1
|
Guo H, Ding X, Hua D, Liu M, Yang M, Gong Y, Ye N, Chen X, He J, Zhang Y, Xu X, Li J. Enhancing Dengue Virus Production and Immunogenicity with Celcradle™ Bioreactor: A Comparative Study with Traditional Cell Culture Methods. Vaccines (Basel) 2024; 12:563. [PMID: 38932292 PMCID: PMC11209354 DOI: 10.3390/vaccines12060563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
The dengue virus, the primary cause of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome, is the most widespread mosquito-borne virus worldwide. In recent decades, the prevalence of dengue fever has increased markedly, presenting substantial public health challenges. Consequently, the development of an efficacious vaccine against dengue remains a critical goal for mitigating its spread. Our research utilized Celcradle™, an innovative tidal bioreactor optimized for high-density cell cultures, to grow Vero cells for dengue virus production. By maintaining optimal pH levels (7.0 to 7.4) and glucose concentrations (1.5 g/L to 3.5 g/L) during the proliferation of cells and viruses, we achieved a peak Vero cell count of approximately 2.46 × 109, nearly ten times the initial count. The use of Celcradle™ substantially decreased the time required for cell yield and virus production compared to conventional Petri dish methods. Moreover, our evaluation of the immunogenicity of the Celcradle™-produced inactivated DENV4 through immunization of mice revealed that sera from these mice demonstrated cross-reactivity with DENV4 cultured in Petri dishes and showed elevated antibody titers compared to those from mice immunized with virus from Petri dishes. These results indicate that the dengue virus cultivated using the Celcradle™ system exhibited enhanced immunogenicity relative to that produced in traditional methods. In conclusion, our study highlights the potential of the Celcradle™ bioreactor for large-scale production of inactivated dengue virus vaccines, offering significant promise for reducing the global impact of dengue virus infections and accelerating the development of effective vaccination strategies.
Collapse
Affiliation(s)
- Hongxia Guo
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaoyan Ding
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Dong Hua
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Minchi Liu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Maocheng Yang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Yuanxin Gong
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Nan Ye
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaozhong Chen
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Jiuxiang He
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Yu Zhang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaofeng Xu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Jintao Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| |
Collapse
|
2
|
High-Titer Hepatitis C Virus Production in a Scalable Single-Use High Cell Density Bioreactor. Vaccines (Basel) 2022; 10:vaccines10020249. [PMID: 35214707 PMCID: PMC8880717 DOI: 10.3390/vaccines10020249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis C virus (HCV) infections pose a major public health burden due to high chronicity rates and associated morbidity and mortality. A vaccine protecting against chronic infection is not available but would be important for global control of HCV infections. In this study, cell culture-based HCV production was established in a packed-bed bioreactor (CelCradle™) aiming to further the development of an inactivated whole virus vaccine and to facilitate virological and immunological studies requiring large quantities of virus particles. HCV was produced in human hepatoma-derived Huh7.5 cells maintained in serum-free medium on days of virus harvesting. Highest virus yields were obtained when the culture was maintained with two medium exchanges per day. However, increasing the total number of cells in the culture vessel negatively impacted infectivity titers. Peak infectivity titers of up to 7.2 log10 focus forming units (FFU)/mL, accumulated virus yields of up to 5.9 × 1010 FFU, and a cell specific virus yield of up to 41 FFU/cell were obtained from one CelCradle™. CelCradle™-derived and T flask-derived virus had similar characteristics regarding neutralization sensitivity and buoyant density. This packed-bed tide-motion system is available with larger vessels and may thus be a promising platform for large-scale HCV production.
Collapse
|
3
|
Influenza Vaccine: An Engineering Vision from Virological Importance to Production. BIOTECHNOL BIOPROC E 2022; 27:714-738. [PMID: 36313971 PMCID: PMC9589582 DOI: 10.1007/s12257-022-0115-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 01/26/2023]
Abstract
According to data from the World Health Organization (WHO) every year, millions of people are affected by flu. Flu is a disease caused by influenza viruses. For preventing this, seasonal influenza vaccinations are widely considered the most efficient way to protect against the negative effects of the flu. To date, there is no "one-size-fits-all" vaccine that can be effective all over the world to protect against all seasonal or pandemic influenza virus types. Because influenza virus transforms its genetic structure and it can emerges as immunogenically new (antigenic drift) which causes epidemics or new virus subtype (antigenic shift) which causes pandemics. As a result, annual revaccination or new subtype viral vaccine development is required. Currently, three types of vaccines (inactivated, live attenuated, and recombinant) are approved in different countries. These can be named "conventional influenza vaccines" and their production are based on eggs or cell culture. Although, there is good effort to develop new influenza vaccines for broader and longer period of time protection. In this sense these candidate vaccines are called "universal influenza vaccines". In this article, after we mentioned the short history of flu then virus morphology and infection, we explained the diseases caused by the influenza virus in humans. Afterward, we explained in detail the production methods of available influenza vaccines, types of bioreactors used in cell culture based production, conventional and new vaccine types, and development strategies for better vaccines.
