1
|
Huang X, Cai H, He X, Wang Y, Zhou Y. Novel network construction algorithm for the study of similarity and differential mechanisms between different clinical treatments: From key metabolites to the related genes for personalized therapy of breast cancer. Anal Biochem 2025; 702:115852. [PMID: 40154827 DOI: 10.1016/j.ab.2025.115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/16/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Breast cancer (BC) is the most common diagnosed cancer in the female population. Different near-infrared (NIR)-based technologies have been generally applied for BC clinical treatment. In this study, a novel network construction algorithm based on molecular vertical relationship (NCVR) was proposed to identify key network signals for clinical personalized treatment. In NCVR, the molecular vertical relationship that can be characterized in simple terms was proposed for network construction, thereby facilitating to better advance clinical decision making. To effectively measure the discriminative ability of molecular vertical relationship between different physiological and pathological stages, the joint probability mass function was constructed using sample frequency which can reduce the influence of sample variability caused by individual differences and the probability of over fitting caused by the high complexity of molecular expression data. NCVR was successfully employed to analyze the similarities and differences of living organisms treated by different treatment patterns (i.e., NIR and apoferritin-conjugated cypate (Cy@AFT) + NIR) on BC. The results of similarity analysis indicated that the reprogramming of cellular lipid and energy metabolism may be responsible for the BC cell death induced by treatments. Experimental results of difference analysis suggested that the disruptions in cholesterol metabolism, ferroptosis and severe lipid metabolism imbalances etc. contribute to the enhanced effectiveness of BC treatment with Cy@AFT + NIR. Then, analysis results of genes related to the selected key metabolites further provided deep insights into pathological alterations associated with BC development and illustrated why the performance of Cy@AFT + NIR therapy is better than that of NIR therapy.
Collapse
Affiliation(s)
- Xin Huang
- School of Artificial Intelligence, Anshan Normal University, Anshan, Liaoning, China; Biomedical Engineering Postdoctoral Research Station, Dalian University of Technology, Dalian, Liaoning, China; Postdoctoral Workstation of Dalian Yongjia Electronic Technology Co., Ltd, Dalian, Liaoning, China
| | - Hanjun Cai
- School of Artificial Intelligence, Anshan Normal University, Anshan, Liaoning, China
| | - Xinyu He
- School of Computer and Information Technology, Liaoning Normal University, Dalian, Liaoning, China
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher, Education Institutions, Soochow University, Suzhou, Jiangsu, China.
| | - Yang Zhou
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Prakash C, Moran P, Mahar R. Pharmacometabolomics: An emerging platform for understanding the pathophysiological processes and therapeutic interventions. Int J Pharm 2025; 675:125554. [PMID: 40189169 DOI: 10.1016/j.ijpharm.2025.125554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
Pharmacometabolomics has emerged as a new subclass of metabolomics, aiming to predict an individual's response to a drug or optimize therapy based on prior information on an individual's metabolic profile. Pharmacometabolomics is being explored in drug discovery, biomarker identification, disease diagnosis, monitoring of disease progression, and therapeutic intervention. The time points-based sample collection is essential to measure the response of individuals to pathophysiological processes and therapeutic interventions. Analytical techniques such as NMR, LC-MS, and GC-MS have been employed to assess a huge number of metabolites present in biological systems. NMR has an advantage over other analytical techniques as it provides a snapshot of tissue and biological fluids, however, it requires higher magnetic fields to achieve better resolution. GC-MS could cover a wide range of metabolites due to high resolution but requires derivatization for certain metabolites. LC-MS is equally competitive and separates a wide range of metabolites with diverse polarities but requires extensive method development. Several platforms have been developed to analyze the analytical data and provide meaningful results via data reduction methods. PCA and PLS-DA are the most common methods for reduction dimensionality through simplified multivariate data modeling. This manuscript brings insights into the overview of pharmacometabolomics experimental design and the application of various analytical techniques and multivariate statistical analysis in the various fields of medical research.
Collapse
Affiliation(s)
- Chandra Prakash
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand 246174, India
| | - Pronami Moran
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand 246174, India
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand 246174, India.
| |
Collapse
|
3
|
Sato M, Fukusaki E. Gas chromatography-mass spectrometry metabolic profiling and sensory evaluation of greenhouse mangoes (Mangifera indica L. 'Irwin') over multiple harvest seasons. J Biosci Bioeng 2025; 139:280-287. [PMID: 39875282 DOI: 10.1016/j.jbiosc.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/01/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025]
Abstract
Compared to outdoor mango cultivation in the tropics, greenhouse cultivation in temperate regions is less reported due to its short history and small scale. Here, we evaluated for the first time the taste-focused quality of greenhouse-grown mangoes (Irwin) by GC-MS metabolic profiling and sensory evaluation for over three years (2021-2023). The relative standard deviation in sensory evaluation scores was approximately 15 % each year. Meanwhile, principal component analysis was performed on 45 identified metabolites and clustered with similar topology over three years. Orthogonal partial least squares regression analysis showed that a prediction model could be constructed with R2, Q2 = 0.9 or higher for all three years. Furthermore, the 2021 prediction model was used to evaluate the accuracy of sensory evaluation scores in a different year (2023). Compared to the model that used all 45 metabolites as explanatory variables, the accuracy of the model improved when using only 24 important metabolites which are common to both years (2021 and 2022), suggesting that these metabolites are highly reproducible across years. This study would contribute not only to fundamental greenhouse information, but also to the improvement of quality and cultivation methods in greenhouse in the future.
Collapse
Affiliation(s)
- Miwa Sato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Miyazaki Agricultural Research Institute, 5805 Shimonaka, Sadowara-cho, Miyazaki 880-0212, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Shimadzu Analytical Innovation Research Laboratory, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Yang Y, Yang G, Zhang W, Xin L, Zhu J, Wang H, Feng B, Liu R, Zhang S, Cui Y, Chen Q, Guo D. Application of lipidomics in the study of traditional Chinese medicine. J Pharm Anal 2025; 15:101083. [PMID: 39995576 PMCID: PMC11849089 DOI: 10.1016/j.jpha.2024.101083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 02/26/2025] Open
Abstract
Lipidomics is an emerging discipline that systematically studies the various types, functions, and metabolic pathways of lipids within living organisms. This field compares changes in diseases or drug impact, identifying biomarkers and molecular mechanisms present in lipid metabolic networks across different physiological or pathological states. Through employing analytical chemistry within the realm of lipidomics, researchers analyze traditional Chinese medicine (TCM). This analysis aids in uncovering potential mechanisms for treating diverse physiopathological conditions, assessing drug efficacy, understanding mechanisms of action and toxicity, and generating innovative ideas for disease prevention and treatment. This manuscript assesses recent literature, summarizing existing lipidomics technologies and their applications in TCM research. It delineates the efficacy, mechanisms, and toxicity research related to lipidomics in Chinese medicine. Additionally, it explores the utilization of lipidomics in quality control research for Chinese medicine, aiming to expand the application of lipidomics within this field. Ultimately, this initiative seeks to foster the integration of traditional medicine theory with modern science and technology, promoting an organic fusion between the two domains.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Guangyi Yang
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Lingyi Xin
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Jing Zhu
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Hangtian Wang
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Baodong Feng
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Renyan Liu
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Shuya Zhang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Yuanwu Cui
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Qinhua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Dean Guo
- Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
5
|
Wang B, Yuan H, Yang Y, Jiang Z, Xi D. Toxicological effects and molecular metabolic of polystyrene nanoplastics on soybean (Glycine max L.): Strengthening defense ability by enhancing secondary metabolisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125522. [PMID: 39672368 DOI: 10.1016/j.envpol.2024.125522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Nanoplastics, as emerging pollutants, have attracted worldwide concern for their possible environmental dangers. The ingestion and accumulation of nanoplastics in crops can contaminate the food chain and have unintended consequences for human health. In this study, we revealed the effects of polystyrene nanoplastics (PS-NPs; 80 nm) at different concentrations (0, 10, 100 mg L-1) on soybean (Glycine max L.) seedling growth, antioxidant enzyme system and secondary metabolism. Using laser confocal microscopy, we demonstrated that the absorption and translocation of PS-NPs in soybean. Plant growth inhibition was observed by changes in plant height, root length, and leaf area after 7 days of exposure to PS-NPs. The effect of PS-NPs on photosynthetic characteristics was reflected by a significant reduction in total chlorophyll content at 10 mg L-1. Activation of the antioxidant system was observed with increased malondialdehyde (MDA) content, and elevated activities of superoxide dismutase (SOD) and catalase (CAT). Non-targeted metabolomics analysis identified a total of 159 secondary metabolites, and exposure to 10 and 100 mg L-1 PS-NPs resulted in the production of 61 and 62 differential secondary metabolites. Metabolomics analysis showed that PS-NPs treatment altered the secondary metabolic profile of soybean leaves through the biosynthesis pathways of flavonoid, flavone flavonol, and isoflavones, which is expected to provide new insights into the tolerance mechanisms of plants to nanoplastics. Overall, the results of this study deepen our understanding of the negative impacts of nanoplastics in agricultural systems, which is crucial for assessing the risks of nanoplastics to ecological security.
Collapse
Affiliation(s)
- Bingqing Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China; College of Life Sciences, Linyi University, Linyi, 276000, China
| | - Hang Yuan
- College of Life Sciences, Linyi University, Linyi, 276000, China
| | - Yixin Yang
- College of Life Sciences, Linyi University, Linyi, 276000, China
| | - Zhaoyu Jiang
- College of Life Sciences, Linyi University, Linyi, 276000, China.
| | - Dongmei Xi
- College of Life Sciences, Linyi University, Linyi, 276000, China.
| |
Collapse
|
6
|
Rahmawati D, Adan MFY, Ikram MMM, Iman MN, Fukusaki E, Putri SP. Effect of sodium metabisulfite treatment and storage condition on metabolic profile of young coconut (Cocos nucifera L.). J Biosci Bioeng 2024; 138:515-521. [PMID: 39343696 DOI: 10.1016/j.jbiosc.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/19/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024]
Abstract
Young coconuts (Cocos nucifera L.) used for export are trimmed to reduce their size and weight to lower transport costs. However, trimmed coconuts have a shorter shelf life due to microbial spoilage and surface discoloration caused by enzymatic browning. To minimize these effects, trimmed coconuts were dipped in an anti-browning agent, sodium metabisulfite (SMB), and stored under ambient conditions. However, there have been no reports on the effects of SMB treatment on metabolome changes in the flesh and water of young coconuts. Hence, this study investigated the metabolite changes in trimmed young coconuts after SMB treatment under different storage conditions using a gas chromatography (GC)/mass spectrometry (MS) metabolomic profiling approach. Tall young coconut samples were trimmed and treated with a 2% SMB solution for 5 min before storage at 25 °C or 4 °C for 2-4 weeks. Coconut flesh and water samples were collected after storage for 0, 2, and 4 weeks, and were subjected to GC-MS analysis. The results showed that the major metabolites affected by coconut deterioration were amino acids, sugars, and sugar alcohols. SMB treatment and/or refrigeration can help prevent metabolite changes in the flesh and water of young coconuts. In the future, improvements in storage conditions based on metabolite profiles should be explored.
