1
|
Dey P, Bhattacharjee S, Yadav DK, Hmar BZ, Gayen K, Bhowmick TK. Valorization of waste biomass for synthesis of carboxy-methyl-cellulose as a sustainable edible coating on fruits: A review. Int J Biol Macromol 2023; 253:127412. [PMID: 37844815 DOI: 10.1016/j.ijbiomac.2023.127412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/16/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
The coating on fruits and vegetables increases the shelf-life by providing protection against their spoilage. The existing petroleum-based coating materials have considerable health threats. Edible coating materials prepared with the cellulose derivative extracted from the waste biomass could be a sustainable alternative and environment friendly process to increase the shelf-life periods of the post-harvest crops. Selection of suitable waste biomass and extraction of cellulose are the critical steps for the synthesis of cellulose-based edible film. Conversion of extracted cellulose into cellulosic macromolecular derivatives such as carboxy-methyl-cellulose (CMC) is vital for synthesizing edible coating formulation. Applications of sophisticated tools and methods for the characterization of the coated fruits would be helpful to determine the efficiency of the coating material. In this review, we focused on: i) criteria for the selection of suitable waste biomass for extraction of cellulose, ii) pretreatment and extraction process of cellulose from the different waste biomasses, iii) synthesis processes of CMC by using extracted cellulose, iv) characterizations of CMC as food coating materials, v) various formulation techniques for the synthesis of the CMC based food coating materials and vi) the parameters which are used to evaluate the shelf-life performance of different coated fruits.
Collapse
Affiliation(s)
- Puspita Dey
- Department of Chemical Engineering, National Institute of Technology, Agartala, West Tripura, Tripura 799046, India
| | - Satyajit Bhattacharjee
- Department of Chemical Engineering, National Institute of Technology, Agartala, West Tripura, Tripura 799046, India
| | - Dev Kumar Yadav
- DRDO-Defence Food Research Laboratory, Mysore 570 011, India
| | | | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology, Agartala, West Tripura, Tripura 799046, India.
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology, Agartala, West Tripura, Tripura 799046, India.
| |
Collapse
|
2
|
Zhang S, Liang C, Xiao M, Chui C, Wang N, Ji Y, Wang Z, Shi J, Liu L. Metagenomic characterization of the enhanced performance of multicomponent synergistic thermophilic anaerobic co-digestion of food waste utilizing kitchen waste or garden waste as co-substrate. WATER RESEARCH 2023; 244:120457. [PMID: 37574624 DOI: 10.1016/j.watres.2023.120457] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Food waste (FW) single-substrate anaerobic digestion usually suffers from rapid acidification and inhibition of oil and salt. To overcome these problems and improve the process efficiency, supplementing other substrates has been used in FW anaerobic digestion. This study investigated the biogas production potential through co-digestion of FW with kitchen waste (KW) or garden waste (GW) in different ratios under thermophilic conditions. The results showed that the optimal ratios were FW:KW=60:40 and FW:GW=80:20 which biogas production improved 73.33% and 68.45% compared with single FW digestion, respectively. The organic matter removal rate of co-digestion was 84.46% for FW+KW group (RFK) and 65.64% for FW+GW group (RFG). Co-digestion increased the abundance of the dominant hydrolytic bacteria Defluviitoga and Hydrogenispora and hydrogenotrophic methanogen Methanoculleus. Furthermore, glycoside hydrolases (GHs), vital carbohydrate-active enzymes (CAZymes), were improved by co-digestion. Co-digestion could also effectively promote the function of cellulase and hemicellulose. This strategy for utilizing different organic wastes together as co-substrate provides a new avenue for bioenergy production.
