1
|
Cheng J, Guo F, Liang W, Wang H, Chen Y, Dong P. Callus Culture System from Lonicera japonica Thunb Anthers: Light Quality Effects on Callus Quality Evaluation. Int J Mol Sci 2025; 26:2351. [PMID: 40076969 PMCID: PMC11900127 DOI: 10.3390/ijms26052351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Lonicera japonica Thunb has significant edible and medicinal value, possessing heat clearing, detoxification, antibacterial, and blood pressure reduction properties. Currently, its quality is constrained by factors such as climate, environment, flowering period, and germplasm degradation. The strategy of using bioreactors and abiotic inducers to produce bioactive metabolites has not yet been implemented. This study reports, for the first time, the induction of an embryogenic callus from L. japonica anthers, the identification of tissue morphological structures, and the effects of light induction on the callus morphology, metabolite accumulation, and antioxidant activity. The results showed that the MS medium, supplemented with 1.0 mg·L-1 6-BA, 1.5 mg·L-1 NAA, 1.5 mg·L-1 2,4-D, and 0.2 mg·L-1 KT, induced 89% embryogenic callus formation. Uniform callus lines were obtained using 2.0 mg·L-1 6-BA, 0.5 mg·L-1 NAA, and 0.2 mg·L-1 KT in each subcultivation. Embryogenic cells were observed to have closely arranged spherical protruding granules on their surface, along with visible nuclei and numerous starch grains. After 15 days of blue light induction, active metabolites and antioxidant activities peaked. This experimental system not only provides support for germplasm innovation but also indicates that abiotic inducers can be utilized as a means to achieve higher yields of metabolic products.
Collapse
Affiliation(s)
| | | | | | | | - Yuan Chen
- State Key Laboratory of Aridland Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (F.G.); (W.L.); (H.W.)
| | - Pengbin Dong
- State Key Laboratory of Aridland Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (F.G.); (W.L.); (H.W.)
| |
Collapse
|
2
|
Rattan S, Kumar A, Kumar D, Warghat AR. Enhanced Production of Phenylethanoids Mediated Through Synergistic Approach of Precursor Feeding and Light Regime in Cell Suspension Culture of Rhodiola imbricata (Edgew.). Appl Biochem Biotechnol 2022; 194:3242-3260. [PMID: 35349081 DOI: 10.1007/s12010-022-03914-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
Abstract
Precursor feeding is a potential strategy for increasing specialized metabolite production in plant cell culture systems. In the present study, cell suspension cultures were developed and subsequently evaluated for precursor feeding investigations. Cell suspension cultures were established in Murashige and Skoog (MS) medium containing 0.5 mg/L thidiazuron (TDZ) + 1 mg/L α-naphthalene acetic acid (NAA). The growth biomass and metabolite pattern were analyzed to identify specific culture days required for prolific biomass production. The maximum cell dry weight (DW) was observed in leaf cell suspension (1.22 g/100 mL) and root cell suspension culture (1.12 g/100 mL) on day 21. Afterward, the effect of precursor concentrations (tyrosol; 0.5, 1, 2, and 3 mM) along with two light regimes, photoperiod (16L/8D h, 70 µmol/m2/s) and dark (24 h), was evaluated for cell growth and metabolite accumulation. The results revealed that leaf cell suspension treated with 3 mM tyrosol concentration detected maximum salidroside content (26.05 mg/g DW) on day 15, incubated under photoperiod (16L/8D h) condition. Similarly, under photoperiod (16L/8D h), root cell suspension treated with 3 mM tyrosol produced maximum salidroside content (26.62 mg/g DW) on day 12. Moreover, the total phenolics content increased significantly (44.21 mg/g DW) on day 12 in 3 mM tyrosol treatment under photoperiod (16L/8D h). However, precursor concentrations did not influence the total flavonoids content. The present investigation suggests that the immediate pathway precursor, tyrosol, has a strong effect on enhanced production of salidroside, irrespective of explant type and light regimes.