Collapse
|
4
|
Offersgaard A, Duarte Hernandez CR, Pihl AF, Costa R, Venkatesan NP, Lin X, Van Pham L, Feng S, Fahnøe U, Scheel TKH, Ramirez S, Reichl U, Bukh J, Genzel Y, Gottwein JM. SARS-CoV-2 Production in a Scalable High Cell Density Bioreactor. Vaccines (Basel) 2021; 9:706. [PMID: 34209694 PMCID: PMC8310283 DOI: 10.3390/vaccines9070706] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has demonstrated the value of pursuing different vaccine strategies. Vaccines based on whole viruses, a widely used vaccine technology, depend on efficient virus production. This study aimed to establish SARS-CoV-2 production in the scalable packed-bed CelCradleTM 500-AP bioreactor. CelCradleTM 500-AP bottles with 0.5 L working volume and 5.5 g BioNOC™ II carriers were seeded with 1.5 × 108 Vero (WHO) cells, approved for vaccine production, in animal component-free medium and infected at a multiplicity of infection of 0.006 at a total cell number of 2.2-2.5 × 109 cells/bottle seven days post cell seeding. Among several tested conditions, two harvests per day and a virus production temperature of 33 °C resulted in the highest virus yield with a peak SARS-CoV-2 infectivity titer of 7.3 log10 50% tissue culture infectious dose (TCID50)/mL at 72 h post-infection. Six harvests had titers of ≥6.5 log10 TCID50/mL, and a total of 10.5 log10 TCID50 were produced in ~5 L. While trypsin was reported to enhance virus spread in cell culture, addition of 0.5% recombinant trypsin after infection did not improve virus yields. Overall, we demonstrated successful animal component-free production of SARS-CoV-2 in well-characterized Vero (WHO) cells in a scalable packed-bed bioreactor.
Collapse
Affiliation(s)
- Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Carlos Rene Duarte Hernandez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anne Finne Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rui Costa
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Xiangliang Lin
- Esco Aster Pte Ltd., Singapore 486 777, Singapore; (N.P.V.); (X.L.)
| | - Long Van Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Shan Feng
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Troels Kasper Høyer Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; (U.R.); (Y.G.)
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; (U.R.); (Y.G.)
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Mahajan P, Ellis K, Mukhopadhyay S, Fernandez-Cid A, Chi G, Man H, Dürr KL, Burgess-Brown NA. Expression Screening of Human Integral Membrane Proteins Using BacMam. Methods Mol Biol 2021; 2199:95-115. [PMID: 33125646 DOI: 10.1007/978-1-0716-0892-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter describes the step-by-step methods employed by the Structural Genomics Consortium (SGC) for screening and producing proteins in the BacMam system. This eukaryotic expression system was selected and a screening process established in 2016 to enable production of highly challenging human integral membrane proteins (IMPs), which are a significant component of our target list. Here, we discuss our recently developed platform for identifying expression and monodispersity of IMPs from 3 mL of HEK293 cells.
Collapse
Affiliation(s)
| | | | | | | | - Gamma Chi
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Henry Man
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Katharina L Dürr
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | | |
Collapse
|
6
|
Kumar M, Hooda P, Khanna M, Patel U, Sehgal D. Development of BacMam Induced Hepatitis E Virus Replication Model in Hepatoma Cells to Study the Polyprotein Processing. Front Microbiol 2020; 11:1347. [PMID: 32625196 PMCID: PMC7315041 DOI: 10.3389/fmicb.2020.01347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/26/2020] [Indexed: 01/10/2023] Open
Abstract
The processing of polyprotein(s) to form structural and non-structural components remains an enigma due to the non-existence of an efficient and robust Hepatitis E Virus (HEV) culture system. We used the BacMam approach to construct an HEV replication model in which the HEV genome was cloned in the BacMam vector under the CMV promoter. The recombinant BacMam was used to infect Huh7 cells to transfer the HEV genome. HEV replication was authenticated by the presence of RNAs of both the polarity (+) and (-) and formation of hybrid RNA, a replication intermediate. The presence of genes for Papain-like Cysteine Protease (PCP), methyltransferase (MeT), RNA dependent RNA polymerase (RdRp), and ORF2 was confirmed by PCR amplification. Further, the infectious nature of the culture system was established as evidenced by the cross-infection of uninfected cells using the cell lysate from the infected cells. The HEV replication model was validated by detection of the ORF1 (Open Reading Frame1) encoded proteins, identified by Western blotting and Immunofluorescence by using epitope-specific antibodies against each protein. Consequently, discrete bands of 18, 35, 37, and 56 kDa corresponding to PCP, MeT, RdRp, and ORF2, respectively, were seen. Besides demonstrating the presence of non-structural enzymes of HEV along with ORF2, activity of a key enzyme, HEV-methyltransferase has also been observed. A 20% decrease in the replicative forms of RNA could be seen in presence of 100 μM Ribavirin after 48 h of treatment. The inhibition gradually increased from 0 to 24 to 48 h post-treatment. Summarily, infectious HEV culture system has been established, which could demonstrate the presence of HEV replicative RNA forms, the structural and non-structural proteins and the methyltransferase in its active form. The system may also be used to study the mechanism of action of Ribavirin in inhibiting HEV replication and develop a therapy.
Collapse
Affiliation(s)
- Manjeet Kumar
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Preeti Hooda
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Madhu Khanna
- Virology Lab, Department of Virology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Utkarsh Patel
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Deepak Sehgal
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
7
|
Lai CC, Weng TC, Tseng YF, Chiang JR, Lee MS, Hu AYC. Evaluation of novel disposable bioreactors on pandemic influenza virus production. PLoS One 2019; 14:e0220803. [PMID: 31404117 PMCID: PMC6690526 DOI: 10.1371/journal.pone.0220803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/23/2019] [Indexed: 01/19/2023] Open
Abstract
Since 1997, the highly pathogenic influenza H5N1 virus has spread from Hong Kong. According to the WHO bulletin report, the H5N1 virus is a zoonotic disease threat that has infected more than 850 humans, causing over 450 deaths. In addition, an outbreak of another new and highly pathogenic influenza virus (H7N9) occurred in 2013 in China. These highly pathogenic influenza viruses could potentially cause a worldwide pandemic. it is crucial to develop a rapid production platform to meet this surge demand against any possible influenza pandemic. A potential solution for this problem is the use of cell-based bioreactors for rapid vaccine production. These novel bioreactors, used for cell-based vaccine production, possess various advantages. For example, they enable a short production time, allow for the handling highly pathogenic influenza in closed environments, and can be easily scaled up. In this study, two novel disposable cell-based bioreactors, BelloCell and TideCell, were used to produce H5N1 clade II and H7N9 candidate vaccine viruses (CVVs). Madin-Darby canine kidney (MDCK) cells were used for the production of these influenza CVVs. A novel bench-scale bioreactor named BelloCell bioreactor was used in the study. All culturing conditions were tested and scaled to 10 L industrial-scale bioreactor known as TideCell002. The performances of between BelloCell and TideCell were similar in cell growth, the average MDCK cell doubling time was slightly decreased to 25 hours. The systems yielded approximately 39.2 and 18.0 μg/ml of HA protein with the 10-liter TideCell002 from the H5N1 clade II and H7N9 CVVs, respectively. The results of this study not only highlight the overall effectiveness of these bioreactors but also illustrate the potential of maintaining the same outcome when scaled up to industrial production, which has many implications for faster vaccine production. Although additional studies are required for process optimization, the results of this study are promising and show that oscillating bioreactors may be a suitable platform for pandemic influenza virus production.
