1
|
Wang X, Zhang X, Mao Y, Wu Y, Lv X, Liu L, Han W, Yin S, Wu R, Chen J, Liu Y. Ethanol-Inducible Bioproduction of Human α-Lactalbumin in Komagataella phaffii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9246-9260. [PMID: 40173411 DOI: 10.1021/acs.jafc.5c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
α-Lactalbumin (α-LA) is the most abundant whey protein in human milk. Microbially expressed α-LA serves as a potential additive in infant formula to improve the protein composition and amino acid profile, enhancing the deep simulation of human milk. Komagataella phaffii is widely recognized for its ability to achieve high-density fermentation and robust secretion of heterologous proteins, making it ideal for large-scale production with relatively simple fermentation conditions. At present, the expression of human α-LA in K. phaffii remains challenged by the potential toxicity of using methanol as an inducer and inefficient bioproduction. In this study, we first employed the ethanol-transcriptional signal amplification device system in K. phaffii to express human α-LA, achieving a titer of 7.39 mg·L-1 in shake flask fermentation. Next, through hybrid optimization of the native α-factor signal peptide and multicopy integration of the target gene, the α-LA titer was further increased to 16.52 mg·L-1 in the shake flask. Finally, by addressing acetic acid accumulation in bioreactor fermentation, the engineered production strain achieved a titer of 0.60 g·L-1 in a 3 L bioreactor. This work represents the first demonstration of high-efficiency methanol-free production of human α-LA in K. phaffii and provides strategies for the efficient expression and secretion of recombinant proteins in this host organism.
Collapse
Affiliation(s)
- Xinyi Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Xuguang Zhang
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia 011517, China
| | - Yuejian Mao
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia 011517, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Weiwei Han
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia 011517, China
| | - Shenming Yin
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia 011517, China
| | - Ruonan Wu
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia 011517, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| |
Collapse
|
2
|
Jia M, Shao L, Jiang J, Jiang W, Xin F, Zhang W, Jiang Y, Jiang M. Mitigating toxic formaldehyde to promote efficient utilization of C1 resources. Crit Rev Biotechnol 2024:1-13. [PMID: 39647989 DOI: 10.1080/07388551.2024.2430476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/10/2024] [Accepted: 10/27/2024] [Indexed: 12/10/2024]
Abstract
The C1 resource is widely considered because of its abundance and affordability. In the context of extensive utilization of C1 resources by methylotrophic microorganisms, especially for methanol, formaldehyde is an important intermediate metabolite that is at the crossroads of assimilation and dissimilation pathways. However, formaldehyde is an exceedingly reactive compound that can form covalent cross-linked complexes with amine and thiol groups in cells, which causes irreversible damage to the organism. Thus, it is important to balance the intensity of the assimilation and dissimilation pathways of formaldehyde, which can avoid formaldehyde toxicity and improve the full utilization of C1 resources. This review details the source of endogenous formaldehyde and its toxicity mechanism, explaining the harm of excessive accumulation of formaldehyde to metabolism. Importantly, the self-detoxification and various feasible strategies to mitigate formaldehyde toxicity are discussed and proposed. These strategies are meant to help appropriately handle formaldehyde toxicity and accelerate the effective use of C1 resources.
Collapse
Affiliation(s)
- Mengshi Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Lei Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Jie Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|
3
|
Mota MN, Palma M, Sá-Correia I. Candida boidinii isolates from olive curation water: a promising platform for methanol-based biomanufacturing. AMB Express 2024; 14:93. [PMID: 39198272 PMCID: PMC11358584 DOI: 10.1186/s13568-024-01754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Methanol is a promising feedstock for biomanufacturing, but the efficiency of methanol-based bioprocesses is limited by the low rate of methanol utilization pathways and methanol toxicity. Yeast diversity is an attractive biological resource to develop efficient bioprocesses since any effort with strain improvement is more deserving if applied to innate robust strains with relevant catabolic and biosynthetic potential. The present study is in line with such rational and describes the isolation and molecular identification of seven isolates of the methylotrophic species Candida boidinii from waters derived from the traditional curation of olives, in different years, and from contaminated superficial soil near fuel stations. The yeast microbiota from those habitats was also characterized. The four C. boidinii isolates obtained from the curation of olives' water exhibited significantly higher maximum specific growth rates (range 0.15-0.19 h-1), compared with the three isolates obtained from the fuel contaminated soils (range 0.05-0.06 h-1) when grown on methanol as the sole C-source (1% (v/v), in shake flasks, at 30°C). The isolates exhibit significant robustness towards methanol toxicity that increases as the cultivation temperature decreases from 30°C to 25°C. The better methanol-based growth performance exhibited by C. boidinii isolates from olives´ soaking waters could not be essentially attributed to higher methanol tolerance. These methanol-efficient catabolizing isolates are proposed as a promising platform to develop methanol-based bioprocesses.