Collapse
Affiliation(s)
- Shiv Rattan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Ashish R Warghat
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Fan F, Yang L, Li R, Zou X, Li N, Meng X, Zhang Y, Wang X. Salidroside as a potential neuroprotective agent for ischemic stroke: a review of sources, pharmacokinetics, mechanism and safety. Biomed Pharmacother 2020; 129:110458. [PMID: 32603893 DOI: 10.1016/j.biopha.2020.110458] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Salidroside (Sal) is a bioactive extract principally from traditional herbal medicine such as Rhodiola rosea L., which has been commonly used for hundreds of years in Asia countries. The excellent neuroprotective capacity of Sal has been illuminated in recent studies. This work focused on the source, pharmacokinetics, safety and anti-ischemic stroke (IS) effect of Sal, especially emphasizing its mechanism of action and BBB permeability. Extensive databases, including Pubmed, Web of science (WOS), Google Scholar and China National Knowledge Infrastructure (CNKI), were applied to obtain relevant online literatures. Sal exerts powerful therapeutic effects on IS in experimental models either in vitro or in vivo due to its neuroprotection, with significantly diminishing infarct size, preventing cerebral edema and improving neurological function. Also, the findings suggest the underlying mechanisms involve anti-oxidation, anti-inflammation and anti-apoptosis by regulating multiple signaling pathways and key molecules, such as NF-κB, TNF-α and PI3K/Akt pathway. In pharmacokinetics, although showing a rapid absorption and elimination, bioavailability of Sal is elevated under some non-physiological conditions. The component and its metabolite (tyrosol) are capable of distributing to brain tissue and the later keeps a higher level of concentration. Moreover, Sal scarcely has obvious toxicity or side effects in a variety of animal experiments and clinical trials, but combination of drugs and perinatal use of medicine should be taken more attentions. Finally, as an active ingredient, not only is Sal isolated from diverse plants with limited yield, but also large batches of the products can be harvested by biological and chemical synthesis. With higher efficacy and better safety profiles, Sal could sever as a promising neuroprotectant for preventing and treating IS. Nevertheless, further investigations are still required to explore the pharmacodynamic and pharmacokinetic properties of Sal in the treatment of IS.
Collapse
Affiliation(s)
- Fangfang Fan
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Li
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuemei Zou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ning Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Wang F, Huang D, Ma Y, Zhang F, Linhardt RJ. Preparation of salidroside with n-butyl β-D-glucoside as the glycone donor via a two-step enzymatic synthesis catalyzed by immobilized β-glucosidase from bitter almonds. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2018.1549236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Feng Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
- The Key Laboratory of Food Colloids and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Dengfa Huang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Yong Ma
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
5
|
Jiang J, Yin H, Wang S, Zhuang Y, Liu S, Liu T, Ma Y. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4431-4438. [PMID: 29671328 DOI: 10.1021/acs.jafc.8b01272] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Salidroside is an important plant-derived aromatic compound with diverse biological properties. Because of inadequate natural resources, the supply of salidroside is currently limited. In this work, we engineered the production of salidroside in yeast. First, the aromatic aldehyde synthase (AAS) from Petroselinum crispum was overexpressed in Saccharomyces cerevisiae when combined with endogenous Ehrlich pathway to produce tyrosol from tyrosine. Glucosyltransferases from different resources were tested for ideal production of salidroside in the yeast. Metabolic flux was enhanced toward tyrosine biosynthesis by overexpressing pathway genes and eliminating feedback inhibition. The pathway genes were integrated into yeast chromosome, leading to a recombinant strain that produced 239.5 mg/L salidroside and 965.4 mg/L tyrosol. The production of salidroside and tyrosol reached up to 732.5 and 1394.6 mg/L, respectively, by fed-batch fermentation. Our work provides an alternative way for industrial large-scale production of salidroside and tyrosol from S. cerevisiae.
Collapse
Affiliation(s)
- Jingjie Jiang
- College of Biotechnology, The State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Hua Yin
- Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
- Key Laboratory of Systems Microbial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
| | - Shuai Wang
- Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
- National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Yibin Zhuang
- Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
- Key Laboratory of Systems Microbial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
| | - Shaowei Liu
- College of Biotechnology, The State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
- Key Laboratory of Systems Microbial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
- Key Laboratory of Systems Microbial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
| |
Collapse
|
6
|
Abstract
Despite more than a century of research on effective biotechnological methods, micropropagation continues to be an important tool for the large-scale production of clonal plantlets of several important plant species that retain genetic fidelity and are pest-free. In some cases, micropropagation is the only technique that supports the maintenance and promotes the economic value of specific agricultural species. The micropropagation of plants solved many phytosanitary problems and allowed both the expansion and access to high-quality plants for growers from different countries and economic backgrounds, thereby effectively contributing to an agricultural expansion in this and the last century. The challenges for micropropagation in the twenty-first century include cost reduction, enhanced efficiency, developing new technologies, and combining micropropagation with other systems/propagation techniques such as microcuttings, hydroponics, and aeroponics. In this chapter, we discuss the actual uses of micropropagation in this century, its importance and limitations, and some possible techniques that can effectively increase its wider application by replacing certain conventional techniques and technologies.
