1
|
Yi X, Xiao Y, Xia C, Liu F, Liu Y, Hui Y, Yu X, Qin Y, Chen W, Liu Z, Song L, Zheng A. Adsorbate-driven dynamic active sites in stannosilicate zeolites. FUNDAMENTAL RESEARCH 2025; 5:174-182. [PMID: 40166086 PMCID: PMC11955054 DOI: 10.1016/j.fmre.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 12/11/2022] [Indexed: 01/09/2023] Open
Abstract
Elucidating the nature of the active sites in heterogeneous catalysts is fundamental for understanding their reactivity and catalytic performances. Although stannosilicate zeolites have tremendous application potential for catalyzing biomass-related compounds in aqueous media, the detailed local structures and features of the real active sites and their possible structural variations under reaction conditions are poorly understood to date. In this study, a dynamic transformation of framework Sn-O-Si sites to Sn-OH/Si-OH pairs and subsequently a pseudo-Brønsted acid in stannosilicate zeolites upon molecular adsorption, which is analogous to various adsorbates/reactants under working conditions, was identified by solid-state nuclear magnetic resonance (NMR) spectroscopy for the first time, which challenges the widespread assumption that the active center structures remain rigid/stable during the catalytic process. These results provide new comprehensive insights for the fundamental understanding of the dynamic and flexible active centers and involved reaction mechanisms of novel zeolite catalysts with heterometal atoms, such as Sn, Ti, and Zr.
Collapse
Affiliation(s)
- Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changjiu Xia
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Fengqing Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujia Liu
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Yu Hui
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, China
| | - Xin Yu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yucai Qin
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lijuan Song
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
2
|
Liu X, Zhu Z. Synthesis and Catalytic Applications of Advanced Sn- and Zr-Zeolites Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306533. [PMID: 38148424 PMCID: PMC10953593 DOI: 10.1002/advs.202306533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/09/2023] [Indexed: 12/28/2023]
Abstract
The incorporation of isolated Sn (IV) and Zr (IV) ions into silica frameworks is attracting widespread attention, which exhibits remarkable catalytic performance (conversion, selectivity, and stability) in a broad range of reactions, especially in the field of biomass catalytic conversion. As a representative example, the conversion route of carbohydrates into valuable platform and commodity chemicals such as lactic acid and alkyl lactates, has already been established. The zeotype materials also possess water-tolerant ability and are capable to be served as promising heterogeneous catalysts for aqueous reactions. Therefore, dozens of Sn- and Zr-containing silica materials with various channel systems have been prepared successfully in the past decades, containing 8 membered rings (MR) small pore CHA zeolite, 10-MR medium pore zeolites (FER, MCM-56, MEL, MFI, MWW), 12-MR large pore zeolites (Beta, BEC, FAU, MOR, MSE, MTW), and 14-MR extra-large pore UTL zeolite. This review about Sn- and Zr-containing metallosilicate materials focuses on their synthesis strategy, catalytic applications for diverse reactions, and the effect of zeolite characteristics on their catalytic performances.
Collapse
Affiliation(s)
- Xue Liu
- Department of ChemistryCollege of ScienceHebei Agricultural UniversityLingyusi Road 289Baoding071001P. R. China
| | - Zhiguo Zhu
- College of Chemistry and Chemical EngineeringYantai UniversityQingquan Road 30Yantai264005P. R. China
| |
Collapse
|
3
|
Ivanushkin G, Dusselier M. Engineering Lewis Acidity in Zeolite Catalysts by Electrochemical Release of Heteroatoms during Synthesis. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:5049-5058. [PMID: 37456595 PMCID: PMC10339459 DOI: 10.1021/acs.chemmater.3c00552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/08/2023] [Indexed: 07/18/2023]
Abstract
The creation of heteroatom nodes in zeolite frameworks is a challenging but rewarding pathway to superior materials for numerous catalytic applications. Here, we present a novel method for precise control over heteroatom incorporation by in situ anodic release of a desired metal during hydrothermal zeolite synthesis. The generic character of the technique and the applicability of the new synthesis reactor are shown across 3 zeolite structures crystallized and 4 electrode metals in two pH zones and by offering access to a new mixed-metal zeolite. The timed and voltage-controlled metal release offers a minimized interference between the metal precursor state and critical events in the zeolite's crystallization. A mechanistic study for Sn-MFI revealed the key importance of controlled release: while keeping its concentration lower than in batch, a lot more Sn can be incorporated into the framework. The method grants access to 10× increased framework Lewis acid site densities (vs batch controls) for the most relevant stannosilicates. As a proof, the electro-made materials demonstrate higher productivity than their classic counterparts in lactate catalysis. This innovative approach effectively expands the synthesis space of zeolites.
Collapse
|
4
|
Bricotte L, Chougrani K, Alard V, Ladmiral V, Caillol S. Dihydroxyacetone: A User Guide for a Challenging Bio-Based Synthon. Molecules 2023; 28:molecules28062724. [PMID: 36985712 PMCID: PMC10052986 DOI: 10.3390/molecules28062724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
1,3-dihydroxyacetone (DHA) is an underrated bio-based synthon, with a broad range of reactivities. It is produced for the revalorization of glycerol, a major side-product of the growing biodiesel industry. The overwhelming majority of DHA produced worldwide is intended for application as a self-tanning agent in cosmetic formulations. This review provides an overview of the discovery, physical and chemical properties of DHA, and of its industrial production routes from glycerol. Microbial fermentation is the only industrial-scaled route but advances in electrooxidation and aerobic oxidation are also reported. This review focuses on the plurality of reactivities of DHA to help chemists interested in bio-based building blocks see the potential of DHA for this application. The handling of DHA is delicate as it can undergo dimerization as well as isomerization reactions in aqueous solutions at room temperature. DHA can also be involved in further side-reactions, yielding original side-products, as well as compounds of interest. If this peculiar reactivity was harnessed, DHA could help address current sustainability challenges encountered in the synthesis of speciality polymers, ranging from biocompatible polymers to innovative polymers with cutting-edge properties and improved biodegradability.
Collapse
Affiliation(s)
- Léo Bricotte
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
- LVMH Recherche, Département Innovation Matériaux, 45800 Saint Jean de Braye, France
| | - Kamel Chougrani
- LVMH Recherche, Département Innovation Matériaux, 45800 Saint Jean de Braye, France
| | - Valérie Alard
- LVMH Recherche, Département Innovation Matériaux, 45800 Saint Jean de Braye, France
| | - Vincent Ladmiral
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Sylvain Caillol
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
- Correspondence:
| |
Collapse
|
5
|
Liang W, Wang X, Yang W, Zhao S, Wiley D, Haynes BS, Jiang Y, Liu P, Huang J. Tailoring and Identifying Brønsted Acid Sites on Metal Oxo-Clusters of Metal-Organic Frameworks for Catalytic Transformation. ACS CENTRAL SCIENCE 2023; 9:27-35. [PMID: 36712491 PMCID: PMC9881200 DOI: 10.1021/acscentsci.2c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) with Brønsted acidity are an alternative solid acid catalyst for many important chemical and fuel processes. However, the nature of the Brønsted acidity on the MOF's metal cluster or center is underexplored. To design and optimize the acid strength and density in these MOFs, it is important to understand the origin of their acidity at the molecular level. In the present work, isoreticular MOFs, ZrNDI and HfNDI (NDI = N,N'-bis(5-isophthalate)naphthalenediimide), were prepared as a prototypical system to unravel and compare their Brønsted and Lewis acid sites through an array of spectroscopic, computational, and catalytic characterization techniques. With the aid of solid-state nuclear magnetic resonance and density functional calculations, Hf6 oxo-clusters on HfNDI are quantitatively proved to possess a higher density Brønsted acid site, while ZrNDI-based MOFs display stronger and higher-population Lewis acidity. HfNDI-based MOFs exhibit a superior catalytic performance in activating dihydroxyacetone (DHA) and converting DHA to ethyl lactate, with 71.1% selectivity at 54.7% conversion after 6 h. The turnover frequency of BAS-dominated Hf-MOF in DHA conversion is over 50 times higher than that of ZSM-5, a strong BAS-based zeolite. It is worth noting that HfNDI is reported for the first time in the literature, which is an alternative platform catalyst for biorefining and green chemistry. The present study furthermore highlights the uniqueness of Hf-based MOFs in this important biomass-to-chemical transformation.
