1
|
Eastman S, Jiang T, Ficco K, Liao C, Jones B, Wen S, Olivas Biddle Y, Eyceoz A, Yatsishin I, Naumann TA, Conway JM. A type II secreted subtilase from commensal rhizobacteria cleaves immune elicitor peptides and suppresses flg22-induced immune activation. Cell Rep 2024; 43:115063. [PMID: 39673709 DOI: 10.1016/j.celrep.2024.115063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/02/2024] [Accepted: 11/21/2024] [Indexed: 12/16/2024] Open
Abstract
Plant roots grow in association with a community of microorganisms collectively known as the rhizosphere microbiome. Immune activation in response to elicitors like the flagellin-derived epitope flg22 restricts bacteria on plant roots but also inhibits plant growth. Some commensal root-associated bacteria are capable of suppressing the plant immune response to elicitors. In this study, we investigated the ability of 165 root-associated bacteria to suppress flg22-induced immune activation and growth restriction. We demonstrate that a type II secreted subtilase, which we term immunosuppressive subtilase A (IssA), from Dyella japonica strain MF79 cleaves the immune elicitor peptide flg22 and suppresses immune activation. IssA homologs are found in other plant-associated commensals, with particularly high conservation in the order Xanthomonadales. This represents a novel mechanism by which commensal microbes modulate flg22-induced immunity in the rhizosphere microbiome.
Collapse
Affiliation(s)
- Samuel Eastman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ting Jiang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Kaeli Ficco
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Chao Liao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Britley Jones
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sarina Wen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Yvette Olivas Biddle
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Aya Eyceoz
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ilya Yatsishin
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Todd A Naumann
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, USA
| | - Jonathan M Conway
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA; Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
2
|
Lv B, Zhao X, Guo Y, Li S, Sun M. Serine protease CrKP43 interacts with MAPK and regulates fungal development and mycoparasitism in Clonostachys chloroleuca. Microbiol Spectr 2023; 11:e0244823. [PMID: 37831480 PMCID: PMC10715147 DOI: 10.1128/spectrum.02448-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Mycoparasites play important roles in the biocontrol of plant fungal diseases, during which they secret multiple hydrolases such as serine proteases to degrade their fungal hosts. In this study, we demonstrated that the serine protease CrKP43 was involved in C. chloroleuca development and mycoparasitism with the regulation of Crmapk. To the best of our knowledge, it is the first report on the functions and regulatory mechanisms of serine proteases in C. chloroleuca. Our findings will provide new insight into the regulatory mechanisms of serine proteases in mycoparasites and contribute to clarifying the mechanisms underlying mycoparasitism of C. chloroleuca, which will facilitate the development of highly efficient fungal biocontrol agents as well.
Collapse
Affiliation(s)
- Binna Lv
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Zhao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shidong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manhong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Peng H, Liang M, Zhang J, Liu W, Yang Y, Sun Y, Ke F, Wen Y, Liu S, Xu B, Gao X. Identification and characterization of a versatile keratinase, KerZJ, from Stenotrophomonas sp. LMY. World J Microbiol Biotechnol 2023; 40:30. [PMID: 38057391 DOI: 10.1007/s11274-023-03836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
Keratinases have drawn increasing attention in recent decades owing to their catalytic versatility and broad applications from agriculture to medicine. In the present study, we isolated a highly keratinolytic and fibrinolytic bacterium from the campus soil and named it Stenotrophomonas sp. LMY based on genetic information. To identify the potential keratinase genes, the genome sequence of the strain was obtained and analyzed. Sequence alignment and comparison revealed that the protein 1_737 (KerZJ) had the highest sequence homology to a reported keratinase KerBL. We recombinantly expressed KerZJ in Escherichia coli Origami™ (DE) pLysS and purified it to homogeneity. KerZJ showed the highest activity at 40 °C and pH 9.0, and metal ions exhibited no significant effects on its activity. Although reducing agents would break the disulfide bonds in KerZJ and reduce its activity, KerZJ still exhibited the ability to hydrolyze feather keratin in the presence of β-ME. KerZJ could efficiently digest human prion proteins. In addition, KerZJ showed fibrinolytic activity on fibrin plates and effectively eliminated blood clots in a thrombosis mouse model without side effects. Our results suggest that KerZJ is a versatile keratinase with significant potential for keratin treatment, decontamination of prions, and fibrinolytic therapy.
Collapse
Affiliation(s)
- Haixia Peng
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Manyu Liang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jing Zhang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wenbo Liu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yanhong Yang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yingjie Sun
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Famin Ke
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yijiao Wen
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Siyuan Liu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Bilin Xu
- Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Key Laboratories of Economic Forest Germplasm Improvement and Comprehensive Resources Utilization of Hubei Province, College of Life Science, Huanggang Normal University, Huanggang, 438000, Hubei, China.
| | - Xiaowei Gao
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Valorization of Livestock Keratin Waste: Application in Agricultural Fields. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116681. [PMID: 35682267 PMCID: PMC9180014 DOI: 10.3390/ijerph19116681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/25/2023]
Abstract
Livestock keratin waste is a rich source of protein. However, the unique structure of livestock keratin waste makes its valorization a great challenge. This paper reviews the main methods for the valorization of livestock keratin waste, which include chemical, biological, and other novel methods, and summarizes the main agricultural applications of keratin-based material. Livestock keratin waste is mainly used as animal feed and fertilizer. However, it has promising potential for biosorbents and in other fields. In the future, researchers should focus on the biological extraction and carbonization methods of processing and keratin-based biosorbents for the soil remediation of farmland.
Collapse
|
5
|
Rosa-Masegosa A, Perez-Bou L, Muñoz-Palazon B, Monteoliva-García A, Gonzalez-Martinez A, Gonzalez-Lopez J, Correa-Galeote D. Effects of sulphur amino acids on the size and structure of microbial communities of aerobic granular sludge bioreactors. Amino Acids 2022; 54:1403-1419. [PMID: 35612670 PMCID: PMC9637606 DOI: 10.1007/s00726-022-03168-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/27/2022] [Indexed: 12/07/2022]
Abstract
Granular activated sludge has been described as a promising tool in treating wastewater. However, the effect of high concentrations of sulphur amino acids, cysteine and methionine, in the evolution, development and stability of AGS-SBRs (aerobic granular sludge in sequential batch reactors) and their microbial communities is not well-established. Therefore, this study aimed to evaluate microbial communities' size, structure and dynamics in two AGS-SBRs fed with two different concentrations of amino acids (50 and 100 mg L−1 of both amino acids). In addition, the impact of the higher level of amino acids was also determined under an acclimatization or shock strategy. While N removal efficiency decreased with amino acids, the removal of the organic matter was generally satisfactory. Moreover, the abrupt presence of both amino acids reduced even further the removal performance of N, whereas under progressive adaptation, the removal yield was higher. Besides, excellent removal rates of cysteine and methionine elimination were found, in all stages below 80% of the influent values. Generally considered, the addition of amino acids weakly impacts the microbial communities' total abundances. On the contrary, the presence of amino acids sharply modulated the dominant bacterial structures. Furthermore, the highest amino acid concentration under the shock strategy resulted in a severe change in the structure of the microbial community. Acidovorax, Flavobacterium, Methylophilus, Stenotrophomonas and Thauera stood out as the prominent bacteria to cope with the high presence of cysteine and methionine. Hence, the AGS-SBR technology is valuable for treating influents enriched in sulphur Aa inclusively when a shock strategy was used.