Collapse
|
7
|
Hundare A, Dhaytadak B, Kudale S, Joshi N. Growth kinetics and diosgenin estimation from callus cultures of Costus speciosus (Koen. ex. Retz.). Nat Prod Res 2017; 32:1809-1816. [DOI: 10.1080/14786419.2017.1405402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Amar Hundare
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed To Be University, Navi Mumbai, India
| | - Bhagyalaxmi Dhaytadak
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed To Be University, Navi Mumbai, India
| | - Subhash Kudale
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed To Be University, Navi Mumbai, India
| | - Neelu Joshi
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed To Be University, Navi Mumbai, India
| |
Collapse
|
8
|
Fan B, Chen T, Zhang S, Wu B, He B. Mining of efficient microbial UDP-glycosyltransferases by motif evolution cross plant kingdom for application in biosynthesis of salidroside. Sci Rep 2017; 7:463. [PMID: 28352078 PMCID: PMC5428655 DOI: 10.1038/s41598-017-00568-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/03/2017] [Indexed: 01/09/2023] Open
Abstract
The plant kingdom provides a large resource of natural products and various related enzymes are analyzed. The high catalytic activity and easy genetically modification of microbial enzymes would be beneficial for synthesis of natural products. But the identification of functional genes of target enzymes is time consuming and hampered by many contingencies. The potential to mine microbe-derived glycosyltransferases (GTs) cross the plant kingdom was assessed based on alignment and evolution of the full sequences and key motifs of target enzymes, such as Rhodiola-derived UDP-glycosyltransferase (UGT73B6) using in salidroside synthesis. The GTs from Bacillus licheniformis ZSP01 with high PSPG motif similarity were speculated to catalyze the synthesis of salidroside. The UGTBL1, which had similarity (61.4%) PSPG motif to UGT73B6, displayed efficient activity and similar regioselectivity. Highly efficient glycosylation of tyrosol (1 g/L) was obtained by using engineered E. coli harboring UGTBL1 gene, which generated 1.04 g/L salidroside and 0.99 g/L icariside D2. All glycosides were secreted into the culture medium and beneficial for downstream purification. It was the first report on the genome mining of UGTs from microorganisms cross the plant kingdom. The mining approach may have broader applications in the selection of efficient candidate for making high-value natural products.
Collapse
|
9
|
Wang Z, Yang R, Wang J, Bi Y, Zhu C, Zhao X, Nie L, Li W. Regioselective Synthesis of β-D-Glucopyranosides and Their Analogs by Plant Seed-Derived β-Glycosidases. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2017. [DOI: 10.1252/jcej.16we240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology
| | - Jizhong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology
| | - Yanhong Bi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology
| | - Chun Zhu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology
| | - Xiangjie Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology
| | - Linghong Nie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology
| | - Wenqian Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology
| |
Collapse
|
10
|
Natural products against Alzheimer's disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2016; 35:178-216. [PMID: 28043897 DOI: 10.1016/j.biotechadv.2016.12.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a severe, chronic and progressive neurodegenerative disease associated with memory and cognition impairment ultimately leading to death. It is the commonest reason of dementia in elderly populations mostly affecting beyond the age of 65. The pathogenesis is indicated by accumulation of the amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) in brain tissues and hyperphosphorylation of tau protein in neurons. The main cause is considered to be the formation of reactive oxygen species (ROS) due to oxidative stress. The current treatment provides only symptomatic relief by offering temporary palliative therapy which declines the rate of cognitive impairment associated with AD. Inhibition of the enzyme acetylcholinesterase (AChE) is considered as one of the major therapeutic strategies offering only symptomatic relief and moderate disease-modifying effect. Other non-cholinergic therapeutic approaches include antioxidant and vitamin therapy, stem cell therapy, hormonal therapy, use of antihypertensive or lipid-lowering medications and selective phosphodiesterase (PDE) inhibitors, inhibition of β-secretase and γ-secretase and Aβ aggregation, inhibition of tau hyperphosphorylation and intracellular NFT, use of nonsteroidal anti-inflammatory drugs (NSAIDs), transition metal chelators, insulin resistance drugs, etanercept, brain-derived neurotrophic factor (BDNF) etc. Medicinal plants have been reported for possible anti-AD activity in a number of preclinical and clinical trials. Ethnobotany, being popular in China and in the Far East and possibly less emphasized in Europe, plays a substantial role in the discovery of anti-AD agents from botanicals. Chinese Material Medica (CMM) involving Chinese medicinal plants has been used traditionally in China in the treatment of AD. Ayurveda has already provided numerous lead compounds in drug discovery and many of these are also undergoing clinical investigations. A number of medicinal plants either in their crude forms or as isolated compounds have exhibited to reduce the pathological features associated with AD. In this present review, an attempt has been made to elucidate the molecular mode of action of various plant extracts, phytochemicals and traditional herbal formulations investigated against AD as reported in various preclinical and clinical tests. Herbal synergism often found in polyherbal formulations were found effective to combat disease heterogeneity as found in complex pathogenesis of AD. Finally a note has been added to describe biotechnological improvement, genetic and genomic resources and mathematical and statistical techniques for empirical model building associated with anti-AD plant secondary metabolites and their source botanicals.
Collapse
|
11
|
Expression of Codon-Optimized Plant Glycosyltransferase UGT72B14 in Escherichia coli Enhances Salidroside Production. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9845927. [PMID: 27597978 PMCID: PMC5002478 DOI: 10.1155/2016/9845927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 11/18/2022]
Abstract
Salidroside, a plant secondary metabolite in Rhodiola, has been demonstrated to have several adaptogenic properties as a medicinal herb. Due to the limitation of plant source, microbial production of salidroside by expression of plant uridine diphosphate glycosyltransferase (UGT) is promising. However, glycoside production usually remains hampered by poor expression of plant UGTs in microorganisms. Herein, we achieved salidroside production by expression of Rhodiola UGT72B14 in Escherichia coli (E. coli) and codon optimization was accordingly applied. UGT72B14 expression was optimized by changing 278 nucleotides and decreasing the G+C content to 51.05% without altering the amino acid sequence. The effect of codon optimization on UGT72B14 catalysis for salidroside production was assessed both in vitro and in vivo. In vitro, salidroside production by codon-optimized UGT72B14 is enhanced because of a significantly improved protein yield (increased by 4.8-fold) and an equivalently high activity as demonstrated by similar kinetic parameters (KM and Vmax), compared to that by wild-type protein. In vivo, both batch and fed-batch cultivation using the codon-optimized gene resulted in a significant increase in salidroside production, which was up to 6.7 mg/L increasing 3.2-fold over the wild-type UGT72B14.
Collapse
|
12
|
Máthé Á, Hassan F, Abdul Kader A. In Vitro Micropropagation of Medicinal and Aromatic Plants. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-94-017-9810-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
13
|
Production of salidroside in metabolically engineered Escherichia coli. Sci Rep 2014; 4:6640. [PMID: 25323006 PMCID: PMC4200411 DOI: 10.1038/srep06640] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/29/2014] [Indexed: 01/12/2023] Open
Abstract
Salidroside (1) is the most important bioactive component of Rhodiola (also called as “Tibetan Ginseng”), which is a valuable medicinal herb exhibiting several adaptogenic properties. Due to the inefficiency of plant extraction and chemical synthesis, the supply of salidroside (1) is currently limited. Herein, we achieved unprecedented biosynthesis of salidroside (1) from glucose in a microorganism. First, the pyruvate decarboxylase ARO10 and endogenous alcohol dehydrogenases were recruited to convert 4-hydroxyphenylpyruvate (2), an intermediate of L-tyrosine pathway, to tyrosol (3) in Escherichia coli. Subsequently, tyrosol production was improved by overexpressing the pathway genes, and by eliminating competing pathways and feedback inhibition. Finally, by introducing Rhodiola-derived glycosyltransferase UGT73B6 into the above-mentioned recombinant strain, salidroside (1) was produced with a titer of 56.9 mg/L. Interestingly, the Rhodiola-derived glycosyltransferase, UGT73B6, also catalyzed the attachment of glucose to the phenol position of tyrosol (3) to form icariside D2 (4), which was not reported in any previous literatures.
Collapse
|
14
|
Grech-Baran M, Sykłowska-Baranek K, Pietrosiuk A. Biotechnological approaches to enhance salidroside, rosin and its derivatives production in selected Rhodiola spp. in vitro cultures. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2014; 14:657-674. [PMID: 26213525 PMCID: PMC4513219 DOI: 10.1007/s11101-014-9368-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/07/2014] [Indexed: 05/13/2023]
Abstract
Rhodiola (Crassulaceae) an arctic-alpine plant, is extensively used in traditional folk medicine in Asian and European countries. A number of investigations have demonstrated that Rhodiola preparations exhibit adaptogenic, neuroprotective, anti-tumour, cardioprotective, and anti-depressant effects. The main compounds responsible for these activities are believed to be salidroside, rosin and its derivatives which became the target of biotechnological investigations. This review summarizes the results of the diverse biotechnological approaches undertaken to enhance the production of salidroside, rosin and its derivatives in callus, cell suspension and organ in vitro cultures of selected Rhodiola species.