Collapse
Affiliation(s)
- Siying Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu Liang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mengyao Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunmeng Chui
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuji Ji
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhi Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| |
Collapse
|
3
|
Scafati V, Troilo F, Ponziani S, Giovannoni M, Scortica A, Pontiggia D, Angelucci F, Di Matteo A, Mattei B, Benedetti M. Characterization of two 1,3-β-glucan-modifying enzymes from Penicillium sumatraense reveals new insights into 1,3-β-glucan metabolism of fungal saprotrophs. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:138. [PMID: 36510318 PMCID: PMC9745967 DOI: 10.1186/s13068-022-02233-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND 1,3-β-glucan is a polysaccharide widely distributed in the cell wall of several phylogenetically distant organisms, such as bacteria, fungi, plants and microalgae. The presence of highly active 1,3-β-glucanases in fungi evokes the biological question on how these organisms can efficiently metabolize exogenous sources of 1,3-β-glucan without incurring in autolysis. RESULTS To elucidate the molecular mechanisms at the basis of 1,3-β-glucan metabolism in fungal saprotrophs, the putative exo-1,3-β-glucanase G9376 and a truncated form of the putative glucan endo-1,3-β-glucosidase (ΔG7048) from Penicillium sumatraense AQ67100 were heterologously expressed in Pichia pastoris and characterized both in terms of activity and structure. G9376 efficiently converted laminarin and 1,3-β-glucan oligomers into glucose by acting as an exo-glycosidase, whereas G7048 displayed a 1,3-β-transglucanase/branching activity toward 1,3-β-glucan oligomers with a degree of polymerization higher than 5, making these oligomers more recalcitrant to the hydrolysis acted by exo-1,3-β-glucanase G9376. The X-ray crystallographic structure of the catalytic domain of G7048, solved at 1.9 Å of resolution, consists of a (β/α)8 TIM-barrel fold characteristic of all the GH17 family members. The catalytic site is in a V-shaped cleft containing the two conserved catalytic glutamic residues. Molecular features compatible with the activity of G7048 as 1,3-β-transglucanase are discussed. CONCLUSIONS The antagonizing activity between ΔG7048 and G9376 indicates how opportunistic fungi belonging to Penicillium genus can feed on substrates similar for composition and structure to their own cell wall without incurring in a self-deleterious autohydrolysis.
Collapse
Affiliation(s)
- Valentina Scafati
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Troilo
- grid.5326.20000 0001 1940 4177Institute of Molecular Biology and Pathology, CNR, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Sara Ponziani
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Moira Giovannoni
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Anna Scortica
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Daniela Pontiggia
- grid.7841.aDepartment of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Angelucci
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Adele Di Matteo
- grid.5326.20000 0001 1940 4177Institute of Molecular Biology and Pathology, CNR, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Benedetta Mattei
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Manuel Benedetti
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
4
|
Liu Y, Angelov A, Feiler W, Baudrexl M, Zverlov V, Liebl W, Vanderhaeghen S. Arabinan saccharification by biogas reactor metagenome-derived arabinosyl hydrolases. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:121. [PMID: 36371193 PMCID: PMC9655821 DOI: 10.1186/s13068-022-02216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Plant cell walls represent the most plentiful renewable organic resource on earth, but due to their heterogeneity, complex structure and partial recalcitrance, their use as biotechnological feedstock is still limited. RESULTS In order to identify efficient enzymes for polysaccharide breakdown, we have carried out functional screening of metagenomic fosmid libraries from biogas fermenter microbial communities grown on sugar beet pulp, an arabinan-rich agricultural residue, or other sources containing microbes that efficiently depolymerize polysaccharides, using CPH (chromogenic polysaccharide hydrogel) or ICB (insoluble chromogenic biomass) labeled polysaccharide substrates. Seventy-one depolymerase-encoding genes were identified from 55 active fosmid clones by using Illumina and Sanger sequencing and dbCAN CAZyme (carbohydrate-active enzyme) annotation. An around 56 kb assembled DNA fragment putatively originating from Xylanivirga thermophila strain or a close relative was analyzed in detail. It contained 48 ORFs (open reading frames), of which 31 were assigned to sugar metabolism. Interestingly, a large number of genes for enzymes putatively involved in degradation and utilization of arabinose-containing carbohydrates were found. Seven putative arabinosyl hydrolases from this DNA fragment belonging to glycoside hydrolase (GH) families GH51 and GH43 were biochemically characterized, revealing two with endo-arabinanase activity and four with exo-α-L-arabinofuranosidase activity but with complementary cleavage properties. These enzymes were found to act synergistically and can completely hydrolyze SBA (sugar beet arabinan) and DA (debranched arabinan). CONCLUSIONS We screened 32,776 fosmid clones from several metagenomic libraries with chromogenic lignocellulosic substrates for functional enzymes to advance the understanding about the saccharification of recalcitrant lignocellulose. Seven putative X. thermophila arabinosyl hydrolases were characterized for pectic substrate degradation. The arabinosyl hydrolases displayed maximum activity and significant long-term stability around 50 °C. The enzyme cocktails composed in this study fully degraded the arabinan substrates and thus could serve for arabinose production in food and biofuel industries.
Collapse
Affiliation(s)
- Yajing Liu
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany
- Present Address: Chair of Chemistry of Biogenic Resources, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Angel Angelov
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany
- Present Address: NGS Competence Center Tübingen, Universitätsklinikum Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Werner Feiler
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany
| | - Melanie Baudrexl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany
| | - Vladimir Zverlov
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany
| | - Sonja Vanderhaeghen
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany
- Present Address: IMGM Laboratories, Lochhamer Straße 29a, 82152 Planegg, Germany
| |
Collapse
|
5
|
Zhang G, Dong Y. Design and application of an efficient cellulose-degrading microbial consortium and carboxymethyl cellulase production optimization. Front Microbiol 2022; 13:957444. [PMID: 35910619 PMCID: PMC9335055 DOI: 10.3389/fmicb.2022.957444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Microbial consortia with high cellulase activities can speed up the composting of agricultural wastes with high cellulose contents and promote the beneficial utilization of agricultural wastes. In this paper, rabbit feces and sesame oil cake were used as feedstocks for compost production. Cellulose-degrading microbial strains were isolated from compost samples taken at the different composting stages and screened via Congo red staining and filter paper degradation test. Seven strains, Trichoderma reesei, Escherichia fergusonii, Proteus vulgaris, Aspergillus glaucus, Bacillus mycoides, Corynebacterium glutamicum, and Serratia marcescens, with high activities of carboxymethyl cellulase (CMCase), filter paper cellulase (FPase), and β-glucosidase (β-Gase) were identified and selected for consortium design. Six microbial consortia were designed with these strains. Compared with the other five consortia, consortium VI composed of all seven strains displayed the highest cellulase activities, 141.89, 104.56, and 131.18 U/ml of CMCase, FPase, and β-Gase, respectively. The single factor approach and response surface method were employed to optimize CMCase production of consortium VI. The optimized conditions were: culture time 4.25 days, culture temperature 35.5°C, pH 6.6, and inoculum volume 5% (v/v). Under these optimized conditions, the CMCase activity of consortium VI was up to 170.83 U/ml. Fermentation experiment of rabbit feces was carried out by using the consortium VI cultured under the optimal conditions. It was found that the application effect was better than other treatments, and the fermentation efficiency and nutrient content of the pile were significantly improved. This study provides a basis for the design of microbial consortia for the composting of agricultural wastes with high cellulose contents and provides a support for beneficial utilization of agricultural wastes.
Collapse
|
6
|
Akram F, Haq IU, Shah FI, Aqeel A, Ahmed Z, Mir AS, Qureshi SS, Raja SI. Genus Thermotoga: A valuable home of multifunctional glycoside hydrolases (GHs) for industrial sustainability. Bioorg Chem 2022; 127:105942. [PMID: 35709577 DOI: 10.1016/j.bioorg.2022.105942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Nature is a dexterous and prolific chemist for cataloging a number of hostile niches that are the ideal residence of various thermophiles. Apart from having other species, these subsurface environments are considered a throne of bacterial genus Thermotoga. The genome sequence of Thermotogales encodes complex and incongruent clusters of glycoside hydrolases (GHs), which are superior to their mesophilic counterparts and play a prominent role in various applications due to their extreme intrinsic stability. They have a tremendous capacity to use a wide variety of simple and multifaceted carbohydrates through GHs, formulate fermentative hydrogen and bioethanol at extraordinary yield, and catalyze high-temperature reactions for various biotechnological applications. Nevertheless, no stringent rules exist for the thermo-stabilization of biocatalysts present in the genus Thermotoga. These enzymes endure immense attraction in fundamental aspects of how these polypeptides attain and stabilize their distinctive three-dimensional (3D) structures to accomplish their physiological roles. Moreover, numerous genome sequences from Thermotoga species have revealed a significant fraction of genes most closely related to those of archaeal species, thus firming a staunch belief of lateral gene transfer mechanism. However, the question of its magnitude is still in its infancy. In addition to GHs, this genus is a paragon of encapsulins which carry pharmacological and industrial significance in the field of life sciences. This review highlights an intricate balance between the genomic organizations, factors inducing the thermostability, and pharmacological and industrial applications of GHs isolated from genus Thermotoga.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan.