Collapse
Affiliation(s)
- Aurora Rosa-Masegosa
- Microbiology Department, Faculty of Pharmacy, University of Granada, Andalucía, 18071, Granada, Spain.,Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Andalucía, 18071, Granada, Spain
| | - Lizandra Perez-Bou
- Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Andalucía, 18071, Granada, Spain.,Microbial Biotechnology Group, Microbiology and Virology Department, Faculty of Biology, University of Habana, Habana, Cuba
| | - Barbara Muñoz-Palazon
- Microbiology Department, Faculty of Pharmacy, University of Granada, Andalucía, 18071, Granada, Spain. .,Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Andalucía, 18071, Granada, Spain.
| | | | - Alejandro Gonzalez-Martinez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Andalucía, 18071, Granada, Spain.,Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Andalucía, 18071, Granada, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Andalucía, 18071, Granada, Spain.,Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Andalucía, 18071, Granada, Spain
| | - David Correa-Galeote
- Microbiology Department, Faculty of Pharmacy, University of Granada, Andalucía, 18071, Granada, Spain. .,Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Andalucía, 18071, Granada, Spain.
| |
Collapse
|
6
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
7
|
Microbial enzymes catalyzing keratin degradation: Classification, structure, function. Biotechnol Adv 2020; 44:107607. [PMID: 32768519 PMCID: PMC7405893 DOI: 10.1016/j.biotechadv.2020.107607] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Keratin is an insoluble and protein-rich epidermal material found in e.g. feather, wool, hair. It is produced in substantial amounts as co-product from poultry processing plants and pig slaughterhouses. Keratin is packed by disulfide bonds and hydrogen bonds. Based on the secondary structure, keratin can be classified into α-keratin and β-keratin. Keratinases (EC 3.4.-.- peptide hydrolases) have major potential to degrade keratin for sustainable recycling of the protein and amino acids. Currently, the known keratinolytic enzymes belong to at least 14 different protease families: S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, M55 (MEROPS database). The various keratinolytic enzymes act via endo-attack (proteases in families S1, S8, S16, M4, M16, M36), exo-attack (proteases in families S9, S10, M14, M28, M38, M55) or by action only on oligopeptides (proteases in families M3, M32), respectively. Other enzymes, particularly disulfide reductases, also play a key role in keratin degradation as they catalyze the breakage of disulfide bonds for better keratinase catalysis. This review aims to contribute an overview of keratin biomass as an enzyme substrate and a systematic analysis of currently sequenced keratinolytic enzymes and their classification and reaction mechanisms. We also summarize and discuss keratinase assays, available keratinase structures and finally examine the available data on uses of keratinases in practical biorefinery protein upcycling applications.
Collapse
|
8
|
Su C, Gong JS, Qin J, Li H, Li H, Xu ZH, Shi JS. The tale of a versatile enzyme: Molecular insights into keratinase for its industrial dissemination. Biotechnol Adv 2020; 45:107655. [PMID: 33186607 DOI: 10.1016/j.biotechadv.2020.107655] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/02/2023]
Abstract
Keratinases are unique among proteolytic enzymes for their ability to degrade recalcitrant insoluble proteins, and they are of critical importance in keratin waste management. Over the past few decades, researchers have focused on discovering keratinase producers, as well as producing and characterizing keratinases. The application potential of keratinases has been investigated in the feed, fertilizer, leathering, detergent, cosmetic, and medical industries. However, the commercial availability of keratinases is still limited due to poor productivity and properties, such as thermostability, storage stability and resistance to organic reagents. Advances in molecular biotechnology have provided powerful tools for enhancing the production and functional properties of keratinase. This critical review systematically summarizes the application potential of keratinase, and in particular certain newly discovered catalytic capabilities. Furthermore, we provide comprehensive insight into mechanistic and molecular aspects of keratinases including analysis of gene sequences and protein structures. In addition, development and current advances in protein engineering of keratinases are summarized and discussed, revealing that the engineering of protein domains such as signal peptides and pro-peptides has become an important strategy to increase production of keratinases. Finally, prospects for further development are also proposed, indicating that advanced protein engineering technologies will lead to improved and additional commercial keratinases for various industrial applications.