Collapse
Affiliation(s)
- Marta N Mota
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
| | - Margarida Palma
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal.
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal.
| |
Collapse
|
4
|
Liang J, He S, Sun J, Bao H, Cui L. Secretory production and characterization of a highly effective chitosanase from Streptomyces coelicolor A3(2) M145 in Pichia pastoris. Biotechnol J 2024; 19:e2300402. [PMID: 38403403 DOI: 10.1002/biot.202300402] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
In this study, a glycoside hydrolase family 46 chitosanase from Streptomyces coelicolor A3(2) M145 was firstly cloned and expressed in Pichia pastoris GS115 (P. pastoris GS115). The recombinant enzyme (CsnA) showed maximal activity at pH 6.0 and 65°C. Both thermal stability and pH stability of CsnA expressed in P. pastoris GS115 were significantly increased compared with homologous expression in Streptomyces coelicolor A3(2). A stable chitosanase activity of 725.7 ± 9.58 U mL-1 was obtained in fed-batch fermentation. It's the highest level of CsnA from Streptomyces coelicolor expressed in P. pastoris so far. The hydrolytic process of CsnA showed a time-dependent manner. Chitosan oligosaccharides (COSs) generated by CsnA showed antifungal activity against Fusarium oxysporum sp. cucumerinum (F. oxysporum sp. cucumerinum). The secreted expression and hydrolytic performance make the enzyme a desirable biocatalyst for industrial controllable production of chitooligosaccharides with specific degree of polymerization, which have potential to control fungi that cause important crop diseases.
Collapse
Affiliation(s)
- Jiayu Liang
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Colleges and Universities, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shengbin He
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Colleges and Universities, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jian Sun
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Colleges and Universities, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Haodong Bao
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Colleges and Universities, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Lanyu Cui
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Colleges and Universities, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
5
|
Zhong J, Chen S, Lin S, Jia Y, Li H, Zhan T, Li J. Obtainment and Inoculation of Acinetobacter pittii Strain JJ-2, and Combined Action with Plants for Formaldehyde and CO 2 Removal: A Research Study. Curr Microbiol 2023; 81:31. [PMID: 38062219 DOI: 10.1007/s00284-023-03536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/22/2023] [Indexed: 12/18/2023]
Abstract
A formaldehyde-degrading bacterium JJ-2 was isolated from the rhizosphere of Chlorophytum and identified as Acinetobacter pittii by colony morphology and 16S rDNA sequence analysis. Further studies showed that under optimal conditions, JJ-2 could maintain activity for six cycles at an initial formaldehyde concentration of 450 mg L-1. At the same time, the complete degradation time was shortened from 12 to 6 h. When the JJ-2 strain was inoculated into sterile soil, the surface spray method had the best effect, and the removal efficiency of 5 ppm formaldehyde increased by 22.63%. In an actual potted plants system colonized with strain JJ-2, the first and second fumigations (without re-inoculation) increased removal by 1.36 times and 0.92 times during the day and 1.27 times and 2.07 times at night. In addition, in the second fumigation, the plant-bacteria combined system was 693.63 ppm and the plant system was 715.34 ppm, effectively reducing the CO2 concentration. This study provides an economical, ecological, and efficient approach to improve the combined system of plants and bacteria to remove gaseous formaldehyde from indoor air, with a positive impact on carbon neutrality.