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Science, Islamabad, Pakistan
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Azka Shahzad Mir
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Sumbal Sajid Qureshi
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Saleha Ibadat Raja
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
7
|
Ajeje SB, Hu Y, Song G, Peter SB, Afful RG, Sun F, Asadollahi MA, Amiri H, Abdulkhani A, Sun H. Thermostable Cellulases / Xylanases From Thermophilic and Hyperthermophilic Microorganisms: Current Perspective. Front Bioeng Biotechnol 2021; 9:794304. [PMID: 34976981 PMCID: PMC8715034 DOI: 10.3389/fbioe.2021.794304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
The bioconversion of lignocellulose into monosaccharides is critical for ensuring the continual manufacturing of biofuels and value-added bioproducts. Enzymatic degradation, which has a high yield, low energy consumption, and enhanced selectivity, could be the most efficient and environmentally friendly technique for converting complex lignocellulose polymers to fermentable monosaccharides, and it is expected to make cellulases and xylanases the most demanded industrial enzymes. The widespread nature of thermophilic microorganisms allows them to proliferate on a variety of substrates and release substantial quantities of cellulases and xylanases, which makes them a great source of thermostable enzymes. The most significant breakthrough of lignocellulolytic enzymes lies in lignocellulose-deconstruction by enzymatic depolymerization of holocellulose into simple monosaccharides. However, commercially valuable thermostable cellulases and xylanases are challenging to produce in high enough quantities. Thus, the present review aims at giving an overview of the most recent thermostable cellulases and xylanases isolated from thermophilic and hyperthermophilic microbes. The emphasis is on recent advancements in manufacturing these enzymes in other mesophilic host and enhancement of catalytic activity as well as thermostability of thermophilic cellulases and xylanases, using genetic engineering as a promising and efficient technology for its economic production. Additionally, the biotechnological applications of thermostable cellulases and xylanases of thermophiles were also discussed.
Collapse
Affiliation(s)
- Samaila Boyi Ajeje
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Sunday Bulus Peter
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Richmond Godwin Afful
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Abdulkhani
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Haiyan Sun
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
8
|
Gallo G, Puopolo R, Carbonaro M, Maresca E, Fiorentino G. Extremophiles, a Nifty Tool to Face Environmental Pollution: From Exploitation of Metabolism to Genome Engineering. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5228. [PMID: 34069056 PMCID: PMC8157027 DOI: 10.3390/ijerph18105228] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
Extremophiles are microorganisms that populate habitats considered inhospitable from an anthropocentric point of view and are able to tolerate harsh conditions such as high temperatures, extreme pHs, high concentrations of salts, toxic organic substances, and/or heavy metals. These microorganisms have been broadly studied in the last 30 years and represent precious sources of biomolecules and bioprocesses for many biotechnological applications; in this context, scientific efforts have been focused on the employment of extremophilic microbes and their metabolic pathways to develop biomonitoring and bioremediation strategies to face environmental pollution, as well as to improve biorefineries for the conversion of biomasses into various chemical compounds. This review gives an overview on the peculiar metabolic features of certain extremophilic microorganisms, with a main focus on thermophiles, which make them attractive for biotechnological applications in the field of environmental remediation; moreover, it sheds light on updated genetic systems (also those based on the CRISPR-Cas tool), which expand the potentialities of these microorganisms to be genetically manipulated for various biotechnological purposes.
