1
|
Ahmed U, Graf JF, Daytz A, Yaipen O, Mughrabi I, Jayaprakash N, Cotero V, Morton C, Deutschman CS, Zanos S, Puleo C. Ultrasound Neuromodulation of the Spleen Has Time-Dependent Anti-Inflammatory Effect in a Pneumonia Model. Front Immunol 2022; 13:892086. [PMID: 35784337 PMCID: PMC9244783 DOI: 10.3389/fimmu.2022.892086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 12/27/2022] Open
Abstract
Interfaces between the nervous and immune systems have been shown essential for the coordination and regulation of immune responses. Non-invasive ultrasound stimulation targeted to the spleen has recently been shown capable of activating one such interface, the splenic cholinergic anti-inflammatory pathway (CAP). Over the past decade, CAP and other neuroimmune pathways have been activated using implanted nerve stimulators and tested to prevent cytokine release and inflammation. However, CAP studies have typically been performed in models of severe, systemic (e.g., endotoxemia) or chronic inflammation (e.g., collagen-induced arthritis or DSS-induced colitis). Herein, we examined the effects of activation of the splenic CAP with ultrasound in a model of local bacterial infection by lung instillation of 105 CFU of Streptococcus pneumoniae. We demonstrate a time-dependent effect of CAP activation on the cytokine response assay during infection progression. CAP activation-induced cytokine suppression is absent at intermediate times post-infection (16 hours following inoculation), but present during the early (4 hours) and later phases (48 hours). These results indicate that cytokine inhibition associated with splenic CAP activation is not observed at all timepoints following bacterial infection and highlights the importance of further studying neuroimmune interfaces within the context of different immune system and inflammatory states.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - John F. Graf
- General Electric Research, Niskayuna, NY, United States
| | - Anna Daytz
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Omar Yaipen
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ibrahim Mughrabi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | | | | | - Clifford Scott Deutschman
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Chris Puleo
- General Electric Research, Niskayuna, NY, United States
- *Correspondence: Chris Puleo,
| |
Collapse
|
2
|
Yang D, Guo X, Huang T, Liu C. The Role of Group 3 Innate Lymphoid Cells in Lung Infection and Immunity. Front Cell Infect Microbiol 2021; 11:586471. [PMID: 33718260 PMCID: PMC7947361 DOI: 10.3389/fcimb.2021.586471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/19/2021] [Indexed: 02/05/2023] Open
Abstract
The lung is constantly exposed to environmental particulates such as aeroallergens, pollutants, or microorganisms and is protected by a poised immune response. Innate lymphoid cells (ILCs) are a population of immune cells found in a variety of tissue sites, particularly barrier surfaces such as the lung and the intestine. ILCs play a crucial role in the innate immune system, and they are involved in the maintenance of mucosal homeostasis, inflammation regulation, tissue remodeling, and pathogen clearance. In recent years, group 3 innate lymphoid cells (ILC3s) have emerged as key mediators of mucosal protection and repair during infection, mainly through IL-17 and IL-22 production. Although research on ILC3s has become focused on the intestinal immunity, the biology and function of pulmonary ILC3s in the pathogenesis of respiratory infections and in the development of chronic pulmonary inflammatory diseases remain elusive. In this review, we will mainly discuss how pulmonary ILC3s act on protection against pathogen challenge and pulmonary inflammation, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Dan Yang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Xinning Guo
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Tingxuan Huang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Chuntao Liu
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Renwick J, Reece E, Walsh J, Walsh R, Persaud T, O'Leary C, Donnelly SC, Greally P. Early Interleukin-22 and Neutrophil Proteins Are Correlated to Future Lung Damage in Children With Cystic Fibrosis. Front Pediatr 2021; 9:640184. [PMID: 33869115 PMCID: PMC8044422 DOI: 10.3389/fped.2021.640184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cystic Fibrosis (CF) lung damage begins early in life. Lung function decline is associated with pulmonary infections, neutrophil infiltration and inflammation. In CF, neutrophils have an altered phenotype. In this pilot study, we aimed to determine if signals of dysfunctional neutrophil responses were evident early in life and whether these signals may be associated with lung damage in later childhood. We examined the pulmonary protein profiles of 14 clinical stable infants and pre-school children with CF employing the aptamer-based affinity platform, SOMAscan®. High resolution computed tomography (HRCT) was performed on all children after age 6 years and Brody score calculated. A Spearman's rank order correlation analysis and Benjamini-Hochberg adjustment was used to correlate protein concentrations in early life to Brody scores in later childhood. Early life concentrations of azurocidin and myeloperoxidase, were positively correlated with Brody score after age 6 (p = 0.0041 and p = 0.0182, respectively). Four other neutrophil associated proteins; Complement C3 (p = 0.0026), X-ray repair CCP 6 (p = 0.0059), C3a anaphylatoxin des Arginine (p = 0.0129) and cytokine receptor common subunit gamma (p = 0.0214) were all negatively correlated with Brody scores. Interestingly, patients with more severe lung damage after age 6 had significantly lower levels of IL-22 in early years of life (p = 0.0243). IL-22 has scarcely been reported to have implications in CF. Identification of early biomarkers that may predict more severe disease progression is particularly important for the future development of early therapeutic interventions in CF disease. We recommend further corroboration of these findings in prospective validation studies.
