1
|
Teale MA, Schneider SL, Seidel S, Krasenbrink J, Poggel M, Eibl D, Sousa MFQ, Eibl R. Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 2. Appl Microbiol Biotechnol 2025; 109:38. [PMID: 39912924 PMCID: PMC11802622 DOI: 10.1007/s00253-024-13373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 02/07/2025]
Abstract
The manufacturing of allogeneic cell therapeutics based on human-induced pluripotent stem cells (hiPSCs) holds considerable potential to revolutionize the accessibility and affordability of modern healthcare. However, achieving the cell yields necessary to ensure robust production hinges on identifying suitable and scalable single-use (SU) bioreactor systems. While specific stirred SU bioreactor types have demonstrated proficiency in supporting hiPSC expansion at L-scale, others, notably instrumented SU multiplate and fixed-bed bioreactors, remain relatively unexplored. By characterizing these bioreactors using both computational fluid dynamics and experimental bioengineering methods, operating ranges were identified for the Xpansion® 10 and Ascent™ 1 m2 bioreactors in which satisfactory hiPSC expansion under serum-free conditions was achieved. These operating ranges were shown not only to effectively limit cell exposure to wall shear stress but also facilitated sufficient oxygen transfer and mixing. Through their application, almost 5 × 109 viable cells could be produced within 5 days, achieving expansion factors of up to 35 without discernable impact on cell viability, identity, or differentiation potential. Key Points •Bioengineering characterizations allowed the identification of operating ranges that supported satisfactory hiPSC expansion •Both the Xpansion® 10 multiplate and Ascent™ 1 m2 fixed-bed reactor accommodated the production of almost 5 × 109 viable cells within 5 days •Exposing the hiPSCs to a median wall shear stress of up to 8.2 × 10-5 N cm-2 did not impair quality.
Collapse
Affiliation(s)
- Misha Alexander Teale
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Samuel Lukas Schneider
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Stefan Seidel
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Jürgen Krasenbrink
- Advanced Manufacturing-Platform Engineering and Support, Bayer AG, Kaiser-Wilhelm-Allee 1, 51373, Leverkusen, Germany
| | - Martin Poggel
- Advanced Manufacturing-Platform Engineering and Support, Bayer AG, Kaiser-Wilhelm-Allee 1, 51373, Leverkusen, Germany
| | - Dieter Eibl
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Marcos F Q Sousa
- Advanced Manufacturing-Platform Engineering and Support, Bayer AG, Kaiser-Wilhelm-Allee 1, 51373, Leverkusen, Germany.
| | - Regine Eibl
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| |
Collapse
|
2
|
Schneider SL, Teale MA, Seidel S, Krasenbrink J, Poggel M, Eibl D, Sousa MFQ, Eibl R. Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 1. Appl Microbiol Biotechnol 2025; 109:37. [PMID: 39912916 PMCID: PMC11802619 DOI: 10.1007/s00253-024-13372-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 02/07/2025]
Abstract
To fully utilize the potential of human induced pluripotent stem cells (hiPSCs) for allogeneic stem cell-based therapies, efficient and scalable expansion procedures must be developed. For other adherent human cell types, the combination of microcarriers (MCs) and stirred tank bioreactors has been shown to meet these demands. In this study, a hiPSC quasi-perfusion expansion procedure based on MCs was developed at 100-mL scale in spinner flasks. Process development began by assessing various medium exchange strategies and MC coatings, indicating that the hiPSCs tolerated the gradual exchange of medium well when cultivated on Synthemax II-coated MCs. This procedure was therefore scaled-up to the 1.3-L Eppendorf BioBLU 1c stirred tank bioreactor by applying the lower limit of Zwietering's suspension criterion ( N s 1 u ), thereby demonstrating proof-of-concept when used in combination with hiPSCs for the first time. To better understand the bioreactor and its bioengineering characteristics, computational fluid dynamics and bioengineering investigations were performed prior to hiPSC cultivation. In this manner, improved process understanding allowed an expansion factor of ≈ 26 to be achieved, yielding more than 3 × 109 cells within 5 days. Further quality analyses confirmed that the hiPSCs maintained their viability, identity, and differentiation potential throughout cultivation. KEY POINTS: • N s 1 u can be used as a scale-up criterion for hiPSC cultivations in MC-operated stirred bioreactors • Uniform distribution and attachment of cells to the MCs are crucial for efficient expansion • Perfusion is advantageous and supports the cultivation of hiPSCs.
Collapse
Affiliation(s)
- Samuel Lukas Schneider
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Misha Alexander Teale
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Stefan Seidel
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Jürgen Krasenbrink
- Advanced Manufacturing-Platform Engineering & Support, Bayer AG, Kaiser-Wilhelm-Allee 1, 51373, Leverkusen, Germany
| | - Martin Poggel
- Advanced Manufacturing-Platform Engineering & Support, Bayer AG, Kaiser-Wilhelm-Allee 1, 51373, Leverkusen, Germany
| | - Dieter Eibl
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Marcos F Q Sousa
- Advanced Manufacturing-Platform Engineering & Support, Bayer AG, Kaiser-Wilhelm-Allee 1, 51373, Leverkusen, Germany.