Collapse
Affiliation(s)
- Marta Grech-Baran
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland
| | - Katarzyna Sykłowska-Baranek
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland
| | - Agnieszka Pietrosiuk
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland
| |
Collapse
|
15
|
Grech-Baran M, Sykłowska-Baranek K, Krajewska-Patan A, Wyrwał A, Pietrosiuk A. Biotransformation of cinnamyl alcohol to rosavins by non-transformed wild type and hairy root cultures of Rhodiola kirilowii. Biotechnol Lett 2013; 36:649-56. [PMID: 24190481 PMCID: PMC3964300 DOI: 10.1007/s10529-013-1401-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/23/2013] [Indexed: 11/25/2022]
Abstract
Non-transformed wild type (NTWT) and hairy root cultures of Rhodiola kirilowii were grown in medium supplemented with 2.5 mM cinnamyl alcohol as a precursor and/or sucrose (1 %) on the day of inoculation or on the 14th day of culture. Rosarin, rosavin, and rosin were produced by NTWT root culture but only rosarin and rosavin by hairy roots. Approximately 80 and 95 % of the glycosides were released into the medium for NTWT and hairy root cultures, respectively. The highest rosavin yield, 505 ± 106 mg/l, was in hairy root culture when cinnamyl alcohol was applied on the day of inoculation with the addition of sucrose on the 14th day of culture. For rosin production, supplementation with cinnamyl alcohol alone on day 14 was more favourable with the highest amount 74 ± 10 mg/l in NTWT root culture. Only traces of rosarin were detected.
Collapse
Affiliation(s)
- Marta Grech-Baran
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 St., 02-097, Warsaw, Poland,
| | | | | | | | | |
Collapse
|
16
|
Li F, Xiao F, Gong J, Yu T. Applied orthogonal experiment design for the optimum microwave-assisted extraction conditions of polysaccharides from Rhodiolae Radix. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2013; 10:179-85. [PMID: 24146521 DOI: 10.4314/ajtcam.v10i4.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An experiment on polysaccharides from Rhodiolae Radix (PRR) extraction was carried out using microwave-assisted extraction (MAE) method with an objective to establishing the optimum MAE conditions of PRR. Single factor experiments were performed to determine the appropriate range of extraction conditions, and the optimum conditions were obtained using orthogonal experiment design. The results showed that the optimum MAE conditions of PRR were as follows: solid-liquid ratio of 1:45 g/mL, irradiation power of 480 W, and irradiation time of 8 min, while extraction yield of PRR was 3.24 %.
Collapse
Affiliation(s)
- Fenglin Li
- Jilin Agricultural Science and Technology College, Jilin, 132101, China ; Brewing Technology Innovation Center of Jilin Province, Jilin, 132101, China ; Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinghuangdao, 066004, China
| | | | | | | |
Collapse
|
17
|
Mirmazloum I, György Z. Review of the molecular genetics in higher plants towards salidrosid and cinnamyl alcohol glycosides biosynthesis inRhodiola roseaL. ACTA ALIMENTARIA 2012. [DOI: 10.1556/aalim.41.2012.suppl.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
BI Y, WANG Z, MAO Y, ZHENG S, ZHANG H, SHI H. Ionic Liquid Effects on the Activity of β-Glycosidase for the Synthesis of Salidroside in Co-solvent Systems. CHINESE JOURNAL OF CATALYSIS 2012. [DOI: 10.1016/s1872-2067(11)60395-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Chen L, Hu YD, Li N, Zong MH. Cross-linked enzyme aggregates of β-glucosidase from Prunus domestica seeds. Biotechnol Lett 2012; 34:1673-8. [PMID: 22618237 DOI: 10.1007/s10529-012-0947-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/04/2012] [Indexed: 11/26/2022]
Abstract
Cross-linked enzyme aggregates (CLEAs) of β-glucosidase were prepared and characterized. Under the optimum conditions, the activity recovery of CLEAs reached 84 %. The reduction by NaBH(4) resulted in slightly lower activities of CLEAs, while their thermostability was enhanced. CLEAs were more thermally stable than free enzyme (half lives, 973 vs. 518 min at 50 °C), while less stable than seed meal (half life, 1,090 min). In 90 % (v/v) t-butanol, the half lives of CLEAs and free enzyme were 53 and 6.7 h, respectively. Besides, the catalytic efficiency (V (max)/K (m)) of CLEAs was comparable to free enzyme (0.42 vs. 0.47 min(-1) mg(-1)). This carrier-free immobilized enzyme had a network structure with multiple layers. The productivity of salidroside using CLEAs reached 150 g/l g catalyst, while being 6.3 g/l g with seed meal.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | | | | | | |
Collapse
|
20
|
Tasheva K, Kosturkova G. The role of biotechnology for conservation and biologically active substances production of Rhodiola rosea: endangered medicinal species. ScientificWorldJournal 2012; 2012:274942. [PMID: 22666097 PMCID: PMC3361218 DOI: 10.1100/2012/274942] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/22/2011] [Indexed: 11/17/2022] Open
Abstract
At present, more than 50,000 plant species are used in phytotherapy and medicine. About 2/3 of them are harvested from nature leading to local extinction of many species or degradation of their habitats. Biotechnological methods offer possibilities not only for faster cloning and conservation of the genotype of the plants but for modification of their gene information, regulation, and expression for production of valuable substances in higher amounts or with better properties. Rhodiola rosea is an endangered medicinal species with limited distribution. It has outstanding importance for pharmaceutical industry for prevention and cure of cancer, heart and nervous system diseases, and so forth. Despite the great interest in golden root and the wide investigations in the area of phytochemistry, plant biotechnology remained less endeavoured and exploited. The paper presents research on initiation of in vitro cultures in Rhodiola rosea and some other Rhodiola species. Achievements in induction of organogenic and callus cultures, regeneration, and micropropagation varied but were a good basis for alternative in vitro synthesis of the desired metabolites and for the development of efficient systems for micropropagation for conservation of the species.
