• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5057509)   Today's Articles (29)
For: Souto-Maior AM, Runquist D, Hahn-Hägerdal B. Crabtree-negative characteristics of recombinant xylose-utilizing Saccharomyces cerevisiae. J Biotechnol 2009;143:119-23. [PMID: 19560495 DOI: 10.1016/j.jbiotec.2009.06.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 03/13/2009] [Accepted: 06/18/2009] [Indexed: 11/28/2022]
Number Cited by Other Article(s)
1
Han Y, Huang Y, Israr M, Li H, Zhang W. Advances in biosynthesis of 7-Dehydrocholesterol through de novo cell factory strategies. BIORESOURCE TECHNOLOGY 2025;418:131888. [PMID: 39603472 DOI: 10.1016/j.biortech.2024.131888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
2
Qiu Y, Wu M, Bao H, Liu W, Shen Y. Engineering of Saccharomyces cerevisiae for co-fermentation of glucose and xylose: Current state and perspectives. ENGINEERING MICROBIOLOGY 2023;3:100084. [PMID: 39628931 PMCID: PMC11611035 DOI: 10.1016/j.engmic.2023.100084] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 12/06/2024]
3
The impact of transcription factors Znf1, Sip4, Adr1, Tup1, and Hap4 on xylose alcoholic fermentation in the engineered yeast Saccharomyces cerevisiae. Antonie van Leeuwenhoek 2021;114:1373-1385. [PMID: 34170419 DOI: 10.1007/s10482-021-01607-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/18/2021] [Indexed: 01/14/2023]
4
Nijland JG, Shin HY, Dore E, Rudinatha D, de Waal PP, Driessen AJM. D-glucose overflow metabolism in an evolutionary engineered high-performance D-xylose consuming Saccharomyces cerevisiae strain. FEMS Yeast Res 2020;21:6000216. [PMID: 33232441 PMCID: PMC7811511 DOI: 10.1093/femsyr/foaa062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/20/2020] [Indexed: 11/26/2022]  Open
5
Li J, Rong L, Zhao Y, Li S, Zhang C, Xiao D, Foo JL, Yu A. Next-generation metabolic engineering of non-conventional microbial cell factories for carboxylic acid platform chemicals. Biotechnol Adv 2020;43:107605. [DOI: 10.1016/j.biotechadv.2020.107605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023]
6
Huang J, Lin M, Liang S, Qin Q, Liao S, Lu B, Wang Q. Transcription Analysis of Recombinant Trichoderma reesei HJ-48 to Compare the Molecular Basis for Fermentation of Glucose and Xylose. J Microbiol Biotechnol 2020;30:1467-1479. [PMID: 32699200 PMCID: PMC9745658 DOI: 10.4014/jmb.2004.04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
7
Zhou L, Wen Z, Wang Z, Zhang Y, Ledesma-Amaro R, Jin M. Evolutionary Engineering Improved d-Glucose/Xylose Cofermentation of Yarrowia lipolytica. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
8
Wei S, Bai P, Liu Y, Yang M, Ma J, Hou J, Liu W, Bao X, Shen Y. A Thi2p Regulatory Network Controls the Post-glucose Effect of Xylose Utilization in Saccharomyces cerevisiae. Front Microbiol 2019;10:1649. [PMID: 31379793 PMCID: PMC6660263 DOI: 10.3389/fmicb.2019.01649] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]  Open
9
Recent Advancements in Mycodegradation of Lignocellulosic Biomass for Bioethanol Production. Fungal Biol 2019. [DOI: 10.1007/978-3-030-23834-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
10
Novy V, Brunner B, Nidetzky B. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities. Microb Cell Fact 2018;17:59. [PMID: 29642896 PMCID: PMC5894196 DOI: 10.1186/s12934-018-0905-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/31/2018] [Indexed: 12/21/2022]  Open
11
Brink DP, Borgström C, Tueros FG, Gorwa-Grauslund MF. Real-time monitoring of the sugar sensing in Saccharomyces cerevisiae indicates endogenous mechanisms for xylose signaling. Microb Cell Fact 2016;15:183. [PMID: 27776527 PMCID: PMC5078928 DOI: 10.1186/s12934-016-0580-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 10/14/2016] [Indexed: 12/03/2022]  Open
12
Matsushika A, Hoshino T. Increased ethanol production by deletion of HAP4 in recombinant xylose-assimilating Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2015;42:1623-31. [DOI: 10.1007/s10295-015-1695-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022]
13
Su Y, Willis LB, Jeffries TW. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y‐27907 and Scheffersomyces stipitis NRRL Y‐7124. Biotechnol Bioeng 2015;112:457-69. [DOI: 10.1002/bit.25445] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 12/28/2022]
14
Smith J, van Rensburg E, Görgens JF. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnol 2014;14:41. [PMID: 24884721 PMCID: PMC4026109 DOI: 10.1186/1472-6750-14-41] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/06/2014] [Indexed: 11/10/2022]  Open
15
Martiniano SE, Chandel AK, Soares LCSR, Pagnocca FC, da Silva SS. Evaluation of novel xylose-fermenting yeast strains from Brazilian forests for hemicellulosic ethanol production from sugarcane bagasse. 3 Biotech 2013;3:345-352. [PMID: 28324336 PMCID: PMC3781264 DOI: 10.1007/s13205-013-0145-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/25/2013] [Indexed: 11/25/2022]  Open
16
Shen Y, Hou J, Bao X. Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinant Saccharomyces cerevisiae. Bioengineered 2013;4:435-7. [PMID: 23812433 DOI: 10.4161/bioe.25542] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]  Open
17
Scalcinati G, Otero JM, Vleet JR, Jeffries TW, Olsson L, Nielsen J. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res 2012;12:582-97. [DOI: 10.1111/j.1567-1364.2012.00808.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/01/2012] [Accepted: 04/02/2012] [Indexed: 01/04/2023]  Open
18
Balagurunathan B, Jonnalagadda S, Tan L, Srinivasan R. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis. Microb Cell Fact 2012;11:27. [PMID: 22356827 PMCID: PMC3310799 DOI: 10.1186/1475-2859-11-27] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/23/2012] [Indexed: 11/16/2022]  Open
19
Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus. Enzyme Microb Technol 2012;50:96-100. [DOI: 10.1016/j.enzmictec.2011.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 10/06/2011] [Accepted: 10/12/2011] [Indexed: 11/22/2022]
20
Improving Biomass Sugar Utilization by Engineered Saccharomyces cerevisiae. MICROBIOLOGY MONOGRAPHS 2012. [DOI: 10.1007/978-3-642-21467-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
21
The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw. Enzyme Microb Technol 2011;48:518-25. [PMID: 22113025 DOI: 10.1016/j.enzmictec.2011.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 02/28/2011] [Indexed: 11/22/2022]
22
Parachin NS, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF. The deletion of YLR042c improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Yeast 2010;27:741-51. [PMID: 20641017 DOI: 10.1002/yea.1777] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]  Open
23
Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb Cell Fact 2010;9:16. [PMID: 20219100 PMCID: PMC2847541 DOI: 10.1186/1475-2859-9-16] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/10/2010] [Indexed: 11/17/2022]  Open
24
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
25
Runquist D, Hahn-Hägerdal B, Bettiga M. Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb Cell Fact 2009;8:49. [PMID: 19778438 PMCID: PMC2760498 DOI: 10.1186/1475-2859-8-49] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 09/24/2009] [Indexed: 01/16/2023]  Open
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA