1
|
Michicich M, Traylor Z, McCoy C, Valerio DM, Wilson A, Schneider M, Davis S, Barabas A, Mann RJ, LePage DF, Jiang W, Drumm ML, Kelley TJ, Conlon RA, Hodges CA. A W1282X cystic fibrosis mouse allows the study of pharmacological and gene-editing therapeutics to restore CFTR function. J Cyst Fibros 2025; 24:164-174. [PMID: 39532588 PMCID: PMC11788034 DOI: 10.1016/j.jcf.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND People with cystic fibrosis carrying two nonsense alleles lack CFTR-specific treatment. Growing evidence supports the hypothesis that nonsense mutation identity affects therapeutic response, calling for mutation-specific CF models. We describe a novel W1282X mouse model and compare it to an existing G542X mouse. METHODS The W1282X mouse was created using CRISPR/Cas9 to edit mouse Cftr. In this model, Cftr transcription was assessed using qRT-PCR and CFTR function was measured in the airway by nasal potential difference and in the intestine by short circuit current. Growth, survival, and intestinal motility were examined as well. Correction of W1282X CFTR was assessed pharmacologically and by gene-editing using a forskolin-induced swelling (FIS) assay in small intestine-derived organoids. RESULTS Homozygous W1282X mice demonstrate decreased Cftr mRNA, little to no CFTR function, and reduced survival, growth, and intestinal motility. W1282X organoids treated with various combinations of pharmacologic correctors display a significantly different amount of CFTR function than that of organoids from G542X mice. Successful gene editing of W1282X to wildtype sequence in intestinal organoids was achieved leading to restoration of CFTR function. CONCLUSIONS The W1282X mouse model recapitulates common human manifestations of CF similar to other CFTR null mice. Despite the similarities between the congenic W1282X and G542X models, they differ meaningfully in their response to identical pharmacological treatments. This heterogeneity highlights the importance of studying therapeutics across genotypes.
Collapse
Affiliation(s)
- Margaret Michicich
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Zachary Traylor
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Caitlan McCoy
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Dana M Valerio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Alma Wilson
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Molly Schneider
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Sakeena Davis
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Amanda Barabas
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Rachel J Mann
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - David F LePage
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Weihong Jiang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Thomas J Kelley
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Ronald A Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Craig A Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States.
| |
Collapse
|
2
|
Yue M, Weiner DJ, Gaietto KM, Rosser FJ, Qoyawayma CM, Manni ML, Myerburg MM, Pilewski JM, Celedón JC, Chen W, Forno E. Nasal Epithelium Transcriptomics Predict Clinical Response to Elexacaftor/Tezacaftor/Ivacaftor. Am J Respir Cell Mol Biol 2024; 71:730-739. [PMID: 39028582 PMCID: PMC11622631 DOI: 10.1165/rcmb.2024-0103oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/19/2024] [Indexed: 07/21/2024] Open
Abstract
Elexacaftor/tezacaftor/ivacaftor (ETI) has had a substantial positive impact for people living with cystic fibrosis (pwCF). However, there can be substantial variability in efficacy, and we lack adequate biomarkers to predict individual response. We thus aimed to identify transcriptomic profiles in nasal respiratory epithelium that predict clinical response to ETI treatment. We obtained nasal epithelial samples from pwCF before ETI initiation and performed a transcriptome-wide analysis of baseline gene expression to predict changes in forced expiratory volume in 1 second (ΔFEV1), year's best FEV1 (ΔybFEV1), and body mass index (ΔBMI). Using the top differentially expressed genes, we generated transcriptomic risk scores (TRSs) and evaluated their predictive performance. The study included 40 pwCF ≥6 years of age (mean, 27.7 [SD, 15.1] years; 40% female). After ETI initiation, FEV1 improved by ≥5% in 22 (61.1%) participants, and ybFEV1 improved by ≥5% in 19 (50%). TRSs were constructed using top overexpressed and underexpressed genes for each outcome. Adding the ΔFEV1 TRS to a model with age, sex, and baseline FEV1 increased the area under the receiver operating characteristic curve (AUC) from 0.41 to 0.88, the ΔybFEV1 TRS increased the AUC from 0.51 to 0.88, and the ΔBMI TRS increased the AUC from 0.46 to 0.92. Average accuracy was thus ∼85% in predicting the response to the three outcomes. Results were similar in models further adjusted for F508del zygosity and previous CFTR modulator use. In conclusion, we identified nasal epithelial transcriptomic profiles that help accurately predict changes in FEV1 and BMI with ETI treatment. These novel TRSs could serve as predictive biomarkers for clinical response to modulator treatment in pwCF.
