1
|
Paudel L, Pardhe BD, Han SR, Lee JH, Oh TJ. Identification and evaluation of CAZyme genes, along with functional characterization of a new GH46 chitosanase from Streptomyces sp. KCCM12257. Int J Biol Macromol 2023; 253:127457. [PMID: 37844821 DOI: 10.1016/j.ijbiomac.2023.127457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The genomic analysis of Streptomyces sp. KCCM12257 presented 233 CAZyme genes with a predominant glycosyl hydrolase family. This contributes degradation of various polysaccharides including chitin and chitosan, and other promising candidates for the production of different oligosaccharides. We screened the strain providing different polysaccharides as a sole source of carbon and strain KCCM12257, showed higher activity towards colloidal chitosan. Further, we identified and characterized a new chitosanase (MDI5907146) of GH46 family. There was no activity towards chitin, carboxymethylcellulose, or even with chitosan powder. This enzyme acts on colloidal chitosan and hydrolyzes it down into monoacetyl chitobiose, which consists of two glucosamine units with an acetyl group attached to them. The maximum enzyme activity was observed at pH 6.5 and 40 °C using colloidal chitosan as a substrate. The Co2+ metal ions almost double the reaction as compared to other metal ions. The dissociation constant (Km) and of colloidal chitosan (≥90 % and ≥75%DD) were 3.03 mg/ml and 5.01 mg/ml respectively, while maximum velocity (Vmax) values were found to be 36 mg/ml, and 30 μM/μg/min, respectively. Similarly, catalytic efficiency (Kcat/Km) of colloidal chitosan with ≥90 %DD was 1.9 fold higher than colloidal chitosan with ≥75%DD.
Collapse
Affiliation(s)
- Lakshan Paudel
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
| | - Bashu Dev Pardhe
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
| | - So-Ra Han
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea; Genome-based BioIT Convergence Institute, Asan 31460, Republic of Korea; Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea; Genome-based BioIT Convergence Institute, Asan 31460, Republic of Korea; Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea.
| |
Collapse
|
2
|
Jing G, Wenjun G, Yi W, Kepan X, Wen L, Tingting H, Zhiqiang C. Enhancing Enzyme Activity and Thermostability of Bacillus amyloliquefaciens Chitosanase BaCsn46A Through Saturation Mutagenesis at Ser196. Curr Microbiol 2023; 80:180. [PMID: 37046080 DOI: 10.1007/s00284-023-03281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Chitosanase plays an important role in chitooligosaccharides (COS) production. We found that the chitosanase (BaCsn46A) of Bacillus amyloliquefacien was a good candidate for chitosan hydrolysis of COS. In order to further improve the enzyme properties of BaCsn46A, the S196 located near the active center was found to be a critical site impacts on enzyme properties by sequence alignment analysis. Herein, saturation mutation was carried out to study role of 196 site on BaCsn46A catalytic function. Compared with WT, the specific enzyme activity of S196A increased by 118.79%, and the thermostability of S196A was much higher than WT. In addition, we found that the enzyme activity of S196P was 2.41% of that of WT, indicating that the type of amino acid in 196 site could significant affect the catalytic activity and thermostability of BaCsn46A. After molecular docking analysis we found that the increase in hydrogen bonds and decrease in unfavorable bonds interacting with the substrate were the main reason for the change of enzyme properties which is valuable for future studies on Bacillus species chitosanase.
Collapse
Affiliation(s)
- Guo Jing
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Gao Wenjun
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Wang Yi
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Xu Kepan
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Luo Wen
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Hong Tingting
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Cai Zhiqiang
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China.