Collapse
Affiliation(s)
- Chia-Chun Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- College of Life Science Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Tsai-Chuan Weng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Fen Tseng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Jen-Ron Chiang
- Vaccine Center, Centers for Disease Control, Taipei, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- * E-mail:
| |
Collapse
|
8
|
A novel toolbox for the in vitro assay of hepatitis D virus infection. Sci Rep 2017; 7:40199. [PMID: 28079152 PMCID: PMC5228157 DOI: 10.1038/srep40199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus that requires the presence of hepatitis B virus (HBV) for its life cycle. The in vitro HDV infection system is widely used as a surrogate model to study cellular infection with both viruses owing to its practical feasibility. However, previous methods for running this system were less efficient for high-throughput screening and large-scale studies. Here, we developed a novel method for the production of infectious HDV by adenoviral vector (AdV)-mediated transduction. We demonstrated that the AdV-based method yields 10-fold higher viral titers than the transient-transfection approach. The HDV-containing supernatant derived from AdV-infected Huh7 cells can be used as the inoculum in infectivity assays without requiring further concentration prior to use. Furthermore, we devloped a chemiluminescent immunoassay (HDV-CLEIA) to quantitatively determine intracellular HDAg with a dynamic range of 5–11,000 pg/mL. HDV-CLEIA can be used as an alternative approach to assess HDV infection. The advantages of our updated methodology were demonstrated through in vitro HDV infection of HepaRG cells and by evaluating the neutralization activity using antibodies that target various regions of the HBV/HDV envelope proteins. Together, the methods presented here comprise a novel toolbox of in vitro assays for studying HDV infection.
Collapse
|
9
|
Noncoding RNAs, post-transcriptional RNA operons and Chinese hamster ovary cells. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/pbp.14.65] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
|
11
|
Segura MM, Mangion M, Gaillet B, Garnier A. New developments in lentiviral vector design, production and purification. Expert Opin Biol Ther 2013; 13:987-1011. [PMID: 23590247 DOI: 10.1517/14712598.2013.779249] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Lentiviruses are a very potent class of viral vectors for which there is presently a rapidly growing interest for a number of gene therapy. However, their construction, production and purification need to be performed according to state-of-the-art techniques in order to obtain sufficient quantities of high purity material of any usefulness and safety. AREAS COVERED The recent advances in the field of recombinant lentivirus vector design, production and purification will be reviewed with an eye toward its utilization for gene therapy. Such a review should be helpful for the potential user of this technology. EXPERT OPINION The principal hurdles toward the use of recombinant lentivirus as a gene therapy vector are the low titer at which it is produced as well as the difficulty to purify it at an acceptable level without degrading it. The recent advances in the bioproduction of this vector suggest these issues are about to be resolved, making the retrovirus gene therapy a mature technology.
Collapse
Affiliation(s)
- Maria Mercedes Segura
- Chemical Engineering Department, Universitat Autònoma de Barcelona, Campus Bellaterra, Cerdanyola del Vallès (08193), Barcelona, Spain
| | | | | | | |
Collapse
|
12
|
Wu SC, Liau MY, Lin YC, Sun CJ, Wang CT. The feasibility of a novel bioreactor for vaccine production of classical swine fever virus. Vaccine 2013; 31:867-72. [DOI: 10.1016/j.vaccine.2012.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/24/2012] [Accepted: 12/05/2012] [Indexed: 11/30/2022]
|
13
|
Haase N, Grothe KH, Matthäus B, Vosmann K, Lindhauer M. Acrylamide formation and antioxidant level in biscuits related to recipe and baking. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29:1230-8. [DOI: 10.1080/19440049.2012.690349] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Chen CY, Lin CY, Chen GY, Hu YC. Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol Adv 2011; 29:618-31. [PMID: 21550393 PMCID: PMC7126054 DOI: 10.1016/j.biotechadv.2011.04.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 12/13/2022]
Abstract
Baculovirus infects insects in nature and is non-pathogenic to humans, but can transduce a broad range of mammalian and avian cells. Thanks to the biosafety, large cloning capacity, low cytotoxicity and non-replication nature in the transduced cells as well as the ease of manipulation and production, baculovirus has gained explosive popularity as a gene delivery vector for a wide variety of applications. This article extensively reviews the recent understandings of the molecular mechanisms pertinent to baculovirus entry and cellular responses, and covers the latest advances in the vector improvements and applications, with special emphasis on antiviral therapy, cancer therapy, regenerative medicine and vaccine.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|
15
|
Medeiros Vinci R, Mestdagh F, Van Poucke C, Kerkaert B, de Muer N, Denon Q, Van Peteghem C, De Meulenaer B. Implementation of acrylamide mitigation strategies on industrial production of French fries: challenges and pitfalls. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:898-906. [PMID: 21226459 DOI: 10.1021/jf1042486] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study evaluated various additives or process aids on the industrial production of French fries, based on their acrylamide mitigation potential and other quality parameters. The application of acetic and citric acid, calcium lactate and asparaginase was investigated on the production of frozen par-fried French fries at the beginning and end of the 2008 and 2009 potato storage season. Despite the fact that some of these treatments significantly reduced acrylamide content of the final product in preliminary laboratory experiments, their application on the industrial production of French fries did not result in additional acrylamide reductions compared to the standard product. Asparaginase was additionally tested in a production line of chilled French fries (not par-fried). Since for this product a longer enzyme-substrate contact time is allowed, a total asparagine depletion was observed for the enzyme treated fries after four days of cold storage. French fries upon final frying presented acrylamide contents below the limit of detection (12.5 μg kg⁻¹) with no effects on the sensorial properties of the final product.