Collapse
Affiliation(s)
- Weibin Liang
- School
of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, NSW2006, Australia
| | - Xuelong Wang
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York11973, United States
| | - Wenjie Yang
- School
of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, NSW2006, Australia
| | - Shufang Zhao
- School
of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, NSW2006, Australia
| | - Dianne Wiley
- School
of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, NSW2006, Australia
| | - Brian S. Haynes
- School
of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, NSW2006, Australia
| | - Yijiao Jiang
- Department
of Engineering, Macquarie University, Sydney, NSW2109, Australia
| | - Ping Liu
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York11973, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York11794, United States
| | - Jun Huang
- School
of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, NSW2006, Australia
| |
Collapse
|
6
|
Wang R, Xia C, Peng B. Fundamental Understanding and Catalytic Applications of Hollow MFI-type Zeolites. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Wang S, Li T, Chu Y, Li T, Yu H, Wang S, Chai J, Yan B, Zhou X, Yin H. Ethylenediamine Assisted Synthesis of Sn‐MFI Zeolite with High Space‐time Yield as Lewis Acidic Catalysts for Conversion of Dihydroxypropanone to Methyl Lactate. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shiwei Wang
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering 1219 Zhongguan West Road 315201 Ningbo CHINA
| | - Tianhao Li
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering CHINA
| | - Yuting Chu
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering CHINA
| | - Tong Li
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering CHINA
| | - Hongbo Yu
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering CHINA
| | - Shuibo Wang
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering CHINA
| | - Juan Chai
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering CHINA
| | - Bo Yan
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering CHINA
| | - Xiaobing Zhou
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering CHINA
| | - Hongfeng Yin
- Institute for New Energy Technologies, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences No. 1219 Zhongguan West Road Zhenhai District 315201 Ningbo CHINA
| |
Collapse
|
8
|
Rahaman MS, Tulaphol S, Mills K, Molley A, Hossain MA, Lalvani S, Maihom T, Crocker M, Sathitsuksanoh N. Aluminum based metal‐organic framework as water‐tolerant Lewis acid catalyst for selective dihydroxyacetone isomerization to lactic acid. ChemCatChem 2021. [DOI: 10.1002/cctc.202101756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Sarttrawut Tulaphol
- King Mongkut's University of Technology Thonburi Chemistry 10140 Bangkok THAILAND
| | - Kyle Mills
- University of Louisville Chemical Engineering 40292 Louisville UNITED STATES
| | - Ashten Molley
- University of Louisville Chemical Engineering 40292 Louisville UNITED STATES
| | - Md Anwar Hossain
- University of Louisville Chemical Engineering 40292 Louisville UNITED STATES
| | - Shashi Lalvani
- Miami University Chemical, Paper and Biomedical Engineering 45056 Oxford UNITED STATES
| | - Thana Maihom
- Kasetsart University Kamphaeng Saen Campus Chemistry 73140 Nakhon Pathom THAILAND
| | - Mark Crocker
- University of Kentucky Center for Applied Energy Research Chemistry 40506 Lexington UNITED STATES
| | - Noppadon Sathitsuksanoh
- University of Louisville chemical engineering 216 eastern parkway 40292 Louisville UNITED STATES
| |
Collapse
|
9
|
Effect of
COOH
in organic linkers on the hydrochlorination performance of
SnMOF
‐based catalysts. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Fan C, Hou J, Chen YJ, Ding KL, Zhou QL. Rhodium-Catalyzed Regioselective Hydroformylation of Alkynes to α,β-Unsaturated Aldehydes Using Formic Acid. Org Lett 2021; 23:2074-2077. [PMID: 33661012 DOI: 10.1021/acs.orglett.1c00234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A rhodium-catalyzed hydroformylation of alkynes with formic acid was developed. The method provides α,β-unsaturated aldehydes in high yield and E-selectivity without the need to handle toxic CO gas.
Collapse
Affiliation(s)
- Chao Fan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Jing Hou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Yu-Jia Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Kui-Ling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|