteria, Enterococcus and Saccharomyces cerevisiae. It has been suggested that multi-strain probiotics might be more effective than mono-strain probiotics due to the additive and synergistic effects, and many previous studies demonstrated that dietary complex probiotics supplementation had growth promoting effects on pigs. However, the effect of complex probiotics in practice is not always consistent, the effect of probiotic could be affected by strain composition, dosage, feed formula, and the age of animals. In this review, we will give an overview on the current use of complex probiotics for weaning, growing and finishing pigs and sows.
Collapse
|
14
|
Effect of Postpartum Endocrine Function, Metabolism, and Mastitis on Fertility in High-Yielding Cows – A Review. ANNALS OF ANIMAL SCIENCE 2018. [DOI: 10.2478/aoas-2018-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Decreasing fertility in dairy cows, especially in the highest yielders, may be due to excessive metabolic burdens placed on their bodies. Many authors attribute decreasing reproductive efficiency in high-yielding cows to energy deficiencies in early lactation and to associated metabolic and hormonal disorders. The complexity of the issues involved in the efficient reproductive management of cows and the scientifically and practically important understanding of factors affecting fertility in high-producing cows mandate continuous updating of existing knowledge. The aim of this study was to present the effect of postpartum endocrine function, metabolism, and mastitis on fertility in high-yielding cows. Gaining insight into these mechanisms and their relationships with factors such as nutrition and milk yield appears to be crucial for improving dairy cow fertility.
Collapse
|
15
|
Morissette B, Talbot G, Beaulieu C, Lessard M. Growth performance of piglets during the first two weeks of lactation affects the development of the intestinal microbiota. J Anim Physiol Anim Nutr (Berl) 2017; 102:525-532. [PMID: 28990221 DOI: 10.1111/jpn.12784] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/18/2017] [Indexed: 01/22/2023]
Abstract
The aim of this study was to evaluate the effect of newborn piglet weight gain during the first 2 weeks of lactation on the luminal and mucosal microbiota of the ileum and colon. The microbiota from high-weight-gain (HWG) and low-weight-gain (LWG) 2-week-old piglets was characterized by amplicon length heterogeneity PCR (LH-PCR) and compared using diversity indices and multivariate statistical analyses. At birth, LWG piglets weighted in average 0.26 kg less than HWG piglets (p = .002). The weight difference between LWG and HWG piglets increased with time and reached 2.1 kg after 16 days of lactation (p < .0001). Based on these growth performance differences, estimated colostrum and milk intake was greater in HWG than in LWG piglets (p < .0001). Analysis of the LH-PCR data of the microbiota using non-metric multidimensional scaling (NMS) and blocked multiresponse permutation procedure (MRBP) revealed that the microbiota of the HWG and LWG piglets tended to differ in ileal mucosa (p = .097) and differed in colonic lumen (p = .024). The microbiota of HWG piglets had higher levels of Bacteroidetes, Bacteroides and Ruminoccocaceae, and lower proportions of Actinobacillus porcinus and Lactobacillus amylovorus when compared with those of LWG piglets. As the weight gain of nursing piglets is highly correlated with the amount of ingested colostrum and milk, the results strongly suggest that colostrum and milk intake in the first 2 weeks of life influenced the development of the gut microbiota.