Collapse
Affiliation(s)
- Della Rahmawati
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Food Technology, Faculty of Life Science and Technology, Swiss German University, Tangerang, Banten 15143, Indonesia
| | - Mary Faith Yamballa Adan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Muhammad Maulana Malikul Ikram
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Marvin Nathanael Iman
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan; Osaka University-Shimadzu Omics Innovation Research Laboratories, Osaka University, Suita, Japan
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
7
|
Marwani E, Syamsudin TS, Awaliyah S, Maulani RR, Hidayat A, Husyari UD, Widiyanto S. Volatile Metabolite Profiles of Robusta Green Bean Coffee From Different Geographical Origins in West Java and Their Correlation With Temperature, Rainfall, and Altitudes Using SPME GC-MS-Based Metabolomics. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6908059. [PMID: 39494365 PMCID: PMC11531365 DOI: 10.1155/2024/6908059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024]
Abstract
The chemical composition, including volatile metabolites of green coffee beans, is influenced by geographic origin. The aim of this study was to reveal the volatile metabolite profile of a single variety of Robusta green bean coffee from five major plantation regions in West Java and to correlate these profiles with temperature, rainfall, and altitude. By using solid phase micro extractions and gas chromatography-mass spectrometry, 143 different volatile compounds were detected, with aromatic hydrocarbon, alcohols, monoterpene, pyrazines, sesquiterpenes, carboxylic acids, and terpene the most dominant. Principal component analysis (PCA) indicated 64.3% variability, showing that the metabolite profile of Robusta green coffee from the Bogor region was distinctly different from those in Ciamis, Kuningan, Sumedang, and Tasikmalaya, which were more similar to each other. Metabolites such as benzaldehyde, isovaleric acid, toluene, diisobutyl succinate, 1-heptene, 4-dodecene, caffeine, acetic acid, and methyl benzoate were identified as key discriminants, with a VIP score greater than 1.5. Temperature increases were linked to higher levels of isovaleric acid, diisobutyl succinate, 4-dodecene, toluene, and acetic acid, while other discriminant metabolites declined. Increased rainfall was associated with higher levels of benzaldehyde, 1-heptene, caffeine, and methyl benzoate, but lower levels of the other discriminants. Altitude had a positive correlation with methyl benzoate and 1-heptene, and a negative correlation with isovaleric acid and 4-dodecene, with weaker correlations for other compounds. In summary, Robusta green coffee beans from different regions of West Java can be distinguished by their volatile metabolites. Bogor green coffee beans had higher levels of benzaldehyde, 1-heptene, caffeine, and methyl benzoate, Kuningan beans had more diisobutyl succinate and 4-dodecene, Ciamis beans had higher levels of isovaleric acid, diisobutyl succinate, and 4-dodecene, while Sumedang and Tasikmalaya beans were similar, with higher levels of isovaleric acid, diisobutyl succinate, 4-dodecene, toluene, and acetic acid. This difference is related to the climatic factors of temperature and rainfall, as well as the altitude at which Robusta coffee is grown.
Collapse
Affiliation(s)
- Erly Marwani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Suci Awaliyah
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Asep Hidayat
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Ujang Dinar Husyari
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Srinanan Widiyanto
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
8
|
Mateo-Otero Y. Integrating metabolomics into reproduction: Sperm metabolism and fertility enhancement in pigs. Anim Reprod Sci 2024; 269:107539. [PMID: 38926002 DOI: 10.1016/j.anireprosci.2024.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
The last decades of research have revealed that many other factors besides gamete genomes are able to determine the reproductive outcomes. Indeed, paternal factors have been observed to be capable of modulating multiple crucial features of the reproductive process, such as sperm physiology, the maternal environment and, even, the offspring health. These recent advances have been encompassed with the emergence of OMICS technologies, as they comprehensively characterise the molecular composition of biological systems. The present narrative review aimed to take a closer look at the potential of these technologies in the field of reproductive biology. This literature revision shows that most studies up to date have followed a non-targeted approach to screen mammalian seminal plasma (SP) and sperm metabolite composition through different metabolome platforms. These studies have proposed metabolites of multiple natures as potential in vivo fertility biomarkers. Yet, targeted approaches can be used to answer specific biological question, and their power is exemplified herein. For instance, metabolomic studies have uncovered not only that glycolysis is the main ATP energy source of pig sperm, but also that sperm metabolism can trigger DNA damage, hence compromise embryo development. In conclusion, this review shows the potential of both non-targeted and targeted metabolomics for the discovery of cell pathways that govern the reproductive process. Understanding these systems could help make progress in different areas, including livestock efficient breeding, the improvement of artificial reproductive technologies, and the development of biomarkers for infertility detection.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK.
| |
Collapse
|
9
|
Kumar N, Jaitak V. Recent Advancement in NMR Based Plant Metabolomics: Techniques, Tools, and Analytical Approaches. Crit Rev Anal Chem 2024:1-25. [PMID: 38990786 DOI: 10.1080/10408347.2024.2375314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Plant metabolomics, a rapidly advancing field within plant biology, is dedicated to comprehensively exploring the intricate array of small molecules in plant systems. This entails precisely gathering comprehensive chemical data, detecting numerous metabolites, and ensuring accurate molecular identification. Nuclear magnetic resonance (NMR) spectroscopy, with its detailed chemical insights, is crucial in obtaining metabolite profiles. Its widespread application spans various research disciplines, aiding in comprehending chemical reactions, kinetics, and molecule characterization. Biotechnological advancements have further expanded NMR's utility in metabolomics, particularly in identifying disease biomarkers across diverse fields such as agriculture, medicine, and pharmacology. This review covers the stages of NMR-based metabolomics, including historical aspects and limitations, with sample preparation, data acquisition, spectral processing, analysis, and their application parts.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Science and Natural Products, Central University of Punjab, Bathinda, India
| | - Vikas Jaitak
- Department of Pharmaceutical Science and Natural Products, Central University of Punjab, Bathinda, India
| |
Collapse
|
10
|
Sun Z, Peng X, Zhao L, Yang Y, Zhu Y, Wang L, Kang B. From tissue lesions to neurotoxicity: The devastating effects of small-sized nanoplastics on red drum Sciaenops ocellatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173238. [PMID: 38750760 DOI: 10.1016/j.scitotenv.2024.173238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Nanoplastic pollution typically exhibits more biotoxicity to marine organisms than microplastic pollution. Limited research exists on the toxic effects of small-sized nanoplastics on marine fish, especially regarding their post-exposure resilience. In this study, red drum (Sciaenops ocellatus) were exposed to small-sized polystyrene nanoplastics (30 nm, PS-NPs) for 7 days for the exposure experiments, followed by 14 days of recovery experiments. Histologically, hepatic lipid droplets and branchial epithelial liftings were the primary lesions induced by PS-NPs during both exposure and recovery periods. The inhibition of total superoxide dismutase activity and the accumulation of malondialdehyde content throughout the exposure and recovery periods. Transcriptional and metabolic regulation revealed that PS-NPs induced lipid metabolism disorders and DNA damage during the initial 1-2 days of exposure periods, followed by immune responses and neurotoxicity in the later stages (4-7 days). During the early recovery stages (2-7 days), lipid metabolism and cell cycle were activated, while in the later recovery stage (14 days), the emphasis shifted to lipid metabolism and energy metabolism. Persistent histological lesions, changes in antioxidant capacity, and fluctuations in gene and metabolite expression were observed even after 14 days of recovery periods, highlighting the severe biotoxicity of small-sized PS-NPs to marine fish. In summary, small-sized PS-NPs have severe biotoxicity, causing tissue lesions, oxidative damage, lipid metabolism disorders, DNA damage, immune responses, and neurotoxicity in red drum. This study offers valuable insights into the toxic effects and resilience of small-sized nanoplastics on marine fish.
Collapse
Affiliation(s)
- Zhicheng Sun
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao 266003, Shandong, China
| | - Xin Peng
- Marine Academy of Zhejiang Province, Hangzhou 315613, Zhejiang, China; Key Laboratory of Ocean Space Resource Management Technology, Hangzhou 310012, Zhejiang, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, Shandong, China
| | - Yi Yang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Yugui Zhu
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao 266003, Shandong, China
| | - Linlong Wang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao 266003, Shandong, China
| | - Bin Kang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao 266003, Shandong, China
| |
Collapse
|
11
|
Du Y, Wijaya WA, Liu WH. Advancements in metabolomics research in benign gallbladder diseases: A review. Medicine (Baltimore) 2024; 103:e38126. [PMID: 38788004 PMCID: PMC11124670 DOI: 10.1097/md.0000000000038126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/12/2024] [Indexed: 05/26/2024] Open
Abstract
The burgeoning field of metabolomics has piqued the interest of researchers in the context of benign gallbladder diseases, which include conditions such as gallbladder polyps, gallstones, and cholecystitis, which are common digestive system disorders. As metabolomics continues to advance, researchers have increasingly focused their attention on its applicability in the study of benign gallbladder diseases to provide new perspectives for diagnostic, therapeutic, and prognostic evaluation. This comprehensive review primarily describes the techniques of liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and nuclear magnetic resonance and their respective applications in the study of benign gallbladder disease. Metabolomics has made remarkable progress in various aspects of these diseases, ranging from early diagnosis, etiological research, assessment of disease progression and prognosis, and optimization of therapeutic strategies. However, challenges remain in the field of metabolomics in the study of benign gallbladder diseases. These include issues related to data processing and analysis, biomarker discovery and validation, interdisciplinary research integration, and the advancement of personalized medicine. This article attempts to summarize research findings to date, highlight future research directions, and provide a reference point for metabolomics research in benign gallbladder disease.
Collapse
Affiliation(s)
- Yanzhang Du
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wennie A. Wijaya
- West China Hospital School of Medicine, Sichuan University, Chengdu, China
| | - Wei Hui Liu
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Khan Q, Wang Y, Xia G, Yang H, Luo Z, Zhang Y. Deleterious Effects of Heat Stress on the Tomato, Its Innate Responses, and Potential Preventive Strategies in the Realm of Emerging Technologies. Metabolites 2024; 14:283. [PMID: 38786760 PMCID: PMC11122942 DOI: 10.3390/metabo14050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The tomato is a fruit vegetable rich in nutritional and medicinal value grown in greenhouses and fields worldwide. It is severely sensitive to heat stress, which frequently occurs with rising global warming. Predictions indicate a 0.2 °C increase in average surface temperatures per decade for the next three decades, which underlines the threat of austere heat stress in the future. Previous studies have reported that heat stress adversely affects tomato growth, limits nutrient availability, hammers photosynthesis, disrupts reproduction, denatures proteins, upsets signaling pathways, and damages cell membranes. The overproduction of reactive oxygen species in response to heat stress is toxic to tomato plants. The negative consequences of heat stress on the tomato have been the focus of much investigation, resulting in the emergence of several therapeutic interventions. However, a considerable distance remains to be covered to develop tomato varieties that are tolerant to current heat stress and durable in the perspective of increasing global warming. This current review provides a critical analysis of the heat stress consequences on the tomato in the context of global warming, its innate response to heat stress, and the elucidation of domains characterized by a scarcity of knowledge, along with potential avenues for enhancing sustainable tolerance against heat stress through the involvement of diverse advanced technologies. The particular mechanism underlying thermotolerance remains indeterminate and requires further elucidatory investigation. The precise roles and interplay of signaling pathways in response to heat stress remain unresolved. The etiology of tomato plants' physiological and molecular responses against heat stress remains unexplained. Utilizing modern functional genomics techniques, including transcriptomics, proteomics, and metabolomics, can assist in identifying potential candidate proteins, metabolites, genes, gene networks, and signaling pathways contributing to tomato stress tolerance. Improving tomato tolerance against heat stress urges a comprehensive and combined strategy including modern techniques, the latest apparatuses, speedy breeding, physiology, and molecular markers to regulate their physiological, molecular, and biochemical reactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhang
- Department of Landscape and Horticulture‚ Ecology College‚ Lishui University‚ Lishui 323000‚ China; (Q.K.); (Y.W.); (G.X.); (H.Y.); (Z.L.)