Collapse
Affiliation(s)
- Julie Renwick
- Clinical Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Emma Reece
- Clinical Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Jamie Walsh
- Children's Health Ireland and Tallaght University Hospital, Dublin, Ireland
| | - Ross Walsh
- Children's Health Ireland and Tallaght University Hospital, Dublin, Ireland
| | - Thara Persaud
- Children's Health Ireland and Tallaght University Hospital, Dublin, Ireland
| | - Cathal O'Leary
- Children's Health Ireland and Tallaght University Hospital, Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital and Trinity College Dublin, Dublin, Ireland
| | - Peter Greally
- Children's Health Ireland and Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
4
|
Ahn D, Prince A. Participation of the IL-10RB Related Cytokines, IL-22 and IFN-λ in Defense of the Airway Mucosal Barrier. Front Cell Infect Microbiol 2020; 10:300. [PMID: 32637365 PMCID: PMC7318800 DOI: 10.3389/fcimb.2020.00300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The airway epithelial barrier is a major barrier protecting against clinically significant infections of the lung. Its integrity is often compromised due to mechanical, chemical, or infectious causes. Opportunistic bacterial pathogens are poised to cause parenchymal infection and become difficult to eradicate due to adaptive metabolic changes, biofilm formation, and the acquisition of antimicrobial resistance and fitness genes. Enhancing mucosal defenses by modulating the cytokines that regulate barrier functions, such as interleukin-22 (IL-22) and interferon-λ (IFN-λ), members of the IL-10 family of cytokines, is an attractive approach to prevent these infections that are associated with high morbidity and mortality. These cytokines both signal through the cognate receptor IL-10RB, have related protein structures and common downstream signaling suggesting shared roles in host respiratory defense. They are typically co-expressed in multiple models of infections, but with differing kinetics. IL-22 has an important role in the producing antimicrobial peptides, upregulating expression of junctional proteins in the airway epithelium and working in concert with other inflammatory cytokines such as IL-17. Conversely, IFN-λ, a potent antiviral in influenza infection with pro-inflammatory properties, appears to decrease junctional integrity allowing for bacterial and immune cell translocation. The effects of these cytokines are pleotropic, with pathogen and tissue specific consequences. Understanding how these cytokines work in the mucosal defenses of the respiratory system may suggest potential targets to prevent invasive infections of the damaged lung.
Collapse
Affiliation(s)
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
5
|
Chatterjee P, Sass G, Swietnicki W, Stevens DA. Review of Potential Pseudomonas Weaponry, Relevant to the Pseudomonas-Aspergillus Interplay, for the Mycology Community. J Fungi (Basel) 2020; 6:jof6020081. [PMID: 32517271 PMCID: PMC7345761 DOI: 10.3390/jof6020081] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most prominent opportunistic bacteria in airways of cystic fibrosis patients and in immunocompromised patients. These bacteria share the same polymicrobial niche with other microbes, such as the opportunistic fungus Aspergillus fumigatus. Their inter-kingdom interactions and diverse exchange of secreted metabolites are responsible for how they both fare in competition for ecological niches. The outcomes of their contests likely determine persistent damage and degeneration of lung function. With a myriad of virulence factors and metabolites of promising antifungal activity, P. aeruginosa products or their derivatives may prove useful in prophylaxis and therapy against A. fumigatus. Quorum sensing underlies the primary virulence strategy of P. aeruginosa, which serves as cell–cell communication and ultimately leads to the production of multiple virulence factors. Understanding the quorum-sensing-related pathogenic mechanisms of P. aeruginosa is a first step for understanding intermicrobial competition. In this review, we provide a basic overview of some of the central virulence factors of P. aeruginosa that are regulated by quorum-sensing response pathways and briefly discuss the hitherto known antifungal properties of these virulence factors. This review also addresses the role of the bacterial secretion machinery regarding virulence factor secretion and maintenance of cell–cell communication.
Collapse
Affiliation(s)
- Paulami Chatterjee
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
| | - Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-114 Wroclaw, Poland;
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-408-998-4554
| |
Collapse
|
6
|
Tripathi D, Radhakrishnan RK, Sivangala Thandi R, Paidipally P, Devalraju KP, Neela VSK, McAllister MK, Samten B, Valluri VL, Vankayalapati R. IL-22 produced by type 3 innate lymphoid cells (ILC3s) reduces the mortality of type 2 diabetes mellitus (T2DM) mice infected with Mycobacterium tuberculosis. PLoS Pathog 2019; 15:e1008140. [PMID: 31809521 PMCID: PMC6919622 DOI: 10.1371/journal.ppat.1008140] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 12/18/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Previously, we found that pathological immune responses enhance the mortality rate of Mycobacterium tuberculosis (Mtb)-infected mice with type 2 diabetes mellitus (T2DM). In the current study, we evaluated the role of the cytokine IL-22 (known to play a protective role in bacterial infections) and type 3 innate lymphoid cells (ILC3s) in regulating inflammation and mortality in Mtb-infected T2DM mice. IL-22 levels were significantly lower in Mtb-infected T2DM mice than in nondiabetic Mtb-infected mice. Similarly, serum IL-22 levels were significantly lower in tuberculosis (TB) patients with T2DM than in TB patients without T2DM. ILC3s were an important source of IL-22 in mice infected with Mtb, and recombinant IL-22 treatment or adoptive transfer of ILC3s prolonged the survival of Mtb-infected T2DM mice. Recombinant IL-22 treatment reduced serum insulin levels and improved lipid metabolism. Recombinant IL-22 treatment or ILC3 transfer prevented neutrophil accumulation near alveoli, inhibited neutrophil elastase 2 (ELA2) production and prevented epithelial cell damage, identifying a novel mechanism for IL-22 and ILC3-mediated inhibition of inflammation in T2DM mice infected with an intracellular pathogen. Our findings suggest that the IL-22 pathway may be a novel target for therapeutic intervention in T2DM patients with active TB disease.
Collapse
Affiliation(s)
- Deepak Tripathi
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center, Tyler, Texas, TX, United States of America
| | - Rajesh Kumar Radhakrishnan
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center, Tyler, Texas, TX, United States of America
| | - Ramya Sivangala Thandi
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center, Tyler, Texas, TX, United States of America
| | - Padmaja Paidipally
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center, Tyler, Texas, TX, United States of America
| | - Kamakshi Prudhula Devalraju
- Immunology and Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, Telangana, India
| | - Venkata Sanjeev Kumar Neela
- Immunology and Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, Telangana, India
| | - Madeline Kay McAllister
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center, Tyler, Texas, TX, United States of America
| | - Buka Samten
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center, Tyler, Texas, TX, United States of America
| | - Vijaya Lakshmi Valluri
- Immunology and Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, Telangana, India
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center, Tyler, Texas, TX, United States of America
| |
Collapse
|
7
|
Guillon A, Brea D, Luczka E, Hervé V, Hasanat S, Thorey C, Pérez-Cruz M, Hordeaux J, Mankikian J, Gosset P, Coraux C, Si-Tahar M. Inactivation of the interleukin-22 pathway in the airways of cystic fibrosis patients. Cytokine 2019; 113:470-474. [PMID: 30377053 DOI: 10.1016/j.cyto.2018.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 11/29/2022]
Abstract
Interleukin (IL)-22 plays a critical role in regulating the maintenance of the mucosal barrier. As airway epithelial regeneration is abnormal in cystic fibrosis (CF), we investigated IL-22 integrity in CF. We first demonstrated, using Il-22-/- mice, that IL-22 is important to prevent lung damage induced by the CF pathogen Pseudomonas aeruginosa. Next, IL-22 receptor was found normally expressed at the airway epithelial surfaces of CF patients. In wound-healing assays, IL-22-treated CF cultures had higher wound-closure rate than controls, suggesting that IL-22 signaling per se could be functional in a CF context. However, persistence of neutrophil-derived serine-proteases is a major feature of CF airways. Remarkably, IL-22 was found altered in this protease-rich inflammatory microenvironment; the serine protease-3 being the most prone to fully degrade IL-22. Consequently, we suspect an acquired deficiency of the IL-22 pathway in the lungs of CF patients due to IL-22 cleavage by the surrounding neutrophil serine-proteases.
Collapse
Affiliation(s)
- Antoine Guillon
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France; CHRU de Tours, Service de Médecine Intensive Réanimation, 37000 Tours, France
| | - Deborah Brea
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Emilie Luczka
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR-S 1250, 51100 Reims, France; Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Virginie Hervé
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Soujoud Hasanat
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Camille Thorey
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Magdiel Pérez-Cruz
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, LI3, Team 12, 59019 Lille, France; Université Lille Nord de France, 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 8204, 59021 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59019 Lille, France
| | | | | | - Philippe Gosset
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, LI3, Team 12, 59019 Lille, France; Université Lille Nord de France, 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 8204, 59021 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59019 Lille, France
| | - Christelle Coraux
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR-S 1250, 51100 Reims, France; Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Mustapha Si-Tahar
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France.
| |
Collapse
|
8
|
Interleukin-17 Is Required for Control of Chronic Lung Infection Caused by Pseudomonas aeruginosa. Infect Immun 2016; 84:3507-3516. [PMID: 27698020 PMCID: PMC5116727 DOI: 10.1128/iai.00717-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Chronic pulmonary infection with Pseudomonas aeruginosa is a feature of cystic fibrosis (CF) and other chronic lung diseases. Cytokines of the interleukin-17 (IL-17) family have been proposed as important in the host response to P. aeruginosa infection through their role in augmenting antibacterial immune responses, although their proinflammatory effect may contribute to lung damage that occurs as a result of chronic infection. We set out to explore the role of IL-17 in the host response to chronic P. aeruginosa infection. We used a murine model of chronic pulmonary infection with CF-related strains of P. aeruginosa. We demonstrate that IL-17 cytokine signaling is essential for mouse survival and prevention of chronic infection at 2 weeks postinoculation using two different P. aeruginosa strains. Following infection, there was a marked expansion of cells within mediastinal lymph nodes, comprised mainly of innate lymphoid cells (ILCs); ∼90% of IL-17-producing (IL-17+) cells had markers consistent with group 3 ILCs. A smaller percentage of IL-17+ cells had markers consistent with a B1 phenotype. In lung homogenates harvested 14 days following infection, there was a significant expansion of IL-17+ cells; about 50% of these were CD3+, split equally between CD4+ Th17 cells and γδ T cells, while the CD3− IL-17+ cells were almost exclusively group 3 ILCs. Further experiments with B cell-deficient mice showed that B cell production of IL-17 or natural antibodies did not provide any defense against chronic P. aeruginosa infection. Thus, IL-17 rather than antibody is a key element in host defense against chronic pulmonary infection with P. aeruginosa.
Collapse
|
9
|
A murine model of early Pseudomonas aeruginosa lung disease with transition to chronic infection. Sci Rep 2016; 6:35838. [PMID: 27804985 PMCID: PMC5090221 DOI: 10.1038/srep35838] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/12/2016] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa (PA) remains an important pathogen in patients with cystic fibrosis (CF) lung disease as well as non-CF bronchiectasis and chronic obstructive airways disease. Initial infections are cleared but chronic infection with mucoid strains ensues in the majority of CF patients and specific interventions to prevent this critical infection transition are lacking. The PA bead model has been widely used to study pulmonary P.aeruginosa infection but has limitations in animal husbandry and in accurately mimicking human disease. We have developed an adapted agar bead murine model using a clinical mucoid strain that demonstrates the key features of transition from transitory to chronic airways infection. Infected animals show very limited acute morbidity and mortality, but undergo infection-related weight loss and neutrophilic inflammation, development of anti-pseudomonal antibodies, variable bacterial clearance, endobronchial infection and microbial adaptation with PA small colony variants. We anticipate this model will allow research into the host and microbial factors governing this critical period in Pseudomonas aeruginosa pulmonary pathogenesis when transition to chronicity is occurring.
Collapse
|
10
|
Lorenz A, Pawar V, Häussler S, Weiss S. Insights into host-pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections. FEBS Lett 2016; 590:3941-3959. [PMID: 27730639 DOI: 10.1002/1873-3468.12454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen that can cause acute respiratory infections in immunocompetent patients or chronic infections in immunocompromised individuals and in patients with cystic fibrosis. When acquiring the chronic infection state, bacteria are encapsulated within biofilm structures enabling them to withstand diverse environmental assaults, including immune reactions and antimicrobial therapy. Understanding the molecular interactions within the bacteria, as well as with the host or other bacteria, is essential for developing innovative treatment strategies. Such knowledge might be accumulated in vitro. However, it is ultimately necessary to confirm these findings in vivo. In the present Review, we describe state-of-the-art in vivo models that allow studying P. aeruginosa infections in molecular detail. The portrayed mammalian models exclusively focus on respiratory infections. The data obtained by alternative animal models which lack lung tissue, often provide molecular insights that are easily transferable to mammals. Importantly, these surrogate in vivo systems reveal complex molecular interactions of P. aeruginosa with the host. Herein, we also provide a critical assessment of the advantages and disadvantages of such models.
Collapse
Affiliation(s)
- Anne Lorenz
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research, TWINCORE GmbH, A Joint Venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Germany
| | - Vinay Pawar
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research, TWINCORE GmbH, A Joint Venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Germany.,Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Germany
| |
Collapse
|