Collapse
Affiliation(s)
- Molin Yue
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
| | - Daniel J. Weiner
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Kristina M. Gaietto
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Franziska J. Rosser
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Christopher M. Qoyawayma
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
| | - Michelle L. Manni
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Michael M. Myerburg
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Joseph M. Pilewski
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Juan C. Celedón
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Wei Chen
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Erick Forno
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
- Pediatric Pulmonology, Allergy, and Sleep Medicine, School of Medicine and Riley Hospital for Children, Indiana University, Indianapolis, Indiana
| |
Collapse
|
3
|
Lantos JD. Neonatal bioethics, AI, and genomics. Early Hum Dev 2024; 198:106130. [PMID: 39405800 DOI: 10.1016/j.earlhumdev.2024.106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/04/2024] [Indexed: 11/12/2024]
Abstract
Artificial intelligence (AI) and synthetic biology will transform civilization. The only question is how. In this paper, I explore some recent developments in medical AI, genomics, and synthetic biology. I speculate about the implications of these technologies for the practice of medicine and conclude that they will fundamentally alter our ideas of health, disease, medicine, and what it means to be human. I have three conclusions. First, AI and synthetic biology will force us to examine whether humanistic skills can be uniquely human and, if so, whether they are skills or natural gifts. AI will offer opportunities to examine what we mean by empathy, how we develop skills in communication, and when the human touch is essential for healing. Second, these technologies will change the ways that we will assess the value of doctors' work. Skills that can be mechanized will be devalued and delegated to machines. Doctors will either need to learn new skills or become irrelevant. Finally, AI and synthetic biology will force us to deeply examine what it means to be human. For humans to remain uniquely valuable, we will need to develop those aspects of our humanity that cannot be mechanized. Doctors will need to carefully attune themselves to the non-physical aspects of disease and suffering. Ultimately, AI and synthetic biology will force us to redesign both or systems of medical education and the systems of health care delivery in ways that meet both the medical and non-medical needs of patients.
Collapse
Affiliation(s)
- John D Lantos
- JDL Bioethics Consulting, 385 Lake Shore Drive, Pleasantville, NY 10570, United States of America.
| |
Collapse
|
4
|
Alqasmi M. Therapeutic Interventions for Pseudomonas Infections in Cystic Fibrosis Patients: A Review of Phase IV Trials. J Clin Med 2024; 13:6530. [PMID: 39518670 PMCID: PMC11547045 DOI: 10.3390/jcm13216530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Pseudomonas aeruginosa (Pa) poses a significant threat to individuals with cystic fibrosis (CF), as this bacterium is highly adaptable and resistant to antibiotics. While early-stage Pa infections can often be eradicated with aggressive antibiotic therapy, chronic infections are nearly impossible to eliminate and require treatments that focus on long-term bacterial suppression. Without such suppression, these persistent infections can severely damage the lungs, leading to serious complications and a reduced life expectancy for CF patients. Evidence for a specific treatment regimen for managing Pa infections in CF patients remains limited. This narrative review provides a detailed analysis of antimicrobial therapies assessed in completed phase IV trials, focusing on their safety and efficacy, especially with prolonged use. Key antibiotics, including tobramycin, colistin, meropenem, aztreonam, ceftolozane/tazobactam, ciprofloxacin, and azithromycin, are discussed, emphasizing their use, side effects, and delivery methods. Inhaled antibiotics are preferred for their targeted action and minimal side effects, while systemic antibiotics offer potency but carry risks like nephrotoxicity. The review also explores emerging treatments, such as phage therapy and antibiofilm agents, which show promise in managing chronic infections. Nonetheless, further research is necessary to enhance the safety and effectiveness of existing therapies while investigating new approaches for better long-term outcomes.
Collapse
Affiliation(s)
- Mohammed Alqasmi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
5
|
Tang Y, Ebadi M, Lei J, Feng Z, Fakhari S, Wu P, Smith MD, Limberis MP, Kolbeck R, Excoffon KJ, Yan Z, Engelhardt JF. Durable transgene expression and efficient re-administration after rAAV2.5T-mediated fCFTRΔR gene delivery to adult ferret lungs. Mol Ther Methods Clin Dev 2024; 32:101244. [PMID: 38638546 PMCID: PMC11024656 DOI: 10.1016/j.omtm.2024.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
The dosing interval for effective recombinant adeno-associated virus (rAAV)-mediated gene therapy of cystic fibrosis lung disease remains unknown. Here, we assessed the durability of rAAV2.5T-fCFTRΔR-mediated transgene expression and neutralizing antibody (NAb) responses in lungs of adult wild-type ferrets. Within the first 3 months following rAAV2.5T-fCFTRΔR delivery to the lung, CFTRΔR transgene expression declined ∼5.6-fold and then remained stable to 5 months at ∼26% the level of endogenous CFTR. rAAV NAbs in the plasma and bronchoalveolar lavage fluid (BALF) peaked at 21 days, coinciding with peak ELISpot T cell responses to AAV capsid peptides, after which both responses declined and remained stable at 4-5 months post dosing. Administration of reporter vector rAAV2.5T-gLuc (gaussia luciferase) at 5 months following rAAV2.5T-fCFTRΔR dosing gave rise to similar levels of gLuc expression in the BALF as observed in age-matched reporter-only controls, demonstrating that residual BALF NAbs were functionally insignificant. Notably, the second vector administration led to a 2.6-fold greater ELISpot T cell response and ∼2.3-fold decline in fCFTRΔR mRNA and vector genomes derived from the initial rAAV2.5T-fCFTRΔR administration, suggesting selective destruction of transduced cells from the first vector dose. These findings provide insights into humoral and cellular immune response to rAAV that may be useful for optimizing gene therapy to the cystic fibrosis lung.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Mehrnoosh Ebadi
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Junying Lei
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zehua Feng
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Shahab Fakhari
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Peipei Wu
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | - Ziying Yan
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - John F. Engelhardt
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Bae H, Kim BR, Jung S, Le J, van der Heide D, Yu W, Park SH, Hilkin BM, Gansemer ND, Powers LS, Kang T, Meyerholz DK, Schuster VL, Jang C, Welsh MJ. Arteriovenous metabolomics in pigs reveals CFTR regulation of metabolism in multiple organs. J Clin Invest 2024; 134:e174500. [PMID: 38743489 PMCID: PMC11213515 DOI: 10.1172/jci174500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), a multiorgan disease that is characterized by diverse metabolic defects. However, other than specific CFTR mutations, the factors that influence disease progression and severity remain poorly understood. Aberrant metabolite levels have been reported, but whether CFTR loss itself or secondary abnormalities (infection, inflammation, malnutrition, and various treatments) drive metabolic defects is uncertain. Here, we implemented comprehensive arteriovenous metabolomics in newborn CF pigs, and the results revealed CFTR as a bona fide regulator of metabolism. CFTR loss impaired metabolite exchange across organs, including disruption of lung uptake of fatty acids, yet enhancement of uptake of arachidonic acid, a precursor of proinflammatory cytokines. CFTR loss also impaired kidney reabsorption of amino acids and lactate and abolished renal glucose homeostasis. These and additional unexpected metabolic defects prior to disease manifestations reveal a fundamental role for CFTR in controlling multiorgan metabolism. Such discovery informs a basic understanding of CF, provides a foundation for future investigation, and has implications for developing therapies targeting only a single tissue.
Collapse
Affiliation(s)
- Hosung Bae
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
| | - Bo Ram Kim
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Sunhee Jung
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
| | - Johnny Le
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
| | | | - Wenjie Yu
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Sang Hee Park
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
| | - Brieanna M. Hilkin
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Linda S. Powers
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Taekyung Kang
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
| | - David K. Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Victor L. Schuster
- Department of Internal Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
- Center for Complex Biological Systems and
- Center for Epigenetics and Metabolism, University of California – Irvine, Irvine, California, USA
| | - Michael J. Welsh
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Mention K, Cavusoglu-Doran K, Joynt AT, Santos L, Sanz D, Eastman AC, Merlo C, Langfelder-Schwind E, Scallan MF, Farinha CM, Cutting GR, Sharma N, Harrison PT. Use of adenine base editing and homology-independent targeted integration strategies to correct the cystic fibrosis causing variant, W1282X. Hum Mol Genet 2023; 32:3237-3248. [PMID: 37649273 PMCID: PMC10656707 DOI: 10.1093/hmg/ddad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023] Open
Abstract
Small molecule drugs known as modulators can treat ~90% of people with cystic fibrosis (CF), but do not work for premature termination codon variants such as W1282X (c.3846G>A). Here we evaluated two gene editing strategies, Adenine Base Editing (ABE) to correct W1282X, and Homology-Independent Targeted Integration (HITI) of a CFTR superexon comprising exons 23-27 (SE23-27) to enable expression of a CFTR mRNA without W1282X. In Flp-In-293 cells stably expressing a CFTR expression minigene bearing W1282X, ABE corrected 24% of W1282X alleles, rescued CFTR mRNA from nonsense mediated decay and restored protein expression. However, bystander editing at the adjacent adenine (c.3847A>G), caused an amino acid change (R1283G) that affects CFTR maturation and ablates ion channel activity. In primary human nasal epithelial cells homozygous for W1282X, ABE corrected 27% of alleles, but with a notably lower level of bystander editing, and CFTR channel function was restored to 16% of wild-type levels. Using the HITI approach, correct integration of a SE23-27 in intron 22 of the CFTR locus in 16HBEge W1282X cells was detected in 5.8% of alleles, resulting in 7.8% of CFTR transcripts containing the SE23-27 sequence. Analysis of a clonal line homozygous for the HITI-SE23-27 produced full-length mature protein and restored CFTR anion channel activity to 10% of wild-type levels, which could be increased three-fold upon treatment with the triple combination of CF modulators. Overall, these data demonstrate two different editing strategies can successfully correct W1282X, the second most common class I variant, with a concomitant restoration of CFTR function.
Collapse
Affiliation(s)
- Karen Mention
- Department of Physiology, University College Cork, College Road, Cork, T12 K8AF, Ireland
- School of Microbiology, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | - Kader Cavusoglu-Doran
- Department of Physiology, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | - Anya T Joynt
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, United States
| | - Lúcia Santos
- Department of Physiology, University College Cork, College Road, Cork, T12 K8AF, Ireland
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal
| | - David Sanz
- Department of Physiology, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | - Alice C Eastman
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, United States
| | - Christian Merlo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, 1800 Orleans St, Baltimore, MD 21287, United States
| | - Elinor Langfelder-Schwind
- The Cystic Fibrosis Center, Lenox Hill Hospital, 100 E. 77th Street, 4E, New York, NY 10075, United States
| | - Martina F Scallan
- School of Microbiology, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | - Carlos M Farinha
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal
| | - Garry R Cutting
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, United States
| | - Neeraj Sharma
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, United States
| | - Patrick T Harrison
- Department of Physiology, University College Cork, College Road, Cork, T12 K8AF, Ireland
| |
Collapse
|
8
|
Nesser W, Snyder S, Driscoll KA, Modi AC. Factors associated with quality of life for cystic fibrosis family caregivers. DISCOVER MENTAL HEALTH 2023; 3:20. [PMID: 37982907 PMCID: PMC10579194 DOI: 10.1007/s44192-023-00046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/11/2023] [Indexed: 11/21/2023]
Abstract
Cystic Fibrosis (CF) is a genetic and chronic disease affecting 32,100 people in the United States as of 2021, with a life expectancy of 56 years for people with CF (PwCF) born between 2018 and 2022. While there is extensive literature about cystic fibrosis, there are few studies examining the complexity and challenges experienced by family caregivers for PwCF. The aim of this study was to examine the Caregiver Quality of Life Cystic Fibrosis (CQOLCF) scale using data (N = 217) from two separate studies that used the scale to determine if its items represent multiple factors relevant to CF family caregiver QoL. Factor analysis was conducted on the Seven distinct factors were found with analysis of the CQOLCF. Factors were Existential Dread (12%), Burden (11%), Strain (7%), Support (7%), Positivity (6%), Finance (5%) and Guilt (3%). Study findings indicated it is important for healthcare providers and researchers who use the CQOLCF to be knowledgeable and aware of the multiple factors associated with quality of life in this population in addition to an overall quality of life score.
Collapse
Affiliation(s)
- Whitney Nesser
- Department of Applied Clinical and Educational Sciences, Indiana State University, 401 N. 7th Street, Room 302B, Terre Haute, IN, 47809, USA.
| | - Scott Snyder
- School of Education, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kimberly A Driscoll
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Avani C Modi
- Center for Adherence and Self-Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
9
|
Foucaud P, Mercier JC. CFTR pharmacological modulators: A great advance in cystic fibrosis management. Arch Pediatr 2023; 30:1-9. [PMID: 36509624 DOI: 10.1016/j.arcped.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/16/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022]
Abstract
Cystic fibrosis is a severe monogenic disease that affects around 7400 patients in France. More than 2100 mutations in the cystic fibrosis conductance transmembrane regulator (CFTR), the gene encoding for an epithelial ion channel that normally transports chloride and bicarbonate, lead to mucus dehydration and impaired bronchial clearance. Systematic neonatal screening in France since 2002 has enabled early diagnosis of cystic fibrosis. Although highly demanding, supportive treatments including daily chest physiotherapy, inhaled aerosol therapy, frequent antibiotic courses, nutritional and pancreatic extracts have improved the prognosis. Median age at death is now beyond 30 years. Ivacaftor was the first CFTR modulator found to both reduce sweat chloride concentration and improve pulmonary function in the rare CFTR gating mutations. Combinations of modulators such as lumacaftor + ivacaftor or tezacaftor + ivacaftor were found to improve pulmonary function both in patients homozygous for the F508del mutation characterized by the lack of CFTR protein and those heterozygous for F508del with minimal CFTR activity. The triple combination of ivacaftor + tezacaftor + elexacaftor was recently shown to significantly improve pulmonary function and quality of life, to normalize sweat chloride concentration, and to reduce the need for antibiotic therapy in patients with at least one F508del mutation (83% in France). These impressive data, however, need to be confirmed in the long term. Nevertheless, it is encouraging to hear treated patients testify about their markedly improved quality of life and to observe that the number of lung transplants for cystic fibrosis decreased dramatically in France after 2020, despite the COVID pandemic, with no increase in deaths without lung transplant.
Collapse
Affiliation(s)
- P Foucaud
- Vice-Président de l'Association Vaincre la Mucoviscidose, 181 Rue de Tolbiac, Paris 75013, France.
| | - J C Mercier
- Membre de la Commission de Transparence, Haute Autorité de Santé, 5 avenue du Stade de France, Saint Denis 93210, France
| |
Collapse
|
10
|
Martinez-Garcia MA, Sierra-Párraga JM, Quintana E, López-Campos JL. CFTR dysfunction and targeted therapies: A vision from non-cystic fibrosis bronchiectasis and COPD. J Cyst Fibros 2022; 21:741-744. [PMID: 35551858 DOI: 10.1016/j.jcf.2022.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Miguel Angel Martinez-Garcia
- Pneumology Department, Hospital Universitario y Politécnico la Fe de Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES). Instituto de Salud Carlos III, Madrid, Spain.
| | - Jesús María Sierra-Párraga
- Pepartment of regeneration an cell therapy. Andalusian molecular biology and regenerative medicine medicine center (CABIMER)-CSIC-US-UPO, Spain
| | - Esther Quintana
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias. Instituto de Biomedicina de Sevilla (IBiS). Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES). Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Luis López-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias. Instituto de Biomedicina de Sevilla (IBiS). Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES). Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Anglès F, Wang C, Balch WE. Spatial covariance analysis reveals the residue-by-residue thermodynamic contribution of variation to the CFTR fold. Commun Biol 2022; 5:356. [PMID: 35418593 PMCID: PMC9008016 DOI: 10.1038/s42003-022-03302-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Although the impact of genome variation on the thermodynamic properties of function on the protein fold has been studied in vitro, it remains a challenge to assign these relationships across the entire polypeptide sequence in vivo. Using the Gaussian process regression based principle of Spatial CoVariance, we globally assign on a residue-by-residue basis the biological thermodynamic properties that contribute to the functional fold of CFTR in the cell. We demonstrate the existence of a thermodynamically sensitive region of the CFTR fold involving the interface between NBD1 and ICL4 that contributes to its export from endoplasmic reticulum. At the cell surface a new set of residues contribute uniquely to the management of channel function. These results support a general 'quality assurance' view of global protein fold management as an SCV principle describing the differential pre- and post-ER residue interactions contributing to compartmentalization of the energetics of the protein fold for function. Our results set the stage for future analyses of the quality systems managing protein sequence-to-function-to-structure broadly encompassing genome design leading to protein function in complex cellular relationships responsible for diversity and fitness in biology in response to the environment.
Collapse
Affiliation(s)
- Frédéric Anglès
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Chao Wang
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - William E Balch
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
12
|
Barillà C, Suzuki S, Rab A, Sorscher EJ, Davis BR. Targeted Gene Insertion for Functional CFTR Restoration in Airway Epithelium. Front Genome Ed 2022; 4:847645. [PMID: 35330693 PMCID: PMC8940244 DOI: 10.3389/fgeed.2022.847645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic Fibrosis (CF) is caused by a diverse set of mutations distributed across the approximately 250 thousand base pairs of the CFTR gene locus, of which at least 382 are disease-causing (CFTR2.org). Although a variety of editing tools are now available for correction of individual mutations, a strong justification can be made for a more universal gene insertion approach, in principle capable of correcting virtually all CFTR mutations. Provided that such a methodology is capable of efficiently correcting relevant stem cells of the airway epithelium, this could potentially provide life-long correction for the lung. In this Perspective we highlight several requirements for efficient gene insertion into airway epithelial stem cells. In addition, we focus on specific features of the transgene construct and the endogenous CFTR locus that influence whether the inserted gene sequences will give rise to robust and physiologically relevant levels of CFTR function in airway epithelium. Finally, we consider how in vitro gene insertion methodologies may be adapted for direct in vivo editing.
Collapse
Affiliation(s)
- Cristina Barillà
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shingo Suzuki
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Andras Rab
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Eric J Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Brian R Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
13
|
Tam RY, van Dorst JM, McKay I, Coffey M, Ooi CY. Intestinal Inflammation and Alterations in the Gut Microbiota in Cystic Fibrosis: A Review of the Current Evidence, Pathophysiology and Future Directions. J Clin Med 2022; 11:649. [PMID: 35160099 PMCID: PMC8836727 DOI: 10.3390/jcm11030649] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-limiting autosomal recessive multisystem disease. While its burden of morbidity and mortality is classically associated with pulmonary disease, CF also profoundly affects the gastrointestinal (GI) tract. Chronic low-grade inflammation and alterations to the gut microbiota are hallmarks of the CF intestine. The etiology of these manifestations is likely multifactorial, resulting from cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, a high-fat CF diet, and the use of antibiotics. There may also be a bidirectional pathophysiological link between intestinal inflammation and changes to the gut microbiome. Additionally, a growing body of evidence suggests that these GI manifestations may have significant clinical associations with growth and nutrition, quality of life, and respiratory function in CF. As such, the potential utility of GI therapies and long-term GI outcomes are areas of interest in CF. Further research involving microbial modulation and multi-omics techniques may reveal novel insights. This article provides an overview of the current evidence, pathophysiology, and future research and therapeutic considerations pertaining to intestinal inflammation and alterations in the gut microbiota in CF.
Collapse
Affiliation(s)
- Rachel Y. Tam
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
| | - Josie M. van Dorst
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
| | - Isabelle McKay
- Wagga Wagga Base Hospital, Wagga Wagga, NSW 2650, Australia;
| | - Michael Coffey
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney, NSW 2031, Australia
| | - Chee Y. Ooi
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney, NSW 2031, Australia
| |
Collapse
|
14
|
Hartl D, de Luca V, Kostikova A, Laramie J, Kennedy S, Ferrero E, Siegel R, Fink M, Ahmed S, Millholland J, Schuhmacher A, Hinder M, Piali L, Roth A. Translational precision medicine: an industry perspective. J Transl Med 2021; 19:245. [PMID: 34090480 PMCID: PMC8179706 DOI: 10.1186/s12967-021-02910-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
In the era of precision medicine, digital technologies and artificial intelligence, drug discovery and development face unprecedented opportunities for product and business model innovation, fundamentally changing the traditional approach of how drugs are discovered, developed and marketed. Critical to this transformation is the adoption of new technologies in the drug development process, catalyzing the transition from serendipity-driven to data-driven medicine. This paradigm shift comes with a need for both translation and precision, leading to a modern Translational Precision Medicine approach to drug discovery and development. Key components of Translational Precision Medicine are multi-omics profiling, digital biomarkers, model-based data integration, artificial intelligence, biomarker-guided trial designs and patient-centric companion diagnostics. In this review, we summarize and critically discuss the potential and challenges of Translational Precision Medicine from a cross-industry perspective.
