1
|
Zeh N, Schmidt M, Schulz P, Fischer S. The new frontier in CHO cell line development: From random to targeted transgene integration technologies. Biotechnol Adv 2024; 75:108402. [PMID: 38950872 DOI: 10.1016/j.biotechadv.2024.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Cell line development represents a crucial step in the development process of a therapeutic glycoprotein. Chinese hamster ovary (CHO) cells are the most frequently employed mammalian host cell system for the industrial manufacturing of biologics. The predominant application of CHO cells for heterologous recombinant protein expression lies in the relative simplicity of stably introducing ectopic DNA into the CHO host cell genome. Since CHO cells were first used as expression host for the industrial production of biologics in the late 1980s, stable genomic transgene integration has been achieved almost exclusively by random integration. Since then, random transgene integration had become the gold standard for generating stable CHO production cell lines due to a lack of viable alternatives. However, it was eventually demonstrated that this approach poses significant challenges on the cell line development process such as an increased risk of inducing cell line instability. In recent years, significant discoveries of new and highly potent (semi)-targeted transgene integration systems have paved the way for a technological revolution in the cell line development sector. These advanced methodologies comprise the application of transposase-, recombinase- or Cas9 nuclease-mediated site-specific genomic integration techniques, which enable a scarless transfer of the transgene expression cassette into transcriptionally active loci within the host cell genome. This review summarizes recent advancements in the field of transgene integration technologies for CHO cell line development and compare them to the established random integration approach. Moreover, advantages and limitations of (semi)-targeted integration techniques are discussed, and benefits and opportunities for the biopharmaceutical industry are outlined.
Collapse
Affiliation(s)
- Nikolas Zeh
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Moritz Schmidt
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Patrick Schulz
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany.
| |
Collapse
|
2
|
Balcerek J, Bednarek M, Sobieściak TD, Pietrucha T, Jaros S. Toward Shortened the Time-to-Market for Biopharmaceutical Proteins: Improved Fab Protein Expression Stability Using the Cre/lox System in a Multi-Use Clonal Cell Line. J Pharm Sci 2020; 110:946-951. [PMID: 33058893 DOI: 10.1016/j.xphs.2020.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/05/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Stable gene integration and rapid selection of high-expressing clones are important when developing biopharmaceutical systems to produce a protein of interest. According to regulatory guidelines, the final production clones should be stable through multiple cell generations. To achieve long-term stable expression of Fab genes via recombinase-mediated cassette exchange (RMCE), we modified mutual configurations of the lox sequences. By inversion of the spacer orientation, we avoided the loss of the integrated gene after several dozen cycles of cell division. This feature also prevents reversible transgene integration. Although the RMCE allows us to generate transgenic lines rapidly relative to current methods, it remains difficult to obtain stable industrial cell lines for long-term culturing and for the initial development stage. In this study, we present an approach to shortening the timeline for therapeutic protein development. Our approach provides easy access to the same clonal cell line in the initial development phase, and also for the production of biopharmaceutical proteins.
Collapse
Affiliation(s)
- Julita Balcerek
- Mabion S.A. Scientific-Industrial Complex of Medical Biotechnology, ul. Langiewicza 60, 95-050 Konstantynów Łódzki, Poland
| | - Marta Bednarek
- Mabion S.A. Scientific-Industrial Complex of Medical Biotechnology, ul. Langiewicza 60, 95-050 Konstantynów Łódzki, Poland
| | - Tomasz D Sobieściak
- Mabion S.A. Scientific-Industrial Complex of Medical Biotechnology, ul. Langiewicza 60, 95-050 Konstantynów Łódzki, Poland.
| | - Tadeusz Pietrucha
- Medical University of Lodz, ul. Żeligowskiego 7/9, 90-752 Łódź, Poland
| | - Sławomir Jaros
- Mabion S.A. Scientific-Industrial Complex of Medical Biotechnology, ul. Langiewicza 60, 95-050 Konstantynów Łódzki, Poland
| |
Collapse
|
3
|
Kaneyoshi K, Uchiyama K, Onitsuka M, Yamano N, Koga Y, Omasa T. Analysis of intracellular IgG secretion in Chinese hamster ovary cells to improve IgG production. J Biosci Bioeng 2019; 127:107-113. [DOI: 10.1016/j.jbiosc.2018.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/08/2018] [Accepted: 06/20/2018] [Indexed: 02/03/2023]
|
4
|
O’Brien SA, Lee K, Fu HY, Lee Z, Le TS, Stach CS, McCann MG, Zhang AQ, Smanski MJ, Somia NV, Hu WS. Single Copy Transgene Integration in a Transcriptionally Active Site for Recombinant Protein Synthesis. Biotechnol J 2018; 13:e1800226. [PMID: 30024101 PMCID: PMC7058118 DOI: 10.1002/biot.201800226] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/09/2018] [Indexed: 12/21/2022]
Abstract
For the biomanufacturing of protein biologics, establishing stable cell lines with high transgene transcription is critical for high productivity. Modern genome engineering tools can direct transgene insertion to a specified genomic locus and can potentially become a valuable tool for cell line generation. In this study, the authors survey transgene integration sites and their transcriptional activity to identify characteristics of desirable regions. A lentivirus containing destabilized Green Fluorescent Protein (dGFP) is used to infect Chinese hamster ovary cells at a low multiplicity of infection, and cells with high or low GFP fluorescence are isolated. RNA sequencing and Assay for Transposase Accessible Chromatin using sequencing data shows integration sites with high GFP expression are in larger regions of high transcriptional activity and accessibility, but not necessarily within highly transcribed genes. This method is used to obtain high Immunoglobulin G (IgG) expressing cell lines with a single copy of the transgene integrated into transcriptionally active and accessible genomic regions. Dual recombinase-mediated cassette exchange is then employed to swap the IgG transgene for erythropoietin or tumor necrosis factor receptor-Fc. This work thus highlights a strategy to identify desirable sites for transgene integration and to streamline the development of new product producing cell lines.
