1
|
Guo S, Wang S, Meng J, Gu D, Yang Y. Immobilized enzyme for screening and identification of anti-diabetic components from natural products by ligand fishing. Crit Rev Biotechnol 2023; 43:242-257. [PMID: 35156475 DOI: 10.1080/07388551.2021.2025034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Diabetes is a chronic metabolic disease caused by insufficient insulin secretion and insulin resistance. Natural product is one of the most important resources for anti-diabetic drug. However, due to the extremely complex composition, this research is facing great challenges. After the advent of ligand fishing technology based on enzyme immobilization, the efficiency of screening anti-diabetic components has been greatly improved. In order to provide critical knowledge for future research in this field, the application progress of immobilized enzyme in screening anti-diabetic components from complex natural extracts in recent years was reviewed comprehensively, including novel preparation technologies and strategies of immobilized enzyme and its outstanding application prospect in many aspects. The basic principles and preparation steps of immobilized enzyme were briefly described, including entrapment, physical adsorption, covalent binding, affinity immobilization, multienzyme system and carrier-free immobilization. New formatted immobilized enzymes with different carriers, hollow fibers, magnetic materials, microreactors, metal organic frameworks, etc., were widely used to screen anti-diabetic compositions from various natural products, such as Ginkgo biloba, Morus alba, lotus leaves, Pueraria lobata, Prunella vulgaris, and Magnolia cortex. Furthermore, the challenges and future prospects in this field were put forward in this review.
Collapse
Affiliation(s)
- Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Shuai Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Jing Meng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Dongyu Gu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China.,College of Marine Science and Environment, Dalian Ocean University, Dalian, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Affinity screening of potential anti-obesity and anti-diabetic component from pomegranate peel by co-immobilization of lipase and α-amylase using carbon nanotube and hydrogel. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Soares TF, Oliveira MBPP. Cocoa By-Products: Characterization of Bioactive Compounds and Beneficial Health Effects. Molecules 2022; 27:1625. [PMID: 35268725 PMCID: PMC8912039 DOI: 10.3390/molecules27051625] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/29/2022] Open
Abstract
The annual production of cocoa is approximately 4.7 million tons of cocoa beans, of which only 10% corresponds to the cocoa bean and the remaining value corresponds to a high number of residues, cocoa bean shell, pulp and husk. These by-products are a source of nutrients and compounds of notable interest in the food industry as possible ingredients, or even additives. The assessment of such by-products is relevant to the circular economy at both environmental and economic levels. Investigations carried out with these by-products have shown that cocoa husk can be used for the production of useful chemicals such as ketones, carboxylic acids, aldehydes, furans, heterocyclic aromatics, alkylbenzenes, phenols and benzenediols, as well as being efficient for the removal of lead from acidic solutions, without decay in the process due to the other metals in this matrix. The fibre present in the cocoa bean shell has a considerable capacity to adsorb a large amount of oil and cholesterol, thus reducing its bioavailability during the digestion process, as well as preventing lipid oxidation in meats, with better results compared to synthetic antioxidants (butylated hydroxytoluene and β-tocopherol). Finally, cocoa pulp can be used to generate a sweet and sour juice with a natural flavour. Thus, this review aimed to compile information on these by-products, focusing mainly on their chemical and nutritional composition, simultaneously, the various uses proposed in the literature based on a bibliographic review of articles, books and theses published between 2000 and 2021, using databases such as Scopus, Web of Science, ScieLO, PubMed and ResearchGate.