Collapse
Affiliation(s)
- Dominik Hartl
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany.
| | - Valeria de Luca
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Anna Kostikova
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jason Laramie
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Scott Kennedy
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Enrico Ferrero
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Richard Siegel
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Martin Fink
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | | | - Markus Hinder
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Luca Piali
- Roche Innovation Center Basel, Basel, Switzerland
| | - Adrian Roth
- Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
15
|
Barben J, Castellani C, Munck A, Davies JC, de Winter-de Groot KM, Gartner S, Kashirskaya N, Linnane B, Mayell SJ, McColley S, Ooi CY, Proesmans M, Ren CL, Salinas D, Sands D, Sermet-Gaudelus I, Sommerburg O, Southern KW. Updated guidance on the management of children with cystic fibrosis transmembrane conductance regulator-related metabolic syndrome/cystic fibrosis screen positive, inconclusive diagnosis (CRMS/CFSPID). J Cyst Fibros 2020; 20:810-819. [PMID: 33257262 DOI: 10.1016/j.jcf.2020.11.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023]
Abstract
Over the past two decades there has been considerable progress with the evaluation and management of infants with an inconclusive diagnosis following Newborn Screening (NBS) for cystic Fibrosis (CF). In addition, we have an increasing amount of evidence on which to base guidance on the management of these infants and, importantly, we have a consistent designation being used across the globe of CRMS/CFSPID. There is still work to be undertaken and research questions to answer, but these infants now receive more consistent and appropriate care pathways than previously. It is clear that the majority of these infants remain healthy, do not convert to a diagnosis of CF in childhood, and advice on management should reflect this. However, it is also clear that some will convert to a CF diagnosis and monitoring of these infants should facilitate their early recognition. Those infants that do not convert to a CF diagnosis have some potential of developing a CFTR-RD later in life. At present, it is not possible to quantify this risk, but families need to be provided with clear information of what to look out for. This paper contains a number of changes from previous guidance in light of developing evidence, but the major change is the recommendation of a detailed assessment of the child with CRMS/CFSPID in the sixth year of age, including respiratory function assessment and imaging. With these data, the CF team can discuss future care arrangements with the family and come to a shared decision on the best way forward, which may include discharge to primary care with appropriate information. Information is key for these families, and we recommend consideration of a further appointment when the individual is a young adult to directly communicate the implications of the CRMS/CFSPID designation.
Collapse
Affiliation(s)
- Jürg Barben
- Paediatric Pulmonology & CF Centre, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland.
| | - Carlo Castellani
- Istituto Giannina Gaslini, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Anne Munck
- CF referent physician for the French Society of Newborn Screening, Hopital Necker Enfants-Malades, AP-HP, CF centre, Université Paris Descartes, France
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, UK; Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Karin M de Winter-de Groot
- Department of Paediatric Pulmonology & Allergology, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Silvia Gartner
- Pediatric Pulmonology and Cystic Fibrosis Unit, Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | - Nataliya Kashirskaya
- Laboratory of genetic epidemiology, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Barry Linnane
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| | - Sarah J Mayell
- Regional Paediatric CF Centre, Alder Hey Children's Hospital, Liverpool, UK
| | - Susanna McColley
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Stanley Manne Children's Research Institute, Ann and Robert H Lurie Children's Hospital of Chicago, USA
| | - Chee Y Ooi
- Discipline of Paediatrics, School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Australia; Department of Gastroenterology and Molecular and Integrative Cystic Fibrosis Research Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Marijke Proesmans
- Division of Woman and Child, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Clement L Ren
- Department of Pediatrics, Indiana University School of Medicine, Division of Pediatric Pulmonology, Allergy and Sleep Medicine, Riley Hospital for Children, Indianapolis, USA
| | - Danieli Salinas
- Department of Pediatric Pulmonology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, USA
| | - Dorota Sands
- Cystic Fibrosis Department, Institute of Mother and Child, Warsaw, Poland
| | - Isabelle Sermet-Gaudelus
- Institut Necker Enfants Malades/INSERM U1151, Service de Pneumologie et Allergologie Pédiatriques Centre de Référence Maladies Rares, Mucoviscidose et maladies de CFTR, Hôpital Necker Enfants Malades Paris. Université de Paris. ERN Lung, France
| | - Olaf Sommerburg
- Paediatric Pulmonology, Allergology & CF Centre, Department of Paediatrics III, and Translational Lung Research Center, German Lung Research Center, University Hospital Heidelberg, Germany
| | - Kevin W Southern
- Department of Women's and Children's Health, University of Liverpool, UK
| | | |
Collapse
|
16
|
Yalçıntepe S, Gürkan H, Atlı E, Sayın NC, Başaran ÜN. Two Cases of Cystic Fibrosis with Compound Heterozygous Variants Reported for the First Time. Balkan Med J 2020; 37:297-298. [PMID: 32106665 PMCID: PMC7424187 DOI: 10.4274/balkanmedj.galenos.2020.2019.11.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Sinem Yalçıntepe
- Department of Medical Genetics, Trakya University School of Medicine, Edirne, Turkey
| | - Hakan Gürkan
- Department of Medical Genetics, Trakya University School of Medicine, Edirne, Turkey
| | - Engin Atlı
- Department of Medical Genetics, Trakya University School of Medicine, Edirne, Turkey
| | - Niyazi Cenk Sayın
- Department of Perinatology, Trakya University School of Medicine, Edirne, Turkey
| | - Ümit Nusret Başaran
- Department of Child Surgery, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
17
|
Cuevas-Ocaña S, Laselva O, Avolio J, Nenna R. The era of CFTR modulators: improvements made and remaining challenges. Breathe (Sheff) 2020; 16:200016. [PMID: 33304402 PMCID: PMC7714553 DOI: 10.1183/20734735.0016-2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The entry into the clinic of CFTR modulators such as TRIKAFTA has significantly improved life for ∼90% CF patients carrying one or two F508del mutations but challenges remain for rare CFTR mutations and the management of lung infections @SaraOcana1 https://bit.ly/3aRafQF.