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
3
|
Cao S, Gao P, Xia W, Liu S, Liu X. Cloning and characterization of a novel GH75 family chitosanase from Penicillium oxalicum M2. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
A Novel Chitosanase from Penicillium oxalicum M2 for Chitooligosaccharide Production: Purification, Identification and Characterization. Mol Biotechnol 2022; 64:947-957. [PMID: 35262875 DOI: 10.1007/s12033-022-00461-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/06/2022] [Indexed: 01/08/2023]
Abstract
This study discovered a novel chitosanase from Penicillium oxalicum M2 based on a new screening strategy. An extracellular chitosanase was isolated and purified from the fermentation broth of Penicillium oxalicum M2. A 19.34-fold purification was achieved on a cation exchange column. Using sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, chitosanase was determined at approximately 42 kDa without any subunits. The sequence of peptide in the protein was identified as SALNKNYITNFSTLR by MALTI-TOF/TOF MS. The maximum catalytic activity of the purified enzyme was 60.45 U/mg at the optimum pH and temperature of 5.5 and 60 °C. The enzyme activity held stability in the range of 35-50 °C and pH 3-4.5. Ca2+, Mn2+, non-ionic surfactants (Tween 20/40/60/80 and Trition X-100) and some common reducing agents (DTT and β-ME) could significantly activate chitosanase. The purified enzyme showed rigorous specificity to chitosan as a substrate. The hydrolysate in the final stage of hydrolysis consisted of chitooligosaccharides with a degree of polymerization ranging from 2 to 5 and without glucosamine or acetylglucosamine. The monomeric enzyme obtained by one-step purification reveal applications potential in sugar industry, and expanded our understanding of the GH75 family chitosanases simultaneously.
Collapse
|
5
|
Zhang LL, Jiang XH, Xiao XF, Zhang WX, Shi YQ, Wang ZP, Zhou HX. Expression and Characterization of a Novel Cold-Adapted Chitosanase from Marine Renibacterium sp. Suitable for Chitooligosaccharides Preparation. Mar Drugs 2021; 19:596. [PMID: 34822467 PMCID: PMC8620120 DOI: 10.3390/md19110596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 01/07/2023] Open
Abstract
(1) Background: Chitooligosaccharides (COS) have numerous applications due to their excellent properties. Chitosan hydrolysis using chitosanases has been proposed as an advisable method for COS preparation. Although many chitosanases from various sources have been identified, the cold-adapted ones with high stability are still rather rare but required. (2) Methods: A novel chitosanase named CsnY from marine bacterium Renibacterium sp. Y82 was expressed in Escherichia coli, following sequence analysis. Then, the characterizations of recombinant CsnY purified through Ni-NTA affinity chromatography were conducted, including effects of pH and temperature, effects of metal ions and chemicals, and final product analysis. (3) Results: The GH46 family chitosanase CsnY possessed promising thermostability at broad temperature range (0-50 °C), and with optimal activity at 40 °C and pH 6.0, especially showing relatively high activity (over 80% of its maximum activity) at low temperatures (20-30 °C), which demonstrated the cold-adapted property. Common metal ions or chemicals had no obvious effect on CsnY except Mn2+ and Co2+. Finally, CsnY was determined to be an endo-type chitosanase generating chitodisaccharides and -trisaccharides as main products, whose total concentration reached 56.74 mM within 2 h against 2% (w/v) initial chitosan substrate. (4) Conclusions: The results suggest the cold-adapted CsnY with favorable stability has desirable potential for the industrial production of COS.
Collapse
Affiliation(s)
- Lin-Lin Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China; (L.-L.Z.); (X.-F.X.); (W.-X.Z.); (Y.-Q.S.)
| | - Xiao-Hua Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| | - Xin-Feng Xiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China; (L.-L.Z.); (X.-F.X.); (W.-X.Z.); (Y.-Q.S.)
| | - Wen-Xiu Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China; (L.-L.Z.); (X.-F.X.); (W.-X.Z.); (Y.-Q.S.)
| | - Yi-Qian Shi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China; (L.-L.Z.); (X.-F.X.); (W.-X.Z.); (Y.-Q.S.)
| | - Zhi-Peng Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Hai-Xiang Zhou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| |
Collapse
|
6
|
Pilot-Scale Production of Chito-Oligosaccharides Using an Innovative Recombinant Chitosanase Preparation Approach. Polymers (Basel) 2021; 13:polym13020290. [PMID: 33477553 PMCID: PMC7831125 DOI: 10.3390/polym13020290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/03/2022] Open
Abstract
For pilot-scale production of chito-oligosaccharides, it must be cost-effective to prepare designable recombinant chitosanase. Herein, an efficient method for preparing recombinant Bacillus chitosanase from Escherichia coli by elimination of undesirable substances as a precipitate is proposed. After an optimized culture with IPTG (Isopropyl β-d-1-thiogalactopyranoside) induction, the harvested cells were resuspended, disrupted by sonication, divided by selective precipitation, and stored using the same solution conditions. Several factors involved in these procedures, including ion types, ionic concentration, pH, and bacterial cell density, were examined. The optimal conditions were inferred to be pH = 4.5, 300 mM sodium dihydrogen phosphate, and cell density below 1011 cells/mL. Finally, recombinant chitosanase was purified to >70% homogeneity with an activity recovery and enzyme yield of 90% and 106 mg/L, respectively. When 10 L of 5% chitosan was hydrolyzed with 2500 units of chitosanase at ambient temperature for 72 h, hydrolyzed products having molar masses of 833 ± 222 g/mol with multiple degrees of polymerization (chito-dimer to tetramer) were obtained. This work provided an economical and eco-friendly preparation of recombinant chitosanase to scale up the hydrolysis of chitosan towards tailored oligosaccharides in the near future.