| |
Collapse
|
13
|
Feng X, Ma R, Wang Y, Tong L, Wen W, Mu T, Tian J, Yu B, Gu Y, Zhang J. Non-targeted metabolomics identifies biomarkers in milk with high and low milk fat percentage. Food Res Int 2024; 179:113989. [PMID: 38342531 DOI: 10.1016/j.foodres.2024.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 02/13/2024]
Abstract
Milk is widely recognized as an important food source with health benefits. Different consumer groups have different requirements for the content and proportion of milk fat; therefore, it is necessary to investigate the differential metabolites and their regulatory mechanisms in milk with high and low milk fat percentages (MFP). In this study, untargeted metabolomics was performed on milk samples from 13 cows with high milk fat percentage (HF) and 13 cows with low milk fat percentage (LF) using ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS). Forty-eight potential differentially labeled compounds were screened using the orthogonal partial least squares-discriminant analysis (OPLS-DA) combined with the weighted gene co-expression network analysis (WGCNA) method. Amino acid metabolism was the key metabolic pathway with significant enrichment of L-histidine, 5-oxoproline, L-aspartic acid, and L-glutamic acid. The negative correlation with MFP differentiated the HF and LF groups. To further determine the potential regulatory role of these amino acids on milk fat metabolism, the expression levels of marker genes in the milk fat synthesis pathway were explored. It was noticed that L-histidine reduced milk fat concentration primarily by inhibiting the triglycerides (TAG) synthesis pathway. L-aspartic acid and L-glutamic acid inhibited milk fat synthesis through the fatty acid de novo and TAG synthesis pathways. This study provides new insights into the mechanism underlying milk fat synthesis and milk quality improvement.
Collapse
Affiliation(s)
- Xiaofang Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Ruoshuang Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Ying Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Lijia Tong
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Wan Wen
- Animal Husbandry Extension Station, Yinchuan, China
| | - Tong Mu
- School of Life Science, Yan'an University, Yanan 716000, China
| | - Jia Tian
- Animal Husbandry Extension Station, Yinchuan, China
| | - Baojun Yu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
14
|
Anjitha KS, Sarath NG, Sameena PP, Janeeshma E, Shackira AM, Puthur JT. Plant response to heavy metal stress toxicity: the role of metabolomics and other omics tools. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:965-982. [PMID: 37995340 DOI: 10.1071/fp23145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Metabolomic investigations offers a significant foundation for improved comprehension of the adaptability of plants to reconfigure the key metabolic pathways and their response to changing climatic conditions. Their application to ecophysiology and ecotoxicology help to assess potential risks caused by the contaminants, their modes of action and the elucidation of metabolic pathways associated with stress responses. Heavy metal stress is one of the most significant environmental hazards affecting the physiological and biochemical processes in plants. Metabolomic tools have been widely utilised in the massive characterisation of the molecular structure of plants at various stages for understanding the diverse aspects of the cellular functioning underlying heavy metal stress-responsive mechanisms. This review emphasises on the recent progressions in metabolomics in plants subjected to heavy metal stresses. Also, it discusses the possibility of facilitating effective management strategies concerning metabolites for mitigating the negative impacts of heavy metal contaminants on the growth and productivity of plants.
Collapse
Affiliation(s)
- K S Anjitha
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O., Malappuram, Kerala 673635, India
| | - Nair G Sarath
- Department of Botany, Mar Athanasius College, Kothamangalam, Ernakulam, Kerala 686666, India
| | - P P Sameena
- Department of Botany, PSMO College, Tirurangadi, Malappuram, Kerala 676306, India
| | - Edappayil Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala 676552, India
| | - A M Shackira
- Department of Botany, Sir Syed College, Kannur University, Kannur, Kerala 670142, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O., Malappuram, Kerala 673635, India
| |
Collapse
|
15
|
Shastry A, Dunham-Snary K. Metabolomics and mitochondrial dysfunction in cardiometabolic disease. Life Sci 2023; 333:122137. [PMID: 37788764 DOI: 10.1016/j.lfs.2023.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Circulating metabolites are indicators of systemic metabolic dysfunction and can be detected through contemporary techniques in metabolomics. These metabolites are involved in numerous mitochondrial metabolic processes including glycolysis, fatty acid β-oxidation, and amino acid catabolism, and changes in the abundance of these metabolites is implicated in the pathogenesis of cardiometabolic diseases (CMDs). Epigenetic regulation and direct metabolite-protein interactions modulate metabolism, both within cells and in the circulation. Dysfunction of multiple mitochondrial components stemming from mitochondrial DNA mutations are implicated in disease pathogenesis. This review will summarize the current state of knowledge regarding: i) the interactions between metabolites found within the mitochondrial environment during CMDs, ii) various metabolites' effects on cellular and systemic function, iii) how harnessing the power of metabolomic analyses represents the next frontier of precision medicine, and iv) how these concepts integrate to expand the clinical potential for translational cardiometabolic medicine.
Collapse
Affiliation(s)
- Abhishek Shastry
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kimberly Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
16
|
Wu Y, Li Y, Jia W, Zhu L, Wan X, Gao S, Zhang Y. Reconstructing hepatic metabolic profile and glutathione-mediated metabolic fate of acrylamide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122508. [PMID: 37673322 DOI: 10.1016/j.envpol.2023.122508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/13/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
The toxicity of acrylamide (AA) has continuously attracted wide concerns as its extensive presence from both environmental and dietary sources. However, its hepatic metabolic transformation and metabolic fate still remain unclear. This study aims to unravel the metabolic profile and glutathione (GSH) mediated metabolic fate of AA in liver of rats under the dose-dependent exposure. We found that exposure to AA dose-dependently alters the binding of AA and GSH and the generation of mercapturic acid adducts, while liver as a target tissue bears the metabolic transformation of AA via regulating GSH synthesis and consumption pathways, in which glutamine synthase (GSS), cytochrome P450 2E1 (CYP2E1), and glutathione S-transferase P1 (GSTP1) play a key role. In response to high- and low-dose exposures to AA, there were significant differences in liver of rats, including the changes in GSH and cysteine (CYS) activities and the conversion ratio of AA to glycidamide (GA), and liver can affect the transformation of AA by regulating the GSH-mediated metabolic pathway. Low-dose exposure to AA activates GSH synthesis pathway in liver and upregulates GSS activity and CYS content with no change in γ-glutamyl transpeptidase 1 (GGT1) activity. High-dose exposure to AA activates the detoxification pathway of GSH and increases GSH consumption by upregulating GSTP1 activity. In addition, molecular docking results showed that most of the metabolic molecules transformed by AA and GA other than themselves can closely bind to GSTP1, GSS, GGT1, N-acetyltransferase 8, and dimethyl sulfide dehydrogenase 1. The binding of AA-GSH and GA-GSH to GSTP1 and CYP2E1 enzymes determine the tendentiousness between toxicity and detoxification of AA, which exerts a prospective avenue for targeting protective role of hepatic enzymes against in vivo toxicity of AA.
Collapse
Affiliation(s)
- Yong Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China; College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, 611130, Sichuan, China
| | - Yaoran Li
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wei Jia
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Li Zhu
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xuzhi Wan
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Sunan Gao
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China; Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
17
|
Oktavianawati I, Santoso M, Fatmawati S. Metabolite profiling of Borneo's Gonystylus bancanus through comprehensive extraction from various polarity of solvents. Sci Rep 2023; 13:15215. [PMID: 37709800 PMCID: PMC10502116 DOI: 10.1038/s41598-023-41494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Gonystylus bancanus wood or ramin wood has been generally known as a source of agarwood (gaharu) bouya, a kind of agarwood inferior type, or under the exported trading name of aetoxylon oil. The massive exploitation of ramin wood is causing this plant's extinction and putting it on Appendix II CITES and IUCN Red List of Threatened Species. To date, no scientific publication concerns the chemical exploration of G. bancanus wood and preserving this germplasm through its metabolite profiling. Therefore, research focused on chemical components profiling of G. bancanus is promised. This research is aimed to explore metabolomics and analyze the influence of solvent polarities on the partitioning of metabolites in G. bancanus wood. A range of solvents in different polarities was applied to provide comprehensive extraction of metabolites in G. bancanus wood. Moreover, a hydrodistillation was also carried out to extract the volatile compounds despite the non-volatile ones. LCMS and GCMS analyses were performed to identify volatile and non-volatile components in the extracts and essential oil. Multivariate data analysis was processed using Principal Component Analysis (PCA) and agglomerative hierarchical clustering. 142 metabolites were identified by LCMS analysis, while 89 metabolites were identified by GCMS analysis. Terpenoids, flavonoids, phenyl propanoids, and saccharides are some major compound classes available from LCMS data. Oxygenated sesquiterpenes, especially 10-epi-γ-eudesmol, and β-eudesmol, are the major volatile components identified from GCMS analysis. PCA of LCMS analysis demonstrated that PC1 discriminated two clusters: essential oil, dichloromethane, and n-hexane extracts were in the positive quadrant, while methanol and ethyl acetate extracts were in the negative quadrant. Three-dimensional analysis of GCMS data revealed that n-hexane extract was in the superior quadrant, and its composition can be significantly distinguished from other extracts and essential oil. G. bancanus wood comprises valuable metabolites, i.e., terpenoids, which benefit the essential oil industry. Comprehensive extraction by performing solvents in different polarities on G. bancanus wood could allow exploration of fully extracted metabolites, supported by the exhibition of identified metabolites from LCMS and GCMS analysis.
Collapse
Affiliation(s)
- Ika Oktavianawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo, Surabaya, 60111, Indonesia
- Department of Chemistry, Faculty of Mathematic and Sciences, Universitas Jember, Kampus Tegalboto, Jember, 68121, Indonesia
| | - Mardi Santoso
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo, Surabaya, 60111, Indonesia
| | - Sri Fatmawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo, Surabaya, 60111, Indonesia.
| |
Collapse
|
18
|
Musalem-Dominguez O, Montiel-Company JM, Ausina-Márquez V, Morales-Tatay JM, Almerich-Silla JM. Salivary metabolomic profile associated with cariogenic risk in children. J Dent 2023; 136:104645. [PMID: 37524196 DOI: 10.1016/j.jdent.2023.104645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVES To identify the metabolomic differences in the saliva of healthy children versus children with active carious lesions and to estimate the predictive capacity of a model based on the salivary metabolomic profile. METHODS A study of cases (n = 31) and controls (n = 37) was designed for children aged between 6 and 12 (mean age of the cases: 8.9; controls: 8.7). The said children attended public health centers in Valencia, Spain. Intraoral examinations were performed by a single examiner using ICDAS II diagnostic criteria. Unstimulated total saliva samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy. RESULTS The dft index for cases was 2.84 while it was 0.19 for the control group, the DMFT index was 1.13 and 0.11, respectively. The predictive model generated by the multivariate PLS-DA analysis projects a separation between the cases and the controls on the score chart with a predictive capacity and generating an area under the curve of 0.71. The metabolites: 3-methyl-2-oxovalerate, 3-hydroxybutyrate, lactate, acetone, citrate, ornithine, ethanolamine, taurine, proline, glycine, mannose, glucose, 1-6-Anhydro-β-d-glucose and citraconate, are those that show greater significance in the model. In the controls, glycine (Cohen's d = 0.430) and glucose (Cohen's d = 0.560) present higher means compared to the cases. On the contrary, taurine (Cohen's d= -0.474) and mannose (Cohen's d= -0.456) show higher means in cases compared to controls. CONCLUSIONS Our findings show a difference in the salivary metabolomic profiles, specifically in the groups of saccharides and amino acids, suggesting an association of these with the level of caries risk. CLINICAL SIGNIFICANCE The results reported in the present study reinforce the use of salivary metabolomics as a research method for the search for salivary biomarkers that allow the evaluation of caries risk in patients. Furthermore, it brings us closer to a personalized medicine that will help in dental caries prevention strategies.