Collapse
Affiliation(s)
- B Morissette
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada.,Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - G Talbot
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| | - C Beaulieu
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - M Lessard
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
16
|
Hashemi A, Villa CR, Comelli EM. Probiotics in early life: a preventative and treatment approach. Food Funct 2017; 7:1752-68. [PMID: 26979945 DOI: 10.1039/c5fo01148e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial colonization of the infant gut plays a key role in immunological and metabolic pathways impacting human health. Since the maturation of the gut microbiota coincides with early life development, failure to develop a health compatible microbiota composition may result in pathology and disease in later life. Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. Maternal transfer of microorganisms is possible during pregnancy and lactation, and the mother's diet and microbiota can influence that of her offspring. Furthermore, pre-term birth, Caesarean section birth, formula feeding, antibiotic use, and malnutrition have been linked to dysbiosis, which in turn is associated with several pathologies such as necrotizing enterocolitis, inflammatory bowel diseases, antibiotic associated diarrhea, colic, and allergies. Thus, early life should represent a preferred stage of life for probiotic interventions. In this context, they could be regarded as a means to 'program' the individual for health maintenance, in order to prevent pathologies associated with dysbiosis. In order to elucidate the mechanisms underlying the benefits of probiotic administration, pre-clinical studies have been conducted and found an array of positive results such as improved microbial composition, intestinal maturation, decreased pathogenic load and infections, and improved immune response. Moreover, specific probiotic strains administered during the perinatal period have shown promise in attenuating severity of necrotizing enterocolitis. The mechanisms elucidated suggest that probiotic interventions in early life can be envisaged for disease prevention in both healthy offspring and offspring at risk of chronic disease.
Collapse
Affiliation(s)
- Ashkan Hashemi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Christopher R Villa
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Elena M Comelli
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada. and Centre for Child Nutrition and Health, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Kritas SK, Marubashi T, Filioussis G, Petridou E, Christodoulopoulos G, Burriel AR, Tzivara A, Theodoridis A, Pískoriková M. Reproductive performance of sows was improved by administration of a sporing bacillary probiotic (Bacillus subtilis C-3102). J Anim Sci 2015; 93:405-13. [PMID: 25568382 DOI: 10.2527/jas.2014-7651] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This field study assessed the efficacy of a probiotic based on viable spores of Bacillus subtilis C-3102 (Calsporin; Calpis Co. Ltd., Japan) on the health status and productivity of sows and their litters through 2 full, sequential reproductive cycles from service of the first cycle to weaning of the second cycle. Fifty-six sows were allocated to 2 experimental groups, an untreated control (T1) group and a probiotic-treated (T2) group that received the same basal feed as the T1 group plus the probiotic at an approximate allowance of 30 g/t of feed (3 × 10(5) cfu/g). The offspring of T1 and T2 sows were offered basal and T2 creep feed (3 × 10(5) cfu/g), respectively. Health and zootechnical parameters of sows and piglets were recorded. Feeding the probiotic to sows and piglets resulted in significant benefits, observed in both cycles: 1) improved sow body condition during pregnancy (P < 0.05), 2) increased sow feed consumption, 3) reduced sow weight loss during lactation (P < 0.05), 4) reduced sow weaning-estrus interval (P < 0.05), and 5) higher BW of piglets at weaning (P < 0.05). Additionally, a significant (P < 0.05) improvement in piglet birth weight and in the number of piglets weaned was observed in the second cycle of T2 sows, while a significant improvement of mean daily gain of piglets from birth to weaning was observed in the first cycle of T2 sows. Microbiological examination of fecal samples showed that probiotic treatment significantly reduced both Escherichia coli and Clostridium spp. in piglet feces, particularly during the second cycle. The data suggested that continuous feed supplementation with the probiotic is beneficial for both sows and piglets, since zootechnical benefits were observed in both cycles.
Collapse
Affiliation(s)
- S K Kritas
- Department of Microbiology and Infectious Diseases, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - T Marubashi
- Calpis Co. Ltd., 4-1, 2-chome, Ebisu-Minami, Shibuya-ku, 150-0022 Tokyo, Japan
| | - G Filioussis
- Department of Microbiology and Infectious Diseases, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - E Petridou
- Department of Microbiology and Infectious Diseases, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | | | - A R Burriel
- Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece
| | - A Tzivara
- Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece
| | - A Theodoridis
- Animal Production Economics, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - M Pískoriková
- Pen & Tec Consulting SL, Plaza Ausias March 1, Mirasol, 08195 Sant Cugat del Vallès, Barcelona, Spain
| |
Collapse
|
18
|
Paßlack N, Vahjen W, Zentek J. Dietary inulin affects the intestinal microbiota in sows and their suckling piglets. BMC Vet Res 2015; 11:51. [PMID: 25889573 PMCID: PMC4352559 DOI: 10.1186/s12917-015-0351-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 02/05/2015] [Indexed: 01/16/2023] Open
Abstract
Background Several studies have focused on the effects of dietary inulin on the intestinal microbiota of weaned piglets. In the present study, inulin was added to a diet for gestating and lactating sows, expecting not only effects on the faecal microbiota of sows, but also on the bacterial cell numbers in the gastrointestinal tract of their piglets during the suckling period. Sows were fed a diet without (n = 11) or with (n = 10) 3% inulin, and selected bacterial groups were determined in their faeces ante and post partum. Suckling piglets, 8 per group, were euthanised on day 10 after birth to analyse digesta samples of the gastrointestinal tract. Results Dietary inulin increased the cell numbers of enterococci, both, in the faeces of the sows during gestation and lactation, and in the caecum of the piglets (P ≤ 0.05). Moreover, higher cell numbers of eubacteria (stomach) and C. leptum (caecum), but lower cell numbers of enterobacteria and L. amylovorus (stomach) were detected in the digesta of the piglets in the inulin group (P ≤ 0.05). Conclusions In conclusion, inulin seems to have the potential to influence the gastrointestinal microbiota of suckling piglets through the diet of their mother, showing the importance of the mother-piglet couple for the microbial development. Early modulation of the intestinal microbiota could be especially interesting with regard to the critical weaning time.
Collapse
Affiliation(s)
- Nadine Paßlack
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195, Berlin, Germany.
| | - Wilfried Vahjen
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195, Berlin, Germany.
| | - Jürgen Zentek
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195, Berlin, Germany.
| |
Collapse
|
19
|
The fecal microbiota of semi-free-ranging wood bison (Bison bison athabascae). BMC Vet Res 2014; 10:120. [PMID: 24884592 PMCID: PMC4048625 DOI: 10.1186/1746-6148-10-120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The intestinal tract harbours a complex and diverse microbial population that is important for health, yet has been poorly described in many species. This study explored the fecal microbiota of semi-free-ranging Wood bison (Bison bison athabascae). RESULTS A total of 2081936 16S rRNA (V4) sequences from 40 bison were evaluated. CatchAll analysis of richness predicted a mean of 10685 species per sample (range 5428-24764, SD 4136). Diversity was high, with an average inverse Simpson's index of 31.78 (SD 15.3, range 8.55-86.7). Twenty-one different phyla were identified; however, only Firmicutes and Proteobacteria, Actinobacteria accounted for >1% of sequences. Two distinct population clusters (Group A, n = 19 and Group B, n = 21) were evident based on both community membership and population structure. Group A had a significantly lower relative abundance of Actinobacteria (6.4 vs 11.8%, P = 0.002), Chloroflexi (0.002 vs 0.013%, P = 0.014), Gemmatimonadetes (0.007 vs 0.15%, P = 0.038) and Proteobacteria (18.7 vs 42.5%, P = <0.0001) and a greater relative abundance of Firmicutes (70.9 vs 39.3%, P < 0.0001) than Group B. Within Group B, Alphaproteobacteria was the most common class of Proteobacteria (28% of all sequences), while Caulobacteraceae (18.5%), Pseudomonadaceae (3.5%), Hyphomicrobiaceae (3.5%), Alcaligenaceae (3.1%) and Xanthomonadaceae (2.6%) were the most abundant families. The twenty (3.1%) most abundant genera accounted for 71% of sequences. No operational taxon units (OTUs) were found in all samples at a relative abundance of 1% or greater. One OTU (Clostridium cluster XI) was present at 1% or more in all Group A samples, with two other Clostridium cluster XI OTUs in 18/19 (95%) samples. No OTUs were found at that abundance in all Group B sample, but an unclassified Lachnospiraceae was present in 20/21 (95%) and Clostridium cluster XI and Brevundimonas were found in 19 (90%) samples. CONCLUSIONS The fecal microbiota of Wood bison is rich and diverse. The presence of two distinct populations not associated with housing, age or gender suggest that enterotypes, distinctly different microbial population compositions that can achieve the same ultimate function, might be present in bison, as has been suggested in humans.
