1
|
Bellucci M, Caceres ME, Paolocci F, Vega JM, Ortiz JPA, Ceccarelli M, De Marchis F, Pupilli F. ORIGIN OF RECOGNITION COMPLEX 3 controls the development of maternal excess endosperm in the Paspalum simplex agamic complex (Poaceae). JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3074-3093. [PMID: 36812152 DOI: 10.1093/jxb/erad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 05/21/2023]
Abstract
Pseudogamous apomixis in Paspalum simplex generates seeds with embryos genetically identical to the mother plant and endosperms deviating from the canonical 2(maternal):1(paternal) parental genome contribution into a maternal excess 4m:1p genome ratio. In P. simplex, the gene homologous to that coding for subunit 3 of the ORIGIN OF RECOGNITION COMPLEX (PsORC3) exists in three isogenic forms: PsORC3a is apomixis specific and constitutively expressed in developing endosperm whereas PsORCb and PsORCc are up-regulated in sexual endosperms and silenced in apomictic ones. This raises the question of how the different arrangement and expression profiles of these three ORC3 isogenes are linked to seed development in interploidy crosses generating maternal excess endosperms. We demonstrate that down-regulation of PsORC3b in sexual tetraploid plants is sufficient to restore seed fertility in interploidy 4n×2n crosses and, in turn, its expression level at the transition from proliferating to endoreduplication endosperm developmental stages dictates the fate of these seeds. Furthermore, we show that only when being maternally inherited can PsORC3c up-regulate PsORC3b. Our findings lay the basis for an innovative route-based on ORC3 manipulation-to introgress the apomictic trait into sexual crops and overcome the fertilization barriers in interploidy crosses.
Collapse
Affiliation(s)
- Michele Bellucci
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Maria Eugenia Caceres
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Francesco Paolocci
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Juan Manuel Vega
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR and Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Juan Pablo Amelio Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR and Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Marilena Ceccarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| |
Collapse
|
2
|
Caperta AD, Fernandes I, Conceição SIR, Marques I, Róis AS, Paulo OS. Ovule Transcriptome Analysis Discloses Deregulation of Genes and Pathways in Sexual and Apomictic Limonium Species (Plumbaginaceae). Genes (Basel) 2023; 14:genes14040901. [PMID: 37107659 PMCID: PMC10137852 DOI: 10.3390/genes14040901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The genus Limonium Mill. (sea lavenders) includes species with sexual and apomixis reproductive strategies, although the genes involved in these processes are unknown. To explore the mechanisms beyond these reproduction modes, transcriptome profiling of sexual, male sterile, and facultative apomictic species was carried out using ovules from different developmental stages. In total, 15,166 unigenes were found to be differentially expressed with apomictic vs. sexual reproduction, of which 4275 were uniquely annotated using an Arabidopsis thaliana database, with different regulations according to each stage and/or species compared. Gene ontology (GO) enrichment analysis indicated that genes related to tubulin, actin, the ubiquitin degradation process, reactive oxygen species scavenging, hormone signaling such as the ethylene signaling pathway and gibberellic acid-dependent signal, and transcription factors were found among differentially expressed genes (DEGs) between apomictic and sexual plants. We found that 24% of uniquely annotated DEGs were likely to be implicated in flower development, male sterility, pollen formation, pollen-stigma interactions, and pollen tube formation. The present study identifies candidate genes that are highly associated with distinct reproductive modes and sheds light on the molecular mechanisms of apomixis expression in Limonium sp.
Collapse
Affiliation(s)
- Ana D Caperta
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Isabel Fernandes
- cE3c-Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Sofia I R Conceição
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- LASIGE Computer Science and Engineering Research Centre, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Isabel Marques
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Forest Research Centre (CEF), Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana S Róis
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- School of Psychology and Life Sciences, Universidade Lusófona de Humanidades e Tecnologias (ULHT), Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Octávio S Paulo
- cE3c-Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Mau M, Mandáková TM, Ma X, Ebersbach J, Zou L, Lysak MA, Sharbel TF. Evolution of an Apomixis-Specific Allele Class in Supernumerary Chromatin of Apomictic Boechera. FRONTIERS IN PLANT SCIENCE 2022; 13:890038. [PMID: 35720540 PMCID: PMC9198585 DOI: 10.3389/fpls.2022.890038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/03/2022] [Indexed: 06/06/2023]
Abstract
Asexual reproduction through seeds in plants (i.e., apomixis) is a heritable trait, and apomixis- linked loci have been identified in multiple species. However, direct identification of genomic elements is typically hindered as apomixis-linked loci and are commonly found in recombination-suppressed and repetitive regions. Heterochromatinized elements, such as B chromosomes and other supernumerary chromosomal DNA fragments have long been known to be associated with asexuality in both plants and animals and are prime candidate regions for the evolution of multiple apomixis factors controlling the individual elements of apomixis. Here, we examined molecular evolution, gene regulation, and chromosomal location of a male apomeiosis factor (UPG2), a long noncoding RNA gene, in sexual and apomictic Boechera with and without male apomeiosis (i.e., balanced and unbalanced apomicts). We revealed the origin of the gene in the apomixis genome on an apomixis-specific, supernumerary heterochromatic Boechera chromosome (Boe1). The UPG2 is active in the tapetum at male meiosis. We found allele classes specific to apomictic and sexual Boechera accessions and a third class that shares the features of both and points to a convergent transition state. Sex alleles are found only in some of the sexual accessions and have higher nucleotide divergence and lower transcriptional activity compared to apo alleles. These data demonstrate selective pressure to maintain the function of UPG2 for unreduced pollen formation in apomicts as the occasional transmission of the allele from unbalanced apomicts into sexual organisms that lead to pseudogenization and functional decay of copies in sexual organisms.
Collapse
Affiliation(s)
- Martin Mau
- Apomixis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Xingliang Ma
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jana Ebersbach
- Saskatoon Research and Development Centre, Saskatoon, SK, Canada
| | - Lifang Zou
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Martin A. Lysak
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Timothy F. Sharbel
- Apomixis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Siena LA, Azzaro CA, Podio M, Stein J, Leblanc O, Pessino SC, Ortiz JPA. The Auxin-Response Repressor IAA30 Is Down-Regulated in Reproductive Tissues of Apomictic Paspalum notatum. PLANTS 2022; 11:plants11111472. [PMID: 35684245 PMCID: PMC9182604 DOI: 10.3390/plants11111472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
The capacity for apomixis in Paspalum notatum is controlled by a single-dominant genomic region, which shows strong synteny to a portion of rice chromosome 12 long arm. The locus LOC_Os12g40890, encoding the Auxin/Indole-3-Acetic Acid (Aux/IAA) family member OsIAA30, is located in this rice genomic segment. The objectives of this work were to identify transcripts coding for Aux/IAA proteins expressed in reproductive tissues of P. notatum, detect the OsIAA30 putative ortholog and analyze its temporal and spatial expression pattern in reproductive organs of sexual and apomictic plants. Thirty-three transcripts coding for AUX/IAA proteins were identified. Predicted protein alignment and phylogenetic analysis detected a highly similar sequence to OsIAA30 (named as PnIAA30) present in both sexual and apomictic samples. The expression assays of PnIAA30 showed a significant down-regulation in apomictic spikelets compared to sexual ones at the stages of anthesis and post-anthesis, representation levels negatively correlated with apospory expressivity and different localizations in sexual and apomictic ovules. Several PnIAA30 predicted interactors also appeared differentially regulated in the sexual and apomictic floral transcriptomes. Our results showed that an auxin-response repressor similar to OsIAA30 is down-regulated in apomictic spikelets of P. notatum and suggests a contrasting regulation of auxin signaling during sexual and asexual seed formation.
Collapse
Affiliation(s)
- Lorena Adelina Siena
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Celeste Antonela Azzaro
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Maricel Podio
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Juliana Stein
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Olivier Leblanc
- DIADE, Université de Montpellier, IRD, CIRAD, 34394 Montpellier, France;
| | - Silvina Claudia Pessino
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Juan Pablo Amelio Ortiz
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
- Correspondence: ; Tel.: +54-341-4970080/85 (ext. 1180)
| |
Collapse
|
5
|
Palumbo F, Draga S, Vannozzi A, Lucchin M, Barcaccia G. Trends in Apomixis Research: The 10 Most Cited Research Articles Published in the Pregenomic and Genomic Eras. FRONTIERS IN PLANT SCIENCE 2022; 13:878074. [PMID: 35599856 PMCID: PMC9115752 DOI: 10.3389/fpls.2022.878074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/14/2022] [Indexed: 05/12/2023]
Abstract
Apomixis, or asexual reproduction by seed, represents an easy shortcut for life cycle renewal based on maternal embryo production without ploidy reduction (meiosis) and ploidy restitution (syngamy). Although the first studies officially published on this topic in scientific journals date back to the early 1930s, the identification and introduction of genes involved in asexual reproduction in species of agronomic interest still represent a major challenge. Through a bibliometric analysis of the research programs implemented in apomixis over the last 40 years, the present study was aimed to discuss not only the main findings achieved but also the investigational methods and model species used. We split the critical survey of the most cited original articles into pregenomic and genomic eras to identify potential trends and depict scenarios that have emerged in the scientific community working on apomixis, as well as to determine any correlation between the exponential increase in acquired basic knowledge and the development of advanced analytical technologies. This review found a substantial stagnation in the use of the same model species, with few exceptions, for at least 40 years. In contrast, the development of new molecular techniques, genomic platforms, and repositories has directly affected the approaches used in research, which has been directed toward an increasingly focused study of the genetic and epigenetic determinants of apomixis.