Collapse
Affiliation(s)
- Oscar Musalem-Dominguez
- Departament d`Estomatologia, Facultat de Medicina i Odontologia, Universitat de Valencia, Gascó Oliag, 1, Valencia 46010, Spain
| | - José María Montiel-Company
- Departament d`Estomatologia, Facultat de Medicina i Odontologia, Universitat de Valencia, Gascó Oliag, 1, Valencia 46010, Spain.
| | - Verónica Ausina-Márquez
- Department of Dentistry, European University of Valencia, Passeig de l'Albereda, 7, Valencia 46010, Spain
| | - José Manuel Morales-Tatay
- Department of Pathology, Medicine and Odontology Faculty, University of Valencia, Valencia 46010, Spain; Research Unit, INCLIVA Health Research Institute, Valencia 46010, Spain
| | - José Manuel Almerich-Silla
- Departament d`Estomatologia, Facultat de Medicina i Odontologia, Universitat de Valencia, Gascó Oliag, 1, Valencia 46010, Spain
| |
Collapse
|
19
|
Roychowdhury R, Das SP, Gupta A, Parihar P, Chandrasekhar K, Sarker U, Kumar A, Ramrao DP, Sudhakar C. Multi-Omics Pipeline and Omics-Integration Approach to Decipher Plant's Abiotic Stress Tolerance Responses. Genes (Basel) 2023; 14:1281. [PMID: 37372461 PMCID: PMC10298225 DOI: 10.3390/genes14061281] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The present day's ongoing global warming and climate change adversely affect plants through imposing environmental (abiotic) stresses and disease pressure. The major abiotic factors such as drought, heat, cold, salinity, etc., hamper a plant's innate growth and development, resulting in reduced yield and quality, with the possibility of undesired traits. In the 21st century, the advent of high-throughput sequencing tools, state-of-the-art biotechnological techniques and bioinformatic analyzing pipelines led to the easy characterization of plant traits for abiotic stress response and tolerance mechanisms by applying the 'omics' toolbox. Panomics pipeline including genomics, transcriptomics, proteomics, metabolomics, epigenomics, proteogenomics, interactomics, ionomics, phenomics, etc., have become very handy nowadays. This is important to produce climate-smart future crops with a proper understanding of the molecular mechanisms of abiotic stress responses by the plant's genes, transcripts, proteins, epigenome, cellular metabolic circuits and resultant phenotype. Instead of mono-omics, two or more (hence 'multi-omics') integrated-omics approaches can decipher the plant's abiotic stress tolerance response very well. Multi-omics-characterized plants can be used as potent genetic resources to incorporate into the future breeding program. For the practical utility of crop improvement, multi-omics approaches for particular abiotic stress tolerance can be combined with genome-assisted breeding (GAB) by being pyramided with improved crop yield, food quality and associated agronomic traits and can open a new era of omics-assisted breeding. Thus, multi-omics pipelines together are able to decipher molecular processes, biomarkers, targets for genetic engineering, regulatory networks and precision agriculture solutions for a crop's variable abiotic stress tolerance to ensure food security under changing environmental circumstances.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO)—The Volcani Institute, Rishon Lezion 7505101, Israel
| | - Soumya Prakash Das
- School of Bioscience, Seacom Skills University, Bolpur 731236, West Bengal, India
| | - Amber Gupta
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Parul Parihar
- Department of Biotechnology and Bioscience, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Kottakota Chandrasekhar
- Department of Plant Biochemistry and Biotechnology, Sri Krishnadevaraya College of Agricultural Sciences (SKCAS), Affiliated to Acharya N.G. Ranga Agricultural University (ANGRAU), Guntur 522034, Andhra Pradesh, India
| | - Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Ajay Kumar
- Department of Botany, Maharshi Vishwamitra (M.V.) College, Buxar 802102, Bihar, India
| | - Devade Pandurang Ramrao
- Department of Biotechnology, Mizoram University, Pachhunga University College Campus, Aizawl 796001, Mizoram, India
| | - Chinta Sudhakar
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India
| |
Collapse
|
20
|
Wu D, Zhuang F, Wang J, Gao R, Zhang Q, Wang X, Zhang G, Fang M, Zhang Y, Li Y, Guan L, Gao Y. Metabolomics and Transcriptomics Revealed a Comprehensive Understanding of the Biochemical and Genetic Mechanisms Underlying the Color Variations in Chrysanthemums. Metabolites 2023; 13:742. [PMID: 37367900 PMCID: PMC10301146 DOI: 10.3390/metabo13060742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Flower color is an important characteristic of ornamental plants and is determined by various chemical components, including anthocyanin. In the present study, combined metabolomics and transcriptomics analysis was used to explore color variations in the chrysanthemums of three cultivars, of which the color of JIN is yellow, FEN is pink, and ZSH is red. A total of 29 different metabolites, including nine anthocyanins, were identified in common in the three cultivars. Compared with the light-colored cultivars, all of the nine anthocyanin contents were found to be up-regulated in the dark-colored ones. The different contents of pelargonidin, cyanidin, and their derivates were found to be the main reason for color variations. Transcriptomic analysis showed that the color difference was closely related to anthocyanin biosynthesis. The expression level of anthocyanin structural genes, including DFR, ANS, 3GT, 3MaT1, and 3MaT2, was in accordance with the flower color depth. This finding suggests that anthocyanins may be a key factor in color variations among the studied cultivars. On this basis, two special metabolites were selected as biomarkers to assist in chrysanthemum breeding for color selection.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fengchao Zhuang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jiarui Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Gao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Qiunan Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiao Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guochao Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Minghui Fang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yang Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuhua Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Le Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yanqiang Gao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (D.W.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
21
|
Cao H, Chen D, Kuang L, Yan T, Gao F, Wu D. Metabolomic analysis reveals the molecular responses to copper toxicity in rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107727. [PMID: 37150010 DOI: 10.1016/j.plaphy.2023.107727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Copper (Cu) is one of the essential microelements and widely participates in various pathways in plants, but excess Cu in plant cells could induce oxidative stress and harm plant growth. Rice (Oryza sativa) is a main crop food worldwide. The molecular mechanisms of rice in response to copper toxicity are still not well understood. In this study, two-week-old seedlings of the rice cultivar Nipponbare were treated with 100 μM Cu2+ (CuSO4) in the external solution for 10 days. Physiological analysis showed that excess Cu significantly inhibited the growth and biomass of rice seedlings. After Cu treatment, the contents of Mn and Zn were significantly reduced in the roots and shoots, while the Fe content was significantly increased in the roots. Meanwhile, the activities of antioxidant enzymes including SOD and POD were dramatically enhanced after Cu treatment. Based on metabolomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods, 695 metabolites were identified in rice roots. Among these metabolites, 123 metabolites were up-regulated and 297 were down-regulated, respectively. The differential metabolites (DMs) include carboxylic acids and derivatives, benzene and substituted derivatives, carbonyl compounds, cinnamic acids and derivatives, fatty acyls and organ nitrogen compounds. KEGG analysis showed that these DMs were mainly enriched in TCA cycle, purine metabolism and starch and sucrose metabolism pathways. Many intermediates in the TCA cycle and purine metabolism were down-regulated, indicating a perturbed carbohydrate and nucleic acid metabolism. Taken together, the present study provides new insights into the mechanism of rice roots to Cu toxicity.
Collapse
Affiliation(s)
- Huan Cao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Danyi Chen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Liuhui Kuang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Tao Yan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Dezhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
22
|
Yin C, Harms AC, Hankemeier T, Kindt A, de Lange ECM. Status of Metabolomic Measurement for Insights in Alzheimer's Disease Progression-What Is Missing? Int J Mol Sci 2023; 24:ijms24054960. [PMID: 36902391 PMCID: PMC10003384 DOI: 10.3390/ijms24054960] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disease, leading to the progressive loss of memory and other cognitive functions. As there is still no cure for AD, the growth in the number of susceptible individuals represents a major emerging threat to public health. Currently, the pathogenesis and etiology of AD remain poorly understood, while no efficient treatments are available to slow down the degenerative effects of AD. Metabolomics allows the study of biochemical alterations in pathological processes which may be involved in AD progression and to discover new therapeutic targets. In this review, we summarized and analyzed the results from studies on metabolomics analysis performed in biological samples of AD subjects and AD animal models. Then this information was analyzed by using MetaboAnalyst to find the disturbed pathways among different sample types in human and animal models at different disease stages. We discuss the underlying biochemical mechanisms involved, and the extent to which they could impact the specific hallmarks of AD. Then we identify gaps and challenges and provide recommendations for future metabolomics approaches to better understand AD pathogenesis.
Collapse
Affiliation(s)
- Chunyuan Yin
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Amy C. Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Elizabeth C. M. de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
23
|
Woldemariam S, Dorner TE, Wiesinger T, Stein KV. Multi-omics approaches for precision obesity management : Potentials and limitations of omics in precision prevention, treatment and risk reduction of obesity. Wien Klin Wochenschr 2023; 135:113-124. [PMID: 36717394 PMCID: PMC10020295 DOI: 10.1007/s00508-022-02146-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/12/2022] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Obesity is a multifactorial chronic disease that cannot be addressed by simply promoting better diets and more physical activity. To date, not a single country has successfully been able to curb the accumulating burden of obesity. One explanation for the lack of progress is that lifestyle intervention programs are traditionally implemented without a comprehensive evaluation of an individual's diagnostic biomarkers. Evidence from genome-wide association studies highlight the importance of genetic and epigenetic factors in the development of obesity and how they in turn affect the transcriptome, metabolites, microbiomes, and proteomes. OBJECTIVE The purpose of this review is to provide an overview of the different types of omics data: genomics, epigenomics, transcriptomics, proteomics, metabolomics and illustrate how a multi-omics approach can be fundamental for the implementation of precision obesity management. RESULTS The different types of omics designs are grouped into two categories, the genotype approach and the phenotype approach. When applied to obesity prevention and management, each omics type could potentially help to detect specific biomarkers in people with risk profiles and guide healthcare professionals and decision makers in developing individualized treatment plans according to the needs of the individual before the onset of obesity. CONCLUSION Integrating multi-omics approaches will enable a paradigm shift from the one size fits all approach towards precision obesity management, i.e. (1) precision prevention of the onset of obesity, (2) precision medicine and tailored treatment of obesity, and (3) precision risk reduction and prevention of secondary diseases related to obesity.
Collapse
Affiliation(s)
- Selam Woldemariam
- Karl Landsteiner Institute for Health Promotion Research, 3062, Kirchstetten, Austria
| | - Thomas E Dorner
- Karl Landsteiner Institute for Health Promotion Research, 3062, Kirchstetten, Austria
- Academy for Ageing Research, House of Mercy, 1160, Vienna, Austria
| | - Thomas Wiesinger
- Karl Landsteiner Institute for Health Promotion Research, 3062, Kirchstetten, Austria
| | - Katharina Viktoria Stein
- Karl Landsteiner Institute for Health Promotion Research, 3062, Kirchstetten, Austria.