Collapse
Affiliation(s)
- Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
9
|
Pinski A, Zur J, Hasterok R, Hupert-Kocurek K. Comparative Genomics of Stenotrophomonas maltophilia and Stenotrophomonas rhizophila Revealed Characteristic Features of Both Species. Int J Mol Sci 2020; 21:E4922. [PMID: 32664682 PMCID: PMC7404187 DOI: 10.3390/ijms21144922] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
Although Stenotrophomonas maltophilia strains are efficient biocontrol agents, their field applications have raised concerns due to their possible threat to human health. The non-pathogenic Stenotrophomonas rhizophila species, which is closely related to S. maltophilia, has been proposed as an alternative. However, knowledge regarding the genetics of S. rhizophila is limited. Thus, the aim of the study was to define any genetic differences between the species and to characterise their ability to promote the growth of plant hosts as well as to enhance phytoremediation efficiency. We compared 37 strains that belong to both species using the tools of comparative genomics and identified 96 genetic features that are unique to S. maltophilia (e.g., chitin-binding protein, mechanosensitive channels of small conductance and KGG repeat-containing stress-induced protein) and 59 that are unique to S. rhizophila (e.g., glucosylglycerol-phosphate synthase, cold shock protein with the DUF1294 domain, and pteridine-dependent dioxygenase-like protein). The strains from both species have a high potential for biocontrol, which is mainly related to the production of keratinases (KerSMD and KerSMF), proteinases and chitinases. Plant growth promotion traits are attributed to the biosynthesis of siderophores, spermidine, osmoprotectants such as trehalose and glucosylglycerol, which is unique to S. rhizophila. In eight out of 37 analysed strains, the genes that are required to degrade protocatechuate were present. While our results show genetic differences between the two species, they had a similar growth promotion potential. Considering the information above, S. rhizophila constitutes a promising alternative for S. maltophilia for use in agricultural biotechnology.
Collapse
Affiliation(s)
- Artur Pinski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (J.Z.); (R.H.)
| | | | | | - Katarzyna Hupert-Kocurek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (J.Z.); (R.H.)
| |
Collapse
|
10
|
Jankiewicz U, Baranowski B, Swiontek Brzezinska M, Frąk M. Purification, characterization and cloning of a chitinase from Stenotrophomonas rhizophila G22. 3 Biotech 2020; 10:16. [PMID: 31879580 DOI: 10.1007/s13205-019-2007-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/02/2019] [Indexed: 01/29/2023] Open
Abstract
In the presented research the extracellular chitinase of Stenotrophomonas rhizophila G22 was biochemically and molecularly characterized. The studied enzyme was purified from a 72-h bacterial culture about 14 times, with a recovery of 63%. The molecular weight of the purified protein was estimated at 50 kDa by SDS-PAGE. The enzyme showed high activity against colloidal chitin. Significantly lower activities were observed with native chitin powder and chitosan. Adsorption of the enzyme to colloidal chitin and to powdered chitin at the level of 75% and 37%, respectively, was observed after 30 min of reaction. Optimum temperature and pH were 37 °C and 5.9, respectively. The enzyme demonstrated higher activity against nitrophenyl-β d N, N', N″-triacetylchitotriose and approx. 5 times lower activity for 4-nitrophenyl-N, N'-diacetyl-β-d-chitobiose. The enzyme is an endochitinase, which is confirmed by the K m and V max values determined in the studies. S. rhizophila G22 endochitinase was inhibited in the presence of cysteine-specific inhibitors, which indicates the role of cysteine moieties in the mechanism of catalysis or in stabilisation of the enzyme molecule. Also Ca2+ and Mn2+ ions may stabilise the protein's spatial structure. SDS and ions: Fe2+, Cu2+, Co2+, Zn2+ inhibited the activity of enzyme. A full-length (2109 bp) gene coding chitinase from S. rhizophila G22 was obtained. Four domains typical for glycoside hydrolase family 18 (GH 18) chitinases were identified: catalytic Gly_18, chitin-binding-ChtBD3, type-III fibronectin-FN3 and polycystic kidney disease domain-PKD domain.