Collapse
|
6
|
Belyaeva EV, Elkonin LA, Vladimirova AA, Panin VM. Manifestation of apomictic potentials in the line AS-3 of Sorghum bicolor (L.) Moench. PLANTA 2021; 254:37. [PMID: 34309737 DOI: 10.1007/s00425-021-03681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
AS-3 line of Sorghum bicolor possesses functional components of apomixis-apospory, parthenogenesis and autonomous endospermogenesis. The data obtained indicate efficiency of selection for apomixis components in diploid species of cultivated crops. Apomixis (seed formation without fertilization) is one of most attractive phenomena in plant biology. In this paper, we provide the results of long-term selection for apomixis components in the progeny of grain sorghum (Sorghum bicolor (L.) Moench) hybrid plants with male sterility mutation. Selection was carried out for a high frequency of aposporous embryo sacs (ESs), autonomous pro-embryos, and the presence of maternal-type plants in test crosses with the line Volzhskoe-4v (V4v) homozygous for the Rs1 genes determining the red color of the leaves and stem of the hybrids. As a result of using this approach, the line, AS-3, was created, in which the frequency of ovaries with parthenogenetic embryos reached 42-45%. The autonomous development of embryos and endosperm was observed in the panicles of each of the 10 cytologically studied plants of this line. The frequency of parthenogenesis positively correlated with the high average daily air temperature during the first five out of 10 days preceding the onset of flowering (r = 0.75; P > 0.01). Genotyping of the plants from the progeny of hand-emasculated panicles of AS-3 pollinated with V4v performed using co-dominant SSR markers revealed that the F1 hybrids carrying the Rs1 gene (chromosome 6) possessed both paternal and maternal alleles of Sb1-10 (chromosome 4) and Xtxp320 (chromosome 10) markers, while in the maternal-type plants (rs1rs1), only the maternal alleles of these markers were present. In the endosperm of the kernels from which the maternal-type seedlings were obtained, only the maternal alleles were present, while in the endosperm of the kernels that produced hybrid seedlings, both the paternal and maternal alleles were observed. The data obtained indicate the presence of functional components of apomixis (apospory, parthenogenesis, autonomous endospermogenesis) in the grain sorghum line AS-3, and the efficiency of selection for apomixis in functionally diploid species of cultivated crops.
Collapse
Affiliation(s)
- Elena V Belyaeva
- Department of Biotechnology, Federal Center of Agriculture Research of the South-East Region, Saratov, 410010, Russia
| | - Lev A Elkonin
- Department of Biotechnology, Federal Center of Agriculture Research of the South-East Region, Saratov, 410010, Russia.
| | - Anastasia A Vladimirova
- Department of Biotechnology, Federal Center of Agriculture Research of the South-East Region, Saratov, 410010, Russia
| | - Valery M Panin
- Department of Biotechnology, Federal Center of Agriculture Research of the South-East Region, Saratov, 410010, Russia
| |
Collapse
|
7
|
A Review of Unreduced Gametes and Neopolyploids in Alfalfa: How to Fill the Gap between Well-Established Meiotic Mutants and Next-Generation Genomic Resources. PLANTS 2021; 10:plants10050999. [PMID: 34067689 PMCID: PMC8156078 DOI: 10.3390/plants10050999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 01/11/2023]
Abstract
The gene flow mediated by unreduced gametes between diploid and tetraploid plants of the Medicagosativa-coerulea-falcata complex is pivotal for alfalfa breeding. Sexually tetraploidized hybrids could represent the best way to exploit progressive heterosis simultaneously derived from gene diversity, heterozygosity, and polyploidy. Moreover, unreduced gametes combined with parthenogenesis (i.e., apomixis) would enable the cloning of plants through seeds, providing a unique opportunity for the selection of superior genotypes with permanently fixed heterosis. This reproductive strategy has never been detected in the genus Medicago, but features of apomixis, such as restitutional apomeiosis and haploid parthenogenesis, have been reported. By means of an original case study, we demonstrated that sexually tetraploidized plants maintain apomeiosis, but this trait is developmentally independent from parthenogenesis. Alfalfa meiotic mutants producing unreduced egg cells revealed a null or very low capacity for parthenogenesis. The overall achievements reached so far are reviewed and discussed along with the efforts and strategies made for exploiting reproductive mutants that express apomictic elements in alfalfa breeding programs. Although several studies have investigated the cytological mechanisms responsible for 2n gamete formation and the inheritance of this trait, only a very small number of molecular markers and candidate genes putatively linked to unreduced gamete formation have been identified. Furthermore, this scenario has remained almost unchanged over the last two decades. Here, we propose a reverse genetics approach, by exploiting the genomic and transcriptomic resources available in alfalfa. Through a comparison with 9 proteins belonging to Arabidopsis thaliana known for their involvement in 2n gamete production, we identified 47 orthologous genes and evaluated their expression in several tissues, paving the way for novel candidate gene characterization studies. An overall view on strategies suitable to fill the gap between well-established meiotic mutants and next-generation genomic resources is presented and discussed.
Collapse
|
8
|
Fiaz S, Wang X, Younas A, Alharthi B, Riaz A, Ali H. Apomixis and strategies to induce apomixis to preserve hybrid vigor for multiple generations. GM CROPS & FOOD 2021; 12:57-70. [PMID: 32877304 PMCID: PMC7553744 DOI: 10.1080/21645698.2020.1808423] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022]
Abstract
Hybrid seeds of several important crops with supreme qualities including yield, biotic and abiotic stress tolerance have been cultivated for decades. Thus far, a major challenge with hybrid seeds is that they do not have the ability to produce plants with the same qualities over subsequent generations. Apomixis, an asexual mode of reproduction by avoiding meiosis, exists naturally in flowering plants, and ultimately leads to seed production. Apomixis has the potential to preserve hybrid vigor for multiple generations in economically important plant genotypes. The evolution and genetics of asexual seed production are unclear, and much more effort will be required to determine the genetic architecture of this phenomenon. To fix hybrid vigor, synthetic apomixis has been suggested. The development of MiMe (mitosis instead of meiosis) genotypes has been utilized for clonal gamete production. However, the identification and parental origin of genes responsible for synthetic apomixis are little known and need further clarification. Genome modifications utilizing genome editing technologies (GETs), such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (cas), a reverse genetics tool, have paved the way toward the utilization of emerging technologies in plant molecular biology. Over the last decade, several genes in important crops have been successfully edited. The vast availability of GETs has made functional genomics studies easy to conduct in crops important for food security. Disruption in the expression of genes specific to egg cell MATRILINEAL (MTL) through the CRISPR/Cas genome editing system promotes the induction of haploid seed, whereas triple knockout of the Baby Boom (BBM) genes BBM1, BBM2, and BBM3 cause embryo arrest and abortion, which can be fully rescued by male-transmitted BBM1. The establishment of synthetic apomixis by engineering the MiMe genotype by genome editing of BBM1 expression or disruption of MTL leads to clonal seed production and heritability for multiple generations. In the present review, we discuss current developments related to the use of CRISPR/Cas technology in plants and the possibility of promoting apomixis in crops to preserve hybrid vigor. In addition, genetics, evolution, epigenetic modifications, and strategies for MiMe genotype development are discussed in detail.
Collapse
Affiliation(s)
- Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur 22620 , Khyber Pakhtunkhwa, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan'an University , Yan'an, Shaanxi, China
| | - Afifa Younas
- Department of Botany, Lahore College for Women University , Lahore, Pakistan
| | - Badr Alharthi
- College of Science and Engineering, Flinders University , Adelaide, Australia
- University College of Khurma, Taif University , Taif, Saudi Arabia
| | - Adeel Riaz
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences , Beijing, China
| | - Habib Ali
- Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology , Rahim Yar Khan, Pakistan
- Department of Entomology, Sub-Campus Depalpur, University of Agriculture Faisalabad , Faisalabad, Pakistan
| |
Collapse
|
9
|
Marconi G, Aiello D, Kindiger B, Storchi L, Marrone A, Reale L, Terzaroli N, Albertini E. The Role of APOSTART in Switching between Sexuality and Apomixis in Poa pratensis. Genes (Basel) 2020; 11:genes11080941. [PMID: 32824095 PMCID: PMC7464379 DOI: 10.3390/genes11080941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
The production of seeds without sex is considered the holy grail of plant biology. The transfer of apomixis to various crop species has the potential to transform plant breeding, since it will allow new varieties to retain valuable traits thorough asexual reproduction. Therefore, a greater molecular understanding of apomixis is fundamental. In a previous work we identified a gene, namely APOSTART, that seemed to be involved in this asexual mode of reproduction, which is very common in Poa pratensis L., and here we present a detailed work aimed at clarifying its role in apomixis. In situ hybridization showed that PpAPOSTART is expressed in reproductive tissues from pre-meiosis to embryo development. Interestingly, it is expressed early in few nucellar cells of apomictic individuals possibly switching from a somatic to a reproductive cell as in aposporic apomixis. Moreover, out of 13 APOSTART members, we identified one, APOSTART_6, as specifically expressed in flower tissue. APOSTART_6 also exhibited delayed expression in apomictic genotypes when compared with sexual types. Most importantly, the SCAR (Sequence Characterized Amplified Region) derived from the APOSTART_6 sequence completely co-segregated with apomixis.
Collapse
Affiliation(s)
- Gianpiero Marconi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (G.M.); (D.A.); (L.R.); (N.T.)
| | - Domenico Aiello
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (G.M.); (D.A.); (L.R.); (N.T.)
| | - Bryan Kindiger
- USDA-ARS, Grazinglands Research Laboratory, 7207 West Cheyenne St., El Reno, OK 73036, USA;
| | - Loriano Storchi
- Dipartimento di Farmacia, Università G. d’Annunzio, via dei Vestini 31, 66100 Chieti, Italy; (L.S.); (A.M.)
- Molecular Discovery Limited, Elstree WD6 3FG, UK
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università G. d’Annunzio, via dei Vestini 31, 66100 Chieti, Italy; (L.S.); (A.M.)
| | - Lara Reale
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (G.M.); (D.A.); (L.R.); (N.T.)
| | - Niccolò Terzaroli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (G.M.); (D.A.); (L.R.); (N.T.)
| | - Emidio Albertini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (G.M.); (D.A.); (L.R.); (N.T.)
- Correspondence:
| |
Collapse
|
10
|
Barcaccia G, Palumbo F, Sgorbati S, Albertini E, Pupilli F. A Reappraisal of the Evolutionary and Developmental Pathway of Apomixis and Its Genetic Control in Angiosperms. Genes (Basel) 2020; 11:E859. [PMID: 32731368 PMCID: PMC7466056 DOI: 10.3390/genes11080859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Apomixis sensu stricto (agamospermy) is asexual reproduction by seed. In angiosperms it represents an easy byway of life cycle renewal through gamete-like cells that give rise to maternal embryos without ploidy reduction (meiosis) and ploidy restitution (syngamy). The origin of apomixis still represents an unsolved problem, as it may be either evolved from sex or the other way around. This review deals with a reappraisal of the origin of apomixis in order to deepen knowledge on such asexual mode of reproduction which seems mainly lacking in the most basal angiosperm orders (i.e., Amborellales, Nymphaeales and Austrobaileyales, also known as ANA-grade), while it clearly occurs in different forms and variants in many unrelated families of monocots and eudicots. Overall findings strengthen the hypothesis that apomixis as a whole may have evolved multiple times in angiosperm evolution following different developmental pathways deviating to different extents from sexuality. Recent developments on the genetic control of apomixis in model species are also presented and adequately discussed in order to shed additional light on the antagonist theories of gain- and loss-of-function over sexuality.
Collapse
Affiliation(s)
- Gianni Barcaccia
- Department of Agronomy Food Natural Resources Animals Environment, University of Padova, Campus of Agripolis, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Fabio Palumbo
- Department of Agronomy Food Natural Resources Animals Environment, University of Padova, Campus of Agripolis, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Sergio Sgorbati
- Department of Environmental and Territory Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy;
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy;
| | - Fulvio Pupilli
- Research Division of Perugia, Institute of Biosciences and Bioresources, National Research Council (CNR), Via Madonna Alta 130, 06128 Perugia, Italy;
| |
Collapse
|
11
|
Chasing the Apomictic Factors in the Ranunculus auricomus Complex: Exploring Gene Expression Patterns in Microdissected Sexual and Apomictic Ovules. Genes (Basel) 2020; 11:genes11070728. [PMID: 32630035 PMCID: PMC7397075 DOI: 10.3390/genes11070728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 12/24/2022] Open
Abstract
Apomixis, the asexual reproduction via seeds, is associated to polyploidy and hybridization. To identify possible signatures of apomixis, and possible candidate genes underlying the shift from sex to apomixis, microarray-based gene expression patterns of live microdissected ovules at four different developmental stages were compared between apomictic and sexual individuals of the Ranunculus auricomus complex. Following predictions from previous work on mechanisms underlying apomixis penetrance and expressivity in the genus, gene expression patterns were classified into three categories based on their relative expression in apomicts compared to their sexual parental ancestors. We found evidence of misregulation and differential gene expression between apomicts and sexuals, with the highest number of differences detected during meiosis progression and emergence of aposporous initial (AI) cells, a key developmental stage in the ovule of apomicts where a decision between divergent reproductive pathways takes place. While most of the differentially expressed genes (DEGs) could not be annotated, gene expression was classified into transgressive, parent of origin and ploidy effects. Genes related to gametogenesis and meiosis demonstrated patterns reflective of transgressive and genome dosage effects, which support the hypothesis of a dominant factor controlling apomixis in Ranunculus and modulated by secondary modifiers. Three genes with probable functions in sporogenesis and gametogenesis development are identified and characterized for future studies.
Collapse
|
12
|
Hojsgaard D. Apomixis Technology: Separating the Wheat from the Chaff. Genes (Basel) 2020; 11:E411. [PMID: 32290084 PMCID: PMC7231277 DOI: 10.3390/genes11040411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Projections indicate that current plant breeding approaches will be unable to incorporate the global crop yields needed to deliver global food security. Apomixis is a disruptive innovation by which a plant produces clonal seeds capturing heterosis and gene combinations of elite phenotypes. Introducing apomixis into hybrid cultivars is a game-changing development in the current plant breeding paradigm that will accelerate the generation of high-yield cultivars. However, apomixis is a developmentally complex and genetically multifaceted trait. The central problem behind current constraints to apomixis breeding is that the genomic configuration and molecular mechanism that initiate apomixis and guide the formation of a clonal seed are still unknown. Today, not a single explanation about the origin of apomixis offer full empirical coverage, and synthesizing apomixis by manipulating individual genes has failed or produced little success. Overall evidence suggests apomixis arise from a still unknown single event molecular mechanism with multigenic effects. Disentangling the genomic basis and complex genetics behind the emergence of apomixis in plants will require the use of novel experimental approaches benefiting from Next Generation Sequencing technologies and targeting not only reproductive genes, but also the epigenetic and genomic configurations associated with reproductive phenotypes in homoploid sexual and apomictic carriers. A comprehensive picture of most regulatory changes guiding apomixis emergence will be central for successfully installing apomixis into the target species by exploiting genetic modification techniques.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University of Göttingen, Untere Karspüle 2, D-37073-1 Göttingen, Germany
| |
Collapse
|
13
|
Controlling Apomixis: Shared Features and Distinct Characteristics of Gene Regulation. Genes (Basel) 2020; 11:genes11030329. [PMID: 32245021 PMCID: PMC7140868 DOI: 10.3390/genes11030329] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
In higher plants, sexual and asexual reproduction through seeds (apomixis) have evolved as alternative strategies. As apomixis leads to the formation of clonal offspring, its great potential for agricultural applications has long been recognized. However, the genetic basis and the molecular control underlying apomixis and its evolutionary origin are to date not fully understood. Both in sexual and apomictic plants, reproduction is tightly controlled by versatile mechanisms regulating gene expression, translation, and protein abundance and activity. Increasing evidence suggests that interrelated pathways including epigenetic regulation, cell-cycle control, hormonal pathways, and signal transduction processes are relevant for apomixis. Additional molecular mechanisms are being identified that involve the activity of DNA- and RNA-binding proteins, such as RNA helicases which are increasingly recognized as important regulators of reproduction. Together with other factors including non-coding RNAs, their association with ribosomes is likely to be relevant for the formation and specification of the apomictic reproductive lineage. Subsequent seed formation appears to involve an interplay of transcriptional activation and repression of developmental programs by epigenetic regulatory mechanisms. In this review, insights into the genetic basis and molecular control of apomixis are presented, also taking into account potential relations to environmental stress, and considering aspects of evolution.
Collapse
|
14
|
Ortiz JPA, Leblanc O, Rohr C, Grisolia M, Siena LA, Podio M, Colono C, Azzaro C, Pessino SC. Small RNA-seq reveals novel regulatory components for apomixis in Paspalum notatum. BMC Genomics 2019; 20:487. [PMID: 31195966 PMCID: PMC6567921 DOI: 10.1186/s12864-019-5881-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Background Apomixis is considered an evolutionary deviation of the sexual reproductive pathway leading to the generation of clonal maternal progenies by seeds. Recent evidence from model and non-model species suggested that this trait could be modulated by epigenetic mechanisms involving small RNAs (sRNAs). Here we profiled floral sRNAs originated from apomictic and sexual Paspalum notatum genotypes in order to identify molecular pathways under epigenetic control that might be involved in the transition from sexuality to agamospermy. Results The mining of genes participating in sRNA-directed pathways from floral Paspalum transcriptomic resources showed these routes are functional during reproductive development, with several members differentially expressed in apomictic and sexual plants. Triplicate floral sRNA libraries derived from apomictic and a sexual genotypes were characterized by using high-throughput sequencing technology. EdgeR was apply to compare the number of sRNA reads between sexual and apomictic libraries that map over all Paspalum floral transcripts. A total of 1525 transcripts showed differential sRNA representation, including genes related to meiosis, plant hormone signaling, biomolecules transport, transcription control and cell cycle. Survey for miRNA precursors on transcriptome and genome references allowed the discovery of 124 entities, including 40 conserved and 8 novel ones. Fifty-six clusters were differentially represented in apomictic and sexual plants. All differentially expressed miRNAs were up-regulated in apomictic libraries but miR2275, which showed different family members with opposed representation. Examination of predicted miRNAs targets detected 374 potential candidates. Considering sRNA, miRNAs and target surveys together, 14 genes previously described as related with auxin metabolism, transport and signaling were detected, including AMINO ACID/AUXIN PERMEASE 15, IAA-AMIDO SYNTHETASE GH3–8, IAA30, miR160, miR167, miR164, miR319, ARF2, ARF8, ARF10, ARF12, AFB2, PROLIFERATING CELL FACTOR 6 and NITRATE TRANSPORTER 1.1. Conclusions This work provides a comprehensive survey of the sRNA differential representation in flowers of sexual and apomictic Paspalum notatum plants. An integration of the small RNA profiling data presented here and previous transcriptomic information suggests that sRNA-mediated regulation of auxin pathways is pivotal in promoting apomixis. These results will underlie future functional characterization of the molecular components mediating the switch from sexuality to apomixis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5881-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Olivier Leblanc
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | - Cristian Rohr
- Instituto de Agrobiotecnología de Rosario (INDEAR), Rosario, Argentina
| | - Mauricio Grisolia
- Instituto de Agrobiotecnología de Rosario (INDEAR), Rosario, Argentina
| | - Lorena A Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Maricel Podio
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Carolina Colono
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Celeste Azzaro
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Silvina C Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina.
| |
Collapse
|
15
|
Fei X, Shi J, Liu Y, Niu J, Wei A. The steps from sexual reproduction to apomixis. PLANTA 2019; 249:1715-1730. [PMID: 30963237 DOI: 10.1007/s00425-019-03113-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/18/2019] [Indexed: 05/03/2023]
Abstract
In this paper, an interaction model of apomixis-related genes was constructed to analyze the emergence of apomictic types. It is speculated that apomixis technology will be first implemented in gramineous plants. Apomixis (asexual seed formation) is a phenomenon in which a plant bypasses the most fundamental aspects of sexual reproduction-meiosis and fertilization-to form a viable seed. Plants can form seeds without fertilization, and the seed genotype is consistent with the female parent. The development of apomictic technology would be revolutionary for agriculture and for food production as it would reduce costs and breeding times and also avoid many complications typical of sexual reproduction (e.g. incompatibility barriers) and of vegetative propagation (e.g. viral transfer). The application of apomictic reproductive technology has the potential to revolutionize crop breeding. This article reviews recent advances in apomixis in cytology and molecular biology. The general idea of identifying apomixis was proposed and the process of the emergence of non-fusion types was discussed. To better understand the apomixis mechanism, an apomixis regulatory model was established. At the same time, the realization of apomixis technology is proposed, which provides reference for the research and application of apomixis.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingwei Shi
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinshuang Niu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
16
|
Albertini E, Barcaccia G, Carman JG, Pupilli F. Did apomixis evolve from sex or was it the other way around? JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2951-2964. [PMID: 30854543 DOI: 10.1093/jxb/erz109] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/25/2019] [Indexed: 05/20/2023]
Abstract
In angiosperms, there are two pathways of reproduction through seeds: sexual, or amphimictic, and asexual, or apomictic. The essential feature of apomixis is that an embryo in an ovule is formed autonomously. It may form from a cell of the nucellus or integuments in an otherwise sexual ovule, a process referred to as adventitious embryony. Alternatively, the embryo may form by parthenogenesis from an unreduced egg that forms in an unreduced embryo sac. The latter may form from an ameiotic megasporocyte, in which case it is referred to as diplospory, or from a cell of the nucellus or integument, in which case it is referred to as apospory. Progeny of apomictic plants are generally identical to the mother plant. Apomixis has been seen over the years as either a gain- or loss-of-function over sexuality, implying that the latter is the default condition. Here, we consider an additional point of view, that apomixis may be anciently polyphenic with sex and that both reproductive phenisms involve anciently canalized components of complex molecular processes. This polyphenism viewpoint suggests that apomixis fails to occur in obligately sexual eukaryotes because genetic or epigenetic modifications have silenced the primitive sex apomixis switch and/or disrupted molecular capacities for apomixis. In eukaryotes where sex and apomixis are clearly polyphenic, apomixis exponentially drives clonal fecundity during reproductively favorable conditions, while stress induces sex for stress-tolerant spore or egg formation. The latter often guarantees species survival during environmentally harsh seasons.
Collapse
Affiliation(s)
- Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Gianni Barcaccia
- Laboratory of Genomics, Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova Legnaro, PD, Italy
| | - John G Carman
- Department of Plants, Soils and Climate, Utah State University, Logan, Utah, USA
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), Perugia, Italy
| |
Collapse
|
17
|
Brukhin V, Osadtchiy JV, Florez-Rueda AM, Smetanin D, Bakin E, Nobre MS, Grossniklaus U. The Boechera Genus as a Resource for Apomixis Research. FRONTIERS IN PLANT SCIENCE 2019; 10:392. [PMID: 31001306 PMCID: PMC6454215 DOI: 10.3389/fpls.2019.00392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 05/03/2023]
Abstract
The genera Boechera (A. Löve et D. Löve) and Arabidopsis, the latter containing the model plant Arabidopsis thaliana, belong to the same clade within the Brassicaceae family. Boechera is the only among the more than 370 genera in the Brassicaceae where apomixis is well documented. Apomixis refers to the asexual reproduction through seed, and a better understanding of the underlying mechanisms has great potential for applications in agriculture. The Boechera genus currently includes 110 species (of which 38 are reported to be triploid and thus apomictic), which are distributed mostly in the North America. The apomictic lineages of Boechera occur at both the diploid and triploid level and show signs of a hybridogenic origin, resulting in a modification of their chromosome structure, as reflected by alloploidy, aneuploidy, substitutions of homeologous chromosomes, and the presence of aberrant chromosomes. In this review, we discuss the advantages of the Boechera genus to study apomixis, consider its modes of reproduction as well as the inheritance and possible mechanisms controlling apomixis. We also consider population genetic aspects and a possible role of hybridization at the origin of apomixis in Boechera. The molecular tools available to study Boechera, such as transformation techniques, laser capture microdissection, analysis of transcriptomes etc. are also discussed. We survey available genome assemblies of Boechera spp. and point out the challenges to assemble the highly heterozygous genomes of apomictic species. Due to these challenges, we argue for the application of an alternative reference-free method for the comparative analysis of such genomes, provide an overview of genomic sequencing data in the genus Boechera suitable for such analysis, and provide examples of its application.
Collapse
Affiliation(s)
- Vladimir Brukhin
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Saint Petersburg, Russia
- Department of Plant Embryology and Reproductive Biology, Komarov Botanical Institute RAS, Saint Petersburg, Russia
| | - Jaroslaw V. Osadtchiy
- Department of Plant Embryology and Reproductive Biology, Komarov Botanical Institute RAS, Saint Petersburg, Russia
| | - Ana Marcela Florez-Rueda
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Dmitry Smetanin
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Evgeny Bakin
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Saint Petersburg, Russia
- Bioinformatics Institute, Saint Petersburg, Russia
| | - Margarida Sofia Nobre
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Kaushal P, Dwivedi KK, Radhakrishna A, Srivastava MK, Kumar V, Roy AK, Malaviya DR. Partitioning Apomixis Components to Understand and Utilize Gametophytic Apomixis. FRONTIERS IN PLANT SCIENCE 2019; 10:256. [PMID: 30906306 PMCID: PMC6418048 DOI: 10.3389/fpls.2019.00256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/18/2019] [Indexed: 05/07/2023]
Abstract
Apomixis is a method of reproduction to generate clonal seeds and offers tremendous potential to fix heterozygosity and hybrid vigor. The process of apomictic seed development is complex and comprises three distinct components, viz., apomeiosis (leading to formation of unreduced egg cell), parthenogenesis (development of embryo without fertilization) and functional endosperm development. Recently, in many crops, these three components are reported to be uncoupled leading to their partitioning. This review provides insight into the recent status of our understanding surrounding partitioning apomixis components in gametophytic apomictic plants and research avenues that it offers to help understand the biology of apomixis. Possible consequences leading to diversity in seed developmental pathways, resources to understand apomixis, inheritance and identification of candidate gene(s) for partitioned components, as well as contribution towards creation of variability are all discussed. The potential of Panicum maximum, an aposporous crop, is also discussed as a model crop to study partitioning principle and effects. Modifications in cytogenetic status, as well as endosperm imprinting effects arising due to partitioning effects, opens up new opportunities to understand and utilize apomixis components, especially towards synthesizing apomixis in crops.
Collapse
Affiliation(s)
- Pankaj Kaushal
- ICAR-National Institute of Biotic Stress Management, Raipur, India
| | | | | | | | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Raipur, India
| | - Ajoy Kumar Roy
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | | |
Collapse
|
19
|
Galla G, Siena LA, Ortiz JPA, Baumlein H, Barcaccia G, Pessino SC, Bellucci M, Pupilli F. A Portion of the Apomixis Locus of Paspalum Simplex is Microsyntenic with an Unstable Chromosome Segment Highly Conserved Among Poaceae. Sci Rep 2019; 9:3271. [PMID: 30824748 PMCID: PMC6397161 DOI: 10.1038/s41598-019-39649-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 01/16/2019] [Indexed: 01/04/2023] Open
Abstract
The introgression of apomixis in major seed crops, would guarantee self-seeding of superior heterotic seeds over generations. In the grass species Paspalum simplex, apomixis is controlled by a single locus in which recombination is blocked. In the perspective of isolating the genetic determinants of apomixis, we report data on sequencing, in silico mapping and expression analysis of some of the genes contained in two cloned genomic regions of the apomixis locus of P. simplex. In silico mapping allowed us to identify a conserved synteny group homoeologous to the apomixis locus, located on a telomeric position of chromosomes 12, 8, 3 and 4 of rice, Sorghum bicolor, Setaria italica and Brachypodium distachyum, respectively, and on a more centromeric position of maize chromosome 1. Selected genes of the apomixis locus expressed sense and antisense transcripts in reproductively committed cells of sexual and apomictic ovules. Some of the genes considered here expressed apomixis-specific allelic variants which showed partial non-overlapping expression patterns with alleles shared by sexual and apomictic reproductive phenotypes. Our findings open new routes for the isolation of the genetic determinants of apomixis and, in perspective, for its introgression in crop grasses.
Collapse
Affiliation(s)
- Giulio Galla
- Department of Agriculture Food Natural resources Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - Lorena A Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR, Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR, Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Helmut Baumlein
- The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Gatersleben, Germany
| | - Gianni Barcaccia
- Department of Agriculture Food Natural resources Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - Silvina C Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR, Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Michele Bellucci
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy.
| |
Collapse
|
20
|
Zappacosta D, Gallardo J, Carballo J, Meier M, Rodrigo JM, Gallo CA, Selva JP, Stein J, Ortiz JPA, Albertini E, Echenique V. A High-Density Linkage Map of the Forage Grass Eragrostis curvula and Localization of the Diplospory Locus. FRONTIERS IN PLANT SCIENCE 2019; 10:918. [PMID: 31354781 PMCID: PMC6640543 DOI: 10.3389/fpls.2019.00918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/28/2019] [Indexed: 05/05/2023]
Abstract
Eragrostis curvula (Schrad.) Nees (weeping lovegrass) is an apomictic species native to Southern Africa that is used as forage grass in semiarid regions of Argentina. Apomixis is a mechanism for clonal propagation through seeds that involves the avoidance of meiosis to generate an unreduced embryo sac (apomeiosis), parthenogenesis, and viable endosperm formation in a fertilization-dependent or -independent manner. Here, we constructed the first saturated linkage map of tetraploid E. curvula using both traditional (AFLP and SSR) and high-throughput molecular markers (GBS-SNP) and identified the locus controlling diplospory. We also identified putative regulatory regions affecting the expressivity of this trait and syntenic relationships with genomes of other grass species. We obtained a tetraploid mapping population from a cross between a full sexual genotype (OTA-S) with a facultative apomictic individual of cv. Don Walter. Phenotypic characterization of F1 hybrids by cytoembryological analysis yielded a 1:1 ratio of apomictic vs. sexual plants (34:27, X 2 = 0.37), which agrees with the model of inheritance of a single dominant genetic factor. The final number of markers was 1,114 for OTA-S and 2,019 for Don Walter. These markers were distributed into 40 linkage groups per parental genotype, which is consistent with the number of E. curvula chromosomes (containing 2 to 123 markers per linkage group). The total length of the OTA-S map was 1,335 cM, with an average marker density of 1.22 cM per marker. The Don Walter map was 1,976.2 cM, with an average marker density of 0.98 cM/marker. The locus responsible for diplospory was mapped on Don Walter linkage group 3, with other 65 markers. QTL analyses of the expressivity of diplospory in the F1 hybrids revealed the presence of two main QTLs, located 3.27 and 15 cM from the diplospory locus. Both QTLs explained 28.6% of phenotypic variation. Syntenic analysis allowed us to establish the groups of homologs/homeologs for each linkage map. The genetic linkage map reported in this study, the first such map for E. curvula, is the most saturated map for the genus Eragrostis and one of the most saturated maps for a polyploid forage grass species.
Collapse
Affiliation(s)
- Diego Zappacosta
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Jimena Gallardo
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - José Carballo
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Mauro Meier
- Laboratorio Biotecnológico, Asociación de Cooperativas Argentinas Coop. Ltd., Pergamino, Argentina
| | - Juan Manuel Rodrigo
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Cristian A. Gallo
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juan Pablo Selva
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juliana Stein
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Zavalla, Argentina
| | - Juan Pablo A. Ortiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Zavalla, Argentina
| | - Emidio Albertini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
- Emidio Albertini,
| | - Viviana Echenique
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
- *Correspondence: Viviana Echenique,
| |
Collapse
|
21
|
Vijverberg K, Ozias-Akins P, Schranz ME. Identifying and Engineering Genes for Parthenogenesis in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:128. [PMID: 30838007 PMCID: PMC6389702 DOI: 10.3389/fpls.2019.00128] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/24/2019] [Indexed: 05/16/2023]
Abstract
Parthenogenesis is the spontaneous development of an embryo from an unfertilized egg cell. It naturally occurs in a variety of plant and animal species. In plants, parthenogenesis usually is found in combination with apomeiosis (the omission of meiosis) and pseudogamous or autonomous (with or without central cell fertilization) endosperm formation, together known as apomixis (clonal seed production). The initiation of embryogenesis in vivo and in vitro has high potential in plant breeding methods, particularly for the instant production of homozygous lines from haploid gametes [doubled haploids (DHs)], the maintenance of vigorous F1-hybrids through clonal seed production after combining it with apomeiosis, reverse breeding approaches, and for linking diploid and polyploid gene pools. Because of this large interest, efforts to identify gene(s) for parthenogenesis from natural apomicts have been undertaken by using map-based cloning strategies and comparative gene expression studies. In addition, engineering parthenogenesis in sexual model species has been investigated via mutagenesis and gain-of-function strategies. These efforts have started to pay off, particularly by the isolation of the PsASGR-BabyBoom-Like from apomictic Pennisetum, a gene proven to be transferable to and functional in sexual pearl millet, rice, and maize. This review aims to summarize the current knowledge on parthenogenesis, the possible gene candidates also outside the grasses, and the use of these genes in plant breeding protocols. It shows that parthenogenesis is able to inherit and function independently from apomeiosis and endosperm formation, is expressed and active in the egg cell, and can induce embryogenesis in polyploid, diploid as well as haploid egg cells in plants. It also shows the importance of genes involved in the suppression of transcription and modifications thereof at one hand, and in embryogenesis for which transcription is allowed or artificially overexpressed on the other, in parthenogenetic reproduction. Finally, it emphasizes the importance of functional endosperm to allow for successful embryo growth and viable seed production.