Collapse
Affiliation(s)
- Giovanni Gallo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
- Consiglio Nazionale delle Ricerche CNR, Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Rosanna Puopolo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Miriam Carbonaro
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Emanuela Maresca
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Gabriella Fiorentino
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
- Consiglio Nazionale delle Ricerche CNR, Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| |
Collapse
|
9
|
Rational protein engineering of α-L-arabinofuranosidase from Aspergillus niger for improved catalytic hydrolysis efficiency on kenaf hemicellulose. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Hebal H, Boucherba N, Binay B, Turunen O. Activity and stability of hyperthermostable cellulases and xylanases in ionic liquids. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1882430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hakim Hebal
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de La Nature et de La Vie (FSNV), Université de Bejaia, Bejaia, Algeria
- Faculty of Exact Sciences and Sciences of Nature and Life, Department of Biology, Mohamed Khider University of Biskra, Biskra, Algeria
| | - Nawel Boucherba
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de La Nature et de La Vie (FSNV), Université de Bejaia, Bejaia, Algeria
| | - Baris Binay
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Ossi Turunen
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
11
|
Benedetti M, Barera S, Longoni P, Guardini Z, Herrero Garcia N, Bolzonella D, Lopez‐Arredondo D, Herrera‐Estrella L, Goldschmidt‐Clermont M, Bassi R, Dall’Osto L. A microalgal-based preparation with synergistic cellulolytic and detoxifying action towards chemical-treated lignocellulose. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:124-137. [PMID: 32649019 PMCID: PMC7769238 DOI: 10.1111/pbi.13447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 05/28/2023]
Abstract
High-temperature bioconversion of lignocellulose into fermentable sugars has drawn attention for efficient production of renewable chemicals and biofuels, because competing microbial activities are inhibited at elevated temperatures and thermostable cell wall degrading enzymes are superior to mesophilic enzymes. Here, we report on the development of a platform to produce four different thermostable cell wall degrading enzymes in the chloroplast of Chlamydomonas reinhardtii. The enzyme blend was composed of the cellobiohydrolase CBM3GH5 from C. saccharolyticus, the β-glucosidase celB from P. furiosus, the endoglucanase B and the endoxylanase XynA from T. neapolitana. In addition, transplastomic microalgae were engineered for the expression of phosphite dehydrogenase D from Pseudomonas stutzeri, allowing for growth in non-axenic media by selective phosphite nutrition. The cellulolytic blend composed of the glycoside hydrolase (GH) domain GH12/GH5/GH1 allowed the conversion of alkaline-treated lignocellulose into glucose with efficiencies ranging from 14% to 17% upon 48h of reaction and an enzyme loading of 0.05% (w/w). Hydrolysates from treated cellulosic materials with extracts of transgenic microalgae boosted both the biogas production by methanogenic bacteria and the mixotrophic growth of the oleaginous microalga Chlorella vulgaris. Notably, microalgal treatment suppressed the detrimental effect of inhibitory by-products released from the alkaline treatment of biomass, thus allowing for efficient assimilation of lignocellulose-derived sugars by C. vulgaris under mixotrophic growth.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
- Present address:
Dipartimento MESVAUniversità dell'AquilaCoppitoAQItaly
| | - Simone Barera
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Paolo Longoni
- Faculty of ScienceInstitute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Zeno Guardini
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | | | | | - Damar Lopez‐Arredondo
- StelaGenomics MexicoS de RL de CVIrapuato, GuanajuatoMexico
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTXUSA
| | - Luis Herrera‐Estrella
- Laboratorio Nacional de Genómica para la BiodiversidadCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, GuanajuatoMexico
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTXUSA
| | | | - Roberto Bassi
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Luca Dall’Osto
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| |
Collapse
|
12
|
Benedetti M, Vecchi V, Guardini Z, Dall’Osto L, Bassi R. Expression of a Hyperthermophilic Cellobiohydrolase in Transgenic Nicotiana tabacum by Protein Storage Vacuole Targeting. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1799. [PMID: 33353085 PMCID: PMC7767180 DOI: 10.3390/plants9121799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 02/01/2023]