Collapse
Affiliation(s)
| | - M. Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. J. Viterbo, 4050-313 Porto, Portugal;
| |
Collapse
|
4
|
Oliart-Ros RM, Badillo-Zeferino GL, Quintana-Castro R, Ruíz-López II, Alexander-Aguilera A, Domínguez-Chávez JG, Khan AA, Nguyen DD, Nadda AK, Sánchez-Otero MG. Production and Characterization of Cross-Linked Aggregates of Geobacillus thermoleovorans CCR11 Thermoalkaliphilic Recombinant Lipase. Molecules 2021; 26:7569. [PMID: 34946651 PMCID: PMC8708040 DOI: 10.3390/molecules26247569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
Immobilization of enzymes has many advantages for their application in biotechnological processes. In particular, the cross-linked enzyme aggregates (CLEAs) allow the production of solid biocatalysts with a high enzymatic loading and the advantage of obtaining derivatives with high stability at low cost. The purpose of this study was to produce cross-linked enzymatic aggregates (CLEAs) of LipMatCCR11, a 43 kDa recombinant solvent-tolerant thermoalkaliphilic lipase from Geobacillus thermoleovorans CCR11. LipMatCCR11-CLEAs were prepared using (NH4)2SO4 (40% w/v) as precipitant agent and glutaraldehyde (40 mM) as cross-linker, at pH 9, 20 °C. A U10(56) uniform design was used to optimize CLEA production, varying protein concentration, ammonium sulfate %, pH, glutaraldehyde concentration, temperature, and incubation time. The synthesized CLEAs were also analyzed using scanning electron microscopy (SEM) that showed individual particles of <1 µm grouped to form a superstructure. The cross-linked aggregates showed a maximum mass activity of 7750 U/g at 40 °C and pH 8 and retained more than 20% activity at 100 °C. Greater thermostability, resistance to alkaline conditions and the presence of organic solvents, and better durability during storage were observed for LipMatCCR11-CLEAs in comparison with the soluble enzyme. LipMatCCR11-CLEAs presented good reusability by conserving 40% of their initial activity after 9 cycles of reuse.
Collapse
Affiliation(s)
- Rosa-María Oliart-Ros
- Unidad de Investigación y Desarrollo en Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, M.A. De Quevedo 2779, Veracruz C.P. 91897, Ver., Mexico; (R.-M.O.-R.); (G.-L.B.-Z.)
| | - Giselle-Lilian Badillo-Zeferino
- Unidad de Investigación y Desarrollo en Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, M.A. De Quevedo 2779, Veracruz C.P. 91897, Ver., Mexico; (R.-M.O.-R.); (G.-L.B.-Z.)
| | - Rodolfo Quintana-Castro
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz C.P. 91700, Ver., Mexico; (R.Q.-C.); (A.A.-A.); (J.-G.D.-C.)
| | - Irving-Israel Ruíz-López
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Ciudad Universitaria, Puebla C.P. 72570, Pue., Mexico;
| | - Alfonso Alexander-Aguilera
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz C.P. 91700, Ver., Mexico; (R.Q.-C.); (A.A.-A.); (J.-G.D.-C.)
| | - Jorge-Guillermo Domínguez-Chávez
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz C.P. 91700, Ver., Mexico; (R.Q.-C.); (A.A.-A.); (J.-G.D.-C.)
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Dinh Duc Nguyen
- Department of Environmental and Energy Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si 16227, Gyeonggi-do, Korea;
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Faculty of Biotechnology, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173 234, India
| | - María-Guadalupe Sánchez-Otero
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz C.P. 91700, Ver., Mexico; (R.Q.-C.); (A.A.-A.); (J.-G.D.-C.)
| |
Collapse
|
5
|
Muley AB, Awasthi S, Bhalerao PP, Jadhav NL, Singhal RS. Preparation of cross-linked enzyme aggregates of lipase from Aspergillus niger: process optimization, characterization, stability, and application for epoxidation of lemongrass oil. Bioprocess Biosyst Eng 2021; 44:1383-1404. [PMID: 33660099 DOI: 10.1007/s00449-021-02509-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/04/2021] [Indexed: 12/01/2022]
Abstract
Cross-linked enzyme aggregates (CLEAs) of lipase were prepared after fractional precipitation with 40-50% ammonium sulfate and then cross-linking with glutaraldehyde. The process variables for the preparation of lipase-CLEAs such as glutaraldehyde concentration, cross-linking period, and initial pH of medium were optimized. The optimized conditions for the preparation of lipase-CLEAs were 25 mM/80 min/pH 7.0, and 31.62 mM/90 min/pH 6.0 with one factor at a time approach and numerical optimization with central composite design, respectively. Lipase-CLEAs were characterized by particle size analysis, SEM, and FTIR. Cross-linking not only shifted the optimal pH and temperature from 7.0 to 7.5 and 40-45 to 45-50 °C, but also altered the secondary structure. Lipase-CLEAs showed an increase in Km by 7.70%, and a decrease in Vmax by 16.63%. Lipase-CLEAs presented better thermostability than free lipase as evident from thermal inactivation constants (t1/2, D and Ed value), and thermodynamic parameters (Ed, ΔH°, ΔG°, and ΔS°) in the range of 50-70 °C. Lipase-CLEAs retained more than 65% activity up to four cycles and showed good storage stability for 12 days when stored at 4 ± 2 °C. They were successfully utilized for the epoxidation of lemongrass oil which was confirmed by changes in iodine value, epoxide value, and FTIR spectra.
Collapse
Affiliation(s)
- Abhijeet Bhimrao Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Sneha Awasthi
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Prasanna Prakash Bhalerao
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Nilesh Lakshaman Jadhav
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Rekha Satishchandra Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| |
Collapse
|
6
|
|
7
|
Deng X, He T, Li J, Duan HL, Zhang ZQ. Enhanced biochemical characteristics of β-glucosidase via adsorption and cross-linked enzyme aggregate for rapid cellobiose hydrolysis. Bioprocess Biosyst Eng 2020; 43:2209-2217. [DOI: 10.1007/s00449-020-02406-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022]
|
8
|
Covalent immobilization of recombinant Citrobacter koseri transaminase onto epoxy resins for consecutive asymmetric synthesis of L-phosphinothricin. Bioprocess Biosyst Eng 2020; 43:1599-1607. [DOI: 10.1007/s00449-020-02351-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/11/2020] [Indexed: 12/16/2022]
|
9
|
Gupta MN, Perwez M, Sardar M. Protein crosslinking: Uses in chemistry, biology and biotechnology. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1733990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Mohammad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
10
|
Kulkarni NH, Muley AB, Bedade DK, Singhal RS. Cross-linked enzyme aggregates of arylamidase from Cupriavidus oxalaticus ICTDB921: process optimization, characterization, and application for mitigation of acrylamide in industrial wastewater. Bioprocess Biosyst Eng 2019; 43:457-471. [PMID: 31705314 DOI: 10.1007/s00449-019-02240-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022]
Abstract
Acrylamidase produced by Cupriavidus oxalaticus ICTDB921 was recovered directly from the fermentation broth by ammonium sulfate (40-50%) precipitation and then stabilized by cross-linking with glutaraldehyde. The optimum conditions for the preparation of cross-linked enzyme aggregates of acrylamidase (acrylamidase-CLEAs) were using 60 mM glutaraldehyde for 10 min at 35 °C and initial broth pH of 7.0. Acrylamidase-CLEAs were characterized by SDS-PAGE, FTIR, particle size analyzer and SEM. Cross-linking shifted the optimal temperature and pH from 70 to 50 °C and 5-7 to 6-8, respectively. It also altered the secondary structure fractions, pH and thermal stability along with the kinetic constants, Km and Vmax, respectively. A complete degradation of acrylamide ~ 1.75 g/L in industrial wastewater was achieved after 60 min in a batch process under optimum operating conditions, and the kinetics was best represented by Edward model (R2 = 0.70). Acrylamidase-CLEAs retained ~ 40% of its initial activity after three cycles for both pure acrylamide and industrial wastewater, and were stable for 15 days at 4 °C, retaining ~ 25% of its original activity.
Collapse
Affiliation(s)
- Nidhi H Kulkarni
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Abhijeet B Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Dattatray K Bedade
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
11
|
Filho DG, Silva AG, Guidini CZ. Lipases: sources, immobilization methods, and industrial applications. Appl Microbiol Biotechnol 2019; 103:7399-7423. [DOI: 10.1007/s00253-019-10027-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/15/2023]
|
12
|
Vásquez ZS, de Carvalho Neto DP, Pereira GVM, Vandenberghe LPS, de Oliveira PZ, Tiburcio PB, Rogez HLG, Góes Neto A, Soccol CR. Biotechnological approaches for cocoa waste management: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 90:72-83. [PMID: 31088675 DOI: 10.1016/j.wasman.2019.04.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/09/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Cocoa beans provide raw materials for global food industries valued in excess of $47 billion in world exportations. Through on-farm processing, about 80% of cocoa fruit is discarded as residual biomass, including cocoa pod husks, cocoa bean shells and cocoa sweatings. Farmers routinely discard these residues/by-products during the initial cocoa bean processing steps, occupying vast areas and raising social and environmental concerns. Alternatively, this residual biomass is used as cocoa tree fertilizer. However, its disposal is performed without proper treatment, resulting in putrid odors and plant diseases. Recently, some studies have reported the use of cocoa by-products in the production of high-value-adding molecules with potential applications in the food, pharmaceutical and cosmetic industries. In this aspect, biotechnological approaches have been shown to be a viable alternative for the transformation of this residual biomass into fine products. This article reviews the biotechnological approaches implemented for the management and exploitation of cocoa by-product. Related topics on cocoa production and residual biomass generation, sustainability and valorization of cocoa chain are addressed and discussed.
Collapse
Affiliation(s)
- Zulma S Vásquez
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), 81531-980 Curitiba, PR, Brazil
| | - Dão P de Carvalho Neto
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), 81531-980 Curitiba, PR, Brazil
| | - Gilberto V M Pereira
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), 81531-980 Curitiba, PR, Brazil
| | - Luciana P S Vandenberghe
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), 81531-980 Curitiba, PR, Brazil.
| | - Priscilla Z de Oliveira
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), 81531-980 Curitiba, PR, Brazil
| | - Patrick B Tiburcio
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), 81531-980 Curitiba, PR, Brazil
| | - Hervé L G Rogez
- Centre for Valorisation of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará, 66075-750 Belém, PA, Brazil
| | - Aristóteles Góes Neto
- Federal University of Minas Gerais, Institute of Biological Sciences, 31270-901 Belo Horizonte, MG, Brazil
| | - Carlos R Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), 81531-980 Curitiba, PR, Brazil
| |
Collapse
|
13
|
Abstract
Biocatalysis has emerged in the last decade as a pre-eminent technology for enabling the envisaged transition to a more sustainable bio-based economy. For industrial viability it is essential that enzymes can be readily recovered and recycled by immobilization as solid, recyclable catalysts. One method to achieve this is via carrier-free immobilization as cross-linked enzyme aggregates (CLEAs). This methodology proved to be very effective with a broad selection of enzymes, in particular carbohydrate-converting enzymes. Methods for optimizing CLEA preparations by, for example, adding proteic feeders to promote cross-linking, and strategies for making the pores accessible for macromolecular substrates are critically reviewed and compared. Co-immobilization of two or more enzymes in combi-CLEAs enables the cost-effective use of multiple enzymes in biocatalytic cascade processes and the use of “smart” magnetic CLEAs to separate the immobilized enzyme from other solids has raised the CLEA technology to a new level of industrial and environmental relevance. Magnetic-CLEAs of polysaccharide-converting enzymes, for example, are eminently suitable for use in the conversion of first and second generation biomass.
Collapse
|
14
|
Rathankumar AK, SaiLavanyaa S, Saikia K, Gururajan A, Sivanesan S, Gosselin M, Vaidyanathan VK, Cabana H. Systemic Concocting of Cross‐Linked Enzyme Aggregates of
Candida antarctica
Lipase B (Novozyme 435) for the Biomanufacturing of Rhamnolipids. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Abiram Karanam Rathankumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of BioengineeringSRM Institute of Science and Technology Kattankulathur, Chennai, 603 203 India
| | - Sundar SaiLavanyaa
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of BioengineeringSRM Institute of Science and Technology Kattankulathur, Chennai, 603 203 India
| | - Kongkona Saikia
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of BioengineeringSRM Institute of Science and Technology Kattankulathur, Chennai, 603 203 India
| | - Anusha Gururajan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of BioengineeringSRM Institute of Science and Technology Kattankulathur, Chennai, 603 203 India
| | - Subramanian Sivanesan
- Department of Applied Science and Technology, Environment Management LaboratoryAC Tech, Anna University Chennai, 600025 India
| | - Mathilde Gosselin
- Materium Innovations INC.Boulevard Industriel 790 J2G 9J5, Granby Canada
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of BioengineeringSRM Institute of Science and Technology Kattankulathur, Chennai, 603 203 India
- Laboratoire de génie de l'environnement, Faculté de génieUniversité de Sherbrooke 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1 Canada
| | - Hubert Cabana
- Laboratoire de génie de l'environnement, Faculté de génieUniversité de Sherbrooke 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1 Canada
| |
Collapse
|
15
|
|
16
|
Preparation of Stable Cross-Linked Enzyme Aggregates (CLEAs) of a Ureibacillus thermosphaericus Esterase for Application in Malathion Removal from Wastewater. Catalysts 2018. [DOI: 10.3390/catal8040154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the active and stable cross-linked enzyme aggregates (CLEAs) of the thermostable esterase estUT1 of the bacterium Ureibacillus thermosphaericus were prepared for application in malathion removal from municipal wastewater. Co-expression of esterase with an E. coli chaperone team (KJE, ClpB, and ELS) increased the activity of the soluble enzyme fraction up to 200.7 ± 15.5 U mg−1. Response surface methodology (RSM) was used to optimize the preparation of the CLEA-estUT1 biocatalyst to maximize its activity and minimize enzyme loss. CLEA-estUT1 with the highest activity of 29.4 ± 0.5 U mg−1 (90.6 ± 2.7% of the recovered activity) was prepared with 65.1% (w/v) ammonium sulfate, 120.6 mM glutaraldehyde, and 0.2 mM bovine serum albumin at 5.1 h of cross-linking. The biocatalyst has maximal activity at 80 °С and pH 8.0. Analysis of the properties of CLEA-estUT1 and free enzyme at 50–80 °C and pH 5.0–10.0 showed higher stability of the biocatalyst. CLEA-estUT1 showed marked tolerance against a number of chemicals and high operational stability and activity in the reaction of malathion hydrolysis in wastewater (up to 99.5 ± 1.4%). After 25 cycles of malathion hydrolysis at 37 °С, it retained 55.2 ± 1.1% of the initial activity. The high stability and reusability of CLEA-estUT1 make it applicable for the degradation of insecticides.
Collapse
|
17
|
Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X. Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 188:137-143. [PMID: 27978441 DOI: 10.1016/j.jenvman.2016.12.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/08/2023]
Abstract
In the present study, horseradish peroxidase (HRP), in-house isolated crude cocktail enzyme, from Armoracia rusticana was cross-linked using a new type of cross-linking agent, i.e., ethylene glycol-bis [succinic acid N-hydroxysuccinimide, (EG-NHS)], which is mild in nature as compared to the glutaraldehyde (GA). The HRP-immobilized cross-linked enzyme aggregates (HRP-CLEAs) were developed using a wider range of EG-NHS and notably no adverse effect was observed. In a comparative evaluation, in the case of EG-NHS, a high-level stability in the residual activity was recorded, whereas a sharp decrease was observed in the case of glutaraldehyde. Following initial cross-linker evaluation, the HRP-CLEAs were tested to investigate their bio-catalytic efficacy for bioremediation purposes using a newly developed packed bed reactor system (PBRS). A maximal of 94.26% degradation of textile-based methyl orange dye was recorded within the shortest time frame, following 91.73% degradation of basic red 9, 84.35% degradation of indigo, 81.47% degradation of Rhodamin B, and 73.6% degradation of Rhodamine 6G, respectively, under the same working environment. Notably, the HRP-CLEAs retained almost 60% of its original activity after methyl orange dye degradation in seven consecutive cycles using PBRS. Furthermore, after HRP-CLEAs-mediated treatment in the PBRS, a significant toxicity reduction in the dye samples was recorded as compared to their pristine counterparts. In conclusion, the results suggest that the newly developed HRP-CLEAs have a great potential for industrial exploitation, to tackle numerous industrial dye-based emergent pollutants.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hafiz M N Iqbal
- ENCIT - Science, Engineering and Technology School, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico.
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
18
|
Chaudhari SA, Singhal RS. A strategic approach for direct recovery and stabilization of Fusarium sp. ICT SAC1 cutinase from solid state fermented broth by carrier free cross-linked enzyme aggregates. Int J Biol Macromol 2017; 98:610-621. [PMID: 28192137 DOI: 10.1016/j.ijbiomac.2017.02.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 11/18/2022]
Abstract
The major hurdles in commercial exploitation of cutinase (having both esterolytic and lipolytic activities) with potent industrial applications are its high production cost, operational instability and reusability. Although commercially available in immobilized form, its immobilization process (synthesis of support/carrier) makes it expensive. Herein we tried to address multiple issues of production cost, stability, and reusability, associated with cutinase. Waste watermelon rinds, an agroindustrial waste was considered as a cheap support for solid state fermentation (SSF) for cutinase production by newly isolated Fusarium sp. ICT SAC1. Subsequently, carrier free cross-linked enzyme aggregates of cutinase (cut-CLEA) directly from the SSF crude broth were developed. All the process variables affecting CLEA formation along with the different additives were evaluated. It was found that 50% (w/v) of ammonium sulphate, 125μmol of glutaraldehyde, cross-linking for 1h at 30°C and broth pH of 7.0, yielded 58.12% activity recovery. All other additives (hexane, butyric acid, sodium dodecyl sulphate, Trition-X 100, Tween-20, BSA) evaluated presented negative results to our hypothesis. Kinetics and morphology studies confirmed the diffusive nature of cut-CLEA and BSA cut-CLEA. Developed CLEA showed better thermal, solvent, detergent and storage stability, making it more elegant and efficient for industrial biocatalytic process.
Collapse
Affiliation(s)
- Sandeep A Chaudhari
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai-400019, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai-400019, India.
| |
Collapse
|
19
|
Hu X, Liu L, Chen D, Wang Y, Zhang J, Shao L. Co-expression of the recombined alcohol dehydrogenase and glucose dehydrogenase and cross-linked enzyme aggregates stabilization. BIORESOURCE TECHNOLOGY 2017; 224:531-535. [PMID: 27838320 DOI: 10.1016/j.biortech.2016.10.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
As the key chiral precursor of Crizotinib (S)-1-(2,6-dichloro-3-fluorophenyl) phenethyl alcohol can be prepared from 1-(2,6-dichloro-3-fluorophenyl) acetophenone by the reductive coupling reactions of alcohol dehydrogenase (ADH) and glucose dehydrogenases (GDH). In this work the heterologous expression plasmids harbouring the encoding genes of ADH and GDH were constructed respectively and co-expressed in the same E. coli strain. After optimization, a co-cross-linked enzyme aggregates (co-CLEAs) of both ADH and GDH were prepared from crude enzyme extracts by cross-linking with the mass ratio of Tween 80, glutaraldehyde and total protein (0.6:1:2) which rendered immobilized biocatalysts that retained 81.90% (ADH) and 40.29% (GDH) activity retention. The ADH/GDH co-CLEAs show increased thermal stability and pH stability compared to both enzymes. The ADH/GDH co-CLEAs also show 80% (ADH) and 87% (GDH) residual activity after seven cycles of repeated use. These results make the ADH/GDH co-CLEAs a potential biocatalyst for the industrial preparation of (S)-1-(2,6-dichloro-3-fluorophenyl) phenethyl alcohol.
Collapse
Affiliation(s)
- Xiaozhi Hu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Rd., Shanghai 200040, China; School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Liqin Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Rd., Shanghai 200040, China
| | - Daijie Chen
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Rd., Shanghai 200040, China
| | - Yongzhong Wang
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei 230039, China
| | - Junliang Zhang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Rd., Shanghai 200040, China
| | - Lei Shao
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Rd., Shanghai 200040, China.
| |
Collapse
|
20
|
Yincan Z, Yan L, Xueyong G, Qiao W, Xiaoping X. Decolorization of Color Index Acid Orange 20 buffer solution using horseradish peroxidase immobilized on modified PAN-beads. RSC Adv 2017. [DOI: 10.1039/c7ra01698k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present work, horseradish peroxidase (HRP) is utilized to be immobilized onto polyacrylonitrile based beads (PAN-beads) for decolorization of Color Index (C. I.) Acid Orange 20 (AO20) in aqueous solution.
Collapse
Affiliation(s)
- Zhu Yincan
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Liu Yan
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Guo Xueyong
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Wu Qiao
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Xu Xiaoping
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| |
Collapse
|
21
|
Cui J, Cui L, Jia S, Su Z, Zhang S. Hybrid Cross-Linked Lipase Aggregates with Magnetic Nanoparticles: A Robust and Recyclable Biocatalysis for the Epoxidation of Oleic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7179-7187. [PMID: 27595982 DOI: 10.1021/acs.jafc.6b01939] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Highly stable and easily recyclable hybrid magnetic cross-linked lipase aggregates (HM-CSL-CLEAs) were prepared by coaggregation of lipase aggregates with nonfunctionalized magnetic nanoparticles and subsequent chemical cross-linking with glutaraldehyde. Analysis by SEM and CLSM indicated that the CLEAs were embedded in nanoparticle aggregates instead of covalently immobilized. The resulting HM-CSL-CLEAs exhibited higher thermostability, storage stability, and reusability than standard CLEAs. For example, HM-CSL-CLEAs maintained >60% of their initial activity after 40 min of incubation at 60 °C, whereas standard CLEAs lost most of their activities. The HM-CSL-CLEAs can be easily recovered from the reaction mixture by an external magnetic field. Moreover, the H2O2 tolerance of the lipase in HM-CSL-CLEAs was also enhanced, which could relieve the inhibitory effect on lipase activity. A high conversion yield (55%) for the epoxidation of oleic acid using H2O2 as oxidizing agent was achieved by HM-CSL-CLEAs.
Collapse
Affiliation(s)
- Jiandong Cui
- Research Center for Fermentation Engineering of Hebei, College of Bioscience and Bioengineering, Hebei University of Science and Technology , Shijiazhang, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , No. 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, People's Republic of China
| | - Lili Cui
- Research Center for Fermentation Engineering of Hebei, College of Bioscience and Bioengineering, Hebei University of Science and Technology , Shijiazhang, People's Republic of China
| | - Shiru Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , No. 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, People's Republic of China
| | - Zhiguo Su
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing, People's Republic of China
| | - Songping Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing, People's Republic of China
| |
Collapse
|
22
|
Khanahmadi S, Yusof F, Chyuan Ong H, Amid A, Shah H. Cocoa pod husk: A new source of CLEA-lipase for preparation of low-cost biodiesel: An optimized process. J Biotechnol 2016; 231:95-105. [DOI: 10.1016/j.jbiotec.2016.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 11/27/2022]
|
23
|
Rueda N, dos Santos JCS, Ortiz C, Torres R, Barbosa O, Rodrigues RC, Berenguer-Murcia Á, Fernandez-Lafuente R. Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities. CHEM REC 2016; 16:1436-55. [DOI: 10.1002/tcr.201600007] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Nazzoly Rueda
- Departamento de Biocatálisis; ICP-CSIC C/Marie Curie 2, Campus UAM-CSIC; Cantoblanco 28049 Madrid Spain
- Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM) Edificio Camilo Torres 210, Universidad Industrial de Santander; CEP 680001 Bucaramanga Colombia
| | - Jose C. S. dos Santos
- Departamento de Biocatálisis; ICP-CSIC C/Marie Curie 2, Campus UAM-CSIC; Cantoblanco 28049 Madrid Spain
- Instituto de Engenharias e Desenvolvimento Sustentável Universidade da Integração Internacional da Lusofonia Afro-Brasileira; CEP 62785-000 Acarape CE Brazil
| | - Claudia Ortiz
- Escuela de Microbiología, Universidad Industrial de Santander; Bucaramanga Colombia
| | - Rodrigo Torres
- Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM) Edificio Camilo Torres 210, Universidad Industrial de Santander; CEP 680001 Bucaramanga Colombia
| | - Oveimar Barbosa
- Departamento de Química; Facultad de Ciencias Universidad del Tolima; Ibagué Colombia
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Laboratory; Institute of Food Science and Technology Federal University of Rio Grande do Sul; Av. Bento Gonçalves 9500 P.O. Box 15090 Porto Alegre RS Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales Departamento de Química Inorgánica Universidad de Alicante Campus de San Vicente del Raspeig; Ap. 99 - 03080 Alicante Spain
| | | |
Collapse
|
24
|
Cocoa pod husk, a new source of hydrolase enzymes for preparation of cross-linked enzyme aggregate. SPRINGERPLUS 2016; 5:57. [PMID: 26904389 PMCID: PMC4750640 DOI: 10.1186/s40064-015-1621-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/15/2015] [Indexed: 01/31/2023]
Abstract
Cocoa pod husk (CPH) is a by-product of cocoa production obtained after removing the beans from the fruit. The analysis of CPH has shown that it contains high amounts of protein. This study is aimed to utilize this protein source in hydrolase enzyme production. In this study, seven hydrolase enzymes (amylase, fructosyltransferase, mannanase, glucosidase, glucanase, lipase and protease) were screened from CPH for the first time for feasible industrial production. Among these hydrolases, lipase was chosen for the next steps of experiments as it has a lot of applications in different industries. The extraction of high active lipase from CPH has been done under optimum conditions. The condition that was optimum for the three major factors was achieved using Face centered central composite design (FCCCD) with response surface methodology (RSM) to obtain the highest enzyme activity of crude lipase from CPH. The optimum condition of extraction is used for preparation of cross-linked enzyme aggregate (CLEA). For the production of immobilized biocatalyst, the technique of CLEA is considered as an effective technique for its industrially attractive advantages. Referring to the results of OFAT, CLEA-lipase was prepared in the best condition at the presence of 30 mM ammonium sulphate, 70 mM glutaraldehyde with 0.23 mM Bovine serum albumin as an additive. Immobilization effectively improved the stability of lipase against various organic solvents.
Collapse
|
25
|
Optimizing the preparation conditions and characterization of a stable and recyclable cross-linked enzyme aggregate (CLEA)-protease. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-015-0081-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Mahmod SS, Yusof F, Jami MS, Khanahmadi S, Shah H. Development of an immobilized biocatalyst with lipase and protease activities as a multipurpose cross-linked enzyme aggregate (multi-CLEA). Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.10.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|