Collapse
Affiliation(s)
- Kitty Vijverberg
- Biosystematics Group, Experimental Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Kitty Vijverberg,
| | - Peggy Ozias-Akins
- Department of Horticulture, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton Campus, Tifton, GA, United States
| | - M. Eric Schranz
- Biosystematics Group, Experimental Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
22
|
Abstract
Los paisajes culturales se han construido a lo largo de siglos o milenios como consecuencia de la adaptación de diferentes culturas a la heterogeneidad de los sistemas naturales. Son el resultado de una serie de iniciativas, generalmente colectivas, que dan lugar a la superposición de diferentes elementos que corresponden a distintos momentos históricos. En ambientes de montaña los factores más influyentes en la construcción de paisajes culturales son el escalonamiento altitudinal de los pisos geoecológicos, la diversidad topográfica y topoclimática, el crecimiento demográfico, los acontecimientos históricos (incluyendo la superposición de culturas) y la influencia de los mercados. El éxito de las sociedades montanas dependió de su conocimiento del medio y, especialmente, de la importancia de la gravedad en un ambiente de alta energía, con el fin de controlar la escorrentía y la erosión del suelo. Por eso, las áreas de montaña necesitan una organización social y territorial compleja, para hacer frente a la adversidad provocada por la rudeza del clima y la explotación de laderas pendientes. Naturalmente, este esfuerzo implica un gran gasto de energía en la conservación del paisaje, que puede desmoronarse de manera irreversible por muchas razones, entre ellas la despoblación y el abandono de tierras de cultivo, que conducen a lo que podemos llamar una deconstrucción del paisaje. Esta última representa la pérdida de un patrimonio cultural que, estudiado a fondo, nos enseña mucho acerca de la forma óptima de aprovechar los recursos naturales y también de los errores que se han cometido en el pasado. A pesar de los cambios recientes, quedan aún muchos restos de los paisajes culturales pirenaicos: campos cercados que representan una creciente individualización en la gestión del territorio, laderas aterrazadas, panares en el límite superior del piso montano, y los extensos pastos subalpinos, que representan la eliminación de un espacio forestal para favorecer los movimientos trashumantes.
Collapse
|
23
|
The vesicle trafficking regulator PN_SCD1 is demethylated and overexpressed in florets of apomictic Paspalum notatum genotypes. Sci Rep 2018; 8:3030. [PMID: 29445151 PMCID: PMC5812994 DOI: 10.1038/s41598-018-21220-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/31/2018] [Indexed: 01/01/2023] Open
Abstract
Apomixis (asexual reproduction through seeds) is considered a deviation of the sexual reproductive pathway leading to the development of clonal progenies genetically identical to the mother plant. Here we used the Methylation-Sensitive Amplification Polymorphism (MSAP) technique to characterize cytosine methylation patterns occurring in florets of sexual and aposporous Paspalum notatum genotypes, in order to identify epigenetically-controlled genes putatively involved in apomixis development. From twelve polymorphic MSAP-derived sequences, one (PN_6.6, later renamed PN_SCD1) was selected due to its relevant annotation and differential representation in apomictic and sexual floral transcriptome libraries. PN_SCD1 encodes the DENN domain/WD repeat-containing protein SCD1, which interacts with RAB GTPases- and/or MAPKs to promote specialized cell division, functions in clathrin-mediated membrane transport and acts as potential substrate receptor of CUL4 E3 ubiquitin ligases. Quantitative RT-PCR and comparative RNAseq analyses of laser microdissected nucellar cells confirmed PN_SCD1 upregulation in florets of apomictic plants and revealed that overexpression takes place just before the onset of apospory initials. Moreover, we found that several SCD1 molecular partners are expressed in P. notatum florets and upregulated in apomictic plants. Our results disclosed a specific vesicle trafficking molecular pathway epigenetically modulated during apomixis.
Collapse
|
24
|
Siena LA, Ortiz JPA, Calderini O, Paolocci F, Cáceres ME, Kaushal P, Grisan S, Pessino SC, Pupilli F. An apomixis-linked ORC3-like pseudogene is associated with silencing of its functional homolog in apomictic Paspalum simplex. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1965-78. [PMID: 26842983 DOI: 10.1093/jxb/erw018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Apomixis in plants consists of asexual reproduction by seeds. Here we characterized at structural and functional levels an apomixis-linked sequence of Paspalum simplex homologous to subunit 3 of the ORIGIN RECOGNITION COMPLEX (ORC3). ORC is a multiprotein complex which controls DNA replication and cell differentiation in eukaryotes. Three PsORC3 copies were identified, each one characterized by a specific expression profile. Of these, PsORC3a, specific for apomictic genotypes, is a pseudogene that was poorly and constitutively expressed in all developmental stages of apomictic flowers, whereas PsORC3b, the putative functional gene in sexual flowers, showed a precise time-related regulation. Sense transcripts of PsORC3 were expressed in the female cell lineage of both apomictic and sexual reproductive phenotypes, and in aposporous initials. Although strong expression was detected in sexual early endosperm, no expression was present in the apomictic endosperm. Antisense PsORC3 transcripts were revealed exclusively in apomictic germ cell lineages. Defective orc3 mutants of rice and Arabidopsis showed normal female gametophytes although the embryo and endosperm were arrested at early phases of development. We hypothesize that PsORC3a is associated with the down-regulation of its functional homolog and with the development of apomictic endosperm which deviates from the canonical 2(maternal):1(paternal) genome ratio.
Collapse
Affiliation(s)
- Lorena A Siena
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina
| | - Juan Pablo A Ortiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina
| | - Ornella Calderini
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Francesco Paolocci
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Maria E Cáceres
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Pankaj Kaushal
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Simone Grisan
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Silvina C Pessino
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina
| | - Fulvio Pupilli
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| |
Collapse
|
25
|
De novo sequencing of the Hypericum perforatum L. flower transcriptome to identify potential genes that are related to plant reproduction sensu lato. BMC Genomics 2015; 16:254. [PMID: 25887758 PMCID: PMC4451943 DOI: 10.1186/s12864-015-1439-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/06/2015] [Indexed: 02/07/2023] Open
Abstract
Background St. John’s wort (Hypericum perforatum L.) is a medicinal plant that produces important metabolites with antidepressant and anticancer activities. Recently gained biological information has shown that this species is also an attractive model system for the study of a naturally occurring form of asexual reproduction called apomixis, which allows cloning plants through seeds. In aposporic gametogenesis, one or multiple somatic cells belonging to the ovule nucellus change their fate by dividing mitotically and developing functionally unreduced embryo sacs by mimicking sexual gametogenesis. Although the introduction of apomixis into agronomically important crops could have revolutionary implications for plant breeding, the genetic control of this mechanism of seed formation is still not well understood for most of the model species investigated so far. We used Roche 454 technology to sequence the entire H. perforatum flower transcriptome of whole flower buds and single flower verticils collected from obligately sexual and unrelated highly or facultatively apomictic genotypes, which enabled us to identify RNAs that are likely exclusive to flower organs (i.e., sepals, petals, stamens and carpels) or reproductive strategies (i.e., sexual vs. apomictic). Results Here we sequenced and annotated the flower transcriptome of H. perforatum with particular reference to reproductive organs and processes. In particular, in our study we characterized approximately 37,000 transcripts found expressed in male and/or female reproductive organs, including tissues or cells of sexual and apomictic flower buds. Ontological annotation was applied to identify major biological processes and molecular functions involved in flower development and plant reproduction. Starting from this dataset, we were able to recover and annotate a large number of transcripts related to meiosis, gametophyte/gamete formation, and embryogenesis, as well as genes that are exclusively or preferentially expressed in sexual or apomictic libraries. Real-Time RT-qPCR assays on pistils and anthers collected at different developmental stages from accessions showing alternative modes of reproduction were used to identify potential genes that are related to plant reproduction sensu lato in H. perforatum. Conclusions Our approach of sequencing flowers from two fully obligate sexual genotypes and two unrelated highly apomictic genotypes, in addition to different flower parts dissected from a facultatively apomictic accession, enabled us to analyze the complexity of the flower transcriptome according to its main reproductive organs as well as for alternative reproductive behaviors. Both annotation and expression data provided original results supporting the hypothesis that apomixis in H. perforatum relies upon spatial or temporal mis-expression of genes acting during female sexual reproduction. The present analyses aim to pave the way toward a better understanding of the molecular basis of flower development and plant reproduction, by identifying genes or RNAs that may differentiate or regulate the sexual and apomictic reproductive pathways in H. perforatum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1439-y) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Shirasawa K, Hand ML, Henderson ST, Okada T, Johnson SD, Taylor JM, Spriggs A, Siddons H, Hirakawa H, Isobe S, Tabata S, Koltunow AMG. A reference genetic linkage map of apomictic Hieracium species based on expressed markers derived from developing ovule transcripts. ANNALS OF BOTANY 2015; 115:567-80. [PMID: 25538115 PMCID: PMC4343286 DOI: 10.1093/aob/mcu249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS Apomixis in plants generates clonal progeny with a maternal genotype through asexual seed formation. Hieracium subgenus Pilosella (Asteraceae) contains polyploid, highly heterozygous apomictic and sexual species. Within apomictic Hieracium, dominant genetic loci independently regulate the qualitative developmental components of apomixis. In H. praealtum, LOSS OF APOMEIOSIS (LOA) enables formation of embryo sacs without meiosis and LOSS OF PARTHENOGENESIS (LOP) enables fertilization-independent seed formation. A locus required for fertilization-independent endosperm formation (AutE) has been identified in H. piloselloides. Additional quantitative loci appear to influence the penetrance of the qualitative loci, although the controlling genes remain unknown. This study aimed to develop the first genetic linkage maps for sexual and apomictic Hieracium species using simple sequence repeat (SSR) markers derived from expressed transcripts within the developing ovaries. METHODS RNA from microdissected Hieracium ovule cell types and ovaries was sequenced and SSRs were identified. Two different F1 mapping populations were created to overcome difficulties associated with genome complexity and asexual reproduction. SSR markers were analysed within each mapping population to generate draft linkage maps for apomictic and sexual Hieracium species. KEY RESULTS A collection of 14 684 Hieracium expressed SSR markers were developed and linkage maps were constructed for Hieracium species using a subset of the SSR markers. Both the LOA and LOP loci were successfully assigned to linkage groups; however, AutE could not be mapped using the current populations. Comparisons with lettuce (Lactuca sativa) revealed partial macrosynteny between the two Asteraceae species. CONCLUSIONS A collection of SSR markers and draft linkage maps were developed for two apomictic and one sexual Hieracium species. These maps will support cloning of controlling genes at LOA and LOP loci in Hieracium and should also assist with identification of quantitative loci that affect the expressivity of apomixis. Future work will focus on mapping AutE using alternative populations.