Collapse
Affiliation(s)
- Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | | |
Collapse
|
21
|
Wu YX, Wang Q, Liu B, You MY, Jin T. Supercritical Carbon Dioxide Extraction of Salidroside from Rhodiola rosea L var. rosea Root. J CHIN CHEM SOC-TAIP 2011. [DOI: 10.1002/jccs.201190080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Yu HS, Ma LQ, Zhang JX, Shi GL, Hu YH, Wang YN. Characterization of glycosyltransferases responsible for salidroside biosynthesis in Rhodiola sachalinensis. PHYTOCHEMISTRY 2011; 72:862-70. [PMID: 21497865 DOI: 10.1016/j.phytochem.2011.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 10/17/2010] [Accepted: 03/23/2011] [Indexed: 05/23/2023]
Abstract
Salidroside, the 8-O-β-D-glucoside of tyrosol, is a novel adaptogenic drug extracted from the medicinal plant Rhodiola sachalinensis A. Bor. Due to the scarcity of R. sachalinensis and its low yield of salidroside, there is great interest in enhancing production of salidroside by biotechnological manipulations. In this study, two putative UDP-glycosyltransferase (UGT) cDNAs, UGT72B14 and UGT74R1, were isolated from roots and cultured cells of methyl jasmonate (MeJA)-treated R. sachalinensis, respectively. The level of sequence identity between their deduced amino acid sequences was ca. 20%. RNA gel-blot analysis established that UGT72B14 transcripts were more abundant in roots, and UGT74R1 was highly expressed in the calli, but not in roots. Functional analysis indicated that recombinant UGT72B14 had the highest level of activity for salidroside production, and that the catalytic efficiency (Vmax/Km) of UGT72B14 was 620% higher than that of UGT74R1. The salidroside contents of the UGT72B14 and UGT74R1 transgenic hairy root lines of R. sachalinensis were also ∼420% and ∼50% higher than the controls, respectively. UGT72B14 transcripts were mainly detected in roots, and UGT72B14 had the highest level of activity for salidroside production in vitro and in vivo.
Collapse
Affiliation(s)
- Han-Song Yu
- Food Science and Engineering College, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - Lan-Qing Ma
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture PR China, Beijing University of Agriculture, Beijing 102206, People's Republic of China
| | - Ji-Xing Zhang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028043, People's Republic of China
| | - Guang-Lu Shi
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture PR China, Beijing University of Agriculture, Beijing 102206, People's Republic of China
| | - Yao-Hui Hu
- Food Science and Engineering College, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - You-Nian Wang
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture PR China, Beijing University of Agriculture, Beijing 102206, People's Republic of China
| |
Collapse
|
23
|
Tan. Effect of Plant Growth Regulators on Callus, Cell Suspension and Cell Line Selection for Flavonoid Production from Pegaga ( centella asiatica L. urban). ACTA ACUST UNITED AC 2010. [DOI: 10.3844/ajbbsp.2010.284.299] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Abstract
Cyclotides are disulfide-rich mini-proteins with the unique structural features of a circular backbone and knotted arrangement of three conserved disulfide bonds. They typically comprise 28-37 amino acids and are produced from linear precursors, and translational modification via oxidative folding, proteolytic processing and N-C cyclization. Because these plant-derived peptides are resistant to degradation and do exhibit a diverse range of biological activities, they have become important agronomic and industrial objectives. Due to its tolerance to sequence variation, the cyclotide backbone is also potentially useful as a molecular scaffold for protein-engineering applications. Several production options are available for bioactive plant metabolites including natural harvesting, total chemical synthesis, and expression of plant pathways in microbial systems. For the cyclotides with low yields in nature, chemical complexity and lack of knowledge of the complete biosynthetic pathway, however, many of these options are precluded. Plant cell-culture technology shows promise towards the goal of producing therapeutically active cyclotides in quality and quantities required for drug development as they are amenable to process optimization, scale-up, and metabolic engineering. It is conceivable that plant-based production systems may ultimately prove to be the preferred route for the production of native or designed cyclotides, and will contribute towards the development of target-specific drugs.
Collapse
Affiliation(s)
- Heike Dörnenburg
- Institute of Bioprocess Engineering, University of Erlangen-Nuremberg, Germany.
| |
Collapse
|
25
|
Ma C, Tang J, Wang H, Tao G, Gu X, Hu L. Preparative purification of salidroside from Rhodiola rosea by two-step adsorption chromatography on resins. J Sep Sci 2009; 32:185-91. [PMID: 19156642 DOI: 10.1002/jssc.200800438] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Salidroside is an effective adaptogenic drug extracted from Rhodiola species. In the present study, a simple and efficient method for preparative separation and purification of salidroside from the Chinese medicinal plant Rhodiola rosesa was developed by adsorption chromatography on macroporous resins. The static adsorption isotherms and kinetics of some resins have been determined and compared for preparative separation of salidroside. According to our results, HPD-200 resin is the most appropriate medium for the separation of salidroside and its adsorption data fit the Langmuir isotherm well. Dynamic adsorption and desorption were carried out in glass columns packed with HPD-200 to optimize the separation process. After two adsorption and desorption runs, a product with a salidroside content of 92.21% and an overall recovery of 48.82% was achieved. In addition, pure lamellar crystals of salidroside with a purity of 99.00% could be obtained from this product. Its molecular weight was determined by an ESI-MS method. The simple purification scheme avoids toxic organic solvents used in silica gel and high-speed counter-current chromatographic separation processes and thus increases the safety of the process and can be helpful for large-scale salidroside production from Rhodiola rosea or other plant extracts.
Collapse
Affiliation(s)
- Chaoyang Ma
- State Key Laboratory of Food Science and Technology (Jiangnan University), School of Food Science and Technology, Wuxi, China
| | | | | | | | | | | |
Collapse
|
26
|
Ma LQ, Gao DY, Wang YN, Wang HH, Zhang JX, Pang XB, Hu TS, Lü SY, Li GF, Ye HC, Li YF, Wang H. Effects of overexpression of endogenous phenylalanine ammonia-lyase (PALrs1) on accumulation of salidroside in Rhodiola sachalinensis. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:323-333. [PMID: 18426479 DOI: 10.1111/j.1438-8677.2007.00024.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Salidroside, a novel effective adaptogenic drug extracted from the medicinal plant Rhodiola sachalinensis A. Bor, can be derived from phenylalanine or tyrosine. Due to the scarcity of R. sachalinensis and its low yield of salidroside, there is great interest in enhancing production of salidroside by the plant. In this study, a cDNA clone encoding phenylalanine ammonia-lyase (PAL) was isolated from R. sachalinensis using rapid amplification of cDNA ends. The resulting cDNA was designated PALrs1. It is 2407-bp long and encodes 710 deduced amino acid residues. Southern blot analysis of genomic DNA indicated that the PAL gene family is composed of three to five genes in the R. sachalinensis genome. Northern blot analysis revealed that transcripts of PALrs1 were present in calli, leaves and stems, but expression in roots was very low. The PALrs1 under the 35S promoter with double-enhancer sequences from CaMV-Omega and TMV-Omega fragments was transferred into R. sachalinensis via Agrobacterium tumefaciens. PCR and PCR-Southern blot confirmed that the PALrs1 gene had been integrated into the genome of transgenic plants. Northern blot analysis revealed that the PALrs1 gene had been expressed at the transcriptional level. High-performance liquid chromatography indicated that overexpression of the PALrs1 gene resulted in a 3.3-fold increase in p-coumaric acid content, as expected. In contrast, levels of tyrosol and salidroside were 4.7-fold and 7.7-fold, respectively, lower in PALrs1 transgenic plants than in controls. Furthermore, overexpression of the PALrs1 gene resulted in a 2.6-fold decrease in tyrosine content. These data suggest that overexpression of the PALrs1 gene and accumulation of p-coumaric acid did not facilitate tyrosol biosynthesis; tyrosol, as a phenylethanoid derivative, is not derived from phenylalanine; and reduced availability of tyrosine most likely resulted in a large reduction in tyrosol biosynthesis and accumulation of salidroside.
Collapse
Affiliation(s)
- L-Q Ma
- College of Plant Science, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mao Y, Zhang X, Zhang X, Lu G. Development of an HPLC method for the determination of salidroside in beagle dog plasma after administration of salidroside injection: application to a pharmacokinetics study. J Sep Sci 2008; 30:3218-22. [PMID: 17973272 DOI: 10.1002/jssc.200700273] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A simple RP-HPLC method was established for the determination of salidroside in dog plasma. Salidroside is one of the most active ingredients of Rhodiola L. The method had within-run precision values in the range of +/- 2.3 to +/- 9.1% (n = 5) and between-run precision in the range of +/- 3.2 to +/- 9.8%. A simple protein precipitation for salidroside extraction was processed using ACN at precipitant-to-plasma volume ratio (P-P ratio) of 3:2. The extraction recoveries of salidroside at seven concentrations were higher than 63.2%. There was a linear relationship between chromatographic area and concentration over the range of 0.83-520 microg/mL for salidroside in plasma (R = 0.9926). The LOQ (S/N = 10) of the method was 0.83 microg/mL. The method was applied in a study of the pharmacokinetics of salidroside injection in six beagle dogs. The major pharmacokinetic parameters of C(max), AUC(0-24), AUC(0-infinity), and t(1/2) of salidroside in beagle dogs after i.v. administration of a single 75 mg/kg (5 mL/kg) dose were 96.16 +/- 8.59 microg/mL, 180.3 +/- 30.6 microg h/mL, 189.3 +/- 32.1 microg h/mL, and 2.006 +/- 0.615 h, respectively.
Collapse
Affiliation(s)
- Yu Mao
- Center of Evaluation for Drug Safety, Second Military Medical University, Shanghai, China
| | | | | | | |
Collapse
|
28
|
Environmentally benign synthesis of natural glycosides using apple seed meal as green and robust biocatalyst. J Biotechnol 2008; 133:469-77. [DOI: 10.1016/j.jbiotec.2007.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 11/13/2007] [Accepted: 12/05/2007] [Indexed: 11/21/2022]
|
29
|
Ma LQ, Liu BY, Gao DY, Pang XB, Lü SY, Yu HS, Wang H, Yan F, Li ZQ, Li YF, Ye HC. Molecular cloning and overexpression of a novel UDP-glucosyltransferase elevating salidroside levels in Rhodiola sachalinensis. PLANT CELL REPORTS 2007; 26:989-99. [PMID: 17333022 DOI: 10.1007/s00299-007-0317-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Revised: 02/07/2007] [Accepted: 02/08/2007] [Indexed: 05/14/2023]
Abstract
Salidroside is a novel effective adaptogenic drug extracted from the medicinal plant Rhodiola sachalinensis A. Bor. Because this plant is a rare resource and has low yield, there is great interest in enhancing the production of salidroside. In this study, a putative UDP-glucosyltransferase (UGT) cDNA, UGT73B6, was isolated from Rhodiola sachalinensis using a rapid amplification of cDNA ends (RACE) method. The cDNA was 1,598 bp in length encoding 480 deduced amino acid residues with a conserved UDP-glucose-binding domain (PSPG box). Southern blot analysis of genomic DNA indicated that UGT73B6 existed as a single copy gene in the R. sachalinensis genome. Northern blot analysis revealed that transcripts of UGT73B6 were present in roots, calli and stems, but not in leaves. The UGT73B6 under 35S promoter with double-enhancer sequences from CaMV-Omega and TMV-Omega fragments was transferred into R. sachalinensis via Agrobacterium tumefaciens. PCR, PCR-Southern and Southern blot analyses confirmed that the UGT73B6 gene had been integrated into the genome of transgenic calli and plants. Northern blot analysis revealed that the UGT73B6 gene had been expressed at the transcriptional level. High performance liquid chromatography (HPLC) analysis indicated that the overexpression of the UGT73B6 gene resulted in an evident increase of salidroside content. These data suggest that the cloned UGT73B6 can regulate the conversion of tyrosol aglycon to salidroside in R. sachalinensis. This is the first cloned glucosyltransferase gene involved in salidroside biosynthesis.
Collapse
Affiliation(s)
- Lan-Qing Ma
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Devi CS, . SM, . VMS. Gymnemic Acid Production in Suspension Cell Cultures of Gymnema sylvestre. ACTA ACUST UNITED AC 2006. [DOI: 10.3923/jas.2006.2263.2268] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
|