Collapse
Affiliation(s)
- Raquel Medeiros Vinci
- NutriFOODchem Unit, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Roldão A, Mellado MCM, Castilho LR, Carrondo MJT, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines 2011; 9:1149-76. [PMID: 20923267 DOI: 10.1586/erv.10.115] [Citation(s) in RCA: 591] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome, potentially yielding safer and cheaper vaccine candidates. A handful of prophylactic VLP-based vaccines is currently commercialized worldwide: GlaxoSmithKline's Engerix (hepatitis B virus) and Cervarix (human papillomavirus), and Merck and Co., Inc.'s Recombivax HB (hepatitis B virus) and Gardasil (human papillomavirus) are some examples. Other VLP-based vaccine candidates are in clinical trials or undergoing preclinical evaluation, such as, influenza virus, parvovirus, Norwalk and various chimeric VLPs. Many others are still restricted to small-scale fundamental research, despite their success in preclinical tests. This article focuses on the essential role of VLP technology in new-generation vaccines against prevalent and emergent diseases. The implications of large-scale VLP production are discussed in the context of process control, monitorization and optimization. The main up- and down-stream technical challenges are identified and discussed accordingly. Successful VLP-based vaccine blockbusters are briefly presented concomitantly with the latest results from clinical trials and the recent developments in chimeric VLP-based technology for either therapeutic or prophylactic vaccination.
Collapse
Affiliation(s)
- António Roldão
- Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa, Apartado 127, P-2781-901, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Tani H, Abe T, Matsunaga TM, Moriishi K, Matsuura Y. Baculovirus vector for gene delivery and vaccine development. Future Virol 2008. [DOI: 10.2217/17460794.3.1.35] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The baculovirus Autographa californica multiple nucleopolyhedrovirus has been widely used not only to acheive a high level of foreign gene expression in insect cells, but also for efficient gene transduction into mammalian cells. Recombinant and pseudotyped baculoviruses possessing chimeric or foreign ligands have been constructed to improve the efficiency of gene transduction and to confer specificity for gene delivery into mammalian cells, respectively. Baculoviral DNA CpG motifs induce proinflammatory cytokines through a Toll-like receptor (TLR9)/MyD88-dependent signaling pathway. Other baculovirus components produce type I interferons via a TLR-independent pathway. Baculovirus exhibits a strong adjuvant property and recombinant baculoviruses encoding microbial antigens elicit antibodies to the antigens and provide protective immunity in mice. This review deals with recent progress in the application of baculovirus vectors to gene delivery and vaccine development, and discusses the future prospects of baculovirus vectors.