Collapse
Affiliation(s)
- Urszula Jankiewicz
- 1Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02787 Warsaw, Poland
| | - Bartosz Baranowski
- 1Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02787 Warsaw, Poland
| | - Maria Swiontek Brzezinska
- 2Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87100 Toruń, Poland
| | - Magdalena Frąk
- 3Department of Remote Sensing and Environmental Assessment, Institute of Environmental Engineering, Warsaw University of Life Science, Nowoursynowska 159, 02787 Warsaw, Poland
| |
Collapse
|
11
|
Azman A, Vasodavan K, Joseph N, Kumar S, Hamat RA, Nordin SA, Aizat WM, van Belkum A, Neela VK. Physiological and proteomic analysis of Stenotrophomonas maltophilia grown under the iron-limited condition. Future Microbiol 2019; 14:1417-1428. [DOI: 10.2217/fmb-2019-0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aims: To study physiological and proteomic analysis of Stenotrophomonas maltophilia grown under iron-limited condition. Methods: One clinical and environmental S. maltophilia isolates grown under iron-depleted conditions were studied for siderophore production, ability to kill nematodes and alteration in protein expression using isobaric tags for relative and absolute quantification (ITRAQ). Results & conclusions: Siderophore production was observed in both clinical and environmental strains under iron-depleted conditions. Caenorhabditis elegans assay showed higher killing rate under iron-depleted (96%) compared with normal condition (76%). The proteins identified revealed, 96 proteins upregulated and 26 proteins downregulated for the two isolates under iron depletion. The upregulated proteins included several iron acquisition proteins, metabolic proteins and putative virulence proteins.
Collapse
Affiliation(s)
- Adleen Azman
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Kalidasan Vasodavan
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Narcisse Joseph
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rukman A Hamat
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Syafinaz A Nordin
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wan M Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | | | - Vasantha K Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
Darwesh OM, El-Hawary AS, El Kelany US, El-Sherbiny GM. Nematicidal activity of thermostable alkaline protease produced by Saccharomonospora viridis strain Hw G550. ACTA ACUST UNITED AC 2019; 24:e00386. [PMID: 31763199 PMCID: PMC6864322 DOI: 10.1016/j.btre.2019.e00386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 11/23/2022]
Abstract
Isolation and identification of thermo alkaliphilic actinomycetes. Obtaining of thermostable alkaline protease enzyme. Evaluation of the nematicidal activity of obtained protease. Application of thermostable alkaline protease as nemticidal agent.
Application of thermostable alkaline protease to control the harmful nematodes was investigated in the current study. A total of 14 proteolytic actinomycetes were isolated from Egyptian harsh environments. Out of them, isolate G550 exhibited the highest proteolytic activity (528.9 U/ml). Protease from isolate G550 exhibited high nematicidal activity against M. incognita under laboratory conditions and caused hydrolysis of J2S cuticle. This isolate was identified using molecular techniques and deposited in GenBank under name of Saccharomonospora viridis strain Hw G550 with accession number: MF152631. The G550 protease was extracted, characterized and applied under greenhouse conditions as nematicidal agent. This enzyme exhibited maximum activity and stability at alkaline pH (8) and thermal conditions (50–60 °C). Also, the results showed that, all treatments using protease caused a significant decrease in nematode reproduction and increasing in the plant properties. Finally, the thermo alkaliphilic protease could be used as bio-control agent against RKN.