Collapse
|
7
|
Cahyaningtyas HAA, Suyotha W, Cheirsilp B, Yano S. Statistical optimization of halophilic chitosanase and protease production by Bacillus cereus HMRSC30 isolated from Terasi simultaneous with chitin extraction from shrimp shell waste. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Sun H, Gao L, Xue C, Mao X. Marine-polysaccharide degrading enzymes: Status and prospects. Compr Rev Food Sci Food Saf 2020; 19:2767-2796. [PMID: 33337030 DOI: 10.1111/1541-4337.12630] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Marine-polysaccharide degrading enzymes have recently been studied extensively. They are particularly interesting as they catalyze the cleavage of glycosidic bonds in polysaccharide macromolecules and produce oligosaccharides with low degrees of polymerization. Numerous findings have demonstrated that marine polysaccharides and their biotransformed products possess beneficial properties including antitumor, antiviral, anticoagulant, and anti-inflammatory activities, and they have great value in healthcare, cosmetics, the food industry, and agriculture. Exploitation of enzymes that can degrade marine polysaccharides is in the ascendant, and is important for high-value use of marine biomass resources. In this review, we describe research and prospects regarding the classification, biochemical properties, and catalytic mechanisms of the main types of marine-polysaccharide degrading enzymes, focusing on chitinase, chitosanase, alginate lyase, agarase, and carrageenase, and their product oligosaccharides. The state-of-the-art discussion of marine-polysaccharide degrading enzymes and their properties offers information that might enable more efficient production of marine oligosaccharides. We also highlight current problems in the field of marine-polysaccharide degrading enzymes and trends in their development. Understanding the properties, catalytic mechanisms, and modification of known enzymes will aid the identification of novel enzymes to degrade marine polysaccharides and facilitation of their use in various biotechnological processes.
Collapse
Affiliation(s)
- Huihui Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Li Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Sun H, Yang G, Cao R, Mao X, Liu Q. Expression and characterization of a novel glycoside hydrolase family 46 chitosanase identified from marine mud metagenome. Int J Biol Macromol 2020; 159:904-910. [PMID: 32446901 DOI: 10.1016/j.ijbiomac.2020.05.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
A novel chitosanase gene, csn4, was identified through function-based screening of a marine mud metagenomic library. The encoded protein, named CSN4, which belonged to glycoside hydrolase family 46, showed its maximum identity (79%) with Methylobacter tundripaludum peptidoglycan-binding protein. CSN4 was expressed in Escherichia coli and purified. It displayed maximal activity at 30 °C and pH 7. A weakly-alkaline solution strongly inhibited the activity. The enzymatic activity was enhanced by addition of Mn2+ or Co2+. CSN4 exhibited strict substrate specificity for chitosan, and the activity was enhanced by increasing the degree of deacetylation. Thin-layer chromatography and electrospray ionization-mass spectrometry showed that CSN4 displayed an endo-type cleavage pattern, hydrolyzing chitosan mainly into (GlcN)2, (GlcN)3 and (GlcN)4. The novel characteristics of the chitosanase CSN4 make it a potential candidate to produce chitooligosaccharides from chitosan in industry.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guosong Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Rong Cao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qi Liu
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
10
|
Aktuganov GE, Melentiev AI, Varlamov VP. Biotechnological Aspects of the Enzymatic Preparation of Bioactive Chitooligosaccharides (Review). APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819040021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Purification and Characterization of A New Cold-Adapted and Thermo-Tolerant Chitosanase from Marine Bacterium Pseudoalteromonas sp. SY39. Molecules 2019; 24:molecules24010183. [PMID: 30621320 PMCID: PMC6337222 DOI: 10.3390/molecules24010183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/18/2018] [Accepted: 12/29/2018] [Indexed: 12/20/2022] Open
Abstract
Chitosanases play an important role in chitosan degradation, forming enzymatic degradation products with several biological activities. Although many chitosanases have been discovered and studied, the enzymes with special characteristics are still rather rare. In this study, a new chitosanase, CsnM, with an apparent molecular weight of 28 kDa was purified from the marine bacterium Pseudoalteromonas sp. SY39. CsnM is a cold-adapted enzyme, which shows highest activity at 40 °C and exhibits 30.6% and 49.4% of its maximal activity at 10 and 15 °C, respectively. CsnM is also a thermo-tolerant enzyme that recovers 95.2%, 89.1% and 88.1% of its initial activity after boiling for 5, 10 and 20 min, respectively. Additionally, CsnM is an endo-type chitosanase that yields chitodisaccharide as the main product (69.9% of the total product). It’s cold-adaptation, thermo-tolerance and high chitodisaccharide yield make CsnM a superior candidate for biotechnological application to produce chitooligosaccharides.