Collapse
Affiliation(s)
- Hideki Tani
- Osaka University, Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Takayuki Abe
- Osaka University, Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Tomoko M Matsunaga
- Osaka University, Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Kohji Moriishi
- Osaka University, Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Yoshiharu Matsuura
- Osaka University, Department of Molecular Virology, Research Institute for Microbial Diseases, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Huang KS, Lo WH, Chung YC, Lai YK, Chen CY, Chou ST, Hu YC. Combination of Baculovirus-Mediated Gene Delivery and Packed-Bed Reactor for Scalable Production of Adeno-Associated Virus. Hum Gene Ther 2007; 18:1161-70. [DOI: 10.1089/hum.2007.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Kuo-Shiang Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Wen-Hsin Lo
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yao-Chi Chung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yiu-Kay Lai
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan
- Department of Bioresources, Da-Yeh University, Changhwa 515, Taiwan
| | - Chi-Yuan Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Szu-Ting Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
20
|
Shen HC, Lee HP, Lo WH, Yang DG, Hu YC. Baculovirus-mediated gene transfer is attenuated by sodium bicarbonate. J Gene Med 2007; 9:470-8. [PMID: 17431924 DOI: 10.1002/jgm.1037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Baculovirus transduction of cultured mammalian cells is typically performed by incubating the cells with virus using culture medium (e.g. Dulbecco's modified Eagle's medium (DMEM)) as the surrounding solution. However, we previously uncovered that DMEM hinders the baculovirus-mediated gene transfer. METHODS In this study, we systematically explored the influences of promoter and medium constituents on the transduction efficiency by using different recombinant viruses and surrounding solutions for transduction, followed by flow cytometric analyses. Whether the key medium component impeded baculovirus binding to the cells and subsequent virus entry was investigated by immunofluorescence/confocal microscopy and quantitative real-time polymerase chain reaction (Q-PCR). RESULTS We demonstrated that the poorer transduction by using DMEM as the surrounding solution is independent of the promoter. Examination of the medium constituents group by group revealed that the balanced salt solution suppresses the baculovirus transduction. By omitting individual salt species in the balanced salt solution, we surprisingly uncovered that NaHCO(3), a common buffering agent, exerts the inhibitory effects in a concentration-dependent manner. Intriguingly, NaHCO(3) did not debilitate the baculovirus, nor did it inhibit virus binding to the cells. Instead, NaHCO(3) inhibited baculovirus transduction by reducing the intracellular virus number. CONCLUSIONS To our best knowledge, this is the first report unraveling the significance of NaHCO(3) in gene transfer. Our finding suggests that baculovirus-mediated gene transfer can be readily enhanced by omitting NaHCO(3) from the medium during the transduction period.
Collapse
Affiliation(s)
- Heng-Chun Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | |
Collapse
|
21
|
Peng Y, Song J, Lu J, Chen X. The histone deacetylase inhibitor sodium butyrate inhibits baculovirus-mediated transgene expression in Sf9 cells. J Biotechnol 2007; 131:180-7. [PMID: 17655959 DOI: 10.1016/j.jbiotec.2007.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 05/26/2007] [Accepted: 06/14/2007] [Indexed: 10/23/2022]
Abstract
Recent studies have indicated that histone deacetylase inhibitors (HDACis) could enhance and prolong expression of exogenous genes delivered by various viral vehicles in mammalian cells, including baculovirus vectors. In this study, the effects of HDACis on expression of a baculovirus-mediated eGFP reporter gene under control of baculovirus late promoter p10 in Sf9 cells were evaluated. It was found that sodium butyrate (NaBu) decreased the expression level of the target gene driven by p10 promoter by four to fivefold. Moreover, addition of NaBu increased DNaseI-sensitivity of transgene p10 promoter region and did not influence viral DNA replication. FACS assay has shown that both NaBu and fluorodeoxyuridine (FdUrd) blocked Sf9 cells at G1 phase and inhibited the target gene expression. Another HDACi, trichostatin, had little effects on both cell cycle and Ac-p10-eGFP expression, strongly suggesting that cell cycle arrest accounts for the mechanisms by which NaBu inhibits Ac-p10-eGFP expression. The inhibiting effects of NaBu on baculovirus transgene expression in Sf9 cells are promoter specific since the enhancement of NaBu on transgene expression in insect and mammalian cells are mediated by baculovirus harboring a murine cytomegalovirus (mCMV) immediate early promoter. This study was aimed at improving the productivity of the recombinant proteins and providing a better understanding of the epigenetic regulation of baculovirus gene expression.
Collapse
Affiliation(s)
- Ying Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | | | | | | |
Collapse
|
22
|
Toriniwa H, Komiya T. Japanese encephalitis virus production in Vero cells with serum-free medium using a novel oscillating bioreactor. Biologicals 2007; 35:221-6. [PMID: 17400474 DOI: 10.1016/j.biologicals.2007.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 02/01/2007] [Accepted: 02/12/2007] [Indexed: 11/26/2022] Open
Abstract
A novel oscillating bioreactor, BelloCell, was successfully applied for the cultivation of Vero cells using serum-free medium, and the production of Japanese encephalitis virus. The BelloCell requires no air sparging, pumping, or agitation, and thus provides a low shear environment. Owing to its simple design, BelloCell is extremely easy to handle and operate. Using this BelloCell (500 ml culture), Vero cells reached a maximum number of 2.8 x 10(9) cells and the Japanese encephalitis virus yield reached 6.91 x 10(11) PFU, versus 9.0 x 10(8) cells and 2.98 x 10(11) PFU using a spinner flask (500 ml) with microcarriers. The cell yield and virus production using BelloCell were markedly higher than with microcarrier culture. The neutralizing capacity of the Japanese encephalitis virus produced using BelloCell was equal to that using a microcarrier system. Therefore, these benefits should enable BelloCell to be adopted as a simple system for high population density cell culture and virus production.