Collapse
Affiliation(s)
- Jiaochan Zhong
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, No. 696 South Fenghe Ave., Nanchang, 330063, Jiangxi, China
| | - Silan Chen
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, No. 696 South Fenghe Ave., Nanchang, 330063, Jiangxi, China
| | - Shujie Lin
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, No. 696 South Fenghe Ave., Nanchang, 330063, Jiangxi, China
| | - Yinjuan Jia
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, No. 696 South Fenghe Ave., Nanchang, 330063, Jiangxi, China
| | - Han Li
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, No. 696 South Fenghe Ave., Nanchang, 330063, Jiangxi, China
| | - Ting Zhan
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, No. 696 South Fenghe Ave., Nanchang, 330063, Jiangxi, China
| | - Jian Li
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, No. 696 South Fenghe Ave., Nanchang, 330063, Jiangxi, China.
| |
Collapse
|
6
|
Sarwar A, Lee EY. Methanol-based biomanufacturing of fuels and chemicals using native and synthetic methylotrophs. Synth Syst Biotechnol 2023; 8:396-415. [PMID: 37384124 PMCID: PMC10293595 DOI: 10.1016/j.synbio.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023] Open
Abstract
Methanol has recently gained significant attention as a potential carbon substrate for the production of fuels and chemicals, owing to its high degree of reduction, abundance, and low price. Native methylotrophic yeasts and bacteria have been investigated for the production of fuels and chemicals. Alternatively, synthetic methylotrophic strains are also being developed by reconstructing methanol utilization pathways in model microorganisms, such as Escherichia coli. Owing to the complex metabolic pathways, limited availability of genetic tools, and methanol/formaldehyde toxicity, the high-level production of target products for industrial applications are still under development to satisfy commercial feasibility. This article reviews the production of biofuels and chemicals by native and synthetic methylotrophic microorganisms. It also highlights the advantages and limitations of both types of methylotrophs and provides an overview of ways to improve their efficiency for the production of fuels and chemicals from methanol.
Collapse
Affiliation(s)
- Arslan Sarwar
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| |
Collapse
|
7
|
Liu B, Li H, Zhou H, Zhang J. Enhancing xylanase expression by Komagataella phaffii by formate as carbon source and inducer. Appl Microbiol Biotechnol 2022; 106:7819-7829. [DOI: 10.1007/s00253-022-12249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2022]
|
8
|
Role of Dissimilative Pathway of Komagataella phaffii (Pichia pastoris): Formaldehyde Toxicity and Energy Metabolism. Microorganisms 2022; 10:microorganisms10071466. [PMID: 35889185 PMCID: PMC9321669 DOI: 10.3390/microorganisms10071466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/30/2023] Open
Abstract
Komagataella phaffii (aka Pichia pastoris) is a yeast able to grow in methanol as the sole carbon and energy source. This substrate is converted into formaldehyde, a toxic intermediary that can either be assimilated to biomass or dissimilated to CO2 through the enzymes formaldehyde dehydrogenase (FLD) and formate dehydrogenase, also producing energy in the form of NADH. The dissimilative pathway has been described as an energy producing and a detoxifying route, but conclusive evidence has not been provided for this. In order to elucidate this theory, we generated mutants lacking the FLD activity (Δfld1) and used flux analysis to evaluate the metabolic impact of this disrupted pathway. Unexpectedly, we found that the specific growth rate of the Δfld1 strain was only slightly lower (92%) than the control. In contrast, the sensitivity to formaldehyde pulses (up to 8mM) was significantly higher in the Δfld1 mutant strain and was associated with a higher maintenance energy. In addition, the intracellular flux estimation revealed a high metabolic flexibility of K. phaffii in response to the disrupted pathway. Our results suggest that the role of the dissimilative pathway is mainly to protect the cells from the harmful effect of formaldehyde, as they were able to compensate for the energy provided from this pathway when disrupted.