Collapse
|
12
|
Le B, Yang SH. Characterization of a chitinase fromSalinivibriosp. BAO-1801 as an antifungal activity and a biocatalyst for producing chitobiose. J Basic Microbiol 2018; 58:848-856. [DOI: 10.1002/jobm.201800256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/04/2018] [Accepted: 07/25/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Bao Le
- Department of Biotechnology; Chonnam National University; Yeosu Chonnam Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology; Chonnam National University; Yeosu Chonnam Republic of Korea
| |
Collapse
|
13
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
14
|
Araújo NKD, Pagnoncelli MGB, Pimentel VC, Xavier MLO, Padilha CEA, Macedo GRD, Santos ESD. Single-step purification of chitosanases from Bacillus cereus using expanded bed chromatography. Int J Biol Macromol 2016; 82:291-8. [DOI: 10.1016/j.ijbiomac.2015.09.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 01/19/2023]
|
15
|
Liang TW, Lo BC, Wang SL. Chitinolytic Bacteria-Assisted Conversion of Squid Pen and Its Effect on Dyes and Pigments Adsorption. Mar Drugs 2015; 13:4576-93. [PMID: 26213948 PMCID: PMC4556994 DOI: 10.3390/md13084576] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/10/2015] [Accepted: 07/16/2015] [Indexed: 01/18/2023] Open
Abstract
The aim of this work was to produce chitosanase by fermenting from squid pen, and recover the fermented squid pen for dye removal by adsorption. One chitosanase induced from squid pen powder (SPP)-containing medium by Bacillus cereus TKU034 was purified in high purification fold (441) and high yield of activity recovery (51%) by ammonium sulfate precipitation and combined column chromatography. The SDS-PAGE results showed its molecular mass to be around 43 kDa. The TKU034 chitosanase used for the chitooligomers preparation was studied. The enzyme products revealed that the chitosanase could degrade chitosan with various degrees of polymerization, ranging from 3 to 9, as well as the chitosanase in an endolytic manner. Besides, the fermented SPP was recovered and displayed a better adsorption rate (up to 99.5%) for the disperse dyes (red, yellow, blue, and black) than the water-soluble food colorants, Allura Red AC (R40) and Tartrazine (Y4). The adsorbed R40 on the unfermented SPP and the fermented SPP was eluted by distilled water and 1 M NaOH to confirm the dye adsorption mechanism. The fermented SPP had a slightly higher adsorption capacity than the unfermented, and elution of the dye from the fermented SPP was easier than from the unfermented. The main dye adsorption mechanism of fermented SPP was physical adsorption, while the adsorption mechanism of unfermented SPP was chemical adsorption.
Collapse
Affiliation(s)
- Tzu-Wen Liang
- Life Science Development Center, Tamkang University, No. 151, Yingchuan Rd., Tamsui, New Taipei City 25137, Taiwan.
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
| | - Bo-Chang Lo
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
| | - San-Lang Wang
- Life Science Development Center, Tamkang University, No. 151, Yingchuan Rd., Tamsui, New Taipei City 25137, Taiwan.
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
| |
Collapse
|