Collapse
Affiliation(s)
- Hiroko Toriniwa
- Department of Research and Development, Research Center for Biologicals, The Kitasato Institute, 6-111 Arai, Kitamoto, Saitama, Japan
| | | |
Collapse
|
23
|
Abstract
Since the discovery that baculoviruses can efficiently transduce mammalian cells, baculoviruses have been extensively studied as potential vectors for both in vitro and in vivo gene therapy. This chapter reviews the history of this research area, cells permissive to baculovirus transduction, factors influencing transduction and transgene expression, efforts to improve transduction, mechanisms of virus entry and intracellular trafficking, applications for in vivo and ex vivo gene therapy, as well as advantages, limitations, and safety issues concerning use of baculoviruses as gene therapy vectors. Recent progress and efforts directed toward overcoming existing bottlenecks are emphasized.
Collapse
Affiliation(s)
- Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University Hsinchu, Taiwan 300
| |
Collapse
|
24
|
Wang IK, Hsieh SY, Chang KM, Wang YC, Chu A, Shaw SY, Ou JJ, Ho L. A novel control scheme for inducing angiostatin-human IgG fusion protein production using recombinant CHO cells in a oscillating bioreactor. J Biotechnol 2005; 121:418-28. [PMID: 16162365 DOI: 10.1016/j.jbiotec.2005.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 07/11/2005] [Accepted: 07/26/2005] [Indexed: 12/19/2022]
Abstract
In this study, a novel control scheme for inducing protein production using a recombinant CHO cell line in a BelloCell bioreactor was developed. This control scheme was applied in a simple regular semi-batch process. Production of angiostatin-human IgG fusion protein in a suspension recombinant CHO cell culture and a protein-free medium was used for this study. The bottom holding time (BH) was the sole operating variable to control the exposure time of the cells immobilized on the carriers to the air and allow the nutrient remained on the liquid film of the carriers to be consumed to a threshold level so that the cells can be arrested and promoted for protein production. In the cell cultures with various BH (1.5-90 min), final cell densities of 1.6-4.0 x 10(9) have been obtained in 20 days while total angiostatin-human IgG production of 228-388 mg have been harvested. In general, low BH will minimize the nutrient limitation and favor the cell growth, while high BH will restrict the nutrient and promote the production in this type of non-growth associated production systems. It was found that specific production rate was generally inversely proportional to the specific growth rate. In this case of study, BH of 30 and 60 min were found to be about 72% better than BH of 1.5 min and 35% better than BH of 9 and 90 min in term of the total angiostatin-human IgG production. In comparison to a conventional spinner flask study, a 3.8-fold increase of the total angiostatin-human IgG production was realized in a 35-day culture. This study illustrated that a simple method of using BH in a semi-batch process can effectively control the apparent nutrient concentration to the cells, and thus regulate the cell growth and protein production in a novel oscillating bioreactor.
Collapse
Affiliation(s)
- Ing-Kae Wang
- Cesco Bioengineering, Co., Ltd., Rm. 537, Bldg. 53, #195, Sec. 4, Chung-Hsing Rd., Hsin-Chu, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hu YC. Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol Sin 2005; 26:405-16. [PMID: 15780188 PMCID: PMC7091893 DOI: 10.1111/j.1745-7254.2005.00078.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 12/24/2004] [Indexed: 12/21/2022]
Abstract
Baculovirus has been widely used for the production of recombinant proteins in insect cells. Since the finding that baculovirus can efficiently transduce mammalian cells, the applications of baculovirus have been greatly expanded. The prospects and drawbacks of baculovirus-mediated gene expression, either in insect or in mammalian cells, are reviewed. Recent progresses in expanding the applications to studies of gene regulation, viral vector preparation, in vivo and ex vivo gene therapy studies, generation of vaccine vectors, etc are discussed and the efforts directed towards overcoming the existing bottlenecks are particularly emphasized.
Collapse
Affiliation(s)
- Yu-chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, China.
| |
Collapse
|