Collapse
|
9
|
Cai HL, Shimada M, Nakagawa T. The potential and capability of the methylotrophic yeast Ogataea methanolica in a "methanol bioeconomy". Yeast 2022; 39:440-448. [PMID: 35811458 DOI: 10.1002/yea.3807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/03/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Efficient bioconversion of methanol, which can be generated from greenhouse gases, into valuable resources contributes to achieving climate goals and developing a sustainable economy. The methylotrophic yeast Ogataea methanolica is considered to be a suitable host for efficient methanol bioconversion because it has outstanding characteristics for the better adaptive potential to a high methanol environment (i.e., greater than 5%). This capacity represents a huge potential to construct an innovative carbon-neutral production system that converts methanol into value-added chemicals under the control of strong methanol-induced promoters. In this review, we discuss what is known about the regulation of methanol metabolism and adaptation mechanisms for 5% methanol conditions in O. methanolica in detail. We also discuss about the potential to breed "super methylotrophic yeast," which has potent growth characteristics under high methanol conditions.
Collapse
Affiliation(s)
- Hao-Liang Cai
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Masaya Shimada
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tomoyuki Nakagawa
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
10
|
Yu YF, Yang J, Zhao F, Lin Y, Han S. Comparative transcriptome and metabolome analyses reveal the methanol dissimilation pathway of Pichia pastoris. BMC Genomics 2022; 23:366. [PMID: 35549850 PMCID: PMC9103059 DOI: 10.1186/s12864-022-08592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pichia pastoris (Komagataella phaffii) is a model organism widely used for the recombinant expression of eukaryotic proteins, and it can metabolize methanol as its sole carbon and energy source. Methanol is oxidized to formaldehyde by alcohol oxidase (AOX). In the dissimilation pathway, formaldehyde is oxidized to CO2 by formaldehyde dehydrogenase (FLD), S-hydroxymethyl glutathione hydrolase (FGH) and formate dehydrogenase (FDH). RESULTS The transcriptome and metabolome of P. pastoris were determined under methanol cultivation when its dissimilation pathway cut off. Firstly, Δfld and Δfgh were significantly different compared to the wild type (GS115), with a 60.98% and 23.66% reduction in biomass, respectively. The differential metabolites between GS115 and Δfld were mainly enriched in ABC transporters, amino acid biosynthesis, and protein digestion and absorption. Secondly, comparative transcriptome between knockout and wild type strains showed that oxidative phosphorylation, glycolysis and the TCA cycle were downregulated, while alcohol metabolism, proteasomes, autophagy and peroxisomes were upregulated. Interestingly, the down-regulation of the oxidative phosphorylation pathway was positively correlated with the gene order of dissimilation pathway knockdown. In addition, there were significant differences in amino acid metabolism and glutathione redox cycling that raised our concerns about formaldehyde sorption in cells. CONCLUSIONS This is the first time that integrity of dissimilation pathway analysis based on transcriptomics and metabolomics was carried out in Pichia pastoris. The blockage of dissimilation pathway significantly down-regulates the level of oxidative phosphorylation and weakens the methanol assimilation pathway to the point where deficiencies in energy supply and carbon fixation result in inefficient biomass accumulation and genetic replication. In addition, transcriptional upregulation of the proteasome and autophagy may be a stress response to resolve formaldehyde-induced DNA-protein crosslinking.
Collapse
Affiliation(s)
- Yi-Fan Yu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jiashuo Yang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Fengguang Zhao
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Shuangyan Han
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Biedermann AM, Gengaro IR, Rodriguez-Aponte SA, Love KR, Love JC. Modular development enables rapid design of media for alternative hosts. Biotechnol Bioeng 2021; 119:59-71. [PMID: 34596238 PMCID: PMC9298315 DOI: 10.1002/bit.27947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/11/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023]
Abstract
Developing media to sustain cell growth and production is an essential and ongoing activity in bioprocess development. Modifications to media can often address host or product‐specific challenges, such as low productivity or poor product quality. For other applications, systematic design of new media can facilitate the adoption of new industrially relevant alternative hosts. Despite manifold existing methods, common approaches for optimization often remain time and labor‐intensive. We present here a novel approach to conventional media blending that leverages stable, simple, concentrated stock solutions to enable rapid improvement of measurable phenotypes of interest. We applied this modular methodology to generate high‐performing media for two phenotypes of interest: biomass accumulation and heterologous protein production, using high‐throughput, milliliter‐scale batch fermentations of Pichia pastoris as a model system. In addition to these examples, we also created a flexible open‐source package for modular blending automation on a low‐cost liquid handling system to facilitate wide use of this method. Our modular blending method enables rapid, flexible media development, requiring minimal labor investment and prior knowledge of the host organism, and should enable developing improved media for other hosts and phenotypes of interest.