Collapse
Affiliation(s)
- Sofie A. O’Brien
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Kyoungho Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Hsu-Yuan Fu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Zion Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Tung S. Le
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Christopher S. Stach
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Meghan G. McCann
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Alicia Q. Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Michael J. Smanski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Nikunj V. Somia
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| |
Collapse
|
5
|
Wang X, Kawabe Y, Hada T, Ito A, Kamihira M. Cre-Mediated Transgene Integration in Chinese Hamster Ovary Cells Using Minicircle DNA Vectors. Biotechnol J 2018; 13:e1800063. [DOI: 10.1002/biot.201800063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/26/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Xue Wang
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University; 744 Motooka Nishi-ku, 819-0395 Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University; 744 Motooka Nishi-ku, 819-0395 Japan
| | - Takeshi Hada
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University; 744 Motooka Nishi-ku, 819-0395 Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University; 744 Motooka Nishi-ku, 819-0395 Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University; 744 Motooka Nishi-ku, 819-0395 Japan
| |
Collapse
|
6
|
Wang X, Kawabe Y, Kato R, Hada T, Ito A, Yamana Y, Kondo M, Kamihira M. Accumulative scFv-Fc antibody gene integration into the hprt chromosomal locus of Chinese hamster ovary cells. J Biosci Bioeng 2017; 124:583-590. [DOI: 10.1016/j.jbiosc.2017.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/17/2023]
|
7
|
Kawabe Y, Inao T, Komatsu S, Huang G, Ito A, Omasa T, Kamihira M. Improved recombinant antibody production by CHO cells using a production enhancer DNA element with repeated transgene integration at a predetermined chromosomal site. J Biosci Bioeng 2017; 123:390-397. [DOI: 10.1016/j.jbiosc.2016.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/19/2016] [Indexed: 02/05/2023]
|
8
|
Alves CS, Dobrowsky TM. Strategies and Considerations for Improving Expression of "Difficult to Express" Proteins in CHO Cells. Methods Mol Biol 2017; 1603:1-23. [PMID: 28493120 DOI: 10.1007/978-1-4939-6972-2_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite substantial advances in the field of mammalian expression, there are still proteins that are characterized as difficult to express. Determining the expression bottleneck requires troubleshooting techniques specific for the given molecule and host. The complex array of intracellular processes involved in protein expression includes transcription, protein folding, post-translation processing, and secretion. Challenges in any of these steps could result in low protein expression, while the inherent properties of the molecule itself may limit its production via mechanisms such as cytotoxicity or inherent instability. Strategies to identify the rate-limiting step and subsequently improve expression and production are discussed here.
Collapse
|
9
|
Kawabe Y, Shimomura T, Huang S, Imanishi S, Ito A, Kamihira M. Targeted transgene insertion into the CHO cell genome using Cre recombinase-incorporating integrase-defective retroviral vectors. Biotechnol Bioeng 2016; 113:1600-10. [DOI: 10.1002/bit.25923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/18/2015] [Accepted: 12/29/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering; Kyushu University; Nishi-ku Fukuoka Japan
| | - Takuya Shimomura
- Department of Chemical Engineering, Faculty of Engineering; Kyushu University; Nishi-ku Fukuoka Japan
| | - Shuohao Huang
- Graduate School of Systems Life Sciences; Kyushu University; 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Suguru Imanishi
- Department of Chemical Engineering, Faculty of Engineering; Kyushu University; Nishi-ku Fukuoka Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering; Kyushu University; Nishi-ku Fukuoka Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering; Kyushu University; Nishi-ku Fukuoka Japan
- Graduate School of Systems Life Sciences; Kyushu University; 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
10
|
Kawabe Y, Inao T, Komatsu S, Ito A, Kamihira M. Cre-mediated cellular modification for establishing producer CHO cells of recombinant scFv-Fc. BMC Proc 2015. [PMCID: PMC4685433 DOI: 10.1186/1753-6561-9-s9-p5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|