- Department of Public Health and Primary Care, Leiden University Medical Centre, 2511 DP, The Hague, The Netherlands.
| |
Collapse
|
24
|
Heim S, Teav T, Gallart-Ayala H, Ivanisevic J, Salamin N. Divergence in metabolomic profile in clownfish and damselfish skin mucus. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1050083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
IntroductionThe clownfish - sea anemone mutualism was suggested to have triggered the adaptive radiation of clownfishes, but the origin of clownfish resistance to stinging tentacles of host anemones remains unclear. The presence of specific compounds in the mucus of clownfishes conferring them the unique ability to prevent nematocyst discharge from their hosts has been the most supported hypothesis. Yet the mystery regarding the types of compounds found in clownfish skin mucus remains unsolved.MethodsWe analyzed the chemical composition of clownfish and damselfish mucus using an untargeted metabolomics (HILIC-HRMS) and lipidomics (RPLC-HRMS) approach.Results and DiscussionThe polar and lipid metabolome signatures were highly specific and allowed to discriminate between the clownfish and damselfish clades. The most discriminative part of the signature was the sphingolipid profile, displaying a broader diversity of ceramides present in significantly higher levels in clownfish mucus. Importantly, the inter-specific variability of metabolic signature was significantly higher in clownfishes, although their diversification is evolutionarily more recent, thus implying the impact of symbiosis on metabolic variability and adaptation. Furthermore, specialists and generalists clownfish species displayed distinctive metabolite signature. Two strict clownfish specialists, which are phylogenetically distant but share the same host species, clustered together based on their molecular signature, suggesting a link with their mutualistic nature. Overall, comparative analyses of metabolic signatures highlight differences in chemical composition of clownfish mucus and provide insight into biochemical pathways potentially implicated in clownfish adaptation to inhabit sea anemones and consequently diversify.
Collapse
|
25
|
Ncube E, Mohale K, Nogemane N. Metabolomics as a Prospective Tool for Soybean ( Glycine max) Crop Improvement. Curr Issues Mol Biol 2022; 44:4181-4196. [PMID: 36135199 PMCID: PMC9497771 DOI: 10.3390/cimb44090287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Global demand for soybean and its products has stimulated research into the production of novel genotypes with higher yields, greater drought and disease tolerance, and shorter growth times. Genetic research may be the most effective way to continue developing high-performing cultivars with desirable agronomic features and improved nutritional content and seed performance. Metabolomics, which predicts the metabolic marker for plant performance under stressful conditions, is rapidly gaining interest in plant breeding and has emerged as a powerful tool for driving crop improvement. The development of increasingly sensitive, automated, and high-throughput analytical technologies, paired with improved bioinformatics and other omics techniques, has paved the way for wide characterization of genetic characteristics for crop improvement. The combination of chromatography (liquid and gas-based) with mass spectrometry has also proven to be an indisputable efficient platform for metabolomic studies, notably plant metabolic fingerprinting investigations. Nevertheless, there has been significant progress in the use of nuclear magnetic resonance (NMR), capillary electrophoresis, and Fourier-transform infrared spectroscopy (FTIR), each with its own set of benefits and drawbacks. Furthermore, utilizing multivariate analysis, principal components analysis (PCA), discriminant analysis, and projection to latent structures (PLS), it is possible to identify and differentiate various groups. The researched soybean varieties may be correctly classified by using the PCA and PLS multivariate analyses. As metabolomics is an effective method for evaluating and selecting wild specimens with desirable features for the breeding of improved new cultivars, plant breeders can benefit from the identification of metabolite biomarkers and key metabolic pathways to develop new genotypes with value-added features.
Collapse
Affiliation(s)
- Efficient Ncube
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Private Bag x 6, Florida, Johannesburg 1710, South Africa
| | | | | |
Collapse
|
26
|
Tang Q, Zheng X, Chen W, Ye X, Tu P. Metabolomics reveals key resistant responses in tomato fruit induced by Cryptococcus laurentii. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100066. [PMID: 35415684 PMCID: PMC8991715 DOI: 10.1016/j.fochms.2021.100066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/02/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022]
Abstract
Cryptococcus laurentii induces resistance through in concert with key metabolic changes in tomato fruit. A total of 59 metabolites were differently abundant in C. laurentii-treated tomato fruit. Key metabolites chlorogenic acid, caffeic acid and ferulic acid are involved in phenylpropanoid biosynthesis pathway may play a key role in resistance induction by C. Laurentii in tomato.
To investigate the mechanisms underlying inducible resistance in postharvest tomato fruit, non-targeted metabolome analysis was performed to uncover metabolic changes in tomato fruit upon Cryptococcus laurentii treatment. 289 and 149 metabolites were identified in positive and negative ion modes, respectively. A total of 59 metabolites, mainly including phenylpropanoids, flavonoids and phenolic acids, were differently abundant in C. laurentii-treated tomato fruit. Moreover, key metabolites involved in phenylpropanoid biosynthesis pathway, especially chlorogenic acid, caffeic acid and ferulic acid were identified through KEGG enrichment analysis. Enhanced levels of phenolic acids indicated activation of the phenylpropanoid biosynthesis pathway, which is a classic metabolic pathway associated with inducible resistance, suggesting that its activation and consequent metabolic changes contributed to inducible resistence induced by C. laurentii. Our findings would provide new understanding of resistance induction mechanism in tomato fruit from the metabolic perspective, and offer novel insights for new approaches reducing postharvest loss on tomato.
Collapse
Affiliation(s)
- Qiong Tang
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Wen Chen
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiang Ye
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Pengcheng Tu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
27
|
Yadav B, Kaur V, Narayan OP, Yadav SK, Kumar A, Wankhede DP. Integrated omics approaches for flax improvement under abiotic and biotic stress: Current status and future prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:931275. [PMID: 35958216 PMCID: PMC9358615 DOI: 10.3389/fpls.2022.931275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 05/03/2023]
Abstract
Flax (Linum usitatissimum L.) or linseed is one of the important industrial crops grown all over the world for seed oil and fiber. Besides oil and fiber, flax offers a wide range of nutritional and therapeutic applications as a feed and food source owing to high amount of α-linolenic acid (omega-3 fatty acid), lignans, protein, minerals, and vitamins. Periodic losses caused by unpredictable environmental stresses such as drought, heat, salinity-alkalinity, and diseases pose a threat to meet the rising market demand. Furthermore, these abiotic and biotic stressors have a negative impact on biological diversity and quality of oil/fiber. Therefore, understanding the interaction of genetic and environmental factors in stress tolerance mechanism and identification of underlying genes for economically important traits is critical for flax improvement and sustainability. In recent technological era, numerous omics techniques such as genomics, transcriptomics, metabolomics, proteomics, phenomics, and ionomics have evolved. The advancements in sequencing technologies accelerated development of genomic resources which facilitated finer genetic mapping, quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection in major cereal and oilseed crops including flax. Extensive studies in the area of genomics and transcriptomics have been conducted post flax genome sequencing. Interestingly, research has been focused more for abiotic stresses tolerance compared to disease resistance in flax through transcriptomics, while the other areas of omics such as metabolomics, proteomics, ionomics, and phenomics are in the initial stages in flax and several key questions remain unanswered. Little has been explored in the integration of omic-scale data to explain complex genetic, physiological and biochemical basis of stress tolerance in flax. In this review, the current status of various omics approaches for elucidation of molecular pathways underlying abiotic and biotic stress tolerance in flax have been presented and the importance of integrated omics technologies in future research and breeding have been emphasized to ensure sustainable yield in challenging environments.
Collapse
Affiliation(s)
- Bindu Yadav
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Vikender Kaur
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Om Prakash Narayan
- College of Arts and Sciences, University of Florida, Gainesville, FL, United States
| | - Shashank Kumar Yadav
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | |
Collapse
|
28
|
Dehau T, Ducatelle R, Immerseel FV, Goossens E. Omics technologies in poultry health and productivity - part 1: current use in poultry research. Avian Pathol 2022; 51:407-417. [PMID: 35675291 DOI: 10.1080/03079457.2022.2086447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In biology, molecular terms with the suffix "-omics" refer to disciplines aiming at the collective characterization of pools of molecules derived from different layers (DNA, RNA, proteins, metabolites) of living organisms using high-throughput technologies. Such omics analyses have been widely implemented in poultry research in recent years. This first part of a bipartite review on omics technologies in poultry health and productivity examines the use of multiple omics and multi-omics techniques in poultry research. More specific present and future applications of omics technologies, not only for the identification of specific diagnostic biomarkers, but also for potential future integration in the daily monitoring of poultry production, are discussed in part 2. Approaches based on omics technologies are particularly used in poultry research in the hunt for genetic markers of economically important phenotypical traits in the host, and in the identification of key bacterial species or functions in the intestinal microbiome. Integrative multi-omics analyses, however, are still scarce. Host physiology is investigated via genomics together with transcriptomics, proteomics and metabolomics techniques, to understand more accurately complex production traits such as disease resistance and fertility. The gut microbiota, as a key player in chicken productivity and health, is also a main subject of such studies, investigating the association between its composition (16S rRNA gene sequencing) or function (metagenomics, metatranscriptomics, metaproteomics, metabolomics) and host phenotypes. Applications of these technologies in the study of other host-associated microbiota and other host characteristics are still in their infancy.
Collapse
Affiliation(s)
- Tessa Dehau
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evy Goossens
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
29
|
Seah JYH, Hong Y, Cichońska A, Sabanayagam C, Nusinovici S, Wong TY, Cheng CY, Jousilahti P, Lundqvist A, Perola M, Salomaa V, Tai ES, Würtz P, van Dam RM, Sim X. Circulating Metabolic Biomarkers Are Consistently Associated With Type 2 Diabetes Risk in Asian and European Populations. J Clin Endocrinol Metab 2022; 107:e2751-e2761. [PMID: 35390150 DOI: 10.1210/clinem/dgac212] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT While Asians have a higher risk of type 2 diabetes (T2D) than Europeans for a given body mass index (BMI), it remains unclear whether the same markers of metabolic pathways are associated with diabetes. OBJECTIVE We evaluated associations between metabolic biomarkers and incidence of T2D in 3 major Asian ethnic groups (Chinese, Malay, and Indian) and a European population. METHODS We analyzed data from adult males and females of 2 cohorts from Singapore (n = 6393) consisting of Chinese, Malays, and Indians and 3 cohorts of European-origin participants from Finland (n = 14 558). We used nuclear magnetic resonance to quantify 154 circulating metabolic biomarkers at baseline and performed logistic regression to assess associations with T2D risk adjusted for age, sex, BMI and glycemic markers. RESULTS Of the 154 metabolic biomarkers, 59 were associated with higher risk of T2D in both Asians and Europeans (P < 0.0003, Bonferroni-corrected). These included branched chain and aromatic amino acids, the inflammatory marker glycoprotein acetyls, total fatty acids, monounsaturated fatty acids, apolipoprotein B, larger very low-density lipoprotein particle sizes, and triglycerides. In addition, 13 metabolites were associated with a lower T2D risk in both populations, including omega-6 polyunsaturated fatty acids and larger high-density lipoprotein particle sizes. Associations were consistent within the Asian ethnic groups (all Phet ≥ 0.05) and largely consistent for the Asian and European populations (Phet ≥ 0.05 for 128 of 154 metabolic biomarkers). CONCLUSION Metabolic biomarkers across several biological pathways were consistently associated with T2D risk in Asians and Europeans.