Collapse
Affiliation(s)
- Kenta Shirasawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Melanie L Hand
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Steven T Henderson
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Takashi Okada
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Susan D Johnson
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Jennifer M Taylor
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Andrew Spriggs
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Hayley Siddons
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Sachiko Isobe
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Anna M G Koltunow
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan and Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Waite Campus, Hartley Grove, Urrbrae, South Australia 5064, Australia
| |
Collapse
|
27
|
Podio M, Cáceres ME, Samoluk SS, Seijo JG, Pessino SC, Ortiz JPA, Pupilli F. A methylation status analysis of the apomixis-specific region in Paspalum spp. suggests an epigenetic control of parthenogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6411-24. [PMID: 25180110 DOI: 10.1093/jxb/eru354] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Apomixis, a clonal plant reproduction by seeds, is controlled in Paspalum spp. by a single locus which is blocked in terms of recombination. Partial sequence analysis of the apomixis locus revealed structural features of heterochromatin, namely the presence of repetitive elements, gene degeneration, and de-regulation. To test the epigenetic control of apomixis, a study on the distribution of cytosine methylation at the apomixis locus and the effect of artificial DNA demethylation on the mode of reproduction was undertaken in two apomictic Paspalum species. The 5-methylcytosine distribution in the apomixis-controlling genomic region was studied in P. simplex by methylation-sensitive restriction fragment length polymorphism (RFLP) analysis and in P. notatum by fluorescene in situ hybridization (FISH). The effect of DNA demethylation was studied on the mode of reproduction of P. simplex by progeny test analysis of apomictic plants treated with the demethylating agent 5'-azacytidine. A high level of cytosine methylation was detected at the apomixis-controlling genomic region in both species. By analysing a total of 374 open pollination progeny, it was found that artificial demethylation had little or no effect on apospory, whereas it induced a significant depression of parthenogenesis. The results suggested that factors controlling repression of parthenogenesis might be inactivated in apomictic Paspalum by DNA methylation.
Collapse
Affiliation(s)
- Maricel Podio
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino s/n CC 14 (S2125 ZAA), Zavalla, Santa Fe, Argentina Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, 3400 Corrientes, Argentina
| | - Maria E Cáceres
- CNR-Istituto di Bioscienze e Biorisorse, Research Division: Perugia, Via della Madonna alta 130, I-06128 Perugia, Italy
| | - Sergio S Samoluk
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, 3400 Corrientes, Argentina
| | - José G Seijo
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, 3400 Corrientes, Argentina
| | - Silvina C Pessino
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino s/n CC 14 (S2125 ZAA), Zavalla, Santa Fe, Argentina
| | - Juan Pablo A Ortiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino s/n CC 14 (S2125 ZAA), Zavalla, Santa Fe, Argentina Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, 3400 Corrientes, Argentina
| | - Fulvio Pupilli
- CNR-Istituto di Bioscienze e Biorisorse, Research Division: Perugia, Via della Madonna alta 130, I-06128 Perugia, Italy
| |
Collapse
|
28
|
Kotani Y, Henderson ST, Suzuki G, Johnson SD, Okada T, Siddons H, Mukai Y, Koltunow AMG. The LOSS OF APOMEIOSIS (LOA) locus in Hieracium praealtum can function independently of the associated large-scale repetitive chromosomal structure. THE NEW PHYTOLOGIST 2014; 201:973-981. [PMID: 24400904 DOI: 10.1111/nph.12574] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/26/2013] [Indexed: 05/14/2023]
Abstract
Apomixis or asexual seed formation in Hieracium praealtum (Asteraceae) is controlled by two independent dominant loci. One of these, the LOSS OF APOMEIOSIS (LOA) locus, controls apomixis initiation, mitotic embryo sac formation (apospory) and suppression of the sexual pathway. The LOA locus is found near the end of a hemizygous chromosome surrounded by extensive repeats extending along the chromosome arm. Similar apomixis-carrying chromosome structures have been found in some apomictic grasses, suggesting that the extensive repetitive sequences may be functionally relevant to apomixis. Fluorescence in situ hybridization (FISH) was used to examine chromosomes of apomeiosis deletion mutants and rare recombinants in the critical LOA region arising from a cross between sexual Hieracium pilosella and apomictic H. praealtum. The combined analyses of aposporous and nonaposporous recombinant progeny and chromosomal karyotypes were used to determine that the functional LOA locus can be genetically separated from the very extensive repeat regions found on the LOA-carrying chromosome. The large-scale repetitive sequences associated with the LOA locus in H. praealtum are not essential for apospory or suppression of sexual megasporogenesis (female meiosis).
Collapse
Affiliation(s)
- Yoshiko Kotani
- Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan
| | - Steven T Henderson
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| | - Go Suzuki
- Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan
| | - Susan D Johnson
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| | - Takashi Okada
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| | - Hayley Siddons
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| | - Yasuhiko Mukai
- Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan
| | - Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| |
Collapse
|
29
|
Barcaccia G, Albertini E. Apomixis in plant reproduction: a novel perspective on an old dilemma. PLANT REPRODUCTION 2013; 26:159-79. [PMID: 23852378 PMCID: PMC3747320 DOI: 10.1007/s00497-013-0222-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/23/2013] [Indexed: 05/19/2023]
Abstract
Seed is one of the key factors of crop productivity. Therefore, a comprehension of the mechanisms underlying seed formation in cultivated plants is crucial for the quantitative and qualitative progress of agricultural production. In angiosperms, two pathways of reproduction through seed exist: sexual or amphimictic, and asexual or apomictic; the former is largely exploited by seed companies for breeding new varieties, whereas the latter is receiving continuously increasing attention from both scientific and industrial sectors in basic research projects. If apomixis is engineered into sexual crops in a controlled manner, its impact on agriculture will be broad and profound. In fact, apomixis will allow clonal seed production and thus enable efficient and consistent yields of high-quality seeds, fruits, and vegetables at lower costs. The development of apomixis technology is expected to have a revolutionary impact on agricultural and food production by reducing cost and breeding time, and avoiding the complications that are typical of sexual reproduction (e.g., incompatibility barriers) and vegetative propagation (e.g., viral transfer). However, the development of apomixis technology in agriculture requires a deeper knowledge of the mechanisms that regulate reproductive development in plants. This knowledge is a necessary prerequisite to understanding the genetic control of the apomictic process and its deviations from the sexual process. Our molecular understanding of apomixis will be greatly advanced when genes that are specifically or differentially expressed during embryo and embryo sac formation are discovered. In our review, we report the main findings on this subject by examining two approaches: i) analysis of the apomictic process in natural apomictic species to search for genes controlling apomixis and ii) analysis of gene mutations resembling apomixis or its components in species that normally reproduce sexually. In fact, our opinion is that a novel perspective on this old dilemma pertaining to the molecular control of apomixis can emerge from a cross-check among candidate genes in natural apomicts and a high-throughput analysis of sexual mutants.