Collapse
|
20
|
Sukegawa S, Ihara Y, Yuge K, Rao S, Oka K, Arakawa F, Fujimura T, Murakami H, Kurazono H, Takahashi M, Morimatsu F. Effects of oral administration of heat-killed Enterococcus faecium strain NHRD IHARA in post-weaning piglets. Anim Sci J 2014; 85:454-60. [PMID: 24450962 DOI: 10.1111/asj.12163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/29/2013] [Indexed: 12/17/2022]
Abstract
Probiotic bacteria such as lactic acid bacteria (LAB) have recently received attention as candidates for alternative anti-microbial feed additives. We previously isolated Enterococcus faecium strain NHRD IHARA (FERM BP-11090, NHRD IHARA strain) and reported its probiotic efficacy. However, we have not determined the effect of oral administration of heat-killed cells of this strain. Here, we performed two experiments to investigate the effect of oral administration of the heat-killed NHRD IHARA strain on post-weaning piglets. In Experiment 1, there was a significant improvement in growth performance (P = 0.04) and increase in serum immunoglobulin A (IgA) production (P = 0.03) in the group fed heat-killed cells. These results were similar to previous results we obtained with live cells. We also found changes in serum and fecal IgA production that were unrelated to the patterns of microbiotal change. In Experiment 2, we detected a significant improvement in villus growth in the jejunum (P = 0.0002). In conclusion, oral administration of the heat-killed NHRD IHARA strain in post-weaning piglets had the same efficacy as administration of the live strain. The heat-killed NHRD IHARA strain can be used as feed additives to improve pig growth and health on commercial farms.
Collapse
Affiliation(s)
- Shin Sukegawa
- Research and Development Center, Nippon Meat Packers, Inc., Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Diaz MA, Bik EM, Carlin KP, Venn-Watson SK, Jensen ED, Jones SE, Gaston EP, Relman DA, Versalovic J. Identification of Lactobacillus strains with probiotic features from the bottlenose dolphin (Tursiops truncatus). J Appl Microbiol 2013; 115:1037-51. [PMID: 23855505 PMCID: PMC4063339 DOI: 10.1111/jam.12305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/30/2013] [Accepted: 07/06/2013] [Indexed: 01/09/2023]
Abstract
Aims In order to develop complementary health management strategies for marine mammals, we used culture-based and culture-independent approaches to identify gastrointestinal lactobacilli of the common bottlenose dolphin, Tursiops truncatus. Methods and Results We screened 307 bacterial isolates from oral and rectal swabs, milk and gastric fluid, collected from 38 dolphins in the U.S. Navy Marine Mammal Program, for potentially beneficial features. We focused our search on lactobacilli and evaluated their ability to modulate TNF secretion by host cells and inhibit growth of pathogens. We recovered Lactobacillus salivarius strains which secreted factors that stimulated TNF production by human monocytoid cells. These Lact. salivarius isolates inhibited growth of selected marine mammal and human bacterial pathogens. In addition, we identified a novel Lactobacillus species by culture and direct sequencing with 96·3% 16S rDNA sequence similarity to Lactobacillus ceti. Conclusions Dolphin-derived Lact. salivarius isolates possess features making them candidate probiotics for clinical studies in marine mammals. Significance and Impact of the Study This is the first study to isolate lactobacilli from dolphins, including a novel Lactobacillus species and a new strain of Lact. salivarius, with potential for veterinary probiotic applications. The isolation and identification of novel Lactobacillus spp. and other indigenous microbes from bottlenose dolphins will enable the study of the biology of symbiotic members of the dolphin microbiota and facilitate the understanding of the microbiomes of these unique animals.
Collapse
Affiliation(s)
- M A Diaz
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|