Collapse
Affiliation(s)
- Jowy Yi Hoong Seah
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Yueheng Hong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | | | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Simon Nusinovici
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Pekka Jousilahti
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Annamari Lundqvist
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Markus Perola
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veikko Salomaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | | | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Departments of Exercise and Nutrition Sciences and Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| |
Collapse
|
30
|
Metabolic Profiling of Thymic Epithelial Tumors Hints to a Strong Warburg Effect, Glutaminolysis and Precarious Redox Homeostasis as Potential Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14061564. [PMID: 35326714 PMCID: PMC8945961 DOI: 10.3390/cancers14061564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Thymomas and thymic carcinomas (TCs) are malignant thymic epithelial tumors (TETs) with poor outcome, if non-resectable. Metabolic signatures of TETs have not yet been studied and may offer new therapeutic options. This is the first metabolomics investigation on thymic epithelial tumors employing nuclear magnetic resonance spectroscopy of tissue samples. We could detect and quantify up to 37 metabolites in the major tumor subtypes, including acetylcholine that was not previously detected in other non-endocrine cancers. A metabolite-based cluster analysis distinguished three clinically relevant tumor subgroups, namely indolent and aggressive thymomas, as well as TCs. A metabolite-based metabolic pathway analysis also gave hints to activated metabolic pathways shared between aggressive thymomas and TCs. This finding was largely backed by enrichment of these pathways at the transcriptomic level in a large, publicly available, independent TET dataset. Due to the differential expression of metabolites in thymic epithelial tumors versus normal thymus, pathways related to proline, cysteine, glutathione, lactate and glutamine appear as promising therapeutic targets. From these findings, inhibitors of glutaminolysis and of the downstream TCA cycle are anticipated to be rational therapeutic strategies. If our results can be confirmed in future, sufficiently powered studies, metabolic signatures may contribute to the identification of new therapeutic options for aggressive thymomas and TCs. Abstract Thymomas and thymic carcinomas (TC) are malignant thymic epithelial tumors (TETs) with poor outcome, if non-resectable. Metabolic signatures of TETs have not yet been studied and may offer new therapeutic options. Metabolic profiles of snap-frozen thymomas (WHO types A, AB, B1, B2, B3, n = 12) and TCs (n = 3) were determined by high resolution magic angle spinning 1H nuclear magnetic resonance (HRMAS 1H-NMR) spectroscopy. Metabolite-based prediction of active KEGG metabolic pathways was achieved with MetPA. In relation to metabolite-based metabolic pathways, gene expression signatures of TETs (n = 115) were investigated in the public “The Cancer Genome Atlas” (TCGA) dataset using gene set enrichment analysis. Overall, thirty-seven metabolites were quantified in TETs, including acetylcholine that was not previously detected in other non-endocrine cancers. Metabolite-based cluster analysis distinguished clinically indolent (A, AB, B1) and aggressive TETs (B2, B3, TCs). Using MetPA, six KEGG metabolic pathways were predicted to be activated, including proline/arginine, glycolysis and glutathione pathways. The activated pathways as predicted by metabolite-profiling were generally enriched transcriptionally in the independent TCGA dataset. Shared high lactic acid and glutamine levels, together with associated gene expression signatures suggested a strong “Warburg effect”, glutaminolysis and redox homeostasis as potential vulnerabilities that need validation in a large, independent cohort of aggressive TETs. If confirmed, targeting metabolic pathways may eventually prove as adjunct therapeutic options in TETs, since the metabolic features identified here are known to confer resistance to cisplatin-based chemotherapy, kinase inhibitors and immune checkpoint blockers, i.e., currently used therapies for non-resectable TETs.
Collapse
|
31
|
Munyai R, Raletsena MV, Modise DM. LC-MS Based Metabolomics Analysis of Potato ( Solanum tuberosum L.) Cultivars Irrigated with Quicklime Treated Acid Mine Drainage Water. Metabolites 2022; 12:221. [PMID: 35323664 PMCID: PMC8952287 DOI: 10.3390/metabo12030221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022] Open
Abstract
In water-scarce areas, the reuse of (un)treated acid mine drainage (AMD) water for crop irrigation has become a requirement, but it also carries a wide range of contaminants that can elicit the synthesis of diverse metabolites necessary for the survival of the plants. There is still a paucity of studies on the impact of quicklime treated-AMD water on the metabolite synthesis of potatoes. This study examined the effect of the irrigation of two potato cultivars (Marykies and Royal cultivars) with quicklime-treated AMD water on their metabolite profiles. A greenhouse study was conducted with five experimental treatments with different solution ratios, replicated three times in a completely randomized design. A total of 40 and 36 metabolites from Marykies and Royal cultivars which include amino acids, organic acids, and aromatic amines were identified, respectively. The results revealed elevation in the abundance of metabolites under the irrigation with treated AMD water for both cultivars with subtle variations. This will provide information on the primary metabolite shifst in potato that enhance their survival and growth under AMD conditions. However, more specific data on toxicity due to AMD irrigation would be required for a refined risk assessment.
Collapse
Affiliation(s)
- Rabelani Munyai
- Department of Agriculture and Animal Health, Florida Science Campus, University of South Africa, Roodepoort 1709, South Africa;
| | - Maropeng Vellry Raletsena
- Department of Agriculture and Animal Health, Florida Science Campus, University of South Africa, Roodepoort 1709, South Africa;
| | - David Mxolisi Modise
- Faculty of Natural and Agricultural Sciences, Potchefstroom Campus, North West University, Private Bag X6001, Potchefstroom 2520, South Africa;
| |
Collapse
|
32
|
Jia W, Zhuang P, Wang Q, Wan X, Mao L, Chen X, Miao H, Chen D, Ren Y, Zhang Y. Urinary non-targeted toxicokinetics and metabolic fingerprinting of exposure to 3-monochloropropane-1,2-diol and glycidol from refined edible oils. Food Res Int 2022; 152:110898. [DOI: 10.1016/j.foodres.2021.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022]
|
33
|
Yao J, Liu N, Li N, Li X, Hua X. Different metabolomic responses of grass carp (Ctenopharyngodon idellus) to dietary tannin and rapeseed meal. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2020.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Vanajothi R, Srikanth N, Vijayakumar R, Palanisamy M, Bhavaniramya S, Premkumar K. HPV-mediated Cervical Cancer: A Systematic review on Immunological Basis, Molecular Biology and Immune evasion mechanisms. Curr Drug Targets 2021; 23:782-801. [PMID: 34939539 DOI: 10.2174/1389450123666211221160632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human papillomavirus (HPV), one of the most frequently transmitted viruses globally, causing several malignancies including cervical cancer. AIM Owing to their unique pathogenicity HPV viruses can persist in the host organism for a longer duration than other virus types, to complete their lifecycle. During its association with the host, HPV causes various pathological conditions affecting the immune system by evading the host immune- mechanisms leading to the progression of various diseases, including cancer. METHOD To date, ~ 150 serotypes were identified, and certain high-risk HPV types are known to be associated with genital warts and cervical cancer. As of now, two prophylactic vaccines are in use for the treatment of HPV infection, however, no effective antiviral drug is available for HPV-associated disease/infections. Numerous clinical and laboratory studies are being investigated to formulate an effective and specific vaccine again HPV infections and associated diseases. RESULT As the immunological basis of HPV infection and associated disease progress persist indistinctly, deeper insights on immune evasion mechanism and molecular biology of disease would aid in developing an effective vaccine. CONCLUSION Thus this review focuses, aiming a systematic review on the immunological aspects of HPV-associated cervical cancer by uncovering immune evasion strategies adapted by HPV.
Collapse
Affiliation(s)
- Ramar Vanajothi
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli-620024. India
| | - Natarajan Srikanth
- Department of Integrative Biology, Vellore Institute of Technology, Vellore. India
| | - Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952. Saudi Arabia
| | - Manikandan Palanisamy
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952. Saudi Arabia
| | - Sundaresan Bhavaniramya
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences, University, Chennai-600052, Tamil Nadu. India
| | - Kumpati Premkumar
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli-620024. India
| |
Collapse
|
35
|
Metabolomics prospect of obesity and metabolic syndrome; a systematic review. J Diabetes Metab Disord 2021; 21:889-917. [DOI: 10.1007/s40200-021-00917-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
|
36
|
Gupta P, Verma A, Rai N, Singh AK, Singh SK, Kumar B, Kumar R, Gautam V. Mass Spectrometry-Based Technology and Workflows for Studying the Chemistry of Fungal Endophyte Derived Bioactive Compounds. ACS Chem Biol 2021; 16:2068-2086. [PMID: 34724607 DOI: 10.1021/acschembio.1c00581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bioactive compounds have gained substantial attention in research and have conferred great advancements in the industrial and pharmacological fields. Highly diverse fungi and their metabolome serve as a big platform to be explored for their diverse bioactive compounds. Omics tools coupled with bioinformatics, statistical, and well-developed algorithm tools have elucidated immense knowledge about fungal endophyte derived bioactive compounds. Further, these compounds are subjected to chromatography-gas chromatography and liquid chromatography (LC), spectroscopy-nuclear magnetic resonance (NMR), and "soft ionization" technique-matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) based analytical techniques for structural characterization. The mass spectrometry (MS)-based approach, being highly sensitive, reproducible, and reliable, produces quick and high-profile identification. Coupling these techniques with MS has resulted in a descriptive account of the identification and quantification of fungal endophyte derived bioactive compounds. This paper emphasizes the workflows of the above-mentioned techniques, their advancement, and future directions to study the unraveled area of chemistry of fungal endophyte-derived bioactive compounds.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Anurag Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Brijesh Kumar
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
37
|
Analytical Platforms for Mass Spectrometry-Based Metabolomics of Polar and Ionizable Metabolites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:215-242. [PMID: 34628634 DOI: 10.1007/978-3-030-77252-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Metabolomics studies rely on the availability of suitable analytical platforms to determine a vast collection of chemically diverse metabolites in complex biospecimens. Liquid chromatography-mass spectrometry operated under reversed-phase conditions is the most commonly used platform in metabolomics, which offers extensive coverage for nonpolar and moderately polar compounds. However, complementary techniques are required to obtain adequate separation of polar and ionic metabolites, which are involved in several fundamental metabolic pathways. This chapter focuses on the main mass-spectrometry-based analytical platforms used to determine polar and/or ionizable compounds in metabolomics (GC-MS, HILIC-MS, CE-MS, IPC-MS, and IC-MS). Rather than comprehensively describing recent applications related to GC-MS, HILIC-MS, and CE-MS, which have been covered in a regular basis in the literature, a brief discussion focused on basic principles, main strengths, limitations, as well as future trends is presented in this chapter, and only key applications with the purpose of illustrating important analytical aspects of each platform are highlighted. On the other hand, due to the relative novelty of IPC-MS and IC-MS in the metabolomics field, a thorough compilation of applications for these two techniques is presented here.
Collapse
|
38
|
Feng Z, Ji S, Ping J, Cui D. Recent advances in metabolomics for studying heavy metal stress in plants. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116402] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Pietkiewicz D, Klupczynska-Gabryszak A, Plewa S, Misiura M, Horala A, Miltyk W, Nowak-Markwitz E, Kokot ZJ, Matysiak J. Free Amino Acid Alterations in Patients with Gynecological and Breast Cancer: A Review. Pharmaceuticals (Basel) 2021; 14:ph14080731. [PMID: 34451829 PMCID: PMC8400482 DOI: 10.3390/ph14080731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Gynecological and breast cancers still remain a significant health problem worldwide. Diagnostic methods are not sensitive and specific enough to detect the disease at an early stage. During carcinogenesis and tumor progression, the cellular need for DNA and protein synthesis increases leading to changes in the levels of amino acids. An important role of amino acids in many biological pathways, including biosynthesis of proteins, nucleic acids, enzymes, etc., which serve as an energy source and maintain redox balance, has been highlighted in many research articles. The aim of this review is a detailed analysis of the literature on metabolomic studies of gynecology and breast cancers with particular emphasis on alterations in free amino acid profiles. The work includes a brief overview of the metabolomic methodology and types of biological samples used in the studies. Special attention was paid to the possible role of selected amino acids in the carcinogenesis, especially proline and amino acids related to its metabolism. There is a clear need for further research and multiple external validation studies to establish the role of amino acid profiling in diagnosing gynecological and breast cancers.
Collapse
Affiliation(s)
- Dagmara Pietkiewicz
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (D.P.); (A.K.-G.); (S.P.)
| | - Agnieszka Klupczynska-Gabryszak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (D.P.); (A.K.-G.); (S.P.)
| | - Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (D.P.); (A.K.-G.); (S.P.)
| | - Magdalena Misiura
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.M.); (W.M.)
| | - Agnieszka Horala
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.H.); (E.N.-M.)
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.M.); (W.M.)
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.H.); (E.N.-M.)
| | - Zenon J. Kokot
- Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland;
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (D.P.); (A.K.-G.); (S.P.)
- Correspondence:
| |
Collapse
|
40
|
Ortiz CN, Torres-Reverón A, Appleyard CB. Metabolomics in endometriosis: challenges and perspectives for future studies. REPRODUCTION AND FERTILITY 2021; 2:R35-R50. [PMID: 35128453 PMCID: PMC8812441 DOI: 10.1530/raf-20-0047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Endometriosis is a complex disease characterized by inflammation and the growth of endometrial- like glands and stroma outside the uterine cavity. The pathophysiology of endometriosis is not entirely understood, however, with a prevalence of ~10% of women in their reproductive years, the disease symptoms significantly affect the quality of life of millions of women globally. Metabolomic studies have previously identified specific metabolites that could be a signature of endometriosis. This approach could potentially be used as a non-invasive tool for early diagnosis and provide a better understanding of endometriosis pathophysiology. This review aims to provide insight as to how endometriosis affects the metabolome by reviewing different studies that have used this approach to design follow-up studies. The search query included the term 'endometriosis' in combination with 'metabolomics', 'lipidomics', or 'sphingolipidomics' published between 2012 and 2020. We included studies in humans and animal models. Most studies reported differences in the metabolome of subjects with endometriosis in comparison to healthy controls and used samples taken from serum, endometrial tissue, follicular fluid, urine, peritoneal fluid, or endometrial fluid. Statistically significant metabolites contributed to group separation between patients and healthy controls. Reported metabolites included amino acids, lipids, organic acids, and other organic compounds. Differences in methods, analytical techniques, and the presence of confounding factors can interfere with results and interpretation of data. Metabolomics seems to be a promising tool for identifying significant metabolites in patients with endometriosis. Nonetheless, more investigation is needed in order to understand the significance of the study results.
Lay summary
Endometriosis is a chronic disease affecting the quality of life in one out of every ten women during their reproductive years, causing pain and infertility. It is characterized by inflammation and growth of tissue like the endometrium (uterus lining) outside the uterine cavity. Studies have searched for a predictor of endometriosis-associated changes by observing small molecules necessary for metabolism on a large scale (metabolomics). Metabolomics could serve to resolve one of the biggest challenges that patients with endometriosis face: a delay in diagnosis. In this review, the authors summarize identified potential biomarkers from various bodily fluids and tissues that are characteristic of metabolic processes observed in endometriosis. Biomarkers include cell growth, cell survival, high energy demand, oxidative stress, and fatty acid levels. A metabolomics approach offers promise as a non-invasive tool to identify significant metabolite changes in patients with endometriosis, potentially leading to earlier diagnoses and new opportunities for back-translational strategies.
Collapse
Affiliation(s)
- Camila N Ortiz
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, USA
| | | | - Caroline B Appleyard
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, USA
- Department of Internal Medicine, Ponce Health Sciences University, Ponce, Puerto Rico, USA
| |
Collapse
|
41
|
Li Y, Ma L, Wu D, Chen G. Advances in bulk and single-cell multi-omics approaches for systems biology and precision medicine. Brief Bioinform 2021; 22:6189773. [PMID: 33778867 DOI: 10.1093/bib/bbab024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/31/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Multi-omics allows the systematic understanding of the information flow across different omics layers, while single omics can mainly reflect one aspect of the biological system. The advancement of bulk and single-cell sequencing technologies and related computational methods for multi-omics largely facilitated the development of system biology and precision medicine. Single-cell approaches have the advantage of dissecting cellular dynamics and heterogeneity, whereas traditional bulk technologies are limited to individual/population-level investigation. In this review, we first summarize the technologies for producing bulk and single-cell multi-omics data. Then, we survey the computational approaches for integrative analysis of bulk and single-cell multimodal data, respectively. Moreover, the databases and data storage for multi-omics, as well as the tools for visualizing multimodal data are summarized. We also outline the integration between bulk and single-cell data, and discuss the applications of multi-omics in precision medicine. Finally, we present the challenges and perspectives for multi-omics development.
Collapse
Affiliation(s)
| | - Lu Ma
- China Normal University, China
| | | | | |
Collapse
|
42
|
MIYANO H, NAKAYAMA A. Development of Precolumn Derivatization–LC/MS for Amino-Acid-Focused Metabolomics. CHROMATOGRAPHY 2021. [DOI: 10.15583/jpchrom.2020.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Hayashi Y, Komatsu T, Iwashita K, Fukusaki E. 1H-NMR metabolomics-based classification of Japanese sake and comparative metabolome analysis by gas chromatography-mass spectrometry. J Biosci Bioeng 2021; 131:557-564. [PMID: 33593699 DOI: 10.1016/j.jbiosc.2020.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 11/25/2022]
Abstract
Six categories of Japanese sake have been established by the National Tax Agency of Japan. In this system, the rice polishing ratio and the addition of alcohol are the main criteria for classification. The most common nuclear magnetic resonance (NMR) spectrometry method is 1H-NMR, and has higher throughput than gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS) analysis due to its short measurement time, easy sample preparation, and high reproducibility. However, owing to the production of dominant ethanol signals, metabolome analyses have not been used for classifying Japanese sake using 1H-NMR. In this study, a technique to selectively suppress ethanol signals was used to classify Japanese sake by 1H-NMR, and a model was constructed to predict the rice polishing ratio. The results were compared to those obtained by GC-MS. The suppression of ethanol signals enabled the detection of trace components by 1H-NMR. In a principal component analysis (PCA) score plot of 1H-NMR spectra with ethanol signal suppression, PC1 was associated with both the addition of alcohol and the rice polishing ratio. Additionally, the separation of samples observed was similar when PCA score plots of 1H-NMR and GC-MS data were compared. Similarly, to predict the rice polishing ratio using partial least squares regression analysis, a model was constructed using 1H-NMR data, and showed nearly similar values for precision and predictive performance with the model constructed using GC-MS data. These results suggest that metabolomic analyses of Japanese sake based on 1H-NMR spectral patterns may be useful for classification.
Collapse
Affiliation(s)
- Yuji Hayashi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takanori Komatsu
- Application Group, Marketing Division, JEOL Resonance Inc., 1-2 Musashino 3- Chome Akishima, Tokyo 196-8558, Japan
| | - Kazuhiro Iwashita
- National Research Institute of Brewing, 3-7-1, Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
44
|
Putri SLE, Suantika G, Situmorang ML, Christina J, Nikijuluw C, Putri SP, Fukusaki E. Shrimp count size: GC/MS-based metabolomics approach and quantitative descriptive analysis (QDA) reveal the importance of size in white leg shrimp (Litopenaeus vannamei). Metabolomics 2021; 17:19. [PMID: 33515101 DOI: 10.1007/s11306-020-01766-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/26/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION "Count size" is a term used to represent the number of shrimps in one pound or kilogram that applies globally in the shrimp industry. Based on shrimp body weight, count sizes range over the smallest (> 70) up to the largest size (U15) of shrimp. Large shrimps are considered highly palatable; therefore, they are priced higher than the small shrimps. However, the pricing of shrimp has not been based on scientific findings since there have been no studies reporting the correlation between shrimp quality and shrimp size. OBJECTIVE In this study, we aimed to investigate the importance of shrimp size in terms of metabolite profile and sensory properties. METHODS Nine groups of Litopenaeus vannamei, categorized based on their body weight similarity, were collected from various sampling sites regardless of the difference in days of culture (count size 16/20, 21/25, 26/30, 41/50, and 51/60). Gas chromatography/mass spectrometry (GC/MS)-based metabolomics analysis was employed to characterize their metabolite profiles. Furthermore, a robust PLS regression model was constructed to predict the shrimp size using metabolome data. Following this, the difference in sensory attributes among commercial shrimp count sizes 21/25-41/50 was confirmed using quantitative descriptive analysis (QDA). RESULTS Small shrimp (> 70-51/60) had higher accumulation of proteinogenic and non-proteinogenic amino acids, sugars, and organic acids compared to large shrimps (41/50-16/20). The QDA of commercial count sizes (21/25-41/50) performed by trained panelists showed that sweetness, juiciness, crispness, and red color attributes increased with an increase in shrimp size. Based on the PLS model, proline as a sweet-tasting metabolite also showed an increased level along with the shrimp size. CONCLUSIONS These findings demonstrate the importance of shrimp count size with regard to shrimp quality.
Collapse
Affiliation(s)
- Safira Latifa Erlangga Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Gede Suantika
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, 40132, Indonesia
| | - Magdalena Lenny Situmorang
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, 40132, Indonesia
| | - Josephine Christina
- Department of Food Science and Nutrition, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat No.Kav. 88, Jakarta, 13210, Indonesia
| | - Corazon Nikijuluw
- Department of Food Technology, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat No. Kav. 88, Jakarta, 13210, Indonesia
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
45
|
Ashrafian H, Sounderajah V, Glen R, Ebbels T, Blaise BJ, Kalra D, Kultima K, Spjuth O, Tenori L, Salek RM, Kale N, Haug K, Schober D, Rocca-Serra P, O'Donovan C, Steinbeck C, Cano I, de Atauri P, Cascante M. Metabolomics: The Stethoscope for the Twenty-First Century. Med Princ Pract 2020; 30:301-310. [PMID: 33271569 PMCID: PMC8436726 DOI: 10.1159/000513545] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/29/2020] [Indexed: 11/19/2022] Open
Abstract
Metabolomics encompasses the systematic identification and quantification of all metabolic products in the human body. This field could provide clinicians with novel sets of diagnostic biomarkers for disease states in addition to quantifying treatment response to medications at an individualized level. This literature review aims to highlight the technology underpinning metabolic profiling, identify potential applications of metabolomics in clinical practice, and discuss the translational challenges that the field faces. We searched PubMed, MEDLINE, and EMBASE for primary and secondary research articles regarding clinical applications of metabolomics. Metabolic profiling can be performed using mass spectrometry and nuclear magnetic resonance-based techniques using a variety of biological samples. This is carried out in vivo or in vitro following careful sample collection, preparation, and analysis. The potential clinical applications constitute disruptive innovations in their respective specialities, particularly oncology and metabolic medicine. Outstanding issues currently preventing widespread clinical use are scalability of data interpretation, standardization of sample handling practice, and e-infrastructure. Routine utilization of metabolomics at a patient and population level will constitute an integral part of future healthcare provision.
Collapse
Affiliation(s)
- Hutan Ashrafian
- Institute of Global Health Innovation and Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Viknesh Sounderajah
- Institute of Global Health Innovation and Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Robert Glen
- Institute of Global Health Innovation and Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Timothy Ebbels
- Institute of Global Health Innovation and Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Benjamin J. Blaise
- Institute of Global Health Innovation and Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Dipak Kalra
- Department of Medical Informatics and Statistics, University of Ghent, Ghent, Belgium
| | - Kim Kultima
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Leonardo Tenori
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Reza M. Salek
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Namrata Kale
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Kenneth Haug
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Daniel Schober
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Philippe Rocca-Serra
- Department of Engineering Science, Oxford e-Research Centre, University of Oxford, Oxford, United Kingdom
| | - Claire O'Donovan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University, Jena, Germany
| | - Isaac Cano
- Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Pedro de Atauri
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona and CIBERHD (CIBER de Enfermedades hepáticas y digestivas), Barcelona, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona and CIBERHD (CIBER de Enfermedades hepáticas y digestivas), Barcelona, Spain
| |
Collapse
|
46
|
Nunes EDC, Canuto GAB. Metabolomics applied in the study of emerging arboviruses caused by Aedes aegypti mosquitoes: A review. Electrophoresis 2020; 41:2102-2113. [PMID: 32885853 DOI: 10.1002/elps.202000133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/22/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Arboviruses, such as chikungunya, dengue, yellow fever, and zika, caused by the bite of the Aedes aegypti mosquito, have been a frequent public health problem, with a high incidence of outbreaks in tropical and subtropical countries. These diseases are easily confused with a flu-like illness and present very similar symptoms, difficult to distinguish, and treat appropriately. The effects that these infections cause in the organism are fundamentally derived from complex metabolic processes. A prominent area of science that investigates the changes in the metabolism of complex organisms is the metabolomics. Metabolomics measures the metabolites produced or altered in biological organisms, through the use of robust analytical platforms, such as separation techniques hyphenated with mass spectrometry, combined with bioinformatics. This review article presents an overview of the basic concepts of metabolomics workflow and advances in this field, and compiles research articles that use this omic approach to study these arboviruses. In this context, the metabolomics is applied to search new therapies, understand the viral replication mechanisms, and access the host-virus interactions.
Collapse
Affiliation(s)
- Estéfane da Cruz Nunes
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil
| | | |
Collapse
|
47
|
Brahmi F, Nguyen AT, Nacoulma AP, Sheridan H, Wang J, Guendouze N, Madani K, Duez P. Discrimination of Mentha species grown in different geographical areas of Algeria using 1H-NMR-based metabolomics. J Pharm Biomed Anal 2020; 189:113430. [PMID: 32615341 DOI: 10.1016/j.jpba.2020.113430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
1H-NMR-based metabolomics have been applied to identify potential NMR-markers and biomarkers capable of distinguishing, qualifying and classifying three Mentha species:- Mentha pulegium L., Mentha × rotundifolia (L.) Huds., Mentha spicata L., and their ecotypes. Samples of the 3 species were collected in seven different locations in Algeria, with the aim to establish a quality control protocol based on the use of NMR fingerprint profiles of polar extracts. NMR data indicate that the identification of the Mentha genus can be confirmed by the presence of the doublet proton signals with identical coupling constants at δ 7.49 (d, 15.9 Hz) and δ 6.29 (d, 15.9 Hz); these correspond to the protons of the double-bond conjugated to the ester group of rosmarinic acid, a bioactive compound found in all three species. Differences in NMR proton chemical shifts and/or signal intensities were clearly demonstrated on the orthogonal projections to latent structures discriminating analysis (OPLS-DA). Several potential biomarkers discriminating the three Mentha species were originated using S-plots, loading score plots, NMR data analysis and literature search. These discriminating signals point to glycosylated flavonols, oxygenated terpenoids and hydrocarbon terpenoids to distinguish M. pulegium, M. × rotundifolia and M. spicata, respectively. Within the same species, Principal Component Analysis (PCA) scores clearly discriminated the metabolite content according to regions in which the plants were grown. The 6 zones in which Mentha pulegium samples were harvested were clearly separated along either or both PC1 and PC2; by contrast, the harvesting locations were divided into two groups along PC1 for both M. × rotundifolia and M. spicata. The total antioxidant activity of the Mentha species was impacted by the abiotic factors of the different regions.
Collapse
Affiliation(s)
- Fatiha Brahmi
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, 06000, Bejaia, Algeria; Unit of Therapeutic Chemistry and Pharmacognosy, Université de Mons (UMONS), Mons, Belgium.
| | - Anh Tho Nguyen
- Laboratory of Pharmacognosy, Bromatology and Human Nutrition, Université Libre de Bruxelles (ULB), Belgium
| | - Aminata P Nacoulma
- Laboratory of Pharmacognosy, Bromatology and Human Nutrition, Université Libre de Bruxelles (ULB), Belgium
| | - Helen Sheridan
- NatPro, Centre for Natural Product Research, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Jinfan Wang
- NatPro, Centre for Natural Product Research, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Naïma Guendouze
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, 06000, Bejaia, Algeria
| | - Khodir Madani
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, 06000, Bejaia, Algeria; Agri-Food Technologies Research Center, Targua Ouzemmour Road, 06000 Bejaia, Algeria
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, Université de Mons (UMONS), Mons, Belgium; Laboratory of Pharmacognosy, Bromatology and Human Nutrition, Université Libre de Bruxelles (ULB), Belgium
| |
Collapse
|
48
|
Fuchsmann P, Tena Stern M, Münger LH, Pimentel G, Burton KJ, Vionnet N, Vergères G. Nutrivolatilomics of Urinary and Plasma Samples to Identify Candidate Biomarkers after Cheese, Milk, and Soy-Based Drink Intake in Healthy Humans. J Proteome Res 2020; 19:4019-4033. [DOI: 10.1021/acs.jproteome.0c00324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | | | | | | | | | - Nathalie Vionnet
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Guy Vergères
- Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| |
Collapse
|
49
|
Ichikawa E, Hirata S, Hata Y, Yazawa H, Tamura H, Kaneoke M, Iwashita K, Hirata D. Effect of koji starter on metabolites in Japanese alcoholic beverage sake made from the sake rice Koshitanrei. Biosci Biotechnol Biochem 2020; 84:1714-1723. [PMID: 32448088 DOI: 10.1080/09168451.2020.1763154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In sake brewing, the steamed rice is used in 2 ways, added to sake-mash and making rice-koji. Rice-koji is made from the steamed rice by using koji starter, and its quality is an important determinant of the aroma/taste of sake. The sake rice Koshitanrei (KOS) was developed in Niigata Prefecture by crossing 2 sake rice varieties, Gohyakumangoku and Yamadanishiki. Recently, we reported the characteristic components/metabolites in sake made from KOS by conducting metabolome analysis using UPLC-QTOF-MS. In this study, to investigate the effect of koji starter and sake rice cultivars on the sake metabolites, we performed small-scale sake-making tests using the above 3 rice cultivars and 3 koji starters. Finally, we demonstrated that some of the characteristic components/metabolites of sake from KOS are affected by the koji starter. Thus, in addition to rice cultivar, koji starter plays an important role for establishment/maintenance of the quality of the final product.
Collapse
Affiliation(s)
- Eri Ichikawa
- Sake Research Center and Product Development Department, Asahi Sake Brewing Co. Ltd , Nagaoka, Japan.,Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University , Higashi-Hiroshima, Japan
| | - Shougo Hirata
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University , Higashi-Hiroshima, Japan.,National Research Institute of Brewing , Higashi-Hiroshima, Japan
| | - Yuko Hata
- National Research Institute of Brewing , Higashi-Hiroshima, Japan
| | - Hisashi Yazawa
- National Research Institute of Brewing , Higashi-Hiroshima, Japan
| | - Hiroyasu Tamura
- Sake Research Center and Product Development Department, Asahi Sake Brewing Co. Ltd , Nagaoka, Japan
| | - Mitsuoki Kaneoke
- Niigata Prefectural Sake Research Institute , Niigata, Japan.,Sakeology Center, Niigata University , Niigata, Japan
| | - Kazuhiro Iwashita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University , Higashi-Hiroshima, Japan.,National Research Institute of Brewing , Higashi-Hiroshima, Japan
| | - Dai Hirata
- Sake Research Center and Product Development Department, Asahi Sake Brewing Co. Ltd , Nagaoka, Japan.,Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University , Higashi-Hiroshima, Japan.,Sakeology Center, Niigata University , Niigata, Japan
| |
Collapse
|
50
|
de Nicola D, Vinale F, Salzano A, d’Errico G, Vassetti A, D’Onofrio N, Balestrieri ML, Neglia G. Milk Metabolomics Reveals Potential Biomarkers for Early Prediction of Pregnancy in Buffaloes Having Undergone Artificial Insemination. Animals (Basel) 2020; 10:ani10050758. [PMID: 32349376 PMCID: PMC7277816 DOI: 10.3390/ani10050758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 01/16/2023] Open
Abstract
This study aimed to identify potential biomarkers for early pregnancy diagnosis in buffaloes subjected to artificial insemination (AI). The study was carried out on 10 pregnant and 10 non-pregnant buffaloes that were synchronized by Ovsynch-Timed Artificial Insemination Program and have undergone the first AI. Furthermore, milk samples were individually collected ten days before AI (the start of the synchronization treatment), on the day of AI, day 7 and 18 after AI, and were analyzed by LC-MS. Statistical analysis was carried out by using Mass Profile Professional (Agilent Technologies, Santa Clara, CA, USA). Metabolomic analysis revealed the presence of several metabolites differentially expressed between pregnant and non-pregnant buffaloes. Among these, a total of five metabolites were identified by comparison with an online database and a standard compound as acetylcarnitine (3-Acetoxy-4-(trimethylammonio)butanoate), arginine-succinic acid hydrate, 5'-O-{[3-({4-[(3aminopropyl)amino]butyl}amino)propyl]carbamoyl}-2'-deoxyadenosine, N-(1-Hydroxy-2-hexadecanyl)pentadecanamide, and N-[2,3-Bis(dodecyloxy)propyl]-L-lysinamide). Interestingly, acetylcarnitine was dominant in milk samples collected from non-pregnant buffaloes. The results obtained from milk metabolic profile and hierarchical clustering analysis revealed significant differences between pregnant and non-pregnant buffaloes, as well as in the metabolite expression. Overall, the findings indicate the potential of milk metabolomics as a powerful tool to identify biomarkers of early pregnancy in buffalo undergoing AI.
Collapse
Affiliation(s)
- Donato de Nicola
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, 80137 Naples, Italy; (D.d.N.); (F.V.); (G.N.)
| | - Francesco Vinale
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, 80137 Naples, Italy; (D.d.N.); (F.V.); (G.N.)
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici (NA), Italy
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, 80137 Naples, Italy; (D.d.N.); (F.V.); (G.N.)
- Correspondence: ; Tel.: +39-0812536215
| | - Giada d’Errico
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici (NA), Italy; (G.d.); (A.V.)
| | - Anastasia Vassetti
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici (NA), Italy; (G.d.); (A.V.)
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (N.D.); (M.L.B.)
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (N.D.); (M.L.B.)
| | - Gianluca Neglia
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, 80137 Naples, Italy; (D.d.N.); (F.V.); (G.N.)
| |
Collapse
|