Collapse
Affiliation(s)
- Gianni Barcaccia
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Emidio Albertini
- Department of Applied Biology, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| |
Collapse
|
30
|
Galla G, Volpato M, Sharbel TF, Barcaccia G. Computational identification of conserved microRNAs and their putative targets in the Hypericum perforatum L. flower transcriptome. PLANT REPRODUCTION 2013; 26:209-29. [PMID: 23846415 DOI: 10.1007/s00497-013-0227-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/28/2013] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) have recently emerged as important regulators of gene expression in plants. Many miRNA families and their targets have been extensively studied in model species and major crops. We have characterized mature miRNAs along with their precursors and potential targets in Hypericum to generate a comprehensive list of conserved miRNA families and to investigate the regulatory role of selected miRNAs in biological processes that occur in the flower. St. John's wort (Hypericum perforatum L., 2n = 4x = 32), a medicinal plant that produces pharmaceutically important metabolites with therapeutic activities, was chosen because it is regarded as an attractive model system for the study of apomixis. A computational in silico prediction of structure, in combination with an in vitro validation, allowed us to identify 7 pre-miRNAs, including miR156, miR166, miR390, miR394, miR396, and miR414. We demonstrated that H. perforatum flowers share highly conserved miRNAs and that these miRNAs potentially target dozens of genes with a wide range of molecular functions, including metabolism, response to stress, flower development, and plant reproduction. Our analysis paves the way toward identifying flower-specific miRNAs that may differentiate the sexual and apomictic reproductive pathways.
Collapse
Affiliation(s)
- Giulio Galla
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Italy
| | | | | | | |
Collapse
|
31
|
Ortiz JPA, Quarin CL, Pessino SC, Acuña C, Martínez EJ, Espinoza F, Hojsgaard DH, Sartor ME, Cáceres ME, Pupilli F. Harnessing apomictic reproduction in grasses: what we have learned from Paspalum. ANNALS OF BOTANY 2013; 112:767-87. [PMID: 23864004 PMCID: PMC3747805 DOI: 10.1093/aob/mct152] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/13/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Apomixis is an alternative route of plant reproduction that produces individuals genetically identical to the mother plant through seeds. Apomixis is desirable in agriculture, because it guarantees the perpetuation of superior genotypes (i.e. heterotic hybrid seeds) by self-seeding without loss of hybrid vigour. The Paspalum genus, an archetypal model system for mining apomixis gene(s), is composed of about 370 species that have extremely diverse reproductive systems, including self-incompatibility, self-fertility, full sexual reproduction, and facultative or obligate apomixis. Barriers to interspecific hybridization are relaxed in this genus, allowing the production of new hybrids from many different parental combinations. Paspalum is also tolerant to various parental genome contributions to the endosperm, allowing analyses of how sexually reproducing crop species might escape from dosage effects in the endosperm. SCOPE In this article, the available literature characterizing apomixis in Paspalum spp. and its use in breeding is critically reviewed. In particular, a comparison is made across species of the structure and function of the genomic region controlling apomixis in order to identify a common core region shared by all apomictic Paspalum species and where apomixis genes are likely to be localized. Candidate genes are discussed, either as possible genetic determinants (including homologs to signal transduction and RNA methylation genes) or as downstream factors (such as cell-to-cell signalling and auxin response genes) depending, respectively, on their co-segregation with apomixis or less. Strategies to validate the role of candidate genes in apomictic process are also discussed, with special emphasis on plant transformation in natural apomictic species.
Collapse
Affiliation(s)
- Juan Pablo A. Ortiz
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Camilo L. Quarin
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Silvina C. Pessino
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Carlos Acuña
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Eric J. Martínez
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Francisco Espinoza
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Diego H. Hojsgaard
- Albrecht-von-Haller Institute for Plant Sciences, Department of Systematic Botany, Georg-August-University of Göttingen, Göttingen, Germany
| | - Maria E. Sartor
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Maria E. Cáceres
- CNR-Istituto di Genetica Vegetale, Research Division: Perugia, Via della Madonna alta 130, I-06128 Perugia, Italy
| | - Fulvio Pupilli
- CNR-Istituto di Genetica Vegetale, Research Division: Perugia, Via della Madonna alta 130, I-06128 Perugia, Italy
- For correspondence. E-mail
| |
Collapse
|
32
|
Conner JA, Gunawan G, Ozias-Akins P. Recombination within the apospory specific genomic region leads to the uncoupling of apomixis components in Cenchrus ciliaris. PLANTA 2013; 238:51-63. [PMID: 23553451 DOI: 10.1007/s00425-013-1873-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/11/2013] [Indexed: 05/07/2023]
Abstract
Apomixis enables the clonal propagation of maternal genotypes through seed. If apomixis could be harnessed via genetic engineering or introgression, it would have a major economic impact for agricultural crops. In the grass species Pennisetum squamulatum and Cenchrus ciliaris (syn. P. ciliare), apomixis is controlled by a single dominant "locus", the apospory-specific genomic region (ASGR). For P. squamulatum, 18 published sequenced characterized amplified region (SCAR) markers have been identified which always co-segregate with apospory. Six of these markers are conserved SCARs in the closely related species, C. ciliaris and co-segregate with the trait. A screen of progeny from a cross of sexual × apomictic C. ciliaris genotypes identified a plant, A8, retaining two of the six ASGR-linked SCAR markers. Additional and newly identified ASGR-linked markers were generated to help identify the extent of recombination within the ASGR. Based on analysis of missing markers, the A8 recombinant plant has lost a significant portion of the ASGR but continues to form aposporous embryo sacs. Seedlings produced from aposporous embryo sacs are 6× in ploidy level and hence the A8 recombinant does not express parthenogenesis. The recombinant A8 plant represents a step forward in reducing the complexity of the ASGR locus to determine the factor(s) required for aposporous embryo sac formation and documents the separation of expression of the two components of apomixis in C. ciliaris.
Collapse
Affiliation(s)
- Joann A Conner
- Department of Horticulture, University of Georgia Tifton Campus, Tifton, GA, 31973, USA.
| | | | | |
Collapse
|
33
|
Hojsgaard DH, Martínez EJ, Quarin CL. Competition between meiotic and apomictic pathways during ovule and seed development results in clonality. THE NEW PHYTOLOGIST 2013; 197:336-347. [PMID: 23127139 DOI: 10.1111/j.1469-8137.2012.04381.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/10/2012] [Indexed: 05/20/2023]
Abstract
Meiotic and apomictic reproductive pathways develop simultaneously in facultative aposporous species, and compete to form a seed as a final goal. This developmental competition was evaluated in tetraploid genotypes of Paspalum malacophyllum in order to understand the low level of sexuality in facultative apomictic populations. Cyto-embryology on ovules, flow cytometry on seeds and progeny tests by DNA fingerprinting were used to measure the relative incidence of each meiotic or apomictic pathway along four different stages of the plant's life cycle, namely the beginning and end of gametogenesis, seed formation and adult offspring. A high variation in the frequencies of sexual and apomictic pathways occurred at the first two stages. A trend of radical decline in realized sexuality was then observed. Sexual and apomictic seeds were produced, but the efficiency of the sexual pathway dropped drastically, and exclusively clonal offspring remained. Both reproductive pathways are unstable at the beginning of development, and only the apomictic one remains functional. Key factors reducing sexuality are the faster growth and parthenogenetic development in the aposporous pathway, and an (epi)genetically negative background related to the extensive gene de-regulation pattern responsible for apomixis. The effects of inbreeding depression during post-fertilization development may further decrease the frequency of effective sexuality.
Collapse
Affiliation(s)
- Diego H Hojsgaard
- Instituto de Botánica del Nordeste (IBONE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), CC 209, 3400, Corrientes, Argentina
- Albrecht-von-Haller Institute of Plant Sciences, Department of Systematic Botany, University of Goettingen, Untere Karspuele 2, 37073, Goettingen, Germany
| | - Eric J Martínez
- Instituto de Botánica del Nordeste (IBONE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), CC 209, 3400, Corrientes, Argentina
| | - Camilo L Quarin
- Instituto de Botánica del Nordeste (IBONE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), CC 209, 3400, Corrientes, Argentina
| |
Collapse
|
34
|
Abstract
Meiosis is at the heart of Mendelian heredity. Recently, much progress has been made in the understanding of this process, in various organisms. In the last 15 years, the functional characterization of numerous genes involved in meiosis has dramatically deepened our knowledge of key events, including recombination, the cell cycle, and chromosome distribution. Through a constantly advancing tool set and knowledge base, a number of advances have been made that will allow manipulation of meiosis from a plant breeding perspective. This review focuses on the aspects of meiosis that can be tinkered with to create and propagate new varieties. We would like to dedicate this review to the memory of Simon W. Chan (1974-2012) (http://www.plb.ucdavis.edu/labs/srchan/).
Collapse
|
35
|
Ryffel GU. Orgenic plants: Gene-manipulated plants compatible with organic farming. Biotechnol J 2012; 7:1328-31. [DOI: 10.1002/biot.201200225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 11/08/2022]
|