Collapse
Affiliation(s)
- Sara Cuevas-Ocaña
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Onofrio Laselva
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
- Dept of Physiology, University of Toronto, Toronto, Canada
| | - Julie Avolio
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Raffaella Nenna
- Dept of Paediatrics, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
18
|
Murillo J, Spetale F, Guillaume S, Bulacio P, Garcia Labari I, Cailloux O, Destercke S, Tapia E. Consistency of the Tools That Predict the Impact of Single Nucleotide Variants (SNVs) on Gene Functionality: The BRCA1 Gene. Biomolecules 2020; 10:E475. [PMID: 32244891 PMCID: PMC7175253 DOI: 10.3390/biom10030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 11/16/2022] Open
Abstract
Single nucleotide variants (SNVs) occurring in a protein coding gene may disrupt its function in multiple ways. Predicting this disruption has been recognized as an important problem in bioinformatics research. Many tools, hereafter p-tools, have been designed to perform these predictions and many of them are now of common use in scientific research, even in clinical applications. This highlights the importance of understanding the semantics of their outputs. To shed light on this issue, two questions are formulated, (i) do p-tools provide similar predictions? (inner consistency), and (ii) are these predictions consistent with the literature? (outer consistency). To answer these, six p-tools are evaluated with exhaustive SNV datasets from the BRCA1 gene. Two indices, called K a l l and K s t r o n g , are proposed to quantify the inner consistency of pairs of p-tools while the outer consistency is quantified by standard information retrieval metrics. While the inner consistency analysis reveals that most of the p-tools are not consistent with each other, the outer consistency analysis reveals they are characterized by a low prediction performance. Although this result highlights the need of improving the prediction performance of individual p-tools, the inner consistency results pave the way to the systematic design of truly diverse ensembles of p-tools that can overcome the limitations of individual members.
Collapse
Affiliation(s)
- Javier Murillo
- Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET), Universidad Nacional de Rosario, CP 2000 Rosario, Santa Fe, Argentina; (F.S.); (P.B.); (I.G.L.); (E.T.)
| | - Flavio Spetale
- Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET), Universidad Nacional de Rosario, CP 2000 Rosario, Santa Fe, Argentina; (F.S.); (P.B.); (I.G.L.); (E.T.)
| | - Serge Guillaume
- ITAP, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France;
| | - Pilar Bulacio
- Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET), Universidad Nacional de Rosario, CP 2000 Rosario, Santa Fe, Argentina; (F.S.); (P.B.); (I.G.L.); (E.T.)
| | - Ignacio Garcia Labari
- Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET), Universidad Nacional de Rosario, CP 2000 Rosario, Santa Fe, Argentina; (F.S.); (P.B.); (I.G.L.); (E.T.)
| | - Olivier Cailloux
- Université Paris-Dauphine, Université PSL, CNRS, LAMSADE, 75016 Paris, France;
| | | | - Elizabeth Tapia
- Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET), Universidad Nacional de Rosario, CP 2000 Rosario, Santa Fe, Argentina; (F.S.); (P.B.); (I.G.L.); (E.T.)
| |
Collapse
|