Abstract
Plant expression of microbial Cell Wall Degrading Enzymes (CWDEs) is a valuable strategy to produce industrial enzymes at affordable cost. Unfortunately, the constitutive expression of CWDEs may affect plant fitness to variable extents, including developmental alterations, sterility and even lethality. In order to explore novel strategies for expressing CWDEs in crops, the cellobiohydrolase CBM3GH5, from the hyperthermophilic bacterium Caldicellulosiruptor saccharolyticus, was constitutively expressed in N. tabacum by targeting the enzyme both to the apoplast and to the protein storage vacuole. The apoplast targeting failed to isolate plants expressing the recombinant enzyme despite a large number of transformants being screened. On the opposite side, the targeting of the cellobiohydrolase to the protein storage vacuole led to several transgenic lines expressing CBM3GH5, with an enzyme yield of up to 0.08 mg g DW-1 (1.67 Units g DW-1) in the mature leaf tissue. The analysis of CBM3GH5 activity revealed that the enzyme accumulated in different plant organs in a developmental-dependent manner, with the highest abundance in mature leaves and roots, followed by seeds, stems and leaf ribs. Notably, both leaves and stems from transgenic plants were characterized by an improved temperature-dependent saccharification profile.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell’Ambiente, Università dell’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy;
| | - Valeria Vecchi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| | - Zeno Guardini
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| | - Luca Dall’Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| |
Collapse
|
13
|
Giovannoni M, Gramegna G, Benedetti M, Mattei B. Industrial Use of Cell Wall Degrading Enzymes: The Fine Line Between Production Strategy and Economic Feasibility. Front Bioeng Biotechnol 2020; 8:356. [PMID: 32411686 PMCID: PMC7200985 DOI: 10.3389/fbioe.2020.00356] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cell Wall Degrading Enzymes (CWDEs) are a heterogeneous group of enzymes including glycosyl-hydrolases, oxidoreductases, lyases, and esterases. Microbes with degrading activities toward plant cell wall polysaccharides are the most relevant source of CWDEs for industrial applications. These organisms secrete a wide array of CWDEs in amounts strictly necessary for their own sustenance, nonetheless the production of CWDEs from wild type microbes can be increased at large-scale by using optimized fermentation strategies. In the last decades, advances in genetic engineering allowed the expression of recombinant CWDEs also in lab-domesticated organisms such as E. coli, yeasts and plants, dramatically increasing the available options for the large-scale production of CWDEs. The optimization of a CWDE-producing biofactory is a hard challenge that biotechnologists tackle by testing different expression strategies and expression-hosts. Although both the yield and production costs are critical factors to produce biomolecules at industrial scale, these parameters are often disregarded in basic research. This review presents the main characteristics and industrial applications of CWDEs directed toward the cell wall of plants, bacteria, fungi and microalgae. Different biofactories for CWDE expression are compared in order to highlight strengths and weaknesses of each production system and how these aspects impact the final enzyme cost and, consequently, the economic feasibility of using CWDEs for industrial applications.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Gramegna
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
14
|
Gloster TM. Exploitation of carbohydrate processing enzymes in biocatalysis. Curr Opin Chem Biol 2020; 55:180-188. [PMID: 32203896 DOI: 10.1016/j.cbpa.2020.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/26/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Exploitation of enzymes in biocatalytic processes provides scope both in the synthesis and degradation of molecules. Enzymes have power not only in their catalytic efficiency, but their chemoselectivity, regioselectivity, and stereoselectivity means the reactions they catalyze are precise and reproducible. Focusing on carbohydrate processing enzymes, this review covers advances in biocatalysis involving carbohydrates over the last 2-3 years. Given the notorious difficulties in the chemical synthesis of carbohydrates, the use of enzymes for synthesis has potential for significant impact in the future. The use of catabolic enzymes in the degradation of biomass, which can be exploited in the production of biofuels to provide a sustainable and greener source of energy, and the synthesis of molecules that have a range of applications including in the pharmaceutical and food industries will be explored.
Collapse
Affiliation(s)
- Tracey M Gloster
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
15
|
Green Production and Biotechnological Applications of Cell Wall Lytic Enzymes. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
: Energy demand is constantly growing, and, nowadays, fossil fuels still play a dominant role in global energy production, despite their negative effects on air pollution and the emission of greenhouse gases, which are the main contributors to global warming. An alternative clean source of energy is represented by the lignocellulose fraction of plant cell walls, the most abundant carbon source on Earth. To obtain biofuels, lignocellulose must be efficiently converted into fermentable sugars. In this regard, the exploitation of cell wall lytic enzymes (CWLEs) produced by lignocellulolytic fungi and bacteria may be considered as an eco-friendly alternative. These organisms evolved to produce a variety of highly specific CWLEs, even if in low amounts. For an industrial use, both the identification of novel CWLEs and the optimization of sustainable CWLE-expressing biofactories are crucial. In this review, we focus on recently reported advances in the heterologous expression of CWLEs from microbial and plant expression systems as well as some of their industrial applications, including the production of biofuels from agricultural feedstock and of value-added compounds from waste materials. Moreover, since heterologous expression of CWLEs may be toxic to plant hosts, genetic strategies aimed in converting such a deleterious effect into a beneficial trait are discussed.
Collapse
|
16
|
Cintra LC, da Costa IC, de Oliveira ICM, Fernandes AG, Faria SP, Jesuíno RSA, Ravanal MC, Eyzaguirre J, Ramos LP, de Faria FP, Ulhoa CJ. The boosting effect of recombinant hemicellulases on the enzymatic hydrolysis of steam-treated sugarcane bagasse. Enzyme Microb Technol 2019; 133:109447. [PMID: 31874680 DOI: 10.1016/j.enzmictec.2019.109447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/17/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
To increase the efficiency of enzyme cocktails in deconstructing cellulose and hemicelluloses present in the plant cell wall, a combination of enzymes with complementary activities is required. Xylan is the main hemicellulose component of energy crops and for its complete hydrolysis a system consisting of several enzymes acting cooperatively, including endoxylanases (XYN), β-xylosidases (XYL) and α-l-arabinofuranosidases (ABF) is necessary. The current work aimed at evaluating the effect of recombinant hemicellulolytic enzymes on the enzymatic hydrolysis of steam-exploded sugarcane bagasse (SEB). One recombinant endoxylanase (HXYN2) and one recombinant β-xylosidase (HXYLA) from Humicola grisea var thermoidea, together with an α-l-arabinofuranosidase (AFB3) from Penicillium pupurogenum, all produced in Pichia pastoris, were used to formulate an efficient enzyme mixture for SEB hydrolysis using a 23 Central Composite Rotatable Design (CCRD). The most potent enzyme for SEB hydrolysis was ABF3. Subsequently, the optimal enzyme mixture was used in combination with commercial cellulases (Accellerase 1500), either simultaneously or in sequential experiments. The supplementation of Accellerase 1500 with hemicellulases enhanced the glucose yield from SEB hydrolysis by 14.6%, but this effect could be raised to 50% when hemicellulases were added prior to hydrolysis with commercial cellulases. These results were supported by scanning electron microscopy, which revealed the effect of enzymatic hydrolysis on SEB fibers. Our results show the potential of complementary enzyme activities to improve enzymatic hydrolysis of SEB, thus improving the efficiency of the hydrolytic process.
Collapse
Affiliation(s)
- Lorena Cardoso Cintra
- Department of Cellular Biology, University of Brasília, Brasília, Brazil; School of Veterinary and Animal Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Izadora Cristina Moreira de Oliveira
- Department of Cellular Biology, University of Brasília, Brasília, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Amanda Gregorim Fernandes
- Department of Cellular Biology, University of Brasília, Brasília, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Syd Pereira Faria
- Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Maria Cristina Ravanal
- Department of Biological Sciences, Andrés Bello University, Santiago, Chile; Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Eyzaguirre
- Department of Biological Sciences, Andrés Bello University, Santiago, Chile
| | - Luiz Pereira Ramos
- Department of Chemistry, Federal University of Paraná, Curitiba, PR, Brazil
| | - Fabrícia Paula de Faria
- Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Cirano José Ulhoa
- Department of Cellular Biology, University of Brasília, Brasília, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|