Collapse
Affiliation(s)
- Andrew M Biedermann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Isabella R Gengaro
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sergio A Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kerry R Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Cai H, Doi R, Shimada M, Hayakawa T, Nakagawa T. Metabolic regulation adapting to high methanol environment in the methylotrophic yeast Ogataea methanolica. Microb Biotechnol 2021; 14:1512-1524. [PMID: 33939325 PMCID: PMC8313246 DOI: 10.1111/1751-7915.13811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022] Open
Abstract
Since methylotrophic yeasts such as Ogataea methanolica can use methanol as a sole carbon feedstock, they could be applied to produce valuable products from methanol, a next-generation energy source synthesized from natural gases, using genetic engineering tools. In this study, metabolite profiling of O. methanolica was conducted under glucose (Glc) and low and high methanol (L- and H-MeOH) conditions to show the adaptation mechanism to a H-MeOH environment. The yeast strain responded not only to the presence of methanol but also to its concentration based on the growth condition. Under H-MeOH conditions, O. methanolica downregulated the methanol utilization, glycolytic pathway and alcohol oxidase (AOD) isozymes and dihydroxyacetone synthase (DAS) expression compared with L-MeOH-grown cells. However, levels of energy carriers, such as ATP, were maintained to support cell survival. In H-MeOH-grown cells, reactive oxygen species (ROS) levels were significantly elevated. Along with increasing ROS levels, ROS scavenging system expression was significantly increased in H-MeOH-grown cells. Thus, we concluded that formaldehyde and H2 O2 , which are products of methanol oxidation by AOD isozymes in the peroxisome, are overproduced in H-MeOH-grown cells, and excessive ROS derived from these cells is generated in the cytosol, resulting in upregulation of the antioxidant system and downregulation of the methanol-utilizing pathway to suppress overproduction of toxic intermediates.
Collapse
Affiliation(s)
- Hao‐Liang Cai
- The United Graduate School of Agricultural ScienceGifu University1‐1 YanagidoGifu501‐1193Japan
| | - Ryohei Doi
- The Graduate School of Natural Sciences and Technologies1‐1 YanagidoGifu501‐1193Japan
| | - Masaya Shimada
- The United Graduate School of Agricultural ScienceGifu University1‐1 YanagidoGifu501‐1193Japan
- The Graduate School of Natural Sciences and Technologies1‐1 YanagidoGifu501‐1193Japan
- The Faculty of Applied Biological Sciences1‐1 YanagidoGifu501‐1193Japan
| | - Takashi Hayakawa
- The United Graduate School of Agricultural ScienceGifu University1‐1 YanagidoGifu501‐1193Japan
- The Graduate School of Natural Sciences and Technologies1‐1 YanagidoGifu501‐1193Japan
- The Faculty of Applied Biological Sciences1‐1 YanagidoGifu501‐1193Japan
| | - Tomoyuki Nakagawa
- The United Graduate School of Agricultural ScienceGifu University1‐1 YanagidoGifu501‐1193Japan
- The Graduate School of Natural Sciences and Technologies1‐1 YanagidoGifu501‐1193Japan
- The Faculty of Applied Biological Sciences1‐1 YanagidoGifu501‐1193Japan
| |
Collapse
|
13
|
Zhan C, Li X, Yang Y, Nielsen J, Bai Z, Chen Y. Strategies and challenges with the microbial conversion of methanol to high-value chemicals. Biotechnol Bioeng 2021; 118:3655-3668. [PMID: 34133022 DOI: 10.1002/bit.27862] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
As alternatives to traditional fermentation substrates, methanol (CH3 OH), carbon dioxide (CO2 ) and methane (CH4 ) represent promising one-carbon (C1) sources that are readily available at low-cost and share similar metabolic pathway. Of these C1 compounds, methanol is used as a carbon and energy source by native methylotrophs, and can be obtained from CO2 and CH4 by chemical catalysis. Therefore, constructing and rewiring methanol utilization pathways may enable the use of one-carbon sources for microbial fermentations. Recent bioengineering efforts have shown that both native and nonnative methylotrophic organisms can be engineered to convert methanol, together with other carbon sources, into biofuels and other commodity chemicals. However, many challenges remain and must be overcome before industrial-scale bioprocessing can be established using these engineered cell refineries. Here, we provide a comprehensive summary and comparison of methanol metabolic pathways from different methylotrophs, followed by a review of recent progress in engineering methanol metabolic pathways in vitro and in vivo to produce chemicals. We discuss the major challenges associated with establishing efficient methanol metabolic pathways in microbial cells, and propose improved designs for future engineering.
Collapse
Affiliation(s)
- Chunjun Zhan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.,BioInnovation Institute, Copenhagen N, Denmark
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
14
|
Ma P, Takashima S, Fujita C, Yamada S, Oshima Y, Cai HL, Yurimoto H, Sakai Y, Hayakawa T, Shimada M, Ning X, Wei B, Nakagawa T. Fatty acid composition of the methylotrophic yeast Komagataella phaffii grown under low- and high-methanol conditions. Yeast 2021; 38:541-548. [PMID: 34089530 DOI: 10.1002/yea.3655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 11/11/2022] Open
Abstract
In this study, we analysed the intracellular fatty acid profiles of Komagataella phaffii during methylotrophic growth. K. phaffii grown on methanol had significantly lower total fatty acid contents in the cells compared with glucose-grown cells. C18 and C16 fatty acids were the predominant fatty acids in K. phaffii, although the contents of odd-chain fatty acids such as C17 fatty acids were also relatively high. Moreover, the intracellular fatty acid composition of K. phaffii changed in response to not only carbon sources but also methanol concentrations: C17 fatty acids and C18:2 content increased significantly as methanol concentration increased, whereas C18:1 and C18:3 contents were significantly lower in methanol-grown cells. The intracellular content of unidentified compounds (Cn H2n O4 ), on the other hand, was significantly greater in cells grown on methanol. As the intracellular contents of these Cn H2n O4 compounds were significantly higher in a gene-disrupted strain for glutathione peroxidase (gpx1Δ) than in the wild-type strain, we presume that the Cn H2n O4 compounds are fatty acid peroxides. These results indicate that K. phaffii can coordinate intracellular fatty acid composition during methylotrophic growth in order to adapt to high-methanol conditions and that certain fatty acid species such as C17:0, C17:1, C17:2 and C18:2 may be related to the physiological functions by which K. phaffii adapts to high-methanol conditions.
Collapse
Affiliation(s)
- Pengli Ma
- The Graduate School of Natural Sciences and Technologies, Gifu University, Gifu, Japan.,College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Chikako Fujita
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Saya Yamada
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yusuke Oshima
- The Graduate School of Natural Sciences and Technologies, Gifu University, Gifu, Japan
| | - Hao-Liang Cai
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Hayakawa
- The Graduate School of Natural Sciences and Technologies, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Masaya Shimada
- The Graduate School of Natural Sciences and Technologies, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Xia Ning
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Baoyao Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Tomoyuki Nakagawa
- The Graduate School of Natural Sciences and Technologies, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| |
Collapse
|
15
|
Zhou L, Zhao H, Pan T, Trinchi A, Lan M, Wei G. Evaluation of Methanol Induced Free Radicals in Mice Liver. Aust J Chem 2017. [DOI: 10.1071/ch16492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Methanol induced oxidative stress (OS) models in mice were successfully established and evaluated by the electron paramagnetic resonance (EPR) spin trapping technique. The capacity for removal of reactive oxygen species (ROS) free radicals by rhubarb and vitamin C (Vc) as candidate materials was also investigated. EPR was employed to determine the free radicals generated from a spin trapping agent, α-phenyl-N-tert-butylnitrone (PBN), that reacted with the ROS. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and the level of malondialdehyde (MDA) were also evaluated by enzyme assays. The results indicated that methanol clearly promoted the generation of ROS free radicals in the liver of mice. The activity of SOD and GSH-PX was reduced significantly, although the level of MDA was increased as a result of the harmful effect of methanol. In addition, rhubarb and Vc exhibited a protective effect on the mice liver under acute OS.
Collapse
|