| | - Regine Eibl
- Centre for Cell Cultivation Techniques, Tissue Engineering, and Medical Biology, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| |
Collapse
|
3
|
Hashemi M, Finklea FB, Hammons H, Tian Y, Young N, Kim E, Halloin C, Triebert W, Zweigerdt R, Mitra AK, Lipke EA. Hydrogel microsphere stem cell encapsulation enhances cardiomyocyte differentiation and functionality in scalable suspension system. Bioact Mater 2025; 43:423-440. [PMID: 39399838 PMCID: PMC11471139 DOI: 10.1016/j.bioactmat.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024] Open
Abstract
A reliable suspension-based platform for scaling engineered cardiac tissue (ECT) production from human induced pluripotent stem cells (hiPSCs) is crucial for regenerative therapies. Here, we compared the production and functionality of ECTs formed using our scaffold-based, engineered tissue microsphere differentiation approach with those formed using the prevalent scaffold-free aggregate platform. We utilized a microfluidic system for the rapid (1 million cells/min), high density (30, 40, 60 million cells/ml) encapsulation of hiPSCs within PEG-fibrinogen hydrogel microspheres. HiPSC-laden microspheres and aggregates underwent suspension-based cardiac differentiation in chemically defined media. In comparison to aggregates, microspheres maintained consistent size and shape initially, over time, and within and between batches. Initial size and shape coefficients of variation for microspheres were eight and three times lower, respectively, compared to aggregates. On day 10, microsphere cardiomyocyte (CM) content was 27 % higher and the number of CMs per initial hiPSC was 250 % higher than in aggregates. Contraction and relaxation velocities of microspheres were four and nine times higher than those of aggregates, respectively. Microsphere contractile functionality also improved with culture time, whereas aggregate functionality remained unchanged. Additionally, microspheres displayed improved β-adrenergic signaling responsiveness and uniform calcium transient propagation. Transcriptomic analysis revealed that while both microspheres and aggregates demonstrated similar gene regulation patterns associated with cardiomyocyte differentiation, heart development, cardiac muscle contraction, and sarcomere organization, the microspheres exhibited more pronounced transcriptional changes over time. Taken together, these results highlight the capability of the microsphere platform for scaling up biomanufacturing of ECTs in a suspension-based culture platform.
Collapse
Affiliation(s)
| | - Ferdous B. Finklea
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Hanna Hammons
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Yuan Tian
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Nathan Young
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Emma Kim
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Caroline Halloin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Wiebke Triebert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Amit Kumar Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, United States
| | - Elizabeth A. Lipke
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| |
Collapse
|
4
|
Matsuo-Takasaki M, Kambayashi S, Hemmi Y, Wakabayashi T, Shimizu T, An Y, Ito H, Takeuchi K, Ibuki M, Kawashima T, Masayasu R, Suzuki M, Kawai Y, Umekage M, Kato TM, Noguchi M, Nakade K, Nakamura Y, Nakaishi T, Nishishita N, Tsukahara M, Hayashi Y. Complete suspension culture of human induced pluripotent stem cells supplemented with suppressors of spontaneous differentiation. eLife 2024; 12:RP89724. [PMID: 39529479 PMCID: PMC11556790 DOI: 10.7554/elife.89724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are promising resources for producing various types of tissues in regenerative medicine; however, the improvement in a scalable culture system that can precisely control the cellular status of hiPSCs is needed. Utilizing suspension culture without microcarriers or special materials allows for massive production, automation, cost-effectiveness, and safety assurance in industrialized regenerative medicine. Here, we found that hiPSCs cultured in suspension conditions with continuous agitation without microcarriers or extracellular matrix components were more prone to spontaneous differentiation than those cultured in conventional adherent conditions. Adding PKCβ and Wnt signaling pathway inhibitors in the suspension conditions suppressed the spontaneous differentiation of hiPSCs into ectoderm and mesendoderm, respectively. In these conditions, we successfully completed the culture processes of hiPSCs, including the generation of hiPSCs from peripheral blood mononuclear cells with the expansion of bulk population and single-cell sorted clones, long-term culture with robust self-renewal characteristics, single-cell cloning, direct cryopreservation from suspension culture and their successful recovery, and efficient mass production of a clinical-grade hiPSC line. Our results demonstrate that precise control of the cellular status in suspension culture conditions paves the way for their stable and automated clinical application.
Collapse
Affiliation(s)
- Mami Matsuo-Takasaki
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Sho Kambayashi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Yasuko Hemmi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Tamami Wakabayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Tomoya Shimizu
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Yuri An
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Hidenori Ito
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Kazuhiro Takeuchi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Masato Ibuki
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Terasu Kawashima
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Rio Masayasu
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Manami Suzuki
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Yoshikazu Kawai
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | | | - Tomoaki M Kato
- Research and Development Center, CiRA FoundationKyotoJapan
| | - Michiya Noguchi
- Cell Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Koji Nakade
- Gene Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Tomoyuki Nakaishi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Naoki Nishishita
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | | | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
- Faculty of Medicine and School of Integrative and Global Majors, University of TsukubaIbarakiJapan
| |
Collapse
|
5
|
Seitz M, Song Y, Lian XL, Ma Z, Jain E. Soft Polyethylene Glycol Hydrogels Support Human PSC Pluripotency and Morphogenesis. ACS Biomater Sci Eng 2024; 10:4525-4540. [PMID: 38973308 PMCID: PMC11234337 DOI: 10.1021/acsbiomaterials.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
Lumenogenesis within the epiblast represents a critical step in early human development, priming the embryo for future specification and patterning events. However, little is known about the specific mechanisms that drive this process due to the inability to study the early embryo in vivo. While human pluripotent stem cell (hPSC)-based models recapitulate many aspects of the human epiblast, most approaches for generating these 3D structures rely on ill-defined, reconstituted basement membrane matrices. Here, we designed synthetic, nonadhesive polyethylene glycol (PEG) hydrogel matrices to better understand the role of matrix mechanical cues in iPSC morphogenesis, specifically elastic modulus. First, we identified a narrow range of hydrogel moduli that were conducive to the hPSC viability, pluripotency, and differentiation. We then used this platform to investigate the effects of the hydrogel modulus on lumenogenesis, finding that matrices of intermediate stiffness yielded the most epiblast-like aggregates. Conversely, stiffer matrices impeded lumen formation and apico-basal polarization, while the softest matrices yielded polarized but aberrant structures. Our approach offers a simple, modular platform for modeling the human epiblast and investigating the role of matrix cues in its morphogenesis.
Collapse
Affiliation(s)
- Michael
P. Seitz
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Yuanhui Song
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Xiaojun Lance Lian
- Department
of Biomedical Engineering, The Huck Institutes of the Life Sciences,
Department of Biology, Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Zhen Ma
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Era Jain
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
6
|
Yosprakob T, Shyntar A, Iworima DG, Edelstein-Keshet L. Modeling the Growth and Size Distribution of Human Pluripotent Stem Cell Clusters in Culture. Bull Math Biol 2024; 86:96. [PMID: 38916694 DOI: 10.1007/s11538-024-01325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
Human pluripotent stem cells (hPSCs) hold promise for regenerative medicine to replace essential cells that die or become dysfunctional. In some cases, these cells can be used to form clusters whose size distribution affects the growth dynamics. We develop models to predict cluster size distributions of hPSCs based on several plausible hypotheses, including (0) exponential growth, (1) surface growth, (2) Logistic growth, and (3) Gompertz growth. We use experimental data to investigate these models. A partial differential equation for the dynamics of the cluster size distribution is used to fit parameters (rates of growth, mortality, etc.). A comparison of the models using their mean squared error and the Akaike Information criterion suggests that Models 1 (surface growth) or 2 (Logistic growth) best describe the data.
Collapse
Affiliation(s)
- Tharana Yosprakob
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada
| | - Alexandra Shyntar
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada
| | - Diepiriye G Iworima
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Leah Edelstein-Keshet
- Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| |
Collapse
|
7
|
Yamamoto R, Sakakibara R, Kim MH, Fujinaga Y, Kino-Oka M. Growth prolongation of human induced pluripotent stem cell aggregate in three-dimensional suspension culture system by addition of botulinum hemagglutinin. J Biosci Bioeng 2024; 137:141-148. [PMID: 38110319 DOI: 10.1016/j.jbiosc.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) can be used in regenerative therapy as an irresistible cell source, and so the development of scalable production of hiPSCs for three-dimensional (3D) suspension culture is required. In this study, we established a simple culture strategy for improving hiPSC aggregate growth using botulinum hemagglutinin (HA), which disrupts cell-cell adhesion mediated by E-cadherin. When HA was added to the suspension culture of hiPSC aggregates, E-cadherin-mediated cell-cell adhesion was temporarily disrupted within 24 h, but then recovered. Phosphorylated myosin light chain, a contractile force marker, was also recovered at the periphery of hiPSC aggregates. The cell aggregates were suppressed the formation of collagen type I shell-like structures at the periphery by HA and collagen type I was homogenously distributed within the cell aggregates. In addition, these cell aggregates retained the proliferation marker Ki-67 throughout the cell aggregates. The apparent specific growth rate with HA addition was maintained continuously throughout the culture, and the final cell density was 1.7-fold higher than that in the control culture. These cells retained high expression levels of pluripotency markers. These observations indicated that relaxation of cell-cell adhesions by HA addition induced rearrangement of the mechanical tensions generated by actomyosin in hiPSC aggregates and suppression of collagen type I shell-like structure formation. These results suggest that this simple and readily culture strategy is a potentially useful tool for improving the scalable production of hiPSCs for 3D suspension cultures.
Collapse
Affiliation(s)
- Riku Yamamoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryo Sakakibara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukako Fujinaga
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, 13-1Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Research Base for Cell Manufacturability, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Iworima DG, Baker RK, Piret JM, Kieffer TJ. Analysis of the effects of bench-scale cell culture platforms and inoculum cell concentrations on PSC aggregate formation and culture. Front Bioeng Biotechnol 2023; 11:1267007. [PMID: 38107616 PMCID: PMC10722899 DOI: 10.3389/fbioe.2023.1267007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/18/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction: Human pluripotent stem cells (hPSCs) provide many opportunities for application in regenerative medicine due to their ability to differentiate into cells from all three germ layers, proliferate indefinitely, and replace damaged or dysfunctional cells. However, such cell replacement therapies require the economical generation of clinically relevant cell numbers. Whereas culturing hPSCs as a two-dimensional monolayer is widely used and relatively simple to perform, their culture as suspended three-dimensional aggregates may enable more economical production in large-scale stirred tank bioreactors. To be more relevant to this biomanufacturing, bench-scale differentiation studies should be initiated from aggregated hPSC cultures. Methods: We compared five available bench-scale platforms for generating undifferentiated cell aggregates of human embryonic stem cells (hESCs) using AggreWell™ plates, low attachment plates on an orbital shaker, roller bottles, spinner flasks, and vertical-wheel bioreactors (PBS-Minis). Thereafter, we demonstrated the incorporation of an hPSC aggregation step prior to directed differentiation to pancreatic progenitors and endocrine cells. Results and discussion: The AggreWell™ system had the highest aggregation yield. The initial cell concentrations had an impact on the size of aggregates generated when using AggreWell™ plates as well as in roller bottles. However, aggregates made with low attachment plates, spinner flasks and PBS-Minis were similar regardless of the initial cell number. Aggregate morphology was compact and relatively homogenously distributed in all platforms except for the roller bottles. The size of aggregates formed in PBS-Minis was modulated by the agitation rate during the aggregation. In all cell culture platforms, the net growth rate of cells in 3D aggregates was lower (range: -0.01-0.022 h-1) than cells growing as a monolayer (range: 0.039-0.045 h-1). Overall, this study describes operating ranges that yield high-quality undifferentiated hESC aggregates using several of the most commonly used bench-scale cell culture platforms. In all of these systems, methods were identified to obtain PSC aggregates with greater than 70% viability, and mean diameters between 60 and 260 mm. Finally, we showed the capacity of hPSC aggregates formed with PBS-Minis to differentiate into viable pancreatic progenitors and endocrine cell types.
Collapse
Affiliation(s)
- Diepiriye G. Iworima
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Robert K. Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - James M. Piret
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Thanuthanakhun N, Kim MH, Kino-oka M. Cell Behavioral Dynamics as a Cue in Optimizing Culture Stabilization in the Bioprocessing of Pluripotent Stem Cells. Bioengineering (Basel) 2022; 9:669. [PMID: 36354580 PMCID: PMC9687444 DOI: 10.3390/bioengineering9110669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 04/23/2024] Open
Abstract
Pluripotent stem cells (PSCs) are important for future regenerative medicine therapies. However, in the production of PSCs and derivatives, the control of culture-induced fluctuations in the outcome of cell quality remains challenging. A detailed mechanistic understanding of how PSC behaviors are altered in response to biomechanical microenvironments within a culture is necessary for rational bioprocessing optimization. In this review, we discuss recent insights into the role of cell behavioral and mechanical homeostasis in modulating the states and functions of PSCs during culture processes. We delineate promising ways to manipulate the culture variability through regulating cell behaviors using currently developed tools. Furthermore, we anticipate their potential implementation for designing a culture strategy based on the concept of Waddington's epigenetic landscape that may provide a feasible solution for tuning the culture quality and stability in the bioprocessing space.
Collapse
Affiliation(s)
- Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- Research Base for Cell Manufacturability, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
10
|
Matsumoto T, Kim MH, Kino-oka M. Effect of Rho-Associated Kinase Inhibitor on Growth Behaviors of Human Induced Pluripotent Stem Cells in Suspension Culture. Bioengineering (Basel) 2022; 9:613. [PMID: 36354524 PMCID: PMC9687832 DOI: 10.3390/bioengineering9110613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 10/15/2023] Open
Abstract
Rho-associated protein kinase (ROCK) inhibitors are used for the survival of single-dissociated human induced pluripotent stem cells (hiPSCs); however, their effects on the growth behaviors of hiPSCs in suspension culture are unexplored. Therefore, we investigated the effect of ROCK inhibitor on growth behaviors of two hiPSC lines (Tic and 1383D2) with different formation of aggregate that attached between single cells in suspension culture. The apparent specific growth rate by long-term exposure to Y-27632, a ROCK inhibitor, was maintained throughout the culture. Long-term exposure to ROCK inhibitor led to an increase in cell division throughout the culture in both lines. Immunofluorescence staining confirmed that hiPSCs forming spherical aggregates showed localization of collagen type I on its periphery. In addition, phosphorylated myosin (pMLC) was localized at the periphery in culture under short-term exposure to ROCK inhibitor, whereas pMLC was not detected at whole the aggregate in culture under long-term exposure. Scanning electron microscopy indicated that long-term exposure to ROCK inhibitor blocked the structural alteration on the surface of cell aggregates. These results indicate that pMLC inhibition by long-term ROCK inhibition leads to enhanced growth abilities of hiPSCs in suspension culture by maintaining the structures of extracellular matrices.
Collapse
Affiliation(s)
- Takaki Matsumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- Research Base for Cell Manufacturability, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
11
|
Barhouse PS, Andrade MJ, Smith Q. Home Away From Home: Bioengineering Advancements to Mimic the Developmental and Adult Stem Cell Niche. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.832754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The inherent self-organizing capacity of pluripotent and adult stem cell populations has advanced our fundamental understanding of processes that drive human development, homeostasis, regeneration, and disease progression. Translating these principles into in vitro model systems has been achieved with the advent of organoid technology, driving innovation to harness patient-specific, cell-laden regenerative constructs that can be engineered to augment or replace diseased tissue. While developmental organization and regenerative adult stem cell niches are tightly regulated in vivo, in vitro analogs lack defined architecture and presentation of physicochemical cues, leading to the unhindered arrangement of mini-tissues that lack complete physiological mimicry. This review aims to highlight the recent integrative engineering approaches that elicit spatio-temporal control of the extracellular niche to direct the structural and functional maturation of pluripotent and adult stem cell derivatives. While the advances presented here leverage multi-pronged strategies ranging from synthetic biology to microfabrication technologies, the methods converge on recreating the biochemical and biophysical milieu of the native tissue to be modeled or regenerated.
Collapse
|
12
|
Torizal FG, Lau QY, Ibuki M, Kawai Y, Horikawa M, Minami M, Michiue T, Horiguchi I, Nishikawa M, Sakai Y. A miniature dialysis-culture device allows high-density human-induced pluripotent stem cells expansion from growth factor accumulation. Commun Biol 2021; 4:1316. [PMID: 34799690 PMCID: PMC8604949 DOI: 10.1038/s42003-021-02848-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional aggregate-suspension culture is a potential biomanufacturing method to produce a large number of human induced pluripotent stem cells (hiPSCs); however, the use of expensive growth factors and method-induced mechanical stress potentially result in inefficient production costs and difficulties in preserving pluripotency, respectively. Here, we developed a simple, miniaturized, dual-compartment dialysis-culture device based on a conventional membrane-culture insert with deep well plates. The device improved cell expansion up to approximately ~3.2 to 4×107 cells/mL. The high-density expansion was supported by reduction of excessive shear stress and agglomeration mediated by the addition of the functional polymer FP003. The results revealed accumulation of several growth factors, including fibroblast growth factor 2 and insulin, along with endogenous Nodal, which acts as a substitute for depleted transforming growth factor-β1 in maintaining pluripotency. Because we used the same growth-factor formulation per volume in the upper culture compartment, the cost reduced in inverse proportional manner with the cell density. We showed that growth-factor-accumulation dynamics in a low-shear-stress environment successfully improved hiPSC proliferation, pluripotency, and differentiation potential. This miniaturised dialysis-culture system demonstrated the feasibility of cost-effective mass production of hiPSCs in high-density culture.
Collapse
Affiliation(s)
- Fuad Gandhi Torizal
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan. .,Department of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Qiao You Lau
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masato Ibuki
- grid.410860.b0000 0000 9776 0030Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Yoshikazu Kawai
- grid.410860.b0000 0000 9776 0030Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Masato Horikawa
- grid.420062.20000 0004 1763 4894Materials Research Laboratories, Nissan Chemical Corporation, Saitama, Japan
| | - Masataka Minami
- grid.420062.20000 0004 1763 4894Materials Research Laboratories, Nissan Chemical Corporation, Saitama, Japan
| | - Tatsuo Michiue
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikki Horiguchi
- grid.136593.b0000 0004 0373 3971Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Masaki Nishikawa
- grid.26999.3d0000 0001 2151 536XDepartment of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Poorna MR, Jayakumar R, Chen JP, Mony U. Hydrogels: A potential platform for induced pluripotent stem cell culture and differentiation. Colloids Surf B Biointerfaces 2021; 207:111991. [PMID: 34333302 DOI: 10.1016/j.colsurfb.2021.111991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 01/02/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be used to generate desired types of cells that belong to the three germ layers (i.e., ectoderm, endoderm and mesoderm). These cells possess great potential in regenerative medicine. Before iPSCs are used in various biomedical applications, the existing xenogeneic culture methods must be improved to meet the technical standards of safety, cost effectiveness, and ease of handling. In addition to commonly used 2D substrates, a culture system that mimics the native cellular environment in tissues will be a good choice when culturing iPS cells and differentiating them into different lineages. Hydrogels are potential candidates that recapitulate the native complex three-dimensional microenvironment. They possess mechanical properties similar to those of many soft tissues. Moreover, hydrogels support iPSC adhesion, proliferation and differentiation to various cell types. They are xeno-free and cost-effective. In addition to other substrates, such as mouse embryonic fibroblast (MEF), Matrigel, and vitronectin, the use of hydrogel-based substrates for iPSC culture and differentiation may help generate large numbers of clinical-grade cells that can be used in potential clinical applications. This review mainly focuses on the use of hydrogels for the culture and differentiation of iPSCs into various cell types and their potential applications in regenerative medicine.
Collapse
Affiliation(s)
- M R Poorna
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - R Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan, ROC; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan, ROC.
| | - Ullas Mony
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India; Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| |
Collapse
|
14
|
Iworima DG, Rieck S, Kieffer TJ. Process parameter development for the scaled generation of stem cell-derived pancreatic endocrine cells. Stem Cells Transl Med 2021; 10:1459-1469. [PMID: 34387389 PMCID: PMC8550703 DOI: 10.1002/sctm.21-0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetes is a debilitating disease characterized by high blood glucose levels. The global prevalence of this disease has been projected to reach 700 million adults by the year 2045. Type 1 diabetes represents about 10% of the reported cases of diabetes. Although islet transplantation can be a highly effective method to treat type 1 diabetes, its widespread application is limited by the paucity of cadaveric donor islets. The use of pluripotent stem cells as an unlimited cell source to generate insulin‐producing cells for implant is a promising alternative for treating diabetes. However, to be clinically relevant, it is necessary to manufacture these stem cell‐derived cells at sufficient scales. Significant advances have been made in differentiation protocols used to generate stem cell‐derived cells capable of reversing diabetes in animal models and for testing in clinical trials. We discuss the potential of both stem cell‐derived pancreatic progenitors and more matured insulin‐producing cells to treat diabetes. We discuss the need for rigorous bioprocess parameter optimization and identify some critical process parameters and strategies that may influence the critical quality attributes of the cells with the goal of facilitating scalable manufacturing of human pluripotent stem cell‐derived pancreatic endocrine cells.
Collapse
Affiliation(s)
- Diepiriye G Iworima
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Timothy J Kieffer
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Setthawong P, Phakdeedindan P, Techakumphu M, Tharasanit T. Molecular signature and colony morphology affect in vitro pluripotency of porcine induced pluripotent stem cells. Reprod Domest Anim 2021; 56:1104-1116. [PMID: 34013645 DOI: 10.1111/rda.13954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/17/2021] [Indexed: 12/29/2022]
Abstract
Overall efficiency of cell reprogramming for porcine fibroblasts into induced pluripotent stem cells (iPSCs) is currently poor, and few cell lines have been established. This study examined gene expression during early phase of cellular reprogramming in the relationship to the iPSC colony morphology and in vitro pluripotent characteristics. Fibroblasts were reprogrammed with OCT4, SOX2, KLF4 and c-MYC. Two different colony morphologies referred to either compact (n = 10) or loose (n = 10) colonies were further examined for proliferative activity, gene expression and in vitro pluripotency. A total of 1,697 iPSC-like colonies (2.34%) were observed after gene transduction. The compact colonies contained with tightly packed cells with a distinct-clear border between the colony and feeder cells, while loose colonies demonstrated irregular colony boundary. For quantitative expression of genes responsible for early phase cell reprogramming, the Dppa2 and EpCAM were significantly upregulated while NR0B1 was downregulated in compact colonies compared with loose phenotype (p < .05). Higher proportion of compact iPSC phenotype (5 of 10, 50%) could be maintained in undifferentiated state for more than 50 passages compared unfavourably with loose morphology (3 of 10, 30%). All iPS cell lines obtained from these two types of colony morphologies expressed pluripotent genes and proteins (OCT4, NANOG and E-cadherin). In addition, they could aggregate and form three-dimensional structure of embryoid bodies. However, only compact iPSC colonies differentiated into three germ layers. Molecular signature of early phase of cell reprogramming coupled with primary colony morphology reflected the in vitro pluripotency of porcine iPSCs. These findings can be simply applied for pre-screening selection of the porcine iPSC cell line.
Collapse
Affiliation(s)
- Piyathip Setthawong
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Praopilas Phakdeedindan
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Chan YH, Lee YC, Hung CY, Yang PJ, Lai PC, Feng SW. Three-dimensional Spheroid Culture Enhances Multipotent Differentiation and Stemness Capacities of Human Dental Pulp-derived Mesenchymal Stem Cells by Modulating MAPK and NF-kB Signaling Pathways. Stem Cell Rev Rep 2021; 17:1810-1826. [PMID: 33893620 DOI: 10.1007/s12015-021-10172-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Three-dimensional (3D) culture of mesenchymal stem cells has become an important research and development topic. However, comprehensive analysis of human dental pulp-derived mesenchymal stem cells (DPSCs) in 3D-spheroid culture remains unexplored. Thus, we evaluated the cellular characteristics, multipotent differentiation, gene expression, and related-signal transduction pathways of DPSCs in 3D-spheroid culture via magnetic levitation (3DM), compared with 2D-monolayer (2D) and 3D-aggregate (3D) cultures. METHODS The gross morphology and cellular ultrastructure were observed in the 2D, 3D, and 3DM experimental groups using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Surface markers and trilineage differentiation were evaluated using flow cytometry and staining analysis. Quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining (IF) were performed to investigate the expression of differentiation and stemness markers. Signaling transduction pathways were evaluated using western blot analysis. RESULTS The morphology of cell aggregates and spheroids was largely influenced by the types of cell culture plates and initial cell seeding density. SEM and TEM experiments confirmed that the solid and firm structure of spheroids was quickly formed in the 3DM-medium without damaging cells. In addition, these three groups all expressed multilineage differentiation capabilities and surface marker expression. The trilineage differentiation capacities of the 3DM-group were significantly superior to the 2D and 3D-groups. The osteogenesis, angiogenesis, adipogenesis, and stemness-related genes were significantly enhanced in the 3D and 3DM-groups. The IF analysis showed that the extracellular matrix expression, osteogenesis, and angiogenesis proteins of the 3DM-group were significantly higher than those in the 2D and 3D-groups. Finally, 3DM-culture significantly activated the MAPK and NF-kB signaling transduction pathways and ameliorated the apoptosis effects of 3D-culture. CONCLUSIONS This study confirmed that 3DM-spheroids efficiently enhanced the therapeutic efficiency of DPSCs.
Collapse
Affiliation(s)
- Ya-Hui Chan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chieh Lee
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Yi Hung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St, Taipei, 11031, Taiwan
| | - Pi-Ju Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pin-Chuang Lai
- Department of Diagnosis and Oral Health, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Sheng-Wei Feng
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan. .,School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St, Taipei, 11031, Taiwan. .,Division of Prosthodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
17
|
Thanuthanakhun N, Kino-Oka M, Borwornpinyo S, Ito Y, Kim MH. The impact of culture dimensionality on behavioral epigenetic memory contributing to pluripotent state of iPS cells. J Cell Physiol 2020; 236:4985-4996. [PMID: 33305410 DOI: 10.1002/jcp.30211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) culture platforms have been explored to establish physiologically relevant cell culture environment and permit expansion scalability; however, little is known about the mechanisms underlying the regulation of pluripotency of human induced pluripotent stem cells (hiPSCs). This study elucidated epigenetic modifications contributing to pluripotency of hiPSCs in response to 3D culture. Unlike two-dimensional (2D) monolayer cultures, 3D cultured cells aggregated with each other to form ball-like aggregates. 2D cultured cells expressed elevated levels of Rac1 and RhoA; however, Rac1 level was significantly lower while RhoA level was persisted in 3D aggregates. Compared with 2D monolayers, the 3D aggregates also exhibited significantly lower myosin phosphorylation. Histone methylation analysis revealed remarkable H3K4me3 upregulation and H3K27me3 maintenance throughout the duration of 3D culture; in addition, we observed the existence of naïve pluripotency signatures in cells grown in 3D culture. These results demonstrated that hiPSCs adapted to 3D culture through alteration of the Rho-Rho kinase-phospho-myosin pathway, influencing the epigenetic modifications and transcriptional expression of pluripotency-associated factors. These results may help design culture environments for stable and high-quality hiPSCs.
Collapse
Affiliation(s)
- Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
18
|
Ayan B, Heo DN, Zhang Z, Dey M, Povilianskas A, Drapaca C, Ozbolat IT. Aspiration-assisted bioprinting for precise positioning of biologics. SCIENCE ADVANCES 2020; 6:eaaw5111. [PMID: 32181332 PMCID: PMC7060055 DOI: 10.1126/sciadv.aaw5111] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/13/2019] [Indexed: 05/13/2023]
Abstract
Three-dimensional (3D) bioprinting is an appealing approach for building tissues; however, bioprinting of mini-tissue blocks (i.e., spheroids) with precise control on their positioning in 3D space has been a major obstacle. Here, we unveil "aspiration-assisted bioprinting (AAB)," which enables picking and bioprinting biologics in 3D through harnessing the power of aspiration forces, and when coupled with microvalve bioprinting, it facilitated different biofabrication schemes including scaffold-based or scaffold-free bioprinting at an unprecedented placement precision, ~11% with respect to the spheroid size. We studied the underlying physical mechanism of AAB to understand interactions between aspirated viscoelastic spheroids and physical governing forces during aspiration and bioprinting. We bioprinted a wide range of biologics with dimensions in an order-of-magnitude range including tissue spheroids (80 to 600 μm), tissue strands (~800 μm), or single cells (electrocytes, ~400 μm), and as applications, we illustrated the patterning of angiogenic sprouting spheroids and self-assembly of osteogenic spheroids.
Collapse
Affiliation(s)
- Bugra Ayan
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Dong Nyoung Heo
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Zhifeng Zhang
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Madhuri Dey
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
| | - Adomas Povilianskas
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Corina Drapaca
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA
- Materials Research Institute, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
19
|
Kim MH, Kino-Oka M. Bioengineering Considerations for a Nurturing Way to Enhance Scalable Expansion of Human Pluripotent Stem Cells. Biotechnol J 2020; 15:e1900314. [PMID: 31904180 DOI: 10.1002/biot.201900314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/11/2019] [Indexed: 12/13/2022]
Abstract
Understanding how defects in mechanotransduction affect cell-to-cell variability will add to the fundamental knowledge of human pluripotent stem cell (hPSC) culture, and may suggest new approaches for achieving a robust, reproducible, and scalable process that result in consistent product quality and yields. Here, the current state of the understanding of the fundamental mechanisms that govern the growth kinetics of hPSCs between static and dynamic cultures is reviewed, the factors causing fluctuations are identified, and culture strategies that might eliminate or minimize the occurrence of cell-to-cell variability arising from these fluctuations are discussed. The existing challenges in the development of hPSC expansion methods for enabling the transition from process development to large-scale production are addressed, a mandatory step for industrial and clinical applications of hPSCs.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
20
|
Hashida A, Uemura T, Kino-Oka M. Kinetics on aggregate behaviors of human induced pluripotent stem cells in static suspension and rotating flow cultures. J Biosci Bioeng 2019; 129:494-501. [PMID: 31826834 DOI: 10.1016/j.jbiosc.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022]
Abstract
Understanding of kinetics on aggregate behaviors of human induced pluripotent stem cells (hiPSCs) is critical knowledge for culture design because aggregate behaviors are considered to affect cell growth. In this study, we elucidated kinetics on aggregate behaviors of two types of hiPSCs (253G1 and 201B7 lines) to clarify the influence of aggregate behaviors on cell growth by comparing aggregate morphology, size of cell aggregates, and kinetic parameters in 72 h culture under static and floating conditions, which were realized by multi-dimple plate and rotating wall vessel, respectively. In the case of 253G1 line under floating condition, aggregate number decreased and size increased drastically during culture time, t = 0-24 h due to coalescence between cell aggregates. The apparent specific growth rate decreased after t = 24 h although cell number and aggregate size gradually increased under static condition. In the case of 201B7 line under floating condition, cell and aggregate number, and aggregate size kept constant levels during t = 24-72 h due to collapse of cell aggregates by stripping of single cells from aggregate, suggesting that specific death rate increased after t = 24 h despite constant levels of apparent specific growth rate and aggregate number under static condition. Our kinetic analysis concluded that excessive increase of aggregate size due to coalescence and cell death due to collapse critically affected growth of hiPSCs in suspension culture.
Collapse
Affiliation(s)
- Akihiro Hashida
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshimasa Uemura
- Department of Precise and Science Technology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
21
|
Koaykul C, Kim MH, Kawahara Y, Yuge L, Kino-Oka M. Maintenance of Neurogenic Differentiation Potential in Passaged Bone Marrow-Derived Human Mesenchymal Stem Cells Under Simulated Microgravity Conditions. Stem Cells Dev 2019; 28:1552-1561. [PMID: 31588849 DOI: 10.1089/scd.2019.0146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are considered to be able to adapt to environmental changes induced by gravity during cell expansion. In this study, we investigated neurogenic differentiation potential of passaged hMSCs under conventional gravity and simulated microgravity conditions. Immunostaining, quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR), and western blot analysis of neurogenic differentiation markers, neurofilament heavy (NF-H), and microtubule-associated protein 2 (MAP2) revealed that differentiated cells from the cells cultured under simulated microgravity conditions expressed higher neurogenic levels than those from conventional gravity conditions. The levels of NF-H and MAP2 in the cells from simulated microgravity conditions were consistent during passage culture, whereas cells from conventional gravity conditions exhibited a reduction of the neurogenic levels against an increase of their passage number. In growth culture, cells under simulated microgravity conditions showed less apical stress fibers over their nucleus with fewer cells having a polarization of lamin A/C than those under conventional gravity conditions. The ratio of lamin A/C to lamin B expression in the cells under simulated microgravity conditions was constant; however, cells cultured under conventional gravity conditions showed an increase in the lamin ratio during passages. Furthermore, analysis of activating H3K4me3 and repressive H3K27me3 modifications at promoters of neuronal lineage genes indicated that cells passaged under simulated microgravity conditions sustained the methylation during serial cultivation. Nevertheless, the enrichment of H3K27me3 significantly increased in the passaged cells cultured under conventional gravity conditions. These results demonstrated that simulated microgravity-coordinated cytoskeleton-lamin reorganization leads to suppression of histone modification associated with neurogenic differentiation capacity of passaged hMSCs.
Collapse
Affiliation(s)
- Chaiyong Koaykul
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | | | - Louis Yuge
- Space Bio-Laboratories Co., Ltd., Hiroshima, Japan.,Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
22
|
Scaffold-Free Bioprinter Utilizing Layer-By-Layer Printing of Cellular Spheroids. MICROMACHINES 2019; 10:mi10090570. [PMID: 31470604 PMCID: PMC6780220 DOI: 10.3390/mi10090570] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Free from the limitations posed by exogenous scaffolds or extracellular matrix-based materials, scaffold-free engineered tissues have immense clinical potential. Biomaterials may produce adverse responses, interfere with cell–cell interaction, or affect the extracellular matrix integrity of cells. The scaffold-free Kenzan method can generate complex tissues using spheroids on an array of needles but could be inefficient in terms of time, as it moves and places only a single spheroid at a time. We aimed to design and construct a novel scaffold-free bioprinter that can print an entire layer of spheroids at once, effectively reducing the printing time. The bioprinter was designed using computer-aided design software and constructed from machined, 3D printed, and commercially available parts. The printing efficiency and the operating precision were examined using Zirconia and alginate beads, which mimic spheroids. In less than a minute, the printer could efficiently pick and transfer the beads to the printing surface and assemble them onto the 4 × 4 needles. The average overlap coefficient between layers was measured and found to be 0.997. As a proof of concept using human induced pluripotent stem cell-derived spheroids, we confirmed the ability of the bioprinter to place cellular spheroids onto the needles efficiently to print an entire layer of tissue. This novel layer-by-layer, scaffold-free bioprinter is efficient and precise in operation and can be easily scaled to print large tissues.
Collapse
|
23
|
Le MNT, Hasegawa K. Expansion Culture of Human Pluripotent Stem Cells and Production of Cardiomyocytes. Bioengineering (Basel) 2019; 6:E48. [PMID: 31137703 PMCID: PMC6632060 DOI: 10.3390/bioengineering6020048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 12/25/2022] Open
Abstract
Transplantation of human pluripotent stem cell (hPSCs)-derived cardiomyocytes for the treatment of heart failure is a promising therapy. In order to implement this therapy requiring numerous cardiomyocytes, substantial production of hPSCs followed by cardiac differentiation seems practical. Conventional methods of culturing hPSCs involve using a 2D culture monolayer that hinders the expansion of hPSCs, thereby limiting their productivity. Advanced culture of hPSCs in 3D aggregates in the suspension overcomes the limitations of 2D culture and attracts immense attention. Although the hPSC production needs to be suitable for subsequent cardiac differentiation, many studies have independently focused on either expansion of hPSCs or cardiac differentiation protocols. In this review, we summarize the recent approaches to expand hPSCs in combination with cardiomyocyte differentiation. A comparison of various suspension culture methods and future prospects for dynamic culture of hPSCs are discussed in this study. Understanding hPSC characteristics in different models of dynamic culture helps to produce numerous cells that are useful for further clinical applications.
Collapse
Affiliation(s)
- Minh Nguyen Tuyet Le
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan.
| | - Kouichi Hasegawa
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|