Collapse
Affiliation(s)
- Osama M Darwesh
- Agricultural Microbiology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmad S El-Hawary
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Nasr city, Cairo, Egypt
| | - Usama S El Kelany
- Plant Pathology Department, Agricultural and Biological Division, National Research Centre, Cairo, Egypt
| | - Gamal M El-Sherbiny
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Nasr city, Cairo, Egypt
| |
Collapse
|
13
|
Salwan R, Sharma V. Trends in extracellular serine proteases of bacteria as detergent bioadditive: alternate and environmental friendly tool for detergent industry. Arch Microbiol 2019; 201:863-877. [PMID: 31025057 DOI: 10.1007/s00203-019-01662-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/20/2018] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
Proteases, one of the largest groups of industrial enzymes occupy a major share in detergent industry. To meet the existing demands, proteases with efficient catalytic properties are being explored from bacteria residing in extreme habitats. Alkaline proteases are also considered as promising candidates for industrial sectors due to the activity and stability under alkaline and harsh environment. Therefore, a systematic review on experimental studies of bacterial proteases was conducted with emphasis on purification, characterization, cloning and expression and their suitability as detergent additive. Relevant searches using a combination of filters/keywords were performed in the online databases; PubMed, Science Direct, Scopus and Web of Science. Over thousands of research papers, 71 articles in Scopus, 48 articles in Science Direct, 18 articles in PubMed and 8 articles in Web of Science were selected with regard to bacterial extracellular proteases till date. Selected articles revealed majority of the studies conducted between the years 2015 and 17 and were focused on purification of proteases from bacteria. Among microbes, a total of 41 bacterial genera have been explored with limited studies from extreme habitats. Majority of the studies have reported the involvement of subtilisin-like serine proteases with effective properties for detergent industries. The studies revealed shifting of trend from purification to cloning to genetic engineering to meet the industrial demands. The present systematic review describes the proteases from extremophilic bacteria and use of biotechnological techniques such as site-directed mutagenesis and codon optimization to engineer enzymes with better hot spots in the active sites to meet industrial challenges.
Collapse
Affiliation(s)
- Richa Salwan
- College of Horticulture and Forestry, Dr. YSP- University of Horticulture and Forestry, Neri, Hamirpur, HP, 177 001, India. .,University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, PB, 140 413, India.
| | - Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, PB, 140 413, India.
| |
Collapse
|
14
|
Kalwasińska A, Jankiewicz U, Felföldi T, Burkowska-But A, Brzezinska MS. Alkaline and Halophilic Protease Production by Bacillus luteus H11 and Its Potential Industrial Applications. Food Technol Biotechnol 2019; 56:553-561. [PMID: 30923452 PMCID: PMC6399708 DOI: 10.17113/ftb.56.04.18.5553] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This paper presents the results of the study on the production of protease by Bacillus luteus H11 isolated from an alkaline soda lime. B. luteus H11 was identified as an alkalohalophilic bacterium, and its extracellular serine endoprotease also showed an extreme alkali- and halotolerance. It was remarkably stable in the presence of NaCl up to 5 M. The enzyme was active in a broad range of pH values and temperatures, with an optimum pH of 10.5 and a temperature of 45 °C. It had a molecular mass of about 37 kDa and showed activity against azocasein and a synthetic substrate for the subtilisin-like protease, N-succinyl-l-phenylalanine-p-nitroanilide. The halo-alkaline protease produced by B. luteus H11 seems to be significant from an industrial perspective because of its tolerance towards high salinity and alkalinity as well as its stability against some organic solvents, surfactants and oxidants. These properties make the protease suitable for applications in food, detergent and pharmaceutical industries, and also in environmental bioremediation.
Collapse
Affiliation(s)
- Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, PL-87100 Toruń, Poland
| | - Urszula Jankiewicz
- Department of Biochemistry, Warsaw University of Life Sciences, Nowoursynowska 159, PL-02787 Warsaw, Poland
| | - Tamás Felföldi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/c, HU-1117 Budapest, Hungary
| | - Aleksandra Burkowska-But
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, PL-87100 Toruń, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, PL-87100 Toruń, Poland
| |
Collapse
|
15
|
Isolation of a feather-degrading strain of bacterium from spider gut and the purification and identification of its three key enzymes. Mol Biol Rep 2018; 45:1681-1689. [DOI: 10.1007/s11033-018-4311-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
|
16
|
White CV, Herman MA. Transcriptomic, Functional, and Network Analyses Reveal Novel Genes Involved in the Interaction Between Caenorhabditis elegans and Stenotrophomonas maltophilia. Front Cell Infect Microbiol 2018; 8:266. [PMID: 30177956 PMCID: PMC6109753 DOI: 10.3389/fcimb.2018.00266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
The bacterivorous nematode Caenorhabditis elegans is an excellent model for the study of innate immune responses to a variety of bacterial pathogens, including the emerging nosocomial bacterial pathogen Stenotrophomonas maltophilia. The study of this interaction has ecological and medical relevance as S. maltophilia is found in association with C. elegans and other nematodes in the wild and is an emerging opportunistic bacterial pathogen. We identified 393 genes that were differentially expressed when exposed to virulent and avirulent strains of S. maltophilia and an avirulent strain of E. coli. We then used a probabilistic functional gene network model (WormNet) to determine that 118 of the 393 differentially expressed genes formed an interacting network and identified a set of highly connected genes with eight or more predicted interactions. We hypothesized that these highly connected genes might play an important role in the defense against S. maltophila and found that mutations of six of seven highly connected genes have a significant effect on nematode survival in response to these bacteria. Of these genes, C48B4.1, mpk-2, cpr-4, clec-67, and lys-6 are needed for combating the virulent S. maltophilia JCMS strain, while dod-22 was solely involved in response to the avirulent S. maltophilia K279a strain. We further found that dod-22 and clec-67 were up regulated in response to JCMS vs. K279a, while C48B4.1, mpk-2, cpr-4, and lys-6 were down regulated. Only dod-22 had a documented role in innate immunity, which demonstrates the merit of our approach in the identification of novel genes that are involved in combating S. maltophilia infection.
Collapse
Affiliation(s)
- Corin V White
- Ecological Genomics Institute, Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Michael A Herman
- Ecological Genomics Institute, Division of Biology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
17
|
Cloning, expression, and characterization of an alkaline protease, AprV, from Vibrio sp. DA1-1. Bioprocess Biosyst Eng 2018; 41:1437-1447. [PMID: 29934784 DOI: 10.1007/s00449-018-1972-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/14/2018] [Indexed: 01/27/2023]
Abstract
A novel alkaline protease (named AprV) gene from Vibrio sp. DA1-1 was cloned and expressed in Escherichia coli BL21 (DE3) pLysS. The sequence analysis showed the highest homology of 68% with the characterized protease from Alkalimonas collagenimarina AC40T. The recombinant AprV was purified with the molecular weight of 28 kDa. The optimum temperature and pH were determined to be 55 °C and 10.0, respectively. The enzyme activity was slightly enhanced by Ca2+, Mg2+, Zn2+, Ba2+, and, however, was highly inhibited by Sn2+ and EDTA. The AprV was stable in the presence of some surfactants and oxidizing agents, such as 1% Tween 20-80, 1% JFC-2, and 5% JFC-2. Casein was found to be the ideal substrate with specific activity of 1139 U/mg. Moreover, we found that AprV (10,000 U), together with commercial detergent, could completely remove the blood on the cotton. Furthermore, AprV also demonstrated dehairing activity on goat and bull skin. These results indicated that the alkaline protease AprV might be a potential candidate for applications in the detergent and leather industries.
Collapse
|
18
|
Žuža MG, Milašinović NZ, Jonović MM, Jovanović JR, Kalagasidis Krušić MT, Bugarski BM, Knežević-Jugović ZD. Design and characterization of alcalase–chitosan conjugates as potential biocatalysts. Bioprocess Biosyst Eng 2017; 40:1713-1723. [DOI: 10.1007/s00449-017-1826-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/02/2017] [Indexed: 11/30/2022]
|
19
|
Genome Sequence of Delftia acidovorans HK171, a Nematicidal Bacterium Isolated from Tomato Roots. GENOME ANNOUNCEMENTS 2017; 5:5/9/e01746-16. [PMID: 28254991 PMCID: PMC5334598 DOI: 10.1128/genomea.01746-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Delftia acidovorans strain HK171, isolated from tomato roots, exhibited nematicidal activity against Meloidogyne incognita. Here, we present the genome sequence of D. acidovorans strain HK171, which consists of one circular chromosome of 6,430,384 bp, with 66.9